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Abstract

The estimation of P(Sn > u) by simulation where Sn is a sum of
i.i.d. r.v.’s Y1, . . . , Yn is of importance in many applications. We pro-
pose two simulation estimators based upon the identity P(Sn > u) =
n P(Sn > u,Mn = Yn) where Mn = max(Y1, . . . , Yn). One estimator
uses importance sampling (for Yn only), the other conditional Monte
Carlo conditioning upon Y1, . . . , Yn−1. Properties of the relative error
of the estimators are derived and a numerical study given in terms of
the M/G/1 queue where n is replaced by an independent geometric
r.v. N . The conclusion is that the new estimators compare extremely
favourable with previous ones. In particular, the conditional Monte
Carlo estimator is the first heavy-tailed example of an estimator with
bounded relative error. Further improvements are obtained in the
random N case, by incorporating control variates and stratification
techniques into the new estimation procedures.
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1 Introduction

This paper is concerned with the evaluation of z(u) = P(Sn > u) by sim-
ulation, where Sn = Y1 + · · · + Yn with the Yi > 0 i.i.d. and heavy-tailed,
in situations where u is large so that z(u) is small. We will also consider
the case where n is replaced by an independent integer-valued r.v. N . An
example where this is of relevance is the steady-state waiting time of the
M/G/1 queue, which according to the Pollaczeck-Khinchine formula has the
same distribution as SN for a certain choice of parameters (see [4] p. 237). In
insurance risk P(SN > u) is also a representation of the ruin probability with
initial reserve u ([4] p. 399). A third example (from financial mathematics) is
credit risk; here N could be the number of defaulted obligors in a period and
Yi the loss from the ith default [14]. In the last two examples, the interesting
values of z(u) may be of order 10−2. In the first (arising from problems in
telecommunications and data transmission where z(u) could be a bit loss
rate) the magnitude could go down to say 10−10. As is well known [9, 15],
the efficiency of crude Monte Carlo simulation greatly deterioates as z(u)
decreases, making the simulation a non-trivial problem requiring variance
reduction ideas.

Let F denote the common distribution of the Yi. Heavy tails means in
wide terms that exponential moments fail to exist. However, most often a
more narrow framework is used like F being subexponential [12, 20] or even
just the special case of primary importance where F is regularly varying with
a relatively small index α; this means that the tail F (x) is L(x)/xα for some
slowly varying function L(·). We will not go into the general subexponential
framework here but be satisfied with treating the regularly varying case as
well as what is maybe the secondmost important example: the heavy-tailed
Weibull case where F (x) = e−uβ

with 0 < β < 1. The application relevance
of such modeling assumptions has been vividly argued; see e.g. [12, 2].

We call a r.v. Z = Z(u) an estimator for z(u) if Z can be generated
by simulation and E

∗Z = z(u) where P
∗ = P

∗,u is the probability mea-
sure used in the simulation (the given distribution of Y1, Y2, . . . or an im-
portance sampling distribution). We use the standard terms bounded rela-
tive error for Var(Z(u))/z(u)2 being bounded in u and polynomial time for
Var(Z(u))/z(u)2−ε being bounded in u for any ε > 0 (often also logarithmic
efficient or just efficient is used [9, 15, 6, 16]). Similar terminology is used
for the case of a random N . With light tails, the most established approach
for simulation of z(u) is the exponential change of measure, as determined
by the saddlepoint method, see [4] pp. 373–376. As discussed there, this
scheme can be seen as an implementation of the general principle in im-
portance sampling to take the changed measure used for the simulation as

2



close as possible to the conditional distribution given the rare event. In the
present case this means sampling Y1, . . . , Yn using an asymptotic description
of their conditional distribution P

n,u given Sn > u. The traditional descrip-
tion in the subexponential setting states that one Yi is larger than u and the
rest are in some sense ”typical”, that is, unaffected by the conditioning (for
precise statements in this direction, see Proposition 1.2 p. 252 in [3], and
Lemma 6.6 p. 405 in [4]). However, as noted in [6], the most straightforward
ideas of using this asymptotics as basis for importance sampling fail. The
first polynomial time algorithm reported in the literature, [5], in fact uses a
different idea, namely conditional Monte Carlo, invoking the order statistics
Y(1) < · · · < Y(n) for the conditioning. The estimator is

P(Sn > u | Y(1), . . . , Y(n−1)) =
F

(

Y(n−1) ∨ (u− S(n−1))
)

F (Y(n−1))
, (1)

where S(n−1) = Y(1) + · · · + Y(n−1). Later, polynomial time importance sam-
pling ideas were given in [6] and [16]. We only consider the (more efficient)
ideas of [16], which are based upon the hazard rate Λ(x) = − logF (x). A
key ingredient (not the only one!) in the algorithms of [16] is hazard rate
twisting which changes Λ(x) to θΛ(x) for some small θ. That is, the tail F is

changed to F θ = F
θ
. The more refined weighted delayed hazard rate twisting

simulates the Yi from a distribution which is a mixture of F conditioned to
(0, x∗] and Fθ conditioned to (x∗,∞), with the weights, θ and x∗ chosen to
depend appropriately on u.

Despite the good computational and theoretical properties of these algo-
rithms reported in [16], it appears intuitively unnatural that the importance
sampling change of measure is i.i.d. Indeed, the above description of P

n,u

is highly asymmetric, showing the particular role taken by one of the Yi

(the big one). The contribution of this paper is to present some changed
algorithms which takes this into account, and which will turn out to yield
efficiency improvements over existing algorithms which are very substantial.
Our algorithms depart from the identity

P(Sn > u) = nP(Sn > u,Mn = Yn),

where we use the notation Mk = max(Y1, . . . , Yk), so that Y(n) = Mn. If f is
the density of F and f ∗ the density of an importance sampling distribution
(we return to the choice of f ∗ later), we twist only the distribution of Yn and
arrive at the estimator

n
f(Yn)

f ∗(Yn)
I(Sn > u,Mn = Yn). (2)
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Using instead conditional Monte Carlo yields the estimator

nP
(

Sn > u,Mn = Yn | Y1, . . . , Yn−1

)

= nF
(

Mn−1 ∨ (u− Sn−1)
)

. (3)

The paper is organized as follows. In Section 2, we give a theoretical
proof of the efficiency of our estimators for the Pareto case and present some
numerical studies. Section 3 addresses the same issues for the Weibull case
where it turns out that there is a certain critical value of β for (3) to be
polynomial time. The empirical performance of (2) and in particular (3) is
excellent. For example for an M/G/1 queue with Pareto service times of index
α = 1.5, Table 1 below shows that (3) reduces the variance by a factor 5–14
compared to [5] and 33-529 compared to [16]. The performance improvement
for Weibull tails compared to [16] is similar, whereas the algorithm of [5] is
not even polynomial in this case. In addition to this, we would like to point
out the simplicity of (3), making the code much shorter and more transparent
than for some of the other estimators we compare with.

Section 4 discusses combinations with other variance reduction ideas (con-
trol variates and stratification) in the case that n = N is random as in the
examples above.

2 The regularly varying case

In this section we assume f(x) = L(x)/(1 + x)1+α, x > 0, with L slowly
varying and α > 0 (we don’t need conditions like α ≥ 1 to exclude infinite
mean, etc.). Then F (x) ∼ L(x)/(1+x)α by Karamata’s theorem ([13]). Here
we use the notation a(x) ∼ b(x) ⇔ limx→∞ a(x)/b(x) = 1.

We first consider the estimator (2). It remains to specify the importance
sampling density f ∗(y). As in [16, 8], we take f ∗ to be regularly varying
with index α∗ of the form b/ log u, for simplicity just Pareto so that f ∗(x) =
α∗/(1 + x)1+α∗

.

Theorem 2.1 (a) With f ∗ as stated, the estimator (2) is polynomial time
for any fixed n; (b) more precisely, if there exist u0, z0 such that L(uz)/L(u)
is either monotonically increasing or monotonically increasing in u ≥ u0 for
all z ≥ z0, then an asymptotic upper bound for the squared relative error is

c1n
2 log u,

where c1 is a constant independent of n. (c) In the random N case the
estimator is polynomial time provided EN3α+3 <∞.
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[Some discussion of the condition of (b) is given in Remark 2.1 below].
In the proof, we need the density g∗ proportional to L(x)2/(1+x)1+2α−α∗

(note the dependence on u via α∗ = b/ log u). That is, g∗ = f 2/f ∗/c∗ where

c∗ =

∫

f 2/f ∗ ∼ c2 log u where c2 = b−1

∫ ∞

0

L(x)2

(1 + x)2α+1
dx,

Lemma 2.1 Let Y ∗ have density g∗. Then (a) for any ε > 0, there is a
constant cε such that P(Y ∗ > u) ≤ cε(1+ u)−(2α−ε) for all large u; (b) under
the conditions of Theorem 2.1(b), P(Y ∗ > u) ∼ c3 F (u)2 log u.

Proof. We have

P(Y ∗ > u) ∼ c4

∫ ∞

u

L(z)2

(1 + z)2α−α∗+1
dz ∼ c4

∫ ∞

u

L(z)2

z2α−α∗+1
dz .

From this (a) follows by noting that we can bound α∗ by ε for u large enough
and that

∫ ∞

u
L(z)2/z1+β dz ∼ L(u)2/uβ by Karamata’s theorem. For (b),

substitute z = uy to get

P(Y ∗ > u) ∼ c4
L(u)2

u2α−α∗

∫ ∞

1

L(uy)2/L(u)2

(1 + y)2α−α∗+1
dy .

Here uα∗

→ b whereas L(uy)/L(u) → 1 for all y. The convergence is in fact
uniform on [1, z0] so that using monotone convergence on (z0,∞) ensures the
existence of a limit of the integral. This completes the proof. 2

Proof of Theorem 2.1. Let A = {x1 + · · · + xn > u, xn = maxk≤n xk}. The
second moment of (2) is then

n2

∫

. . .

∫

A

f 2(xn)

f ∗(xn)
dxn

n−1
∏

i=1

f(xi) dxi

= n2c∗
∫

. . .

∫

A

g∗(xn) dxn

n−1
∏

i=1

f(xi) dxi = n2 c∗ P
∗∗(Mn = Yn, Sn > u),

where P
∗∗ is the probability measure under which the Yi are independent

with Yn having density g∗ and the rest f .
Let β ∈ (2/3, 1) and let u′ = uβ/(n−1), u′′ = u−(n−1)u′ = u(1−uβ−1).

Then Yn > u′′ on the event {Mn−1 ≤ u′}. It follows that

P
∗∗(Sn > u,Mn = Yn) ≤ P

∗∗
(

Yn > u′′) + P
∗∗

(

Mn−1 > u′, Yn > u′
)

≤ P
∗∗

(

Yn > u′′) + nP
∗∗(Yn > u′) P

∗∗(Y1 > u′).
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Choose δ, ε > 0 such that 2α + δ < 2α + δ + εβ < 3αβ. Then using Lemma
2.1(a), the second term can be bounded by

c5 n
(n− 1

uβ

)2α−ε (n− 1

uβ

)α−ε

= c5 n
(n− 1)3α−2ε

u3αβ−2εβ
≤ c5 n

(n− 1)3α−2ε

u2α+δ
.

Again by Lemma 2.1(a),
(

u(1− uβ−1)
)−(2α−ε)

is an upper bound for the first

term. Since the asymptotics of this expression is u−(2α−ε), part (a) of the
theorem follows.

Part (b) of the theorem follows now immediately by just invoking part
(b) rather than part (a) of Lemma 2.1. For part (c), just condition upon
N = n and use dominated convergence to control the second term. 2

Remark 2.1 The improvement over hazard rate twisting obtained when
using (2) can be understood as follows. Assume for simplicity that F is
Pareto with density α/(1 + x)α+1, x > 0, and that n is fixed. The second
moment in hazard rate twisting is

∫

. . .

∫

x1+···+xn>u

n
∏

i=1

f 2(xi)

f ∗(xi)
dxi

=
( α2

α∗αx

)n
∫

. . .

∫

x1+···+xn>u

n
∏

i=1

fu(xi) dxi =
( α2

α∗αu

)n

F
∗n

u (x),

letting Fu be the Pareto distribution with parameter αu = 2α− α∗.
Easy modifications of arguments in [13] pp. 278–279 show that F

∗n

u (u)
∼ n eb u−2α, as is expected from uα∗

→ eb. Thus the asymptotics of the
second moment is

eb
( α

2b

)n

n(log u)nF (u)2.

Thus, comparison with Theorem (2.1) shows that (2) improves the squared
relative error by a factor of (log u)n−1.

2

An immediate corollary of Theorem 2.1 is that the estimator (3) is also
polynomial time. To this end, just note that (3) is the conditional expectation
of (2) given Y1, . . . , Yn−1 (the choice of f ∗ is immaterial for this) and the
standard fact that conditioning reduces variance. In fact, a stronger result
holds:

Theorem 2.2 The estimator (3) has bounded relative error, assuming in the
case of a random N that

lim sup
u→∞

E
[

L(u/2N)N2α+4
]

L1(u)
< ∞, (4)
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for some function L1(u) satisfying L1(u) ∼ L(u).

Remark 2.2 The condition (4) is in the examples we looked at equivalent
to or only marginally stronger than EN2α+4 < ∞. To see this, note first
that L(u/2N)/L1(u) → 1, as follows from L(u) being slowly varying. Thus a
sufficient condition for the l.h.s. of (4) being equal to EN2α+4 is L(ut)/L1(u)
being bounded or monotone in u for a fixed t (which is essentially the condi-
tion of Theorem 2.1). If e.g. L(x) = (log(a+x))β, we can let L1(x) = (log x)β

and have
L(ut)

L1(u)
=

(

1 +
log(t+ a/u)

log u

)β

,

which is decreasing for β > 0 and increasing for β < 0 (note that log(t +
a/u)/ log u is decreasing, it being the ratio between a decreasing and an
increasing function). 2

Proof of Theorem 2.2. We split the second moment of (3) (with n+1 instead
of n for notational convenience, and omitting the factor (n + 1)2) into the
three parts

v1 = E

[

F
(

Mn ∨ (u− Sn)
)2

; Mn > u/2
]

(5)

v2 = E

[

F
(

Mn ∨ (u− Sn)
)2

; Mn ≤ u/2, Y(n−1) ≤ εu
]

(6)

v3 = E

[

F
(

Mn ∨ (u− Sn)
)2

; Mn ≤ u/2, Y(n−1) > εu
]

(7)

where ε = 1/(2n). Here v1 ≤ F (u/2)2 ∼ 2αF (u)2. If Mn ≤ u/2, Y(n−1) ≤ εu,
we have Sn ≤ u(1 − 1/2n) and hence

v2 ≤ F (u/2n)2 ≤
L(u)2

u2α

L(u/2n)2(2n)2α

L(u)2
∼ F (u)2(2n)2α

Finally,

v3 ≤ P(Y(n−1) > εu) ≤ n2F (εu)2 ≤ n2L(u)2

u2α

L(u/2n)2(2n)2α

L(u)2

∼ 4αn2+2αF (u)2.

Putting these estimates together completes the proof. For the case of a
random N , just condition upon N = n + 1 and invoke (4) (remember the
omitted (n + 1)2 factor). 2

Theorem 2.2 appears to give the first example of an estimator with
bounded relative error in a heavy-tailed setting. However, asymptotic ef-
ficiency does not guarantee efficiency for a given set of parameters (a good
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example of this is the importance sampling algorithm of [6]!). Nevertheless,
complexity studies give a guideline to whether to proceed with an estimator
or not. Encouraged by Theorems 2.1 and 2.2, we performed a comparison
of different estimators for the Pareto case F (x) = (1 + x)−α and the M/G/1
queue where N is geometric with P(N = n) = (1 − ρ)ρn, n = 0, 1, 2, . . . and
f(y) = P(U > y)/EU where U is a generic service time. Thus F plays the
role of the integrated tail distribution so that the service time distribution
itself is Pareto but with index αU = α+ 1 instead of α. The most important
range for αU is often argued to be the interval (1, 2) (finite mean but infinite
variance) so we took αU = 3/2, corresponding to α = 1/2 and supplemented
this with the larger value α = 3/2 corresponding to αU = 5/2. Three dif-
ferent traffic intensities ρ = 0.25, 0.5, 0.75 were considered whereas for u we
considered the four values which the standard approximation

P(W > u) ∼
ρ

1 − ρ
F (u) (8)

is 10−k, with k = 2, 5, 8, 11. In the implementation we used

P(W > u) = P(Y1 + · · ·+ YN > u) = ρP(Y1 + · · ·+ YN∗ > u),

where P(N∗ = n) = (1 − ρ)ρn−1, n = 1, 2, . . ., and simulated using N∗.
The algorithms were replicated R = 107 times and Tables 1–2 give the corre-
sponding relative error defined as the halfwidth of the 95% confidence interval
divided by the point estimate.

In the list of algorithms, (1) and (3) are self-explanatory. CE means
simple importance sampling (hazard rate twisting), simulating using α∗ =
n/ log u as suggested by the cross-entropy argument in [8]. JS is the weighted
delayed hazard rate twisting of Juneja & Shahabuddin [16], implemented
using the parameters suggested there. The asymmetric importance sampling
(2) was implemented for two different f ∗, such that (2)CE means a Pareto f ∗

with α∗ = 1/ logu as suggested by a cross-entropy argument similar to [8]
(we omit the details of the derivation) and (2)JS corresponds to the same f ∗

as was used in algorithm JS.
The point estimates (not given here) showed excellent agreement with

the approximation (8) in the present Pareto case, but we note that regularly
varying cases where (8) is quite inaccurate (and hence simulation is a realistic
alternative) have been reported in, e.g., [1, 17].

The findings of Tables 1–2 are that the conditional Monte Carlo algo-
rithms (1) and (3) performs better than any of the importance sampling
algorithms, with (3) representing a substantial improvement of (1). The
weighted delayed hazard rate twisting in algorithm JS is substantially more
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ρ k (1) CE (2)CE (3) JS (2)JS

0.25 2 0.071 0.221 0.152 0.032 0.185 0.224
5 0.105 0.436 0.260 0.031 0.421 0.506
8 0.122 0.783 0.335 0.031 0.582 0.703
11 0.115 1.856 0.397 0.031 0.713 0.859

0.5 2 0.111 1.475 0.192 0.045 0.253 0.402
5 0.144 1.442 0.301 0.044 0.515 0.812
8 0.146 8.180 0.380 0.044 0.702 1.098
11 0.153 3.808 0.445 0.044 0.855 1.337

0.75 2 0.141 3.136 0.232 0.054 0.314 0.744
5 0.205 7.433 0.341 0.054 0.591 1.381
8 0.188 7.128 0.423 0.054 0.795 1.888
11 0.180 17.787 0.494 0.054 0.960 2.272

Table 1: Results for the Pareto case, α = 0.5.

ρ k (1) CE (2)CE (3) JS (2)JS

0.25 2 0.100 0.281 0.169 0.051 0.200 0.255
5 0.150 0.435 0.260 0.031 0.420 0.518
8 0.124 1.105 0.335 0.031 0.583 0.702
11 0.102 1.311 0.396 0.031 0.715 0.861

0.5 2 0.161 1.954 0.234 0.077 0.282 0.492
5 0.201 1.474 0.302 0.044 0.514 0.835
8 0.152 2.562 0.381 0.044 0.703 1.113
11 0.149 4.620 0.446 0.044 0.854 1.340

0.75 2 0.212 10.846 0.333 0.114 0.361 0.933
5 0.201 6.025 0.342 0.054 0.589 1.469
8 0.189 12.101 0.422 0.054 0.795 1.848
11 0.231 26.358 0.492 0.054 0.961 2.298

Table 2: Results for the Pareto case, α = 1.5.

efficient than the naive twisting of α in the CE algorithm, but when com-
bined with asymmetric importance sampling, the CE algorithm is improved
very substantially, the JS one not. An intuitive argument why this is the
case may be that the role of the delay in the JS algorithm (represented by
the change point x∗) is to ensure a sufficient number of Yi that are not large
even if Y1 + · · · + YN is so.

3 The Weibull case

In this section, we assume that F is Weibull-like (with a terminology from
[17]), meaning that the density f(x) is asymptotically of the form cxγe−xβ
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where 0 < β < 1. The tail then satisfies F (x) ∼ cx1+γ−βe−xβ

/β.
We will only give a theoretical study of the efficiency properties of the

estimator (3) and not of (2). This is motivated from the findings (both
theoretical and empirical) in the Pareto case and the numerical studies below.

Theorem 3.1 Assume β < β = log(3/2)/ log 2 = 0.585, i.e. 21+β < 3.
Then the estimator (3) is polynomial time for any fixed n.

Remark 3.1 The occurence of a critical value of β is not uncommon for the
Weibull distribution. See, e.g., [7] where some of the results take a different
form for 1/2 < β < 1, 1/3 < β < 1/2 and so on. Critically of β < 1/2 for
a certain result to hold true has been found in many later cases and is often
referred to as square-root insensitivity, see e.g. [10] and references there. We
have not seen the present critical value 0.585 show up before, but it is in fact
maximal for our result, as can easily be seen by reverting the proof below.

Theorem 3.1 is obviously weaker than the corresponding Theorem 2.1
for the Pareto case which contains in addition bounded relative error and
validity for the random N case. The numerical examples presented below
strongly suggest that both of these extensions hold true for the Weibull case
as well but we have no proof of this. 2

In Fig. 1, the two areas shaded in different tones form together the support
of the distribution of (Mn, Sn). Note that u− y > x in the dark shaded area
and that x > u − y in the light shaded area. For the proof, we divide for
each u the support into the 2n− 1 regions 0, 1′, . . . , (n− 1)′, 1′′, . . . , (n− 1)′′,
shown in Fig. 1 (e.g., k′ is the triangle with border lines u = x + y, y = kx
and y = (k + 1)x). We will denote by γ1, γ2, . . . certain powers of x or u
whose particular values are unimportant (note that it suffices to bound the
relative error by uγke−2uβ

) and similarly c1, c2, . . . denote constants.

Lemma 3.1 Let (x, y) ∈ k′ ∪ k′′ for some k = 1, . . . , n − 1. Then the
conditional density g(·|x) of Sn given Mn = Yn = x satisfies

g(y|x) ≤ c1x
γ1 exp

{

−(k − 1)xβ − (y − kx)β
}

, y ≥ x.

Proof. We have f(x) ≤ c2(1 + x)γe−xβ

ψ(x) where

c3 = sup
y≥a

ψ(y) <∞, ψ(y) ≤ c4f(y), y ≤ a, (9)

for some a > 0. Letting S be the compact simplex ⊂ R
n−1 specified by the

constraints

0 ≤ x1 ≤ x, . . . , 0 ≤ xn−1 ≤ x, x1 + · · · + xn−1 = y − x

10
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Figure 1: The support of the distribution of (Mn, Sm) is divided into 2n− 1
regions.

and letting µ be Lebesgue measure on S, we have

g(y|x) =

∫

S

f(x1) . . . f(xn−1) dµ(x1, . . . , xn−1)

≤
[

c2(1 + x)γ2

]n−1
sup

S
exp

{

−xβ
1 − · · · − xβ

n−1

}

×

∫

S

ψ(x1) . . . ψ(xn−1) dµ(x1, . . . , xn−1)

≤ c5(1 + x)γ1 sup
S

exp
{

−xβ
1 − · · · − xβ

n−1

}

,

where in the last step we used (9) to bound the µ-integral over an region of
the form

S ∩ {x1 ≤ a, . . . , xk ≤ a, xk+1 > a, . . . , Xn−1 > a}

by ck4[c3(x − a)]n−k−1. Being concave, xβ
1 + · · · + xβ

n−1 attains it minimum
on S at an extremal point which is easily seen to mean that at a minimum
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point k − 1 of the xi must equal x, one y − kx and the rest 0. Thus the sup
may be bounded by exp

{

−(k − 1)xβ − (y − kx)β
}

. 2

Proof of Theorem 3.1. Let h(x, y) denote the joint density of Mn and Sn so
that the second moment of the estimator is

∫ ∫

k(x, y) dx dy where k(x, y) = exp
{

−2
(

x ∨ (u− y)
)β

}

h(x, y).

Consider the partition in Fig. 1 of the support of h (the shaded area) into
the regions 0, 1′, . . . , (n− 1)′, 1′′, . . . , (n− 1)′′. We will carry out the proof by
showing that the contributions I0, I1′ , . . . to the integral from the separate
regions grow no faster than cmu

γme−2uβ

. This is simple for region 0, whereas
for the remaining ones we will use similar ideas as in the proof of Lemma
3.1 based upon concavity and extremal points (the corner points marked by
bullets in Fig. 1; note that the volumes grow at rate at most u2).
0: In region 0, x > u − y and x > u/2. So, recalling the standard fact that
the density of Mn is

n f(x)F (x)n−1 ≤ nf(x), (10)

we get

I0 ≤ e−2(u/2)β

P(Mn ≥ u/2) ≤ c6u
γ3e−3(u/2)β

≤ c6u
γ3e−2uβ

.

k′: Here u− y ≥ x and by Lemma 3.1,

h(x, y) ≤ c7 x
γ4 exp

{

−kxβ − (y − kx)β
}

.

Thus (note that x ≤ u when x ∈ k′),

Ik′ ≤ c7u
γ4

∫ ∫

k′

exp
{

−kxβ − (y − kx)β − 2(u− y)β
}

dx dy.

Since the area of k′ grows like u2, it suffices to check that the value of minus
the exponent is at least 2uβ at each of the three boundary points. This is
clear for (0, 0). The two other boundary points (at the line x + y = u) are
(

u/(k + 1), ku/(k + 1)
)

and
(

u/(k + 2), (k + 1)u/(k + 2)
)

where minus the
exponent is (k+2)uβ/(k+1)β, resp. (k+3)uβ/(k+2)β which both are > 2uβ

(the function (x+2)/(x+1)β is 3/2β > 2 at x = 1 and increasing, as is easily
seen by checking that the log derivative is positive for β < β, x ≥ 1).

k′′: Here u− y ≤ x so that as in the k′ argument

Ik′′ ≤ c8u
γ5

∫ ∫

k′′

nxn exp
{

−(k + 2)xβ − (y − kx)β
}

dx dy
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We must again check that the value of minus the exponent is at least 2uβ

at each of the four boundary points. The two boundary points at the line
u = x+y and the values to be checked are the same as for k′ so these behave as
should be. The two on the line x = u/2 are

(

u/2, (k+1)u/2
)

and
(

u/2, ku/2
)

where minus the exponent is at least (k + 2)xβ = (k + 2)uβ/2β ≥ 2uβ. 2

Tables 3–5 contain a similar geometric sum numerical study as for the
Pareto case, considering a (standard) Weibull F with tail e−xβ

and three
different values 0.25, 0.50, 0.75 of β (we omitted (1) since the algorithm is
not polynomial time in the Weibull case). The choice of F and β = 0.5 is as
in [16] and as check, we also reconstructed Table 2 of [16] and obtained very
similar point estimates and confidence bands (in fact, algorithm JS came out
slightly better than in [16] which is probably due to the N∗ instead of N
issue). We do not include the table here. Note, however, that e−xβ

is not the
tail of an integrated tail distribution (the derivative is not monotone) and
therefore there is no direct M/G/1 interpretation.

For β = 0.25 and β = 0.50 the conclusions of Tables 3–5 are very much
as for the Pareto case, whereas for β = 0.75 all algorithms show considerable
performance degradation. This is maybe not surprising since the algorithms
are specifically designed for heavy tails and at β = 0.75 we start approaching
the border β = 1 to light tails.

ρ k CE (2)CE (3) JS (2)JS

0.25 2 0.163 0.154 0.035 0.186 0.228
5 0.496 0.261 0.032 0.419 0.508
8 1.278 0.335 0.031 0.583 0.702
11 3.015 0.396 0.031 0.716 0.860

0.5 2 0.260 0.200 0.052 0.258 0.420
5 1.719 0.303 0.045 0.513 0.821
8 2.729 0.380 0.044 0.702 1.099
11 13.187 0.446 0.044 0.854 1.336

0.75 2 1.961 0.256 0.071 0.331 0.823
5 15.284 0.347 0.056 0.588 1.406
8 57.216 0.424 0.054 0.795 1.867
11 22.254 0.494 0.054 0.963 2.238

Table 3: Results for the Weibull case, β = 0.25.
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ρ k CE (2)CE (3) JS (2)JS

0.25 2 0.158 0.171 0.054 0.201 0.255
5 0.759 0.334 0.072 0.432 0.677
8 1.015 0.378 0.056 0.590 0.859
11 2.128 0.414 0.070 0.719 0.886

0.5 2 0.323 0.261 0.098 0.295 0.515
5 2.694 0.614 0.185 0.650 1.415
8 3.793 0.465 0.097 0.733 1.939
11 8.194 0.502 0.101 0.876 1.486

0.75 2 2.311 0.388 0.153 0.315 0.863
5 6.866 7.128 0.665 3.820 8.015
8 15.580 1.319 0.597 1.101 3.077
11 18.771 0.683 0.118 1.068 10.251

Table 4: Results for the Weibull case, β = 0.5.

ρ k CE (2)CE (3) JS (2)JS

0.25 2 0.159 0.198 0.082 0.222 0.290
5 1.862 1.580 0.476 1.208 2.534
8 3.499 6.673 1.296 2.652 7.588
11 7.182 2.951 4.532 1.927 6.643

0.5 2 0.421 0.304 0.135 0.268 0.487
5 127.183 2.815 1.1097 3.689 7.396
8 30.289 10.451 8.043 19.517 25.075
11 12.959 7.396 13.190 13.483 61.513

0.75 2 6.257 0.329 0.141 0.189 0.516
5 14.562 2.088 0.713 1.326 4.067
8 76.658 13.584 5.239 12.860 37.925
11 92.182 86.575 43.958 70.867 193.427

Table 5: Results for the Weibull case, β = 0.75.

4 Combination with stratification and con-

trol variates

The subexponential asymptotics

P(Sn > u) ∼ nF (u), (11)

which is valid for a fixed n, indicates that a substantial part of the variability
of the estimators in the random N tables may be due to the variability in
a random N . Two ways to eliminate this are to use N as control variate
(as suggested by the linearity of (11) in n) or to stratify N . Note that
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both methods guarantee variance reduction. We refer, e.g., to [14] for the
basic facts on these variance reduction techniques. The following Tables 6-
10 contain numerical studies pertaining to this issue, where we use the same
parameter values as in Tables 1-5. For the stratification (using proportional
allocation, cf. [14]), we took 8 strata N∗ = 1, . . . , 7, N∗ > 7 for ρ = 0.25 and
17 strata N∗ = 1, . . . , 16, N∗ > 16 for ρ = 0.50 and ρ = 0.75. Again, the
tables give the half-width of the confidence intervals and JSCV, JSStr means
the JS algorithm combined with control variates, resp. stratification, and
similarly for the other algorithms. Of course, 0.000 just means < 5 · 10−4.

ρ k (2)CV (2)Str (3)CV (3)Str JSCV JSStr

0.25 2 0.150 0.121 0.008 0.008 0.132 0.181
5 0.258 0.210 0.000 0.000 0.303 0.419
8 0.335 0.272 0.000 0.000 0.420 0.583
11 0.396 0.323 0.000 0.000 0.513 0.713

0.5 2 0.192 0.179 0.009 0.009 0.222 0.248
5 0.301 0.285 0.000 0.000 0.458 0.512
8 0.381 0.362 0.000 0.000 0.625 0.700
11 0.445 0.424 0.000 0.000 0.761 0.855

0.75 2 0.232 0.225 0.009 0.011 0.301 0.308
5 0.341 0.334 0.000 0.005 0.572 0.588
8 0.423 0.419 0.000 0.005 0.773 0.793
11 0.491 0.487 0.000 0.005 0.938 0.961

Table 6: Variance reduction results for the Pareto case, α = 0.5.

ρ k (2)CV (2)Str (3)CV (3)Str JSCV JSStr

0.25 2 0.169 0.143 0.025 0.024 0.159 0.193
5 0.259 0.211 0.001 0.001 0.302 0.418
8 0.334 0.272 0.000 0.000 0.419 0.582
11 0.396 0.323 0.000 0.000 0.514 0.712

0.5 2 0.234 0.220 0.043 0.038 0.259 0.273
5 0.302 0.286 0.001 0.001 0.457 0.512
8 0.380 0.362 0.000 0.000 0.626 0.702
11 0.445 0.425 0.000 0.000 0.760 0.851

0.75 2 0.329 0.315 0.074 0.069 0.344 0.348
5 0.342 0.336 0.002 0.006 0.573 0.587
8 0.423 0.418 0.000 0.005 0.772 0.797
11 0.492 0.486 0.000 0.005 0.937 0.963

Table 7: Variance reduction results for the Pareto case, α = 1.5.
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ρ k (2)CV (2)Str (3)CV (3)Str JSCV JSStr

0.25 2 0.153 0.124 0.011 0.011 0.135 0.182
5 0.260 0.212 0.005 0.005 0.302 0.418
8 0.335 0.273 0.002 0.001 0.419 0.582
11 0.396 0.322 0.000 0.000 0.511 0.714

0.5 2 0.200 0.188 0.018 0.018 0.230 0.253
5 0.303 0.289 0.007 0.007 0.457 0.511
8 0.381 0.361 0.002 0.002 0.625 0.698
11 0.446 0.424 0.001 0.001 0.762 0.853

0.75 2 0.257 0.248 0.031 0.032 0.318 0.323
5 0.347 0.341 0.011 0.012 0.571 0.584
8 0.424 0.419 0.003 0.006 0.771 0.790
11 0.494 0.488 0.001 0.006 0.939 0.964

Table 8: Variance reduction results for the Weibull case, β = 0.25.

ρ k (2)CV (2)Str (3)CV (3)Str JSCV JSStr

0.25 2 0.170 0.146 0.029 0.028 0.162 0.195
5 0.344 0.318 0.054 0.057 0.339 0.431
8 0.412 0.326 0.063 0.046 0.446 0.587
11 0.411 0.350 0.020 0.025 0.534 0.718

0.5 2 0.261 0.247 0.062 0.058 0.272 0.283
5 0.789 0.565 0.140 0.140 0.620 0.607
8 0.635 0.585 0.090 0.126 0.678 0.733
11 0.503 0.486 0.044 0.032 0.802 0.874

0.75 2 0.373 0.367 0.109 0.101 0.290 0.295
5 2.266 2.269 0.638 0.788 2.846 2.241
8 1.063 0.948 0.241 0.259 1.063 1.101
11 0.736 0.662 0.074 0.077 1.059 1.072

Table 9: Variance reduction results for the Weibull case, β = 0.5.
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ρ k (2)CV (2)Str (3)CV (3)Str JSCV JSStr

0.25 2 0.197 0.176 0.049 0.047 0.190 0.209
5 1.492 1.469 0.471 0.418 1.864 2.263
8 4.205 4.374 1.726 1.581 1.893 3.403
11 2.303 1.778 2.099 1.864 3.474 1.725

0.5 2 0.290 0.283 0.091 0.085 0.240 0.247
5 3.050 3.249 1.105 0.956 3.619 3.578
8 14.864 27.744 11.819 15.355 17.372 34.213
11 17.251 9.784 11.914 20.099 28.343 10.382

0.75 2 0.266 0.311 0.101 0.096 0.156 0.159
5 2.020 2.009 0.659 0.594 1.268 1.306
8 15.617 16.337 4.926 4.950 13.290 12.996
11 46.885 81.367 32.731 41.419 174.065 74.014

Table 10: Variance reduction results for the Weibull case, β = 0.75.

The conclusions to be drawn is that the control variate method and strat-
ification perform rather much the same. The variance reduction is by far the
largest for algorithm (3) which we take as indication that the algorithm es-
timates P(Sn > u) very accurately for a fixed n and that the variability of
the M/G/1 estimators is largely due to the variability in N . In contrast, for
the other estimators the variability in the estimates of P(Y1 + · · ·+ Yn > u)
is non-negligible compared to the variation in N .
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