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MOMENT FORMULAS FOR
THE QUASI-NILPOTENT DT-OPERATOR

LARS AAGAARD AND UFFE HAAGERUP†

Abstract. Let T be the quasi-nilpotent DT-operator. By use of Voicu-
lescu’s amalgamated R-transform we compute the momets of (T −λ1)∗(T −
λ1) where λ ∈ C, and the Brown-measure of T +

√
εY , where Y is a circular

element ∗-free from T for ε > 0. Moreover we give a new proof of Śniady’s
formula for the moments τ(((T ∗)kT k)n) for k, n ∈ N.

1. Introduction

The quasi-nilpotent DT-operator T was introduced by Dykema and the sec-
ond author in [4]. It can be described as the limit in ∗-moments for n → ∞,
of random matrices of the form

T (n) =


0 t1,2 · · · t1,n

0
. . . . . . ...

... . . . . . . tn−1,n

0 · · · 0 0


where {<(tij),=(tij)}1≤i<j≤n is a set of n(n − 1) independent identically dis-
tributed Gaussian random variables with mean 0 and variance 1

2n
. More pre-

cisely, T is an element in a finite von Neumann algebra, M , with a faithful
normal tracial state, τ , such that for all s1, s2, . . . , sk ∈ {1, ∗},

(1.1) τ(T s1T s2 · · ·T sk) = lim
n→∞

E[trn((T (n))s1(T (n))s2 · · · (T (n))sk)],

where trn is the normalized trace on Mn(C). Moreover the pair
(T,W ∗(T )) is uniquely determined up to ∗-isomorphism by (1.1). The quasi-
nilpotent DT-operator can be realized as an element in the free group fac-
tor, L(F2), in the following way (cf. [4, Sect. 4]): Let (D0, X) be a pair
of free selfadjoint elements in a tracial W ∗-probability space (M, τ), such
that dµD0(t) = 1[0,1](t)dt and X is semi-circular distributed, i.e. dµX(t) =
1
2π

√
4− t21[−2,2](t)dt. Then W ∗(D0, X) ' W ∗(D0) ? W

∗(X) ' L(F2). Put

TN =
2N∑
j=1

pN,jXqN,j

†The second named author is affiliated with MaPhySto—A network in Mathematical
Physics and Stochastics, which is funded by a grant from the Danish National Research
Foundation.
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for N = 1, 2, . . ., where

pN,j = 1[ j−1

2N , j

2N

](D0), qN,j = 1[ j

2N ,1
](D0),

for j = 1, 2, . . . , 2N . Then (TN)∞N=1 converges in norm to an operator T ∈
W ∗(D0, X), and the ∗-moments of T are given by (1.1), i.e. T is a realization of
the quasi-nilpotent DT-operator. In the notation of [4, Sect. 4], T = UT(X,λ),
where λ : L∞[0, 1] → W ∗(D0) is the ∗-isomorphism given by λ(f) = f(D0) for
f ∈ L∞([0, 1]). In the following we put D = W ∗(D0) ' L∞([0, 1]) and let ED

denote the trace-preserving conditional expectation of W ∗(D0, X) onto D.
In this paper we apply Voiculescu’s R-transform with amalgamation to com-

pute various ∗-moments of T and of operators closely related to T . First we
compute in section 3 moments and the scalar valued R-transform of (T −
λ1)∗(T − λ1) for λ ∈ C. The specialized case of λ = 0 was treated in [4] by
more complicated methods. In section 4 we consider the operator

T +
√
εY,

where Y is a circular operator ∗-free from T and ε > 0. By random ma-
trix considerations it is easily seen, that if T1 and T2 are two quasi-nilpotent
DT-operators, which are ∗-free with respect to amalgamation over the same
diagonal, D, then T +

√
εY has the same ∗-distribution as S =

√
aT1 +

√
bT2,

when a = 1 + ε and b = ε (cf. [1]). We use this fact to prove, that the Brown
measure of T +

√
εY is equal to the uniform distribution on the closed disc

B(0, log(1+ 1
ε
)−

1
2 ) in the complex plane. Moreover we show, that the spectrum

of T +
√
εY is equal to this disc, and that T +

√
εY is not a DT-operator for

any ε > 0.
In [4] it was conjectured, that

(1.2) τ(((T ∗)kT k)n) =
nnk

(nk + 1)!

for n, k ∈ N. This formula was proved by Śniady in [9]. Śniady’s proof of
(1.2) is based on Speicher’s combinatorial approach to free probability with
amalgamation from [11]. The key step in the proof of (1.2) was to establish a
recursion formula for the D-valued moments,

(1.3) ED

(
((T ∗)kT k)n

)
for each fixed k ∈ N. Śniady’s recursion formula for the D-valued moments
(1.3), was later used by Dykema and the second author to prove, that

W ∗(T ) = W ∗(D0, X) ' L(F2)

and that T admits a one parameter family of non-trivial hyperinvariant sub-
spaces (cf. [5]). In section 5 and section 6 of this paper we give a new proof
of Śniady’s recursion formula for the D-valued moments (1.3), which at the
same time gives a new proof of (1.2). The new proof is based on Voiculescu’s
R-transform with respect to amalgamation over M2k(D), the algebra of 2k×2k
matrices over D.
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2. Preliminaries

In this section we give a few preliminaries on amalgamated probability the-
ory. Let A be a unital Banach algebra, and let B be a Banach-sub-algebra
containing the unit of A. Then a map, EB : A → B, is a conditional expecta-
tion if
(a) EB is linear,
(b) EB preserves the unit i.e. EB(1) = 1
(c) and EB has the B, B bi-module property i.e. EB(b1ab2) = b1ab2 for all

b1, b2 ∈ B and a ∈ A.
If B, A and EB are as above we say that (B ⊂ A, EB) is a B-probability

space. If φ : A → C is a state on A which respects EB, i.e. τ = τ ◦ EB, we
say that (B ⊂ A, EB) is compatible to the (non-amalgamated) free probability
space (A, φ).

If (B ⊂ A,EB) is a B-probability space and a ∈ A is a fixed variable, we
define the amalgamated Cauchy transform of a by

Ga(b) = EB((b− a)−1).

for b ∈ B and b− a ∈ Binv. The Cauchy transform is 1-1 in
{b ∈ Binv| ‖b−1‖ < ε} for ε sufficiently small and Voiculescu’s amalgamated
R-transform [13] is now defined for a ∈ A by

(2.1) Ra(b) = G〈−1〉
a (b)− b−1,

for b being an invertible element of B suitably close to zero. It turns out that
this definition coincides on invertible element with Speicher’s definition of the
amalgamated R-transform (cf. [11, Th. 4.1.2] and [2]);

(2.2) Ra(b) =
∞∑
n=1

κB
n (a⊗B ba⊗B · · · ⊗B ba).

We will need the following useful lemma for solving equations involving the
amalgamated R-transform and Cauchy-transform.

Lemma 2.1. Let (B ⊂ A, EB) be a B-probability space, and let a ∈ A. Then
there exists δ > 0 such that if b ∈ B is invertible, ‖b‖ < δ, |µ| > 1

δ
and

RB
a (b) + b−1 = µ1A

then b = GB
a (µ1A).

Proof. Let δ = 1
11‖a‖ and define gb(b) = GB

a (b−1). By [2, Prop. 2.3] we know
that ga maps B(0, 1

4‖a‖) bijectively onto a neighboorhood of zero containing
B(0, 1

11‖a‖) and furthermore that

g〈−1〉
a

(
B(0, 1

11‖a‖)inv

)
⊆ B(0, 2

11‖a‖)inv.

By definition we know that

RB
a (b) = GB

a

〈−1〉
(b) + b−1 =

(
g〈−1〉
a (b)

)−1
+ b−1
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so if Ra(b) + b−1 = µ1A then

µ1A = g〈−1〉(b)− b−1 + b−1 =
(
g〈−1〉
a (b)

)−1

and thus

(2.3) g〈−1〉
a (b) = 1

µ
1A.

If |µ| > 1
δ

then especially 1
|µ| <

1
4‖a‖ so 1

µ
1A is in the bijective domain of ga, so

applying ga on both sides of (2.3) we get exactly

GB
a (µ1A) = ga(

1
µ
1A) = b

since also ‖b‖ < 1
11‖a‖ . �

If a ∈ A is a random variable in the B-probability space (B ⊂ A, EB),
then following Speicher we define a to be B-Gaussian [11, Def 4.2.3] if only
B-cumulants of length 2 survive. From (2.2) it follows that in this case the
R-transform has a particularly simple form, namely,

(2.4) Ra(b) = κB
2 (a⊗B ba) = EB(aba).

In the following theorem (which is probably not a new one we just could not
find a proper reference) concerning cumulants we have adopted the notation
of Speicher from [11].

Lemma 2.2. Let N ∈ N and let (B ⊂ A, EB) be a B-probability space. Then
(MN(B) ⊂ MN(A), EMn(B)) is a MN(B)-probability space with cumulants de-
termined by the following formula:

κMN (B)
n ((m1 ⊗ a1)⊗MN (B) · · · ⊗MN (B) (mn ⊗ an))

= (m1 · · ·mn)⊗ κB
n (a1 ⊗B · · · ⊗B an)

when m1, . . . ,mn ∈MN(C) and a1, . . . , an ∈ A.

We have of course made the identification MN(A) ∼= MN(C)⊗A.

Proof. Since MN(C) ⊂MN(B) we observe that

κMN (B)
n ((m1 ⊗ a1)⊗MN (B) · · · ⊗MN (B) (mn ⊗ an))

= ((m1 · · ·mn)⊗ 1) · κMN (B)
n ((1⊗ a1)⊗MN (B) · · · ⊗MN (B) (1⊗ an)).

To finish the proof we claim that

(2.5) κMN (B)
n ((1⊗ a1)⊗MN (B) · · · ⊗MN (B) (1⊗ an))

= 1⊗ κB
n (a1 ⊗B · · · ⊗B an).

The case n = 1 is obvious since

1N ⊗ κB
1 (a1) = 1N ⊗ EB(a1) = EMN (B)(1⊗ a1) = κ

MN (B)
1 (1⊗ a1).
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Now assume that the claim is true for 1, 2, . . . , n−1. Then (2.5) has an obvious
extension to noncrossing partions of length less than or equal to n− 1. Hence

1N ⊗ κB
n (a1 ⊗B · · · ⊗B an)

= 1N ⊗ EB(a1 · · · an)−
∑

π∈NC(n),π 6=1n

1⊗ κB
π (a1 ⊗B · · · ⊗B an)

= EMN (B)(1⊗MN (B) a1 · · · an)

−
∑

π∈NC(n),π 6=1n

κMN (B)
π ((1⊗ a1)⊗MN (B) · · · ⊗MN (B) (1⊗ an))

= κMN (B)
n ((1⊗ a1)⊗MN (B) · · · ⊗MN (B) (1⊗ an)).

By induction this proves the lemma. �

Assume that M contains a pair (D0, X) of τ -free selfadjoint elements such
that dµD0(t) = 1[0,1](t)dt and X is a semicircular distributed. Put D =
W ∗(D0). Then λ : L∞([0, 1]) → D given by

λ(f) = f(D0),

for f ∈ L∞([0, 1]) is a ∗-isomorphism of L∞([0, 1]) onto D and

τ ◦ λ(f) =

∫ 1

0

f(t)dt, f ∈ L∞([0, 1]).

We will identify D with L∞([0, 1]) and thus consider elements of D as func-
tions. As explained in the introduction, we can realize the quasi-nilpotent
DT-operator as the operator T = UT(X,λ) in W ∗(D0, X) ' L(F2).

Define for f ∈ D ' L∞([0, 1])

(L∗(f))(x) :=

∫ x

0

f(t)dt and (L(f))(x) :=

∫ 1

x

f(t)dt.(2.6)

From the appendix of [5] it follows that (T, T ∗) is a D-Gaussian pair and that
the covariances of (T, T ∗) are given by the following lemma

Lemma 2.3. [5, Appendix] Let f ∈ D. Then

ED(TfT ∗) = L(f) and ED(T ∗fT ) = L∗(f)

and ED(TfT ) = ED(T ∗fT ∗) = 0.

3. Moments and R-transform of (T − λ1)∗(T − λ1)

Let T be the quasi-diagonal DT-operator and define

T̃ =

(
0 T ∗

T 0

)
.

Since (T, T ∗) is a D-Gaussian pair, it follows from lemma 2.2, that cumulants
of the form

κM2(D)
n ((m1 ⊗ a1)⊗M2(D) · · · ⊗M2(D) (mn ⊗ an))
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vanishes when n 6= 2, m1,m2, . . . ,mn ∈ M2(C) and a1, a2, . . . , an ∈ {T, T ∗}.
Hence by the linearity of κM2(D)

n ,

κM2(D)
n (T̃ ⊗M2(D) T̃ ⊗M2(D) · · · ⊗M2(D) T̃ ) = 0

when n 6= 2, i.e. T̃ is a M2(D)-Gaussian element in M2(M) under the condi-
tional expectation EM2(D) : M2(M) →M2(D) given by

EM2(D) :

(
a11 a12

a21 a22

)
7−→

(
ED(a11) ED(a12)
ED(a21) ED(a22)

)
.

Since T̃ is M2(D)-Gaussian the R-transform of T̃ is by (2.4) the linear mapping
M2(D) →M2(D) given by

R
M2(D)

T̃
(z) = EM2(D)(T̃ zT̃ )

= EM2(D)

((
0 T ∗

T 0

)(
z11 z12

z21 z22

)(
0 T ∗

T 0

))
= EM2(D)

((
T ∗z22T 0

0 Tz11T
∗

))
=

(
ED(T ∗z22T ) 0

0 ED(Tz11T
∗)

)
=

(
L∗(z22) 0

0 L(z11)

)
.

For λ ∈ C, we put Tλ − Tλ1 and define

T̃λ =

(
0 T ∗

λ

Tλ 0

)
= T̃ −

(
0 λ1
λ1 0

)
Since

(
0 λ1
λ1 0

)
∈M2(D) we have by M2(D)-freeness that the R-transform is

additive [11, Th. 4.1.22] i.e.

R
M2(D)

T̃λ
(z) = R

M2(D)

T̃
−
(

0 λ1
λ1 0

)
=

(
L∗(z22) −λ1
−λ1 L(z11)

)
.

One easily checks, that if δ ∈ C, δ 6= 0, δ 6= − 1
|λ|2 and µ ∈ C is one of the

two solutions to
µ2 =

eσ

σ
(1 + |λ|2σ),

then

(3.1)


z11 = µσeσ(x−1)

z12 = −λσ
z21 = −λσ
z22 = µσe−σx

is a solution to
R
M2(D)

T̃λ
(z) + z−1 = µ12.
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Here x is the variable for the function in D = L∞([0, 1]). In particular z12 and
z21 are constant operators. If σ → 0 then |µ| → ∞ and ‖z‖ → 0, so by lemma
2.1 there exists ρ > 0 such that |σ| < ρ implies

G
M2(D)

T̃λ
(µ12) =

(
z11 z12

z21 z22

)
,

where (zij)i,j∈{1,2} is given by (3.1) and

µ = ±
√

eσ

σ
(1 + |λ|2σ).

On the other hand the Cauchy-transform of T̃ in µ12 is(
z11 z12

z21 z22

)
= G

M2(D)

T̃λ
(µ12)

= EM2(D)

(((
µ1 0
0 µ1

)
−
(

0 T ∗
λ

Tλ 0

))−1
)

= EM2(D)

((
µ1 −T ∗

λ

−Tλ µ1

)−1
)

= EM2(D)

((
µ(µ21− T ∗

λTλ)
−1 T ∗

λ (µ21− TλT
∗
λ )−1

Tλ(µ
21− T ∗

λTλ)
−1 µ(µ21− TλT

∗
λ )−1

))
.

Thus

(3.2)


z11 = µED((µ21− T ∗

λTλ)
−1)

z12 = ED(T ∗
λ (µ21− TλT

∗
λ )−1)

z21 = ED(Tλ(µ
21− T ∗

λTλ)
−1)

z22 = µED((µ21− TλT
∗
λ )−1)

.

Combining (3.1) and (3.2) we have

(3.3)


ED((µ21− T ∗

λTλ)
−1) = σeσ(x−1)

ED(T ∗
λ (µ21− TλT

∗
λ )−1) = −λσ

ED(Tλ(µ
21− T ∗

λTλ)
−1) = −λσ

ED((µ21− TλT
∗
λ )−1) = σe−σx

.

We can now compute the R-transform of T ∗
λTλ (wrt. C) from (3.3) and the

defining equality for µ2.

tr

((
eσ

σ
(1 + |λ|2σ)1− T ∗

λTλ

)−1
)

=

∫ 1

0

σeσ(x−1)dx

=
[
eσ(x−1)

]1
0

= 1− e−σ.

Thus

GC
T ∗

λTλ

(
eσ

σ
(1 + |λ|2σ)

)
= 1− e−σ
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i.e.
RC
T ∗

λTλ
(1− e−σ) =

eσ

σ
(1 + |λ|2σ)− 1

1− e−σ
for σ in a neighboorhood of zero. Substituting z = 1 − e−σ we get σ =
− log(1− z), so

RC
T ∗

λTλ
(z) = − 1

(1− z) log(1− z)
(1− |λ|2 log(1− z))− 1

z
.

Hence we have proved the following extension of [4, Theorem 8.7(b)]:

Theorem 3.1. Let T be the quasinilpotent DT-operator. Let λ ∈ C and put
Tλ = T − λ1. Then

RC
T ∗

λTλ
(z) = − 1

(1− z) log(1− z)
− 1

z
+

|λ|2

1− z

for z in some neighborhood of 0.

We next determine the D-valued (resp. C-valued) moments of T ∗
λTλ for all

λ ∈ C. The special case λ = 0 was treated in [9, Theorem 5] (resp. [4, Theorem
8.7(a)]) by different methods.

Theorem 3.2. Let λ ∈ C and let T, Tλ be as in theorem 3.1
(a) Let Qn be the sequence of polynomials on R uniquely determined by the

following recursion formula

(3.4)


Q0(x) = 1,

Qn+1(x) = |λ|2Qn(x+ 1) +

∫ x

0

Qn(y + 1)dy] for n ≥ 1.

Then
ED((T ∗

λTλ)
n)(x) = Qn(x), x ∈ [0, 1], n ∈ N.

(b)

τ((T ∗
λTλ)

n) =
n∑
k=0

nk

(k + 1)!

(
n

k

)
|λ|2n−2k, n ∈ N.

Proof. By (3.3), we have

(3.5) ED

(
( eσ

σ
(1 + |λ|2σ)1− T ∗

λTλ)
−1
)

= σeσ(x−1)

for σ ∈ B(0, ρ) \ {0} for some ρ > 0. Put

ψ(σ) =
σ

eσ(1 + |λ|2σ)
, σ ∈ C \ {− 1

|λ|2}.

Since ψ(0) = 0 and ψ′(0) = 1, ψ has an analytic invers ψ〈−1〉 defined in a
neighborhood B(0, δ) of 0, and we can choose δ > 0, such that ψ〈−1〉(B(0, δ)) ⊂
B(0, ρ). By (3.5)

ED((1
t
1− T ∗

λTλ)
−1) = ψ〈−1〉(t)eψ

〈−1〉(t)(x−1)

for t ∈ B(0, δ) \ {0}. By power series expansion of the left hand side, we get

(3.6)
∞∑
n=0

tn+1ED((T ∗
λTλ)

n) = ψ〈−1〉(t)eψ
〈−1〉(t)(x−1)
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for t ∈ B(0, δ′), where 0 < δ′ ≤ δ and where the LHS of (3.6) is absolutely
convergent in the Banach space L∞([0, 1]). Hence by Cauchy’s integral formu-
las

(3.7) ED((T ∗
λTλ)

n) =
1

2πi

∫
C

ψ〈−1〉(t)eψ〈−1〉(t)(x−1)

tn+2
dt

as a Banach space integral in L∞([0, 1]), where C = ∂B(0, r) with positive
orientation and 0 < r < δ′. For each fixed x ∈ R

t 7→ ψ〈−1〉(t)eψ
〈−1〉(t)(x−1)

is an analytic function in B(0, δ′) which is 0 for t = 0. Hence the function has
a power series expansion of the form

(3.8) ψ〈−1〉(t)eψ
〈−1〉(t)(x−1) =

∞∑
n=0

Qn(x)t
n+1

for t ∈ B(0, δ′), where the numbers (Qn(x))
∞
n=0 are given by

(3.9) Qn(x) =
1

2πi

∫
C

ψ〈−1〉(t)eψ〈−1〉(t)(x−1)

tn+2
dt.

In particular the Qn’s are continuous functions of x ∈ R. Substituting σ = ψ(t)
in (3.8) we get

∞∑
n=0

Qn(x)ψ(σ)n+1 = σeσ(x−1)

for σ ∈ B(0, ρ′), where ρ′ ∈ (0, ρ). Put{
R0(x) = 0

Rn+1(x) = |λ|2Qn(x+ 1) +

∫ x

0

Qn(x)dy, n ≥ 0.

Then
∞∑
n=0

Rn(x)ψ(σ)n+1 = ψ(σ)

(
1 +

∞∑
n=0

Rn+1(x)ψ(σ)n+1

)

= ψ(σ)

(
1 + |λ|2

( ∞∑
n+0

Qn(x+ 1)

)
+

∫ x

0

( ∞∑
n+0

Qn(y + 1)

)
dy

)
= ψ(σ)

(
1 + |λ|2σeσx +

∫ x

0

σeσydy

)
= ψ(σ)(|λ|2σ + 1)eσx = σeσ(x−1) =

∞∑
n=0

Qn(x)ψ(σ)n+1

for all σ ∈ B(0, ρ′). Since ψ(B(0, ρ′)) is an open neighborhood of 0 in C, it
follows that Rn(x) = Qn(x) for all n ∈ N and all x ∈ R.

Hence (Qn(x))
∞
n=0 is the sequence of polynomials given by the recursive

formula (3.4). Moreover by (3.7) and (3.9), ED((T ∗
λTλ)

n) = Qn as functions in
L∞([0, 1]). This proves (a).
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(b) By (3.7), we have

τ((T ∗
λTλ)

n) =

∫ 1

0

ED((T ∗
λTλ)

n)dx =
1

2πi

∫
C

1− e−ψ〈−1〉(t)

tn+2
dt.

Note that C ′ = ψ(C) is a positively oriented simple path around 0. Hence by
the substitution t = ψ(σ), we get

τ((T ∗
λTλ)

n) =
1

2πi

∫
C′

ψ′(σ)

ψ(σ)n+2
(1− e−σ)dσ

=
1

2πi

∫
C′

1

n+ 1

1

ψ(σ)n+1

d
dσ

(1− e−σ)dσ

=
1

2πi(n+ 1)

∫
C′

1

ψ(σ)n+1
e−σdσ

=
1

n+ 1

(
1

2πi

∫
C′

enσ(1 + |λ|2σ)n+1

σn+1
dσ
)

=
1

n+ 1
Res

(
enσ(1 + |λ|2σ)n+1

σn+1
, 0

)
where the second equation is obtained by partial integration and the last equal-
ity is obtained by the Residue theorem.

The above Residue is equal to the coefficient of σn in the Power series ex-
pansion of

enσ(1 + |λ|2σ)−1 =

( ∞∑
k=0

(nσ)k

k!

)( n+1∑
i=1

(
n+ i

i

)
(|λ|2σ)i

)
.

Hence

τ((T ∗
λTλ)

n) =
1

n+ 1

n∑
k=0

nk

k!

(
n+ 1

n− k

)
|λ|2(n−k)

=
1

n+ 1

n∑
k=0

nk

(k + 1)!

(
n

k

)
|λ|2n−2k.

�

4. Spectrum and Brown-measure of T +
√
εY

Let T be the quasinilpotent DT-operator and let Y be a circular operator
∗-free from T . In this section we will show, that

σ(T +
√
εY ) = B

(
0,

1√
log(1 + ε−1)

)
and that the Brown-measure µT+

√
εY is equal to the uniform distribution on

B

(
0, 1√

log(1+ 1
ε
)

)
, i.e. it has constant density w.r.t. the Lebesque measure on

this disk.
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Theorem 4.1. For every ε > 0

(4.1) σ(T +
√
εY ) = B

(
0,

1√
log(1 + ε−1)

)
.

Proof. The result can be obtained by the method of Biane and Lehner [3,
Section 5]. Let a ∈ C \ {0}. Since σ(T ) = {0} we can write

a1− (T +
√
ε)Y =

√
ε
(

1√
ε
1− Y (a1− T )−1

)
(a1− T ).

Hence

(4.2) a /∈ σ(T +
√
εY ) iff

1√
ε
/∈ σ
(
Y (a1− T )−1

)
.

Let Y = UH be the polar decomposition of Y . Then Y (a1 − T )−1 =
UH(a1 − T )−1, where U is ∗-free from H(a1 − T )−1. Hence Y (a1 − T )−1 is
R-diagonal. Moreover, since 0 /∈ σ(Y ), Y (a1− T )−1 is not invertible, so by [7,
Prop. 4.6.(ii)]

(4.3) σ
(
Y (a1− T )−1

)
= B

(
0,
∥∥Y (a1− T )−1

∥∥
2

)
.

By ∗-freeness of Y and (a1− T )−1 we have∥∥Y (a1− T )−1
∥∥2

2
= ‖Y ‖2

2

∥∥(a1− T )−1
∥∥2

2
(4.4)

=
∥∥(a1− T )−1

∥∥2

2
=

∥∥∥∥ ∞∑
n=0

T n

an+1

∥∥∥∥2

2

.

Applying now [4, lemma 7.2] to D = 1 and λ = 1
a

and µ = δ0, we get∥∥∥∥ ∞∑
n=0

T n

an

∥∥∥∥2

2

= |a|2
(

exp

(
1

|a|2

)
− 1

)
Hence by (4.4) ∥∥Y (a1− T )−1

∥∥2

2
= exp

( 1

|a|2
)
− 1.

Thus for a ∈ C \ {0} we get by (4.2) and (4.3)

a /∈ σ(T +
√
εY ) ⇐⇒ 1√

ε
/∈ σ
(
Y (a1− T )−1

)
⇐⇒ 1√

ε
> exp

( 1

|a|2
)
− 1 ⇐⇒ |a| > 1√

log(1 + 1
ε
)
.

Hence σ(T +
√
εY ) ∪ {0} = B

(
0, 1√

log(1+ 1
ε
)

)
. Since σ(T +

√
εY ) is closed it

follows that σ(T +
√
εY ) = B

(
0, 1√

log(1+ 1
ε
)

)
. �

In order to compute the Brown measure of T +
√
εY , we first observe that

T +
√
εY has the same ∗-distribution as

S =
√
aT1 +

√
bT ∗

2
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when T1 and T2 are two D-free quasidiagonal operators and a = 1+ε and b = ε
[1]. We next compute the Brown measure of S for all values of a, b ∈ (0,∞).

Lemma 4.2. Let µQ be the Brown measure of an operator Q in a tracial
W ∗-probability space (M, tr). Let r > 0 and assume that µQ(∂B(0, r)) = 0.
Then

µQ(B(0, r)) = − 1

2π
lim
α→0+

=
(∫

∂B(0,r)

tr((Q∗
λQλ + α1)−1Q∗

λ)dλ

)
where Qλ = Q− λ1 for λ ∈ C.

Proof. Let ∆ : M → [0,∞) be the Fuglede-Kadison determinant on M , and
put L(λ) = log ∆(Qλ) and

Lα(λ) = log ∆((Q∗
λQλ + α1)1/2) = 1

2
tr(log(Q∗

λQλ + α1))

for λ ∈ C.
Put λ1 = <λ, λ2 = =λ and let ∇2 = ∂2

∂λ2
1

+ ∂2

∂λ2
2

denote the Laplace operator
on C. Then by [6, Section 2] ∇2Lα ≥ 0 and for each α > 0, the measure

(4.5) µα =
1

2π
∇2Lα(λ)dλ1dλ2

is a probability measure on C. Moreover

(4.6) lim
α→0

µα = µ

in the weak∗ topology on Prob(C). Also from [6, Section 2] the gradient
( ∂
∂λ1
, ∂
∂λ2

) of Lα is given by

∂

∂λ1

Lα(λ) = −<
(
tr(Qλ(Q

∗
λQλ + α1)−1

)
(4.7)

∂

∂λ2

Lα(λ) = −=
(
tr(Qλ(Q

∗
λQλ + α1)−1

)
(4.8)

By (4.6)

lim
α→0

∫
C
φdµα =

∫
C
φdµ

for all φ ∈ C0(C). Since 1B(0,r) is the limit of an increasing sequence (φn)
∞
n=1

of C0(C)-functions with 0 ≤ φn ≤ 1 for all n ∈ N it follows that

µQ(B(0, r)) = lim
n→∞

∫
C
φndµQ

= lim
n→∞

(
lim
α→0

∫
C
φndµα

)
≤ lim

n→∞

(
lim inf
α→0

∫
C

1B(0,r)dµα
)

= lim inf
α→0

µα(B(0, r))

Writing 1B(0,r) as the limit of a decreasing sequence (ψn)
∞
n=1 of C0(C)-functions,

with 0 ≤ ψn ≤ 1, one gets in the same way

µQ(B(0, r)) ≥ lim sup
α→0

µα(B(0, r))
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Hence if µQ(∂B(0, r)) = 0 we have

lim sup
α→0

µα(B(0, r)) ≤ µQ(B(0, r)) ≤ lim inf
α→0

µα(B(0, r)),

and therefore
µQ(B(0, r)) = lim

α→0
µα(B(0, r)).

Using (4.5) together with Green’s theorem applied to the vector-field

(Pα, Qα) = (−∂Lα
∂λ2

,
∂Lα
∂λ1

)

we get

µα(B(0, r)) =
1

2π

∫
B(0,r)

∇2Lα(λ)dλ1dλ2

=
1

2π

∫
B(0,r)

(
∂Qα

∂λ1

− ∂Pα
∂λ2

)
dλ1dλ2

=
1

2π

∫
∂B(0,r)

Pαdλ1 +Qαdλ2

=
1

2π

∫
∂B(0,r)

−∂Lα
∂λ2

dλ1 +
∂Lα
∂λ1

dλ2

= =
(

1

2π

∫
∂B(0,r)

(
∂Lα
∂λ1

− i
∂Lα
∂λ2

)
(dλ1 + idλ2)

)
By (4.7) and (4.8)

∂Lα
∂λ1

− i
∂Lα
∂λ2

= −tr(Qλ(Q∗
λQλ + α1)−1) = −tr((Q∗

λQλ + α1)−1Q∗
λ).

Hence

µα(B(0, r)) = −=
(

1

2π

∫
∂B(0,r)

tr((Q∗
λQλ + α1)−1Q∗

λ)dλ
)

which completes the proof of the lemma. �

Let S =
√
aT1 +

√
bT ∗

2 with 0 < b < a. Since cS and S have the same
∗-distribution for all c ∈ T, the Brown measure µS of S is rotation invariant
(i.e. invariant under the transformation z 7→ cz, z ∈ C when |c| = 1). Hence
by lemma 4.2 we can compute µS, if we can determine

tr((S∗λSλ + α1)−1S∗λ)

for all λ ∈ C, where Sλ = S − λ1, and for all α in some interval of the form
(0, α0). This can be done by minor modifications of the methods used in section
3:

Put

S̃λ =

(
0 S∗λ
Sλ 0

)
.
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Then there exists a δ > 0 (depending on a, b and γ) such that when ‖z‖ ≤ δ
and |µ| > 1

δ
the equality

(4.9) R
M2(D)

S̃λ
(z) + z−1 = µ12

implies that

z = G
M2(D)

S̃λ
(µ12)(4.10)

= (id⊗ ED)

(
µ(µ21− S∗λSλ)

−1 S∗λ(µ
21− SλS

∗
λ)

−1

Sλ(µ
21− S∗λSλ)

−1 µ(µ21− SλS
∗
λ)

−1

)
.

Moreover, S̃ =

(
0 S∗

S 0

)
isM2(D)-Gaussian by lemma 2.2 since (T1, T

∗
2 , T2, T

∗
2 )

is a D-Gaussian set. Hence for z = (zij)
2
i,j=1 ∈M2(D),

R
M2(D)

S̃
(z) = EM2(D)(S̃zS̃) =

(
ED(S∗z22S) 0

0 ED(Sz11S
∗)

)
.

Using that (T1, T
∗
1 ) and (T2, T

∗
2 ) have the same D-distribution as (T, T ∗) and

that (T1, T
∗
1 ) and (T2, T

∗
2 ) are two D-free sets, we get

ED(S∗z22S) = (aL∗ + bL)(z22)

ED(Sz11S
∗) = (aL+ bL∗)(z11),

where L(f) : x 7→
∫ 1

x
f(y)dy and L∗(f) : x 7→

∫ x
0
f(y)dy for f ∈ D.

Since S̃λ = S̃ −
(

0 λ1
λ1 0

)
it follows that

R
M2(D)

S̃
(z) =

(
(aL+ bL∗)(z22) −λ1

λ1 (aL∗ + bL)(z11)

)
.

Thus (4.10) becomes(
µ1 0
0 µ1

)
=

(
(aL+ bL∗)z22 −λ1

λ1 (aL∗ + bL)(z11)

)
(4.11)

+
1

det(z)

(
z22 −z12

−z21 z11

)
.

In analogy with section 3, we look for solutions zij ∈ D = L∞[0, 1] of the
form

(4.12)
(
z11 z12

z21 z22

)
=

(
c11 exp(σx) c12

c21 c22 exp(−σx)

)
,
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where σ ∈ C and c =

(
c11 c12

c21 c22

)
∈ GL(2,C). It is easy to check that (4.12) is

a solution to (4.11) if the following 5 conditions are fulfilled:

det(c) =
σ

a− b

c11 =
σµ

aeσ − b
c12 = − σλ

a− b

c21 = − σλ

a− b
c22 =

σµ

a− be−σ

The first of these conditions is consistent with the remaining 4 if and only if

(σµ)2

(aeσ − b)(a− be−σ)
− σ2|λ|2

(a− b)2
=

σ

a− b

which is equivalent to

(4.13) µ2 =
(aeσ − b)(a− be−σ)(a− b+ σ|λ|2)

σ(a− b)2
.

Put

σ0 := −min

{
a− b

|λ|2
, log

(a
b

)}
.

Then for σ0 < σ < 0, the right hand side of (4.13) is negative. Let in this case
µ(σ) denote the solution to (4.13) with positive imaginary part, i.e.

(4.14) µ(σ) = i
aeσ/2 − be−σ/2

|σ|1/2(a− b)

√
a− b+ σ|λ|2

for σ0 < σ < 0. Then with

c11 =
σµ(σ)

aeσ − b
c12 = − σλ

a− b

c21 = − σλ

a− b
c22 =

σµ(σ)

a− be−σ

the matrix z(σ) =

(
z11 z12

z21 z22

)
given by (4.12) is a solution to

R
M2(D)

S̃λ
(z(σ)) + z(σ)−1 = µ12.

By (4.14) limσ→0− |µ(σ)| = ∞ and limσ→0− |σµ(σ)| = 0 and therefore

lim
σ→0−

‖z(σ)‖ = 0.

Hence for some σ1 ∈ (σ0, 0) we have |µ(σ)| > 1
δ

and ‖z(σ)‖ > δ when
σ ∈ (σ1, 0) where δ > 0 is the number described in connection with (4.9).
Thus

(4.15) z(σ) = G
M2(D)

S̃λ
(µ(σ)12)
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for σ ∈ (σ1, 0). But since both σ 7→ z(σ) and σ 7→ µ(σ) are analytic functions
(of the real variable σ) it follows that (4.15) holds for all σ ∈ (σ0, 0). Note
that σ 7→ −iµ(σ) is a continuous strictly positive function on (σ0, 0), and

lim
σ→0−

(−iµ(σ)) = +∞ lim
σ→σ+

0

(−iµ(σ)) = 0.

Hence for every fixed real number α > 0 we can chose σ ∈ (σ0, 0), such that

−iµ(σ) =
√
α.

Thus by (4.10) and (4.15)

ED(S∗λ(−α1− SλS
∗
λ)

−1) = z(σ)12 = − σλ

a− b

which is a constant function in L∞[0, 1]. Hence

tr(S∗λ(SλS
∗
λ + α1)−1) =

σλ

a− b

from which ∫
∂B(0,r)

tr(S∗λ(SλS
∗
λ + α1)−1)dλ = 2πi

σr2

a− b

when σ0 < σ < 0, where as before σ0 = −min
{
a−b
|λ|2 , log

(
a
b

)}
.

Now α→ 0+ corresponds to σ → σ+
0 . Hence

lim
α→0+

(
− 1

2π
=
∫
∂B(0,r)

tr(S∗λ(SλS
∗
λ + α1)−1)dλ

)
= − σ0r

2

a− b
= + min

{
1, r2 log

(
a
b

)
a− b

}
.

Obeserve that S∗λ(SλS∗λ + α1)−1 = (S∗λSλ + α1)−1S∗λ. Thus by lemma 4.2 we
have for all but countably many r > 0, that

µS(B(0, r)) = min

{
1, r2 log

(
a
b

)
a− b

}
=


r2

log
(
a
b

)
a− b

, r ≤
√

a− b

log
(
a
b

)
1, r >

√
a− b

log
(
a
b

) .
Since the right hand side is a continuous function of r, the formula actually
holds for all r > 0. This together with the rotation invariance of µS shows,
that µS is equal to the uniform distribution on

B
(
0,

√
a− b

log
(
a
b

)),
i.e. has constant density 1

π

log(a
b
)

a−b on this ball, and vanishes outside the ball.
Putting a = 1 + ε and b = ε we get in particular

Theorem 4.3. The Brown measure of T +
√
εY is equal to the uniform dis-

tribution on B
(
0, 1√

log(1+ε−1)

)
.



THE QUASI-NILPOTENT DT-OPERATOR 17

The Brown mesure of T +
√
εY can be used to give an upper bound of the

microstate entropy of T +
√
εY . By [8] we have for S ∈ M

(4.16) χ(S) ≤
∫

C

∫
C

log |z1 − z2|dµS(z1)dµS(z2) +
5

4
+ log(π

√
2odS)

where µS is the Brown measure of S on C and odS is the off-diagonality of S
defined by

(4.17) odS := τ(SS∗)−
∫

C
|z|2dµS(z).

Lemma 4.4. For R > 0 we have

I :=

∫
B(0,R)

∫
B(0,R)

log |z1 − z2|dz1dz2 = π2(R2 logR− 1
4
)

Proof. Polar substitution in I gives

I := 4π2

∫ R

0

∫ R

0

(
1

2π

∫ 2π

0

log |r − eiθs|dθ
)
rdrsds.

Let 0 < s < r. z 7→ log |r − zs| is the real value of the complex holomorphic
function z 7→ Log(r − zs), where Log is the principal branch of the complex
logarithm, so z 7→ log |r − zs| is a harmonic function in B(0, r

s
). By the mean

value property of harmonic functions

1

2π

∫ 2π

0

log |r − eiθs|dθ = log(r),

so symmetry in r and s reduces I to

I := 4π2

∫ R

0

∫ R

0

max{log(r), log(s)}rdrsds

= 8π2

∫ R

0

(∫ r

0

log(r)sds
)
rdr

= 4π2

∫ R

0

r3 log(r)dr = π2R4(log(R)− 1
4
).

�

Theorem 4.5.

χ(T +
√
εY ) ≤ −1

2
log
(
log(1 + ε−1)

)
− 1

4
+ log π(4.18)

+
1

2
log

(
1 + 2ε− 1

log(1 + ε−1)

)
.

Proof. Let νR be the uniform distribution on B(0, R). Since νR has constant
density (πR2)−1 on B(0, R), we have by lemma 4.4∫

C

∫
C

log |z1 − z2|dνR(z1)dνR(z2) = log R− 1

4
.



18 LARS AAGAARD AND UFFE HAAGERUP

The Brown measure of S = T +
√
εY is µS = νR with R = log(1+ ε−1)−

1
2 , and

odS =
1

2
+ ε−

∫
C
|z|2dνR =

1

2
+ ε− R2

2
.

Hence by (4.16)

χ(T +
√
εY ) ≤ logR− 1

4
+ log π + 1

2
log(1 + 2ε−R2).

This proves (4.18). �

In [1] the first author proved that the microstate-free analog, δ∗0(T ), of the
free entropy dimension is equal to 2. From Theorem 4.5 one gets only the
trivial estimate of the free entropy dimension δ0(T ), namely

(4.19) δ0(T ) ≤ 2 + lim
δ→0+

χ(T +
√

2δY )

| log δ|
= 2.

If T +
√
εY was a DT-operator for all ε > 0 then by [8] equality would hold

in (4.18), and hence also in (4.19). In the rest of this section, we prove that
unfortunately T +

√
εY is not a DT-operator for any ε > 0.

If R = D + T is a DT(µ, 1) operator it follows from [4, lemma 7.2] that for
|λ| < ‖R‖−1,∥∥∥∥ ∞∑

n=0

λnRn

∥∥∥∥2

2

=
1

|λ|2

(
exp
( ∞∑
k,l=1

λk+1λ
l+1
Mµ(k, l)− 1

))
,

where Mµ(k, l) =
∫
σ(R)

zkzldµR(z).
If thus µD is the uniform distribution on a disk with radius d then

MµD
(k, l) = 0

when k 6= l and

MµD
(k, k) =

1

πd2

∫
B(0,d)

|z|2kdz

=
2π

πd2

∫ d

0

r2k+1dr =
2

d2

[
r2k+2

2k + 2

]r
0

=
d2k

k + 1

for k ∈ N. Thus∥∥∥∥ ∞∑
n=0

λn(D + T )n
∥∥∥∥2

2

=
1

|λ|2

[
exp
( ∞∑

k=0

|λ|2(k+1) d2k

k + 1

)
− 1

]
(4.20)

=
1

|λ|2
exp
(

1

d2

(
− log(1− d2|λ|2)

))
=

1

|λ|2
[
(1− d2|λ|2)−

1
d2 − 1

]
.

If instead D+ cT is a DT(µD, c) operator with µD being the uniform distribu-
tion on a disc of radius d then

D + cT = c(D′ + T )
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where D′ now has the uniform distribution on B(0, d
c
), so from (4.20) we obtain∥∥∥∥ ∞∑

n=0

λn(D + cT )n
∥∥∥∥2

2

(4.21)

=

∥∥∥∥ ∞∑
n=0

(cλ)n(D′ + T )n
∥∥∥∥2

2

=
1

c2|λ|2
[ (

1− d2|λ|2
)− c2

d2 − 1
]
.

Lemma 4.6. Let a > b > 0 and let S =
√
aT1 +

√
bT ∗

2 where T1 and T2 are
two D-free quasidiagonal DT-operators. Then∥∥∥∥ ∞∑

n=0

λnSn
∥∥∥∥2

2

=
1

|λ|2
e(a−b)|λ|2 − 1

a− be(a−b)|λ|2 , |λ| < 1

‖S‖2 .

Proof. Let Fn(x) = ED((S∗)nSn) for n ∈ N and x ∈ [0, 1]. For t < 1
‖S‖2 define

the D-valued function

(4.22) F (t, x) =
∞∑
n=0

Fn(x)t
n.

By Speicher’s cumulant formula we have by D-Gaussianity of S that

Fn = ED((S∗)nSn) =
∑

π∈NC(2n)

κD
π

(
(S∗)⊗Bn ⊗B S

⊗Bn
)

= κD
2

(
S∗ ⊗B ED((S∗)n−1Sn−1)S

)
= (aL∗ + bL)(ED((S∗)n−1Sn−1)) = (aL∗ + bL)(Fn−1),

so we get the following recursive algorithm for determining the Fn’s. F0(x) = 1

Fn(x) = aL∗(Fn−1)(x) + bL(Fn−1)(x), x ∈ [0, 1]
,

where L∗(f) : x 7→
∫ x

0
f(y)dy and L(f) : x 7→

∫ 1

x
f(y)dy. Observe that

d
dx
L(f)(x) = −f(x) and

d
dx
L∗(f)(x) = f(x),

and that

Fn(0) = aL∗(Fn−1)(0) + bL(Fn−1)(0) = b

∫ 1

0

Fn−1(x)dx = bτ(Fn−1)

for n ≥ 1. Using (4.22) we have the following differential equation and initial
condition in x 

d
dx
F (t, x) = (a− b)tF (t, x), x ∈ [0, 1]

F (t, 0) = f(t),
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where the function f is given by

f(t) = F (t, 0) =
∞∑
n=0

Fn(0)t
n

= 1 +
∞∑
n=1

(
aL∗(Fn−1)(0) + bL(Fn−1)(0)

)
tn

= 1 + b

∞∑
n=1

(∫ 1

0

Fn−1(x)dx
)
tn

= 1 + bt

∫ 1

0

( ∞∑
n=1

Fn−1(x)t
n−1

)
dx

= 1 + btτ(F (t, ·))

We thus have the unique solution

(4.23) F (t, x) = f(t)e(a−b)tx,

where we can now use (4.23) and the initial condition to find the function f .

f(t) = 1 + bt

∫ 1

0

F (t, x)dx

= 1 + bt

[
f(t)

(a− b)t
e(a−b)tx

]1

0

= 1 + bf(t)

(
e(a−b)t − 1

)
a− b

.

Hence

f(t) =
a− b

a− be(a−b)t

so that

F (t, x) =
(a− b)e(a−b)tx

a− be(a−b)t .

Now observe that∥∥∥∥ ∞∑
n=0

λnSn
∥∥∥∥2

2

= τ
(
F (|λ|2, x)

)
=

∫ 1

0

F (|λ|2, x)dx =
1

|λ|2
e(a−b)|λ|2 − 1

a− be(a−b)|λ|2

�

Theorem 4.7. The operator T +
√
εY is not a DT-operator.

Proof. By substituting a = 1 + ε and b = ε in lemma 4.6 we have

(4.24)
∥∥∥∥ ∞∑
n=0

λn(T +
√
εY )n

∥∥∥∥2

2

=
1

|λ|2
e|λ|2 − 1

1 + ε− εe|λ|2
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for all λ in a neighborhood of 0. If T+
√
εY is a DT-operator, then by Theorem

4.3 and (4.21), there exists a c > 0, such that when d = log(1 + 1
ε
)−

1
2

(4.25)
∥∥∥∥ ∞∑
n=0

λn(T +
√
εY )n

∥∥∥∥2

2

=
1

c2|λ|2
(
(1− d2|λ|2)−

c2

d2 − 1
)

for all λ in a neighborhood of 0. Consider the two analytic functions,

f(s) =
es − 1

1 + ε− εes
,

g(s) =
1

c2

(
1− d2s)−

c2

d2 − 1
)

which are both defined in the complex disc U = B(0, log(1 + 1
ε
)−

1
2 ). By (4.24)

and (4.25) f(s) = g(s) for s in some real interval of the form (0, δ) and hence
f(s) = g(s) for all s ∈ U . Moreover f has a meromorphic extension to the
full complex plane with a simple pole at s0 = log(1 + 1

ε
). Hence g also has a

meromorphic extension to the full complex plane with a simple pole at log(1+
1
ε
) = d−2. This implies c = d. In this case

g(s) =
1

d2

(
(1− d2s)−1 − 1

)
which is analytic in C \ {s0}. However f has infinitely many poles, namely

sp = log

(
1 +

1

ε

)
+ p2π, p ∈ Z.

Since the meromorphic extensions of f and g must coincide, we have reached
a contradiction. Therefore T +

√
εY is not a DT-operator. �

5. Śniady’s moment formulas. The case k = 2.

Let k ∈ N be fixed, and let (Pk,n)
∞
n=0 be the sequence of polynomials defined

recursively by

(5.1)


Pk,n(x) = 1,

P
(k)
k,n(x) = Pk,n−1(x+ 1), n = 1, 2, . . .

Pk,n(0) = P
(1)
k,n(0) = · · ·P (k−1)

k,n (0) = 0, n = 1, 2, . . .

,

where P (l)
k,n denotes the l’th derivative of Pk,n. As in the previous sections, T

denotes the quasinilpotent DT operator. Śniady’s main results from [9] are:

Theorem 5.1. [9, Theorem 5 and Theorem 7]
(a) For all k, n ∈ N:

(5.2) ED

(
((T ∗)kT k)n

)
(x) = Pk,n(x), x ∈ [0, 1].

(b) For all k, n ∈ N:

(5.3) τ
(
((T ∗)kT k)n

)
=

nnk

(nk + 1)!
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Actually Śniady considers ED((T k(T ∗)k)n) instead of ED(((T ∗)kT k)n), but
it is easily seen, that Theorem 5.1 (a) is equivalent to [9, Theorem 5], by the
simple change of variable x 7→ 1− x.

Śniady’s proof of Theorem 5.1 is a very technical combinatorial proof. In
this and the following section we will give an analytical proof of Theorem 5.1
based on Voiculescu’s R-transform with amalgamation.

As in [5, (2.11)] we put

ρ(z) = −W0(−z), z ∈ C \ [1e ,∞),

where W0 is the principal branch of Lambert’s W-function. Then ρ is the
principal branch of the inverse function of z 7→ ze−z. We shall need the
following result from [5, Prop. 4.2].

Lemma 5.2. [5, Prop. 4.2] Let (Pk,n)
∞
n=0 be a sequence of polynomials given

by (5.1). Put for s ∈ C, |s| < 1
e

and j = 1, . . . , k

αj(s) = ρ
(
sei 2πj

k

)
,(5.4)

γj(s) =


∏
l 6=j

αl(s)

αl(s)− αj(s)
, 0 < |s| < 1

e

1

k
, s = 0.

(5.5)

Then

(5.6)
∞∑
n=0

(ks)nkPk,n(x) =
k∑
j=1

γj(s)e
kαj(s)x

for all x ∈ R and all s ∈ B(0, 1
e
).

The case k = 1 of theorem 5.1 is the special case λ = 0 of theorem 3.2. To
illustrate our method of proof of theorem 5.1 for k ≥ 2, we first consider the
case k = 2.

Define T̃ ∈M4(A) by

T̃ =


0 0 0 T ∗

T 0 0 0
0 T 0 0
0 0 T ∗ 0

 .

Then ‖T̃‖ = ‖T‖ =
√

e. (cf. [4, Corollary 8.11]) For µ ∈ C, |µ| < 1
e we let

z = z(µ), denote the Cauchy transform of T̃ at µ̃ = µ1M4(A) wrt. amalgamation
over M4(D) i.e.

z = ED

(
(µ̃− T̃ )−1

)
.

Clearly

(5.7) (µ̃− T̃ )−1 =
∞∑
n=0

µ−n−1T̃ n =

( 3∑
n=0

µ−n−1T̃ n
)( ∞∑

n=0

µ−4nT̃ 4n

)
.
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By direct computation

T̃ 2 =


0 0 (T ∗)2 0
0 0 0 TT ∗

T 2 0 0 0
0 T ∗T 0 0

 ,

T̃ 3 =


0 (T ∗)2T 0 0
0 0 T (T ∗)2 0
0 0 0 T 2T ∗

T ∗T 2 0 0 0


and

T̃ 4 =


(T ∗)2T 2 0 0 0

0 T (T ∗)2T 0 0
0 0 T 2(T ∗)2 0
0 0 0 T ∗T 2T ∗

 .

Hence using the fact that the expectation ED of a monomial in T and T ∗

vanishes unless T and T ∗ occur the same number of times, we get from (5.7)
that z is of the form

(5.8) z =


z11 0 0 0
0 z22 0 z24

0 0 z33 0
0 z42 0 z44


where z11, z22, z24, z33, z42, z44 ∈ D are given by

z11 = µ−1ED((1− µ−4(T ∗)2T 2)−1),

z22 = µ−1ED((1− µ−4T (T ∗)2T )−1),

z33 = µ−1ED((1− µ−4T 2(T ∗)2)−1),

z44 = µ−1ED((1− µ−4T ∗T 2T ∗)−1),

z24 = µ−3ED(T (1− µ−4(T ∗)2T 2)−1T ∗),

z42 = µ−3ED(T ∗(1− µ−4T 2(T ∗)2)−1T ).

For the last 2 identities, we have used, that

A(1− ηBA)−1 = (1− ηAB)−1A

for A,B ∈ A and η ∈ C whenever both sides of this equality are welldefined.
By lemma 2.1, we know, that there exists a δ > 0 such that when w ∈

M4(D)inv and µ ∈ C satisfies ‖w‖ < δ, |µ| > 1
δ

and

(5.9) R
M4(D)

T̃
(w) + w−1 = µ1M4(A)

then w = EM4(D)((µ̃− T̃ )−1) = z. In particular

w11 = z11 = µ−1((1− µ−4(T ∗)2T 2)−1),
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Hence, if we can find a suitable solution to (5.8) for all µ ∈ C in a neighborhood
of ∞, we can find ED(((T ∗)2T 2)n) for n = 1, 2, . . . by determining the power
series expansion of w11 as a function of µ−1.

Since (T, T ∗) is a D-Gaussian pair by [5, Appendix] it follows from lemma
2.2 that

κM4(D)
n ((m1 ⊗ a1)⊗M4(D) · · · ⊗M4(D) (mn ⊗ an)) = 0

when n 6= 2, m1,m2, . . . ,mn ∈ M4(C) and a1, a2, . . . , an ∈ {T, T ∗}. By defini-
tion

T̃ = (e21 + e32)⊗ T + (e43 + e14)⊗ T ∗

so by linearity of κM4(D)
n , it follows that

κM4(D)
n (T̃ ⊗M4(D) · · · ⊗M4(D) T̃ ) = 0

when n 6= 2 i.e. T̃ is M4(D)-Gaussian.
Hence using (2.4) we get

R
M4(D)

T̃
(w) = κ

M4(D)
2 (T̃ ⊗M4(D) wT̃ ) = EM4(D)

(
T̃wT̃

)

= EM4(D)



T ∗w42T 0 T ∗w44T

∗ 0
0 0 0 Tw11T

∗

Tw22T 0 Tw24T
∗ 0

0 T ∗w33T 0 0




for w = (wij)i,j=1,...,4 ∈M4(D).
Since ED(TfT ) = ED(T ∗fT ∗) = 0, and ED(T ∗fT ) = L∗(f), ED(TfT ∗) =

L(f) for f ∈ L∞([0, 1]), we have:

R
M4(D)

T̃
(w) =


L∗(w42) 0 0 0

0 0 0 L(w11)
0 0 L(w24) 0
0 L∗(w33) 0 0


for w ∈M4(D). By (5.8) we only have to consider w of the form

(5.10) w =


w11 0 0 0
0 w22 0 w24

0 0 w33 0
0 w42 0 w44

 .

For w ∈M4(D)inv of the form (5.10), (5.9) reduces to the three equations

(5.11)



L∗(w42) +
1

w11

= µ1D(
0 L(w11)

L∗(w33) 0

)
+

(
w22 w24

w42 w44

)−1

= µ1M2(D)

L(w24) +
1

w33

= µ1D

.
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Definition 5.3. Let f ∈ C([0, 1]). We call (f (−n))ln=1 for the succesive an-
tiderivatives of f if

d
dx

(f (−n)) = f (1−n) for n = 2, 3, . . . , l

and
d
dx

(f (−1)) = f.

Lemma 5.4. Let f ∈ C2([0, 1]) and let f (−1) and f (−2) be the succesive an-
tiderivatives of f for which

(i) f (−1)(1) = 0, f (−2)(1) = µ3.
Assume further, that

(ii) f(0) = µ−1 and f (1)(0) = 0.
(iii) For all x ∈ [0, 1],

f(x) 6= 0∣∣∣∣f (−1)(x) f(x)
f(x) f (1)(x)

∣∣∣∣ 6= 0

while ∣∣∣∣∣∣
f (−2)(x) f (−1)(x) f(x)
f (−1)(x) f(x) f (1)(x)
f(x) f (1)(x) f (2)(x)

∣∣∣∣∣∣ = 0.

Then w11, w22, w33, w44, w24, w42 ∈ C([0, 1]) given by

(5.12)



w11 = f

w22 = w44 = − 1

µ

∣∣∣∣∣f (−1) f

f f (1)

∣∣∣∣∣
f 2

w24 =
1

µ2

f (−1)

∣∣∣∣∣f (−1) f

f f (1)

∣∣∣∣∣
f 2

w42 =
f (1)

f 2

w33 = µ2

f

∣∣∣∣∣ f f (1)

f (1) f (2)

∣∣∣∣∣∣∣∣∣∣f (−1) f

f f (1)

∣∣∣∣∣
2
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is a solution to (5.11). Moreover

(5.13)
∣∣∣∣w22 w24

w42 w44

∣∣∣∣ = − 1

µ2

∣∣∣∣f (−1) f
f f (1)

∣∣∣∣
f 2

and

(5.14)



L(w11) = −f (−1)

L(w24) = µ− 1

µ2

∣∣∣∣f (−2) f (−1)

f (−1) f

∣∣∣∣
f

L∗(w42) = µ− 1

f

L∗(w33) = −µ2 f (1)∣∣∣∣f (−1) f
f f (1)

∣∣∣∣

.

Proof. Assume w11, w22, w33, w44, w24, w42 is given by (5.12). Then (5.13) fol-
lows immediately. Note that for f ∈ C([0, 1]), the functions g = L(f) and
h = L∗(f) are characterized by

g(1) = −f and g(1) = 0

h(1) = f and h(0) = 0.

Hence (5.14) is equivalent to (5.15) and (5.16) below.

(5.15)



d
dx
f (−1) = w11

d
dx

(
1

µ2

∣∣∣∣∣f (−2) f (−1)

f (−1) f

∣∣∣∣∣
f

)
= w24

d
dx

(
− 1

f

)
= w42

d
dx

(
− µ2 f (1)∣∣∣∣∣f (−1) f

f f (1)

∣∣∣∣∣
)

= w33

(5.16)


f (−1)(1) = 0,

∣∣∣∣∣f (−2)(1) f (−1)(1)

f (−1)(1) f(1)

∣∣∣∣∣
f(1)

= µ3

1

f(0)
= µ, f (1)(0) = 0

.
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Now, (5.16) is trivial from (i) and (ii). Next we prove (5.15): Clearly

d
dx
f (−1) = f = w11 and

d
dx

(
− 1

f

)
=
f (1)

f 2
= w42.

Moreover

d
dx

(∣∣∣∣f (−2) f (−1)

f (−1) f

∣∣∣∣
f

)
(5.17)

=

f

∣∣∣∣f (−2) f
f (−1) f (1)

∣∣∣∣− f (1)

∣∣∣∣f (−2) f (−1)

f (−1) f

∣∣∣∣
f 2

=

f (−1)

∣∣∣∣f (−1) f
f f (1)

∣∣∣∣
f 2

= µ2w24

and

d
dx

( f (1)∣∣∣∣f (−1) f
f f (1)

∣∣∣∣
)

=

∣∣∣∣f (−1) f
f f (1)

∣∣∣∣ f (2) −
∣∣∣∣f (−1) f
f (1) f (2)

∣∣∣∣ f (1)∣∣∣∣f (−1) f
f f (1)

∣∣∣∣2

= −
f

∣∣∣∣ f f (1)

f (1) f (2)

∣∣∣∣∣∣∣∣f (−1) f
f f (1)

∣∣∣∣2
= − 1

µ2
w33.

Hence (5.15) holds. It remains to be proved that w11, w22, w33, w44, w24, w42 is
a solution to (5.11). By (5.12) and (5.14), we have

L∗(w42) +
1

w11

=

(
µ− 1

f

)
+

1

f
= µ.

Moreover by (5.12) and (5.13)(
w22 w24

w42 w44

)−1

=
1

w22w44 − w24w42

(
w44 −w24

−w42 w22

)

=


µ f (−1)

µ2 f (1)˛̨̨̨
˛̨f (−1) f
f f (1)

˛̨̨̨
˛̨

µ


which proves that the first and the second inequality in (5.11).

By (5.12) and (5.14),

w33(µ− L(w24)) =

∣∣∣∣ f f (1)

f (1) f (2)

∣∣∣∣ ∣∣∣∣f (−2) f (−1)

f (−1) f

∣∣∣∣∣∣∣∣f (−1) f
f f (1)

∣∣∣∣2
= 1 +

σ∣∣∣∣f (−1) f
f f (1)

∣∣∣∣2
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where

σ =

∣∣∣∣ f f (1)

f (1) f (2)

∣∣∣∣ ∣∣∣∣f (−2) f (−1)

f (−1) f

∣∣∣∣− ∣∣∣∣f (−1) f
f f (1)

∣∣∣∣2 = f

∣∣∣∣∣∣
f (−2) f (−1) f
f (−1) f f (1)

f f (1) f (2)

∣∣∣∣∣∣ .
Hence by (iii), σ = 0. Therefore w33(x) 6= 0 for all x ∈ [0, 1] and w−1

33 =
µ− L(w24), proving the last equality in (5.11). �

Lemma 5.5. Let αj(s), γj(s) for j = 1, 2 be as in lemma 5.2 for k = 2, i.e.
α1(0) = α2(0) = 0, γ1(0) = γ2(0) = 1

2
and for 0 < |s| < e−1:

α1(s) = ρ(s), α2(s) = ρ(−s),

γ1(s) =
α1(s)

α1(s)− α2(s)
, γ2(s) =

α2(s)

α2(s)− α1(s)
.

Let µ ∈ C, |µ| >
√

e, put s = 1
2
µ−2 and

f(x) =
1

µ

( 2∑
j=1

γj(s)e2αj(s)x

)
, x ∈ R(5.18)

f (−1)(x) =
1

2µ

( 2∑
j=1

γj(s)

αj(s)
e2αj(s)x

)
, x ∈ R(5.19)

f (−2)(x) =
1

4µ

( 2∑
j=1

γj(s)

αj(s)2
e2αj(s)x

)
, x ∈ R(5.20)

Then
(i) f (−1), f (−2) are succesively antiderivatives of f ,

f (−1)(1) = 0, f (−2)(1) = µ3(5.21)

and

f(0) = µ−1, f (1)(0) = 0.(5.22)

(ii) The following asymptotic formulas holds for |µ| → ∞:

f (−2)(x) = µ3 + O(µ−1)

f (−1)(x) = (x− 1)µ−1 + O(µ−5)

f(x) = µ−1 + O(µ−5)

f (1)(x) = xµ−5 + O(µ−9)

f (2)(x) = xµ−5 + O(µ−9)

where the error estimates holds uniformly in x on a compact subset in R.
(iii) There exists µ0 ≥

√
e such that the restriction of f to [0, 1] satisfies all

the conditions in lemma 5.4, when |µ| > µ0.



THE QUASI-NILPOTENT DT-OPERATOR 29

Proof. Clearly f (−1) and f (−2) are succesively antiderivatives of f and

f(0) =
1

µ

2∑
j=1

γj(s) =
1

µ

f (1)(0) =
2

µ

2∑
j=1

αj(s)γj(s) = 0.

To prove (5.21), note first, that since ρ : C \ [1e ,∞) → C is a branch of the
inverse function of z 7→ ze−z, we have

ρ(w)e−ρ(w) = w, |w| < 1

e
and therefore

e2αj(s) =
αj(s)

2

s2
, j = 1, 2.

Since s2 = 1
4
µ−4, it follows that

f (−2)(x+ 1) = µ4f(x), x ∈ R(5.23)

f (−1)(x+ 1) = µ4f (1)(x), x ∈ R(5.24)

f(x+ 1) = µ4f (2)(x), x ∈ R.(5.25)

In particular

f (−2)(1) = µ4f(0) = µ3

f (−1)(1) = µ4f (1)(0) = 0.

By the proof of [5, Prop. 4.2], αj(s) and ρj(s) are continuous functions of
s ∈ B(0, 1

e ). Hence, regarding f as a function of µ,

lim
|µ|→∞

(µf(x)) =
2∑
j=1

γj(0)e2αj(0)x = 1

where the limit holds uniformly in x on compact subsets of R. Hence by (5.25)
f (2)(x) = O(µ−5) as |µ| → ∞ uniformly in x on compact subsets of R. By
(5.22),

f (1)(x) =

∫ x

0

f (2)(t)dt(5.26)

f(x) = µ−1 +

∫ x

0

f (1)(t)dt(5.27)

which implies, that f (1)(x) = O(µ−5) and

(5.28) f(x) = µ−1 + O(µ−5)

uniformly in x on compact subsets of R.
Using again (5.25), (5.26) and (5.27), we get

f (2)(x) = µ−5 + O(µ−9)

f (1)(x) = xµ−5 + O(µ−9).
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By (5.21)

f (−1)(x) =

∫ x

1

f(t)dt

f (−2)(x) = µ3 +

∫ x

1

f (−1)(t)dt.

Hence by (5.28),

f (−1)(x) = (x− 1)µ−1 + O(µ−5)

f (−2)(x) = µ3 + O(µ−1)

where all estimates holds uniformly on compact subsets of R. This proves (ii).
By (i), f (−1), f (−2) coinside with the succesive antiderivatives of f considered
in lemma 5.4 and f(0) = µ−1, f (1)(0) = 0.

Moreover, by (ii),

f(x) = µ−1 + O(µ−5)∣∣∣∣f (−1)(x) f(x)
f(x) f (1)(x)

∣∣∣∣ = µ−2 + O(µ−6)

where the error terms holds uniformly in x ∈ [0, 1]. Hence there exists µ0 ≥
√

e,
such that

f(x) 6= 0 and
∣∣∣∣f (−1)(x) f(x)
f(x) f (1)(x)

∣∣∣∣ 6= 0

for all x ∈ [0, 1]. Moreover by the matrix factorization

(5.29)

f (−2)(x) f (−1)(x) f(x)
f (−1)(x) f(x) f (1)(x)
f(x) f (1)(x) f (2)(x)


=

(
1 1

2α1(s) 2α2(s)

4α1(s)2 4α2(s)2

)( γ1(s)

4α1(s)2
e2α1(s)x 0

0
γ2(s)

4α2(s)2
e2α2(s)x

)(
1 2α1(s) 4α1(s)2

1 2α2(s) 4α2(s)2

)
it follows, that the matrix on the left hand side has rank less than or equal to
2, i.e. ∣∣∣∣∣∣

f (−2)(x) f (−1)(x) f(x)
f (−1)(x) f(x) f (1)(x)
f(x) f (1)(x) f (2)(x)

∣∣∣∣∣∣ = 0

for x ∈ [0, 1]. Hence f satisfies all the conditions in lemma 5.4, when |µ| >
µ0. �

Proof of Theorem 5.1 in the case k = 2: By lemma 2.1 there exists a δ > 0,
such that when w ∈M4(D)inv and µ ∈ C satisfies ‖w‖ < δ, |µ| > 1

δ
and

(5.30) R
M4(D)

T̃
(w) + w−1 = µ1M4(D)

then w = ED((µ̃− T̃ )−1). In particular

(5.31) w11 = µ−1ED((1− µ−4(T ∗)2T 2)−1).
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Let µ ∈ C, |µ| >
√

e, put s = 1
2
µ−2 and

f(x) =
1

µ

( 2∑
j=1

γj(s)e2αj(s)x

)
for x ∈ [0, 1] as in lemma 5.5. By lemma 5.5 (iii) there exists a µ0 >

√
e, such

that when |µ| > µ0, then f satisfies all the requirements af lemma 5.4. Hence
by lemma 5.4, the matrix w ∈ M4(D) given by (5.10) and (5.12) is a solution
to (5.30). Moreover by the asymptotic formulas in lemma 5.5 (ii),∣∣∣∣f (−2)(x) f (−1)(x)

f (−1)(x) f(x)

∣∣∣∣ = µ2 + O(µ−2),

∣∣∣∣f (−1)(x) f(x)
f(x) f ′(x)

∣∣∣∣ = −µ−2 + O(µ−6),

∣∣∣∣f(x) f ′(x)
f ′(x) f ′′(x)

∣∣∣∣ = µ−6 + O(µ−10).

Hence by (5.12) and the asymptotic formulas for f (−1), f and f ′, we have

w11 = µ−1 + O(µ−5),

w22 = w44 = µ−1 + O(µ−5),

w24 = (1− x)µ−3 + O(µ−3),

w42 = xµ−3 + O(µ−3),

w33 = µ−1 + O(µ−5),

where all the error estimates holds uniformly in x ∈ [0, 1]. Hence, there exists
µ1 ≥ max{µ0,

1
δ
}, such that when |µ| > µ1 then ‖w‖ < δ, and hence

w = EM4(D)((µ̃− T̃ )−1).

By (5.12), w11 = f . Hence by (5.31) and (5.18)

ED((1− µ−4(T ∗)2T 2)−1)(x) = µf(x) =
2∑
j=1

γj(s)e2αj(s)x

where s = 1
2
µ−2, i.e. for |s| < 1

2
µ−2

1 ,

ED((1− (2s)2(T ∗)2T 2)−1)(x) =
2∑
j=1

γj(s)e2αj(s)x

and therefore

(5.32)
∞∑
j=0

(2s)2nED(((T ∗)2T 2)n)(x) =
2∑
j=1

γj(s)e2αj(s)x.

Hence by lemma 5.2 and by the uniqueness of the power series expansions of
analytic functions, we have

ED(((T ∗)2T 2)n)(x) = P2,n(x)
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for n ∈ N and x ∈ [0, 1]. This proves theorem 5.1(a) in the case k = 2.
Theorem 5.1 (b) also follows from (5.32) by integrating the right hand side of
(5.32) from 0 to 1 with respect to x (cf. [5, remark 4.3]). �

6. Śniady’s moment formulas. The general case.

The above proof of Theorem 5.1 in the case k = 2 can fairly easily be
generalized to all k ≥ 2 (Recall that the case k = 1 is contained in theorem
3.2).

Let k ≥ 2 and define T̃ ∈M2k(A) by

T̃ =
k∑
j=1

(T ⊗ ej+1,j + T ∗ ⊗ ek+j+1,k+j)

where the indices are computed modulo 2k, such that e2k+1,2k = e1,2k. For
µ ∈ C, |µ| < 1√

e , we put µ̃ = µ12k and

z = z(µ) = EM2k(D)((µ̃− T̃ )−1).

Then only the diagonal entries z11, . . . , z2k,2k and the off-diagonal entries z2,2k,
z3,2k−1, . . . , z2k,2 can be non-zero. Moreover,

z11 = µ−1ED((1− µ−2k(T ∗)kT k)−1).

The operator T̃ is M2k(D)-Gaussian, and repeating the arguments for k = 2,
we get that for w ∈M2k(D), the matrix

(6.1) u = R
M2k(D)

T̃
(w)

can have at most 2k non-zero entries, namely the entries

u11 = L∗(w2k,2)

u2k,2 = L∗(w2k−1,3)

...
...

uk+2,k = L∗(wk+1,k+1)(6.2)
uk+1,k+1 = L(wk,k+2)

uk,k+2 = L(wk−1,k+3)

...
...

u2,2k = L(w1,1).

By lemma 2.1 there exists a δ > 0 (depending on k), such that if w ∈
M2k(D)inv, ‖w‖ < δ, µ ∈ C, |µ| > 1

δ
and

(6.3) R
M2k(D)

T̃
(w) + w−1 = µ1M2k(D),

then
w = z = EM2k(D)((µ̃− T̃ )−1).

In particular
w11 = µ−1ED((1− µ−2k(T ∗)kT k)−1).
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Next we construct an explicit solution to (6.3). By the above remarks on
z, it is sufficient to consider those w ∈ M2k(D)inv for which only the entries
z11, . . . , z2k,2k and z2,2k, z3,2k−1, . . . , z2k,2 can be non-zero. For such w, (6.3) can
by (6.1) and (6.2) be reduced to the k + 1 identities:

(6.4)



L∗(w2k,2) +
1

w11

= µ1D(
0 L(wj+1,2k+1−j)

L∗(w2k−1−j,j+3) 0

)
+
( w2+j,2+j w2+j,2k−j
w2k−j,2+j w2k−j,2k−j

)−1
= µ1M2(D),

j = 0, 1, . . . , k − 2,

L(wk,k+2) +
1

wk+1,k+1

= µ1D.

Definition 6.1. For j ∈ N ∪ {0} and g ∈ C2j+2, we let ∆j(g) denote the
determinant

(6.5) ∆j(g) =

∣∣∣∣∣∣∣∣∣∣
g g(1) ... g(j)

g(1) ... ... ...

... ... ... g(2j−1)

g(j) ... g(2j−1) g(2j)

∣∣∣∣∣∣∣∣∣∣
.

In particular ∆0(g) = g.

Lemma 6.2. Let g ∈ C2j+2(R) and j ∈ N. Then

(6.6) ∆j(g
(2))∆j(g)−∆j(g

(1))2 = ∆j−1(g
(2))∆j+1(g)

and

(6.7) ∆j−1(g
(2))

d
dx

(∆j(g))−∆j(g)
d
dx
(
∆j−1(g

(2))
)

= ∆j−1(g
(1))∆j(g

(1)).

The proof of lemma 6.2 relies on elementary matrix manipulations and is
contained in lemma A.1 of appendix A. More specifically (6.6) is a direct
consequence of (a) from lemma A.1, and (6.7) follows from (b) of lemma A.1
by using the elementary fact that:

d
dx

(∆j(g)) =

∣∣∣∣∣∣∣∣∣∣∣∣

g g(1) ... g(j)

g(1) ... ... ...

... ... ... g(2j−1)

g(j−1) ... g(2j−2) g(2j−1)

g(j+1) ... g(2j) g(2j+1)

∣∣∣∣∣∣∣∣∣∣∣∣
,

that is, differentiating (6.5) is the same as differentiating the last row of (6.5).
The next two lemmas are the generalizations of lemma 5.4 and lemma 5.5

to arbitrary k ≥ 2.
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Lemma 6.3. Let f ∈ Ck([0, 1]) and let (f (−j))kj=1 be the antiderivatives of f
for which,

(i)

f (−j)(1) =

0, 1 ≤ j ≤ k − 1,

µ2k−1, j = k.

(ii) Assume further that

f(0) = µ−1 and f (−j)(0) = 0 for 1 ≤ j ≤ k − 1.

(iii) For all x ∈ [0, 1],

∆j(f
(−j))(x) 6= 0, for j = 0 . . . , k − 1

and
∆k(f

(−k))(x) = 0

Then the set of 4k − 2 functions listed in (6.8), (6.9) and (6.10) below is a
solution to (6.4).

(6.8)



w11 = f

w22 = w2k,2k = − 1

µ

∆1(f
(−1))

f 2

w2,2k =
1

µ2

f (−1)∆1(f
(−1))

f 2

w2k,2 =
f (1)

f 2

.

For j = 1, . . . , k − 2

(6.9)



wj+2,j+2 = w2k−j,2k−j = − 1

µ

∆j−1(f
(1−j))∆j+1(f

(−1−j))

∆j(f (−j))2

wj+2,2k−j =
1

µ2j+2

∆j(f
(−1−j))∆j+1(f

(−1−j))

∆j(f (−j))2

w2k−j,j+2 = µ2j∆j−1(f
(1−j))∆j(f

(1−j))

∆j(f (−j))2

.

(6.10) wk+1,k+1 = µ2k+2 ∆k−2(f
(2−k))∆k−1(f

(2−k))

∆k−1(f (1−k))2

Moreover for j = 0, . . . , k − 2

(6.11)
∣∣∣∣wj+2,j+2 wj+2,2k−2

w2k−j,j+2 w2k−j,2k−j

∣∣∣∣ =
1

µ
wj+2,j+2
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and

(6.12)



L(w11) = −f (−1)

L(wj+2,2k−j) = − 1

µ2j+2

∆j+1(f
(−2−j))

∆j(f (−j))
, 0 ≤ j ≤ k − 3

L(wk,k+2) = µ− 1

µ2k−2

∆k−1(f
(−k))

∆k−2(f (2−k))

(6.13)



L∗(w2k,2) = µ− 1

f

L∗(w2k−j,2+j) = −µ2j∆j−1(f
(−2−j))

∆j(f (−j))
, 1 ≤ j ≤ k − 2

L∗(wk+1,k+1) = −µ2k−2 ∆k−2(f
(3−k))

∆k−1(f (1−k))

.

Proof. Let w11, w22, . . . , wkk, w2,2k, w3,2k−1, . . . , w2k,2 be given by (6.8), (6.9)
and (6.10). Then for 1 ≤ j ≤ k − 2 the left hand side of (6.11) is equal
to

− 1

µ2

∆j−1(f
(1−j))∆j+1(f

(−1−j))A

∆j(f (−j))4
,

where A = ∆j−1(f
(1−j))∆j+1(f

(−1−j))−∆j(f
(1−j))∆j(f

(−1−j)).
By applying (6.6) to g = f (−1−j) it follows that A = −∆j(f

(−j))2, which
proves (6.11) for 1 ≤ j ≤ k − 2. The case j = 0 of (6.11) follows immediately
from (6.8).

The proofs of (6.12) and 6.13) can be obtained exactly as in the case k = 2
provided the following two identities holds: For j = 0, . . . , k − 2:

d
dx

(
∆j+1(f

(−2−j))

∆j(f (−j))

)
=

∆j(f
(−1−j))∆j+1(f

(−1−j))

∆j(f (−j))2
(6.14)

For j = 1, . . . , k − 1:

d
dx

(
∆j−1(f

(2−j))

∆j(f (−j))

)
=

∆j−1(f
(1−j))∆j(f

(1−j))

∆j(f (−j))2
(6.15)

However (6.14) follows from (6.7) with g = f (−2−j) after changing j in (6.7)
to j + 1. In the same way (6.15) follows from (6.7) with g = f (−j) and j
unchanged. It remaims to be proved, that w11, . . . , wkk, w2,2k, . . . , w2k,2 form a
solution to (6.4). The proof of the first 2 identities in (6.4) is exactly the same
as in the case k = 2. Let us check the next k − 2 identities in (6.4) i.e.

(6.16)
(

0 L(wj+1,2k+1−j)
L∗(w2k−1−j,j+3) 0

)
+

(
w2+j,2+j w2+j,2k−j
w2k−j,2+j w2k−j,2k−j

)−1

= µ1M2(D)
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for j = 1, . . . , k − 2. By (6.11) and the fact that w2+j,2+j = w2k−j,2k−j (cf.
(6.8)) we have (

w2+j,2+j w2+j,2k−j
w2k−j,2+j w2k−j,2k−j

)−1

=

(
µ1D β
γ µ1D

)
,

where

β = −µw2+j,2k−j

w2+j,2+j

=
1

µ2j

∆j(f
(−1−j))

∆j−1(f (1−j))

and

γ = −µw2k−j,2+j

w2+j,2+j

= µ2j+2 ∆j(f
(1−j))

∆j+1(f (−1−j))
.

Hence by (6.12) and (6.13)

β = −L(wj+1,2k−j+1) and γ = −L∗(w2k−1−j,j+3)

for j = 1, . . . , k−2. This proves (6.16). Observe next that by (6.10) and (6.12)

wk+1,k+1(µ− L(wk,k+2)) =
∆k−1(f

(2−k))∆k−1(f
(−k))

∆k−1(f (1−k))2

= 1 +
σ

∆k−1(f (1−k))2
,

where
σ = ∆k−1(f

(2−k))∆k−1(f
(−k))−∆k−1(f

(1−k))2.

By (6.6) and the assumptions (iii) in lemma 6.3

σ = ∆k−2(f
(2−k))∆k(f

(−k)) = 0.

Hence wk+1,k+1(µ − L(wk,k+2)) = 1, which proves the last equality in (6.4).
This completes the proof of lemma 6.3. �

Lemma 6.4. Let k ∈ N, k ≥ 2 and let αj(s), γj(s) for j = 1, . . . , k and
0 < |s| < 1

e
be as in lemma 5.2. Let µ ∈ C, |µ| >

√
e, put s = 1

k
µ−2 and

(6.17)


f(x) =

1

µ

( k∑
ν=1

γν(s)e
kαν(s)x

)
, x ∈ R

f (−j)(x) =
1

µkj

( k∑
ν=1

γν(s)

αν(s)j
ekαν(s)x

)
, x ∈ R, j = 1, . . . , k

.

Then
(i) (f (−j))kj=1 are succesive antiderivatives of f . Moreover

(6.18)

{
f (−j)(1) = 0, 1 ≤ j ≤ k − 1

f (−k)(1) = µ2k−1
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and

(6.19)

{
f(0) = µ−1

f (j)(0) = 0, 1 ≤ j ≤ k − 1
.

(ii) The following asymptotic formulas holds for |µ| → ∞

(6.20)



f (−k)(x) = µ2k−1 + O(µ−1)

f (−j)(x) =
1

j!
(x− 1)jµ−1 + O(µ−2k−1), 1 ≤ j ≤ k − 1

f(x) = µ−1 + O(µ−2k−1)

f (j)(x) =
1

j!
xjµ−2k−1 + O(µ−4k−1), 1 ≤ j ≤ k − 1

f (k)(x) = µ−2k−1 + O(µ−4k−1)

,

where the error estimates holds uniformly in x on compact subsets of R.
(iii) There exists a µ0 ≥

√
e, such that the restriction of f to [0, 1] satisfies

all the conditions in lemma 6.3, when |µ| > µ0.

Proof. From the proof of [5, Prop. 4.2], we know that αj(s) and γj(s) are
analytic functions of s ∈ B(0, 1

e ). Moreover by [4, Prop. 4.1]

(6.21)



k∑
ν=1

γν(s) = 1

k∑
ν=1

γν(s)αµ(s)
j = 1, j = 1, . . . , k − 1

.

Moreover, since αj(s) = ρ
(
ei

2πj
k
s
)
, where ρ satisfies

ρ(w)e−ρ(w) = w for |w| < 1
e

we have
(
αν(s)e−αν(s)

)k
= sk and therefore

(6.22) ekαν(s) =
sk

(αν(s))k

for ν = 1, . . . , k. Having (6.21) and (6.22) in mind, the proof of (i) and
(ii) in lemma 6.4 is now a routine generalization of the proof of lemma 5.5.
Concerning (iii) in lemma 6.4, we have

(6.23)


∆j(f

(−j)) = σ(j)µ−j−1 + O(µ−2k−j−1), 0, . . . , k − 1,

where σ(j) = 1 for j = 0, 3 (mod 4)

and σ(j) = −1 for j = 1, 2 (mod 4)
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because the leading term in the determinant ∆j(f
(−j)) comes from the antidi-

agonal, i.e.

∆j(f
(−j)) =

∣∣∣∣∣∣∣∣∣
0 . . . 0 f
... . .. . .. 0

0 . .. . .. ...
f 0 . . . 0

∣∣∣∣∣∣∣∣∣+ O(µ−2k−j−1) = σ(j)f j+1 + O(µ−2k−j−1)

since the matrix in question has size j+1. Hence ∆j(f
(−j))(x) 6= 0 for x ∈ [0, 1]

and 0 ≤ j ≤ k − 1, when |µ| is sufficiently large. Moreover ∆k(f
(−k)) = 0 for

x ∈ [0, 1], because in analogy with (5.29), ∆k(f
(−k)(x)) is the determinant of

the (k + 1)× (k + 1) matrix

F = (f (i+j−k))i,j=0,...,k

which has the factorization F = ADAt, where A is the (k+1)×k matrix with
entries

ail = (kαl(s))
i, i = 0, . . . , k, l = 1, . . . , k

and D is the k × k diagonal matrix, with diagonal entries

dll =
γl(s)

(kαl(s))k
ekαl(s), l = 1, . . . , k.

�

Proof of Theorem 5.1 in the general case. Let µ0 be as in lemma 6.4, let µ ∈
C, |µ| > µ0 and put s = 1

k
µ−2. Put as before

f(x) =
1

µ

( k∑
ν=1

γj(s)ekαj(s)x

)
for x ∈ [0, 1], and define w11, w22, . . . , wk,k, w2,2k, w3,2k−1, . . . , w2k,2 by (6.8),
(6.9) and (6.10), and put all other entries of w ∈M2k(D) equal to 0. Then by
lemma 6.4, (6.4) holds, and therefore

R
M2k(D)

T̃
(w) + w−1 = µ1M2k(D).

Let δ > 0 be chosen according to lemma 2.1. If we can find a µ1 ≥ max{µ0,
1
δ
},

such that

(6.24) |µ| ≥ µ1 ⇒ ‖w‖ < δ

then w = EM2k(D)((µ̃− T̃ )−1). In particular

(6.25) f = w11 = µ−1ED((1− µ−2k(T ∗)kT k)−1),

and the proof of theorem 5.1 for k ≥ 2 can be completed exactly as in the case
k = 2. By (6.23)

(6.26)


∆j(f

(−j)) = O(µ−j−1), 0 ≤ j ≤ k − 1

1

∆j(f (−j))
= O(µj+1), 0 ≤ j ≤ k − 1
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uniformly in x ∈ [0, 1] for |µ| → ∞. We claim that

(6.27)


∆j(f

(−j−1)) = O(µ−j−1), 0 ≤ j ≤ k − 2

∆k−1(f
(−k)) = O(µk)

∆j(f
(1−j)) = O(µ−j−2k−1), 0 ≤ j ≤ k − 2

∆k−1(f
(2−k)) = O(µ−3k)

.

Recall by definition 6.1 that

∆j(g) = det
(
(g(k+l))k,l=0,...,j

)
.

Hence for 0 ≤ j ≤ k−2, ∆j(f
(−j−1)) is the determinant of a (j+1)×(j+1) ma-

trix, where each entry is equal to one of the functions f (−j−1), f (−j), . . . , f (j−1).
By (6.20) all these functions are of order O(µ−1) as |µ| → ∞. Hence

∆j(f
(−j−1)) = O(µ−j−1)

proving the first estimate in (6.27). By the same argument, ∆k−1(f
(−k)) is the

determinant of a k × k matrix for which the upper left entry is of the order
O(µ2k−1) and all the other entries are of order O(µ−1). Hence ∆k−1(f

(−k)) =
O(µ2k−1(µ−1)k−1) = O(µk). Let 0 ≤ j ≤ k − 1. Then ∆j(f

(1−j)) is by (6.20) a
determinant of a (j + 1)× (j + 1) matrix M = (mk,l)k,l=0,...,j for which{

mk,l = O(µ−1) when k + l < 0

mk,l = O(µ−2k−1) when k + l ≥ 0
.

Hence for any permutation π of {0, 1, . . . , k} the product

m0π(0)m1π(1) · · ·mjπ(j)

contains at least one factor of order O(µ−2k−1). Therefore

∆j(f
(1−j)) = det(M) =

∑
π∈Sj+1

(−1)sign(π)m0π(0)m1π(1) · · ·mkπ(k)

is of order O(µ−2k−1(µ−1)j) = O(µ−2k−j−1). This proves the last two estimates
in (6.27). Clearly all estimates holds uniformly in x ∈ [0, 1]. Combining (6.8),
(6.9), (6.10) and (6.27), we get

wl,l = O(µ−1), 1 ≤ l ≤ 2k

wj+2,2k−j = O(µ−2j−3), 0 ≤ j ≤ k − 2

w2k−j,j+2 = O(µ2j+1−2k), 0 ≤ j ≤ k − 2

.

In particular all the entries of w are of size O(µ−1) as |µ| → ∞ uniformly in
x ∈ [0, 1]. Hence there exists µ1 ≥ max{µ0,

1
δ
} such that (6.24) holds. Hence

by (6.25) we have for |s| < 1
k
µ−2

1 ,
∞∑
k=0

(ks)nkED(((T ∗)kT k)n)(x) =
∞∑
ν=1

γj(s)e
kαj(s)x, x ∈ [0, 1].

Now Theorem 5.1 follows from lemma 5.2 and [5, remark 4.3] as in the case
k = 2. �
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Appendix A. Determinant-identities on Hankel-matrices

We need the following lemma on Hankel-determinants.

Lemma A.1. Let a−(n−1), a−(n−2), . . . , an−1, an ∈ C for some n ∈ N. Then

(a)

∣∣∣∣∣∣∣∣∣∣
a−(n−3) a−(n−4) ... a0

a−(n−4) ... ... ...

... ... ... an−4

a0 ... an−4 an−3

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a−(n−1) a−(n−2) a−(n−3) a−(n−4) ... a0

a−(n−2) a−(n−3) a−(n−4) ... ... ...

a−(n−3) a−(n−4) ... ... ... an−4

a−(n−4) ... ... ... an−4 an−3

... ... ... an−4 an−3 an−2

a0 ... an−4 an−3 an−2 an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
a−(n−1) a−(n−2) ... a−1

a−(n−2) ... ... ...

... ... ... an−4

a−1 ... an−4 an−3

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
a−(n−3) a−(n−4) ... a1

a−(n−4) ... ... ...

... ... ... an−2

a1 ... an−2 an−1

∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣
a−(n−2) a−(n−3) ... a0

a−(n−3) ... ... ...

... ... ... an−3

a0 ... an−3 an−2

∣∣∣∣∣∣∣∣∣∣

2

.

(b)∣∣∣∣∣∣∣∣∣∣
a−(n−2) a−(n−3) ... a1

a−(n−3) ... ... ...

... ... ... an−1

a1 ... an−1 an

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
a−(n−2) a−(n−3) ... a0

a−(n−3) ... ... ...

... ... ... an−3

a0 ... an−3 an−2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
a−(n−1) a−(n−2) ... a0

a−(n−2) ... ... ...

... ... ... an−3
a−1 ··· an−3 an−2
a1 a2 ··· an

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
a−(n−3) a−(n−4) ... a1

a−(n−4) ... ... ...

... ... ... an−2

a1 ... an−2 an−1

∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣
a−(n−1) a−(n−2) ... a0

a−(n−2) ... ... ...

... ... ... an−2

a0 ... an−2 an−1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
a−(n−3) a−(n−4) ... a1

a−(n−4) ... ... ...

... ... ... an−3
a0 ··· an−3 an−2
a2 a3 ··· an

∣∣∣∣∣∣∣∣∣∣
.
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Proof. To prove (a) we actually prove the more general equation∣∣∣∣∣
a22 a23 ··· a2,n−1
a32 a33 ··· a3,n−1

...
...

...
an−1,2 an−1,3 ··· an−1,n−1

∣∣∣∣∣
∣∣∣∣∣∣
a11 a12 a13 ··· a1,n
a21 a22 a23 ··· a2,n
a31 a32 a33 ··· a3,n

...
...

...
...

an,1 an,2 an,3 ··· an,n

∣∣∣∣∣∣(A.1)

=

∣∣∣∣∣
a11 a12 ··· a1,n−1
a21 a22 ··· a2,n−1

...
...

...
an−1,1 an−1,2 ··· an−1,n−1

∣∣∣∣∣
∣∣∣∣∣
a22 a23 ··· a2,n
a32 a33 ··· a3,n

...
...

...
an,2 an,3 ··· an,n

∣∣∣∣∣
−

∣∣∣∣∣
a12 a13 ··· a1,n
a22 a23 ··· a2,n

...
...

...
an−1,2 an−1,3 ··· an−1,n

∣∣∣∣∣
∣∣∣∣∣
a21 a22 ··· a2,n−1
a31 a32 ··· a3,n−1

...
...

...
an,1 an,2 ··· an,n−1

∣∣∣∣∣
for aij ∈ C and i, j ∈ {1, . . . , n}.

We first add some zero terms to the left-hand side (LHS) of (A.1).

LHS =

∣∣∣∣ a22 ··· a2,n−1

...
...

an−1,2 ··· an−1,n−1

∣∣∣∣ ∣∣∣∣ a11 ··· a1,n

...
...

an,1 ··· an,n

∣∣∣∣
+

n−1∑
k=2

∣∣∣∣∣∣
a21 ··· a2,k−1 a2,k+1 ··· a2,n−1
a31 ··· a3,k−1 a3,k+1 ··· a3,n−1

...
...

...
...

an−1,1 ··· an−1,k−1 an−1,k+1 ··· an−1,n−1

∣∣∣∣∣∣
∣∣∣∣∣∣
a12 ··· a1,k a1,k a1,k+1 ··· a2,n−1
a22 ··· a2,k a2,k a2,k+1 ··· a3,n−1

...
...

...
...

...
an,2 ··· an,k an,k an,k+1 ··· an−1,n−1

∣∣∣∣∣∣
We note that the last matrix in the sum is zero because coloumn k − 1 and k
are equal. Now we expand LHS after the k’th coloumn of the second matrix
in the k’th addent. We get

LHS =
n∑
j=1

(−1)1+jaj,1

∣∣∣∣ a22 ··· a2,n−1

...
...

an−1,2 ··· an−1,n−1

∣∣∣∣
∣∣∣∣∣∣∣∣∣

a12 ··· a1,n

...
...

aj−1,2 ··· aj−1,n
aj+1,2 ··· aj+1,n

...
...

an,2 ··· an,n

∣∣∣∣∣∣∣∣∣
+

n−1∑
k=2

n∑
j=1

(−1)k+jaj,k

∣∣∣∣∣
a21 ··· a2,k−1 a2,k+1 ··· a2,n−1

...
...

...
...

an−1,1 ··· an−1,k−1 an−1,k+1 ··· an−1,n−1

∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

a12 ··· a1,n

...
...

aj−1,2 ··· aj−1,n
aj+1,2 ··· aj+1,n

...
...

an,2 ··· an,n

∣∣∣∣∣∣∣∣∣
where j = 1 and j = n means leave out row 1 and n respectively. Switching
the indices we have

(A.2) LHS =
n∑
j=1

∣∣∣∣∣∣∣∣∣
a12 ··· a1,n

...
...

aj−1,2 ··· aj−1,n
aj+1,2 ··· aj+1,n

...
...

an,2 ··· an,n

∣∣∣∣∣∣∣∣∣
(

(−1)1+jaj,1

∣∣∣∣ a22 ··· a2,n−1

...
...

an−1,2 ··· an−1,n−1

∣∣∣∣
n−1∑
k=2

(−1)k+jaj,k

∣∣∣∣∣
a21 ··· a2,k−1 a2,k+1 ··· a2,n−1

...
...

...
...

an−1,1 ··· an−1,k−1 an−1,k+1 ··· an−1,n−1

∣∣∣∣∣
)
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But the parenthesis on the right-hand side is exactly expansion along the j’th
row of the following determinants

(A.3)



∣∣∣∣ a11 ··· a1,n−1

...
...

an−1,1 ··· an−1,n−1

∣∣∣∣ , j = 1

∣∣∣∣∣∣∣∣∣
a21 ··· a2,n−1

...
...

aj,1 ··· aj,n−1
aj,1 ··· aj,n−1

...
...

an,1 ··· an,n−1

∣∣∣∣∣∣∣∣∣ = 0, 2 ≤ j ≤ n− 1

−
∣∣∣∣ a21 ··· a2,n−1

...
...

an,1 ··· an,n−1

∣∣∣∣ , j = n.

Combining (A.2) and (A.3) we obtain the right-hand side of (A.1) and thus
also the proof of (a).

To prove (b) we prove the more general equation∣∣∣∣∣∣
a21 a22 ··· a2,n
a31 a32 ··· a3,n
a41 a42 ··· a4,n

...
...

...
an+1,1 an+1,2 ··· an+1,n

∣∣∣∣∣∣
∣∣∣∣∣

a12 a13 ··· a1,n
a22 a23 ··· a2,n

...
...

...
an−1,2 an−1,3 ··· an−1,n

∣∣∣∣∣(A.4)

=

∣∣∣∣∣∣
a11 a12 ··· a1,n
a21 a22 ··· a2,n

...
...

...
an−1,1 an−1,2 ··· an−1,n
an+1,1 an+1,2 ··· an+1,n

∣∣∣∣∣∣
∣∣∣∣∣
a22 a23 ··· a2,n
a32 a33 ··· a3,n

...
...

...
an,2 an,3 ··· an,n

∣∣∣∣∣
−

∣∣∣∣∣∣
a11 a12 ··· a1,n
a21 a22 ··· a2,n

...
...

...
an−1,1 an−1,2 ··· an−1,n
an,1 an,2 ··· an,n

∣∣∣∣∣∣
∣∣∣∣∣∣

a22 a23 ··· a2,n
a32 a33 ··· a3,n

...
...

...
an−1,2 an−1,3 ··· an−1,n
an+1,2 an+1,3 ··· an+1,n

∣∣∣∣∣∣
for aij ∈ C, i ∈ {1, . . . n + 1} and j ∈ {1, . . . , n}. We remark that Hankel-
matrices are symmetric and for these (A.4) reduces to (b). Observe that for
k ∈ {2, . . . , n} we have

0 = (−1)k

∣∣∣∣∣∣∣
a1,k a11 a12 ··· a1,n
a2,k a12 a22 ··· a2,n

...
...

...
...

an,k an,2 an,3 ··· an,n
an+1,k an+1,2 an+1,3 ··· an+1,n

∣∣∣∣∣∣∣
= (−1)k

n+1∑
j=1

aj,k(−1)j+1

∣∣∣∣∣∣∣∣∣
a11 a12 ··· a1,n

...
...

...
aj−1,1 aj−1,2 ··· aj−1,n
aj+1,1 aj+1,2 ··· aj+1,n

...
...

...
an+1,1 an+1,2 ··· an+1,n

∣∣∣∣∣∣∣∣∣ ,
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where the j = 1 and j = n+ 1 are interpreted as remove the 1st and (n+ 1)th

coloumn respectively. Thus also

0 =
n∑
k=2

∣∣∣∣∣∣
a22 ··· a2,k−1 a2,k+1 ··· a2,n
a32 ··· a3,k−1 a3,k+1 ··· a3,n

...
...

...
...

an−1,2 ··· an−1,k−1 an−1,k+1 ··· an−1,n

∣∣∣∣∣∣
·

(−1)k
n+1∑
j=1

aj,k(−1)j+1

∣∣∣∣∣∣∣∣∣
a11 a12 ··· a1,n

...
...

...
aj−1,1 aj−1,2 ··· aj−1,n
aj+1,1 aj+1,2 ··· aj+1,n

...
...

...
an+1,1 an+1,2 ··· an+1,n

∣∣∣∣∣∣∣∣∣


Switching the indices we have

(A.5) 0 =
n+1∑
j=1

∣∣∣∣∣∣∣∣∣
a11 a12 ··· a1,n

...
...

...
aj−1,1 aj−1,2 ··· aj−1,n
aj+1,1 aj+1,2 ··· aj+1,n

...
...

...
an+1,1 an+1,2 ··· an+1,n

∣∣∣∣∣∣∣∣∣
·

 n∑
k=2

(−1)k+j−1aj,k

∣∣∣∣∣∣
a22 ··· a2,k−1 a2,k+1 ··· a2,n
a32 ··· a3,k−1 a3,k+1 ··· a3,n

...
...

...
...

an−1,2 ··· an−1,k−1 an−1,k+1 ··· an−1,n

∣∣∣∣∣∣


The parenthesis of (A.5) is expansion along the jth row of the following ex-
pression except for j = n+ 1 where we expand along the nth row.

(A.6)



∣∣∣∣∣
a12 a13 ··· a1,n
a22 a23 ··· a2,n

...
...

...
an−1,2 an−1,3 ··· an−1,n

∣∣∣∣∣ , j = 1

0, j ∈ {2, . . . , n− 1}∣∣∣∣∣
a22 a23 ··· a2,n
a32 a33 ··· a3,n

...
...

...
an,2 an,3 ··· an,n

∣∣∣∣∣ , j = n

−

∣∣∣∣∣
a22 a23 ··· a2,n

...
...

...
an−1,2 an−1,3 ··· an−1,n
an+1,2 an+1,3 ··· an+1,n

∣∣∣∣∣ j = n+ 1.

Combining (A.5) and (A.6) we obtain (A.4) and this finishes the proof of
(b). �
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