MaPhySto

MF The Danish National Research Foundation:

® Network in Mathematical Physics and Stochastics

Research Report

no. 15 June 2004

Lars Aagaard
and Uffe Haagerup:

Moment Formulas for the
Quasi-Nilpotent DT-Operator

ISSN 1398-2699



MOMENT FORMULAS FOR
THE QUASI-NILPOTENT DT-OPERATOR

LARS AAGAARD AND UFFE HAAGERUPT

ABSTRACT. Let T be the quasi-nilpotent DT-operator. By use of Voicu-
lescu’s amalgamated R-transform we compute the momets of (T'—A1)*(T —
A1) where A € C, and the Brown-measure of T+ /€Y, where Y is a circular
element *-free from 7" for € > 0. Moreover we give a new proof of Sniady’s
formula for the moments 7(((T*)*T*)") for k,n € N.

1. INTRODUCTION

The quasi-nilpotent DT-operator T was introduced by Dykema and the sec-
ond author in [4]. It can be described as the limit in *-moments for n — oo,
of random matrices of the form

0 tig -+ tin
T — 0 :

: c 2fnfl,n

0 --- 0 0

where {R(t;;), S(tij) }1<icj<n 1s a set of n(n — 1) independent identically dis-
tributed Gaussian random variables with mean 0 and variance % More pre-
cisely, T is an element in a finite von Neumann algebra, M, with a faithful
normal tracial state, 7, such that for all sq,s9,..., s, € {1, %},

(L) A(TT™ - T%) = Tim Eftr, (T (T®)* .. (1)),

where tr,, is the normalized trace on M,,(C). Moreover the pair

(T, W*(T)) is uniquely determined up to *-isomorphism by (1.1). The quasi-
nilpotent DT-operator can be realized as an element in the free group fac-
tor, L(Fy), in the following way (cf. [4, Sect. 4]): Let (Do, X) be a pair
of free selfadjoint elements in a tracial W*-probability space (M, ), such
that dup,(t) = 1pa(t)dt and X is semi-circular distributed, i.e. dux(t) =
%\/4 — t21[_272} (t)dt Then W*(Do, X) ~ W*(Do) * W*(X) ~ L(Fg) Put

2N

In = ZPN,J‘XC]N,J'

Jj=1

fThe second named author is affiliated with MaPhySto—A network in Mathematical
Physics and Stochastics, which is funded by a grant from the Danish National Research
Foundation.
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2 LARS AAGAARD AND UFFE HAAGERUP
for N =1,2,..., where

PN = 1[@ L} (DO)a an,; = 1[L 1] (DO)a
2N 79N N
for j = 1,2,...,2Y. Then (Ty)%_, converges in norm to an operator T' €
W*(Dy, X), and the x-moments of T" are given by (1.1), i.e. T is a realization of
the quasi-nilpotent DT-operator. In the notation of [4, Sect. 4], T'= UT (X, \),
where A : L0, 1] — W*(Dy) is the *-isomorphism given by A(f) = f(Dy) for
f € L>=(]0,1]). In the following we put D = W*(Dy) ~ L*>([0,1]) and let Eqp
denote the trace-preserving conditional expectation of W*(Dy, X) onto D.

In this paper we apply Voiculescu’s R-transform with amalgamation to com-
pute various x-moments of 1" and of operators closely related to T'. First we
compute in section 3 moments and the scalar valued R-transform of (7' —
AL)*(T — A1) for A € C. The specialized case of A\ = 0 was treated in [4] by
more complicated methods. In section 4 we consider the operator

T 4 /€Y,

where Y is a circular operator x-free from 7" and ¢ > 0. By random ma-
trix considerations it is easily seen, that if 77 and 75 are two quasi-nilpotent
DT-operators, which are x-free with respect to amalgamation over the same
diagonal, D, then T + /€Y has the same #-distribution as S = \/aT} + VbT5,
when a =1+ € and b = € (cf. [1]). We use this fact to prove, that the Brown
measure of T + /€Y is equal to the uniform distribution on the closed disc
B(0,log(1+ %)*%) in the complex plane. Moreover we show, that the spectrum
of T + /€Y is equal to this disc, and that T + /€Y is not a DT-operator for
any € > 0.
In [4] it was conjectured, that

nnk

(1.2) T(((TH*TF)") = CTES]

for n,k € N. This formula was proved by Sniady in [9]. Sniady’s proof of
(1.2) is based on Speicher’s combinatorial approach to free probability with
amalgamation from [11]. The key step in the proof of (1.2) was to establish a
recursion formula for the D-valued moments,

(1.3) Ep (T %))

for each fixed k € N. Sniady’s recursion formula for the D-valued moments
(1.3), was later used by Dykema and the second author to prove, that

W*(T) = W*(Dy, X) ~ L(Fs)

and that T admits a one parameter family of non-trivial hyperinvariant sub-
spaces (cf. [5]). In section 5 and section 6 of this paper we give a new proof
of Sniady’s recursion formula for the D-valued moments (1.3), which at the
same time gives a new proof of (1.2). The new proof is based on Voiculescu’s
R-transform with respect to amalgamation over My, (D), the algebra of 2k x 2k
matrices over D.
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2. PRELIMINARIES

In this section we give a few preliminaries on amalgamated probability the-
ory. Let A be a unital Banach algebra, and let B be a Banach-sub-algebra
containing the unit of A. Then a map, Fg : A — B, is a conditional expecta-
tion if
(a) Eg is linear,

(b) Egp preserves the unit i.e. Eg(1) =1
(c) and Eg has the B, B bi-module property i.e. Eg(bjaby) = biabs for all
bi,by € B and a € A.

If B, A and Ep are as above we say that (B C A, Eg) is a B-probability
space. If ¢ : A — C is a state on A which respects Fg, i.e. 7 =70 Eg, we
say that (B C A, Eg) is compatible to the (non-amalgamated) free probability

space (A, ¢).
If (B C A, Eg) is a B-probability space and a € A is a fixed variable, we
define the amalgamated Cauchy transform of a by

Ga(b) = Ex((b—a)™).

for b € B and b — a € B;,,. The Cauchy transform is 1-1 in
{b € Biny| |67 < €} for € sufficiently small and Voiculescu’s amalgamated
R-transform [13] is now defined for a € A by

(2.1) Ra(b) = GEV () — b7 L,

a

for b being an invertible element of B suitably close to zero. It turns out that
this definition coincides on invertible element with Speicher’s definition of the
amalgamated R-transform (cf. [11, Th. 4.1.2] and [2]);

(2.2) Ro(b) = rip(a @pba @p - - - @ ba).
n=1
We will need the following useful lemma for solving equations involving the

amalgamated R-transform and Cauchy-transform.

Lemma 2.1. Let (B C A, Eg) be a B-probability space, and let a € A. Then
there exists § > 0 such that if b € B is invertible, ||b]| <6, |u| > 3 and

RE(b) + b = pla
then b= G2(ula).

Proof. Let § = m and define g,(b) = G2(b~1). By [2, Prop. 2.3] we know
that g, maps B(0, M) bijectively onto a neighboorhood of zero containing
B(0, 1j7) and furthermore that

g(<171> <B(O> 11ia||)inv> C B(Oa 11ﬁaH)iHV'
By definition we know that

RE(D) = G2V (0) + 07" = (g0 (0))

a

-1 n b_l
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so if Ry(b) + b1 = pl, then

pla=g" b)) = b b = (g0 0)

and thus
(2.3) g5 (b) = 114,
If || > % then especially |—L1L| < m SO il‘/{ is in the bijective domain of g,, so

applying g, on both sides of (2.3) we get exactly
Gy (1la) = gal;1a) = b

since also ||b|| < m O

If @ € A is a random variable in the B-probability space (B C A, Eg),
then following Speicher we define a to be B-Gaussian [11, Def 4.2.3| if only
B-cumulants of length 2 survive. From (2.2) it follows that in this case the
R-transform has a particularly simple form, namely,

(2.4) Ra(b) = K2 (a ®3 ba) = Eg(aba).

In the following theorem (which is probably not a new one we just could not
find a proper reference) concerning cumulants we have adopted the notation
of Speicher from [11].

Lemma 2.2. Let N € N and let (B C A, Ez) be a B-probability space. Then
(Mn(B) C My(A), Er,(p)) is a My(B)-probability space with cumulants de-
termined by the following formula:
B (M1 ® a1) @ar(m) - Dnay(w) (M @ )
= (my---mp) k(a1 Op - Dp ay)
when my,...,m, € My(C) and a4, ...,a, € A.
We have of course made the identification My (A) = My(C) @ A.

Proof. Since Mn(C) C My(B) we observe that

/{%N(B)((ml ® a1) Dty (B) *** DMy (B) (Mo @ ay))

= ((my-m) @ 1) kMVP((1®ar) @y - Bury(m) (1 © an)).

To finish the proof we claim that

(2.5) Ay M1 @ ar1) @arym) - Dy (m) (1® an))
= 1®k2(a @3- Qp ay).

The case n = 1 is obvious since

Iy ® 6¥(a1) = 1y ® Bs(ar) = Enym(1@a) = 5, P (1@ a).



THE QUASI-NILPOTENT DT-OPERATOR 5

Now assume that the claim is true for 1,2, ..., n—1. Then (2.5) has an obvious
extension to noncrossing partions of length less than or equal to n — 1. Hence

1N®HS(CL1 ®‘B"'®Ban>

= Iy @ Es(ara) — 3 18k5(0 @p - Onay)
TeENC(n),m#1ly,

= Enye) (1 @y (m) a1+ ay)

_ Z fiWMN(B)((1®CL1)®MN(13) e @iy (m) (1© ay))
WGNC(TZ),T(#I,L

= kMN®B) (1 ® ay) QuMy(B) ** Omy(s) (1 ®ap)).

By induction this proves the lemma. U

Assume that M contains a pair (Dy, X) of 7-free selfadjoint elements such
that dup,(t) = lpq(t)dt and X is a semicircular distributed. Put D =
W*(Dyp). Then A : L*°([0,1]) — D given by

A(f) = f(Do),
for f € L>=(]0,1]) is a *-isomorphism of L>°([0, 1]) onto D and

ToA(f / f)dt, e L>(0,1]).

We will identify D with L>(]0,1]) and thus consider elements of D as func-
tions. As explained in the introduction, we can realize the quasi-nilpotent
DT-operator as the operator 7' = UT (X, )\) in W*(Dg, X) ~ L(IF,).

Define for f € D ~ L>(]0, 1])

26) (L)) = /jf(t)dt and  (L(f))(x) == / F(t)dt

From the appendix of [5] it follows that (7', 7*) is a D-Gaussian pair and that
the covariances of (T,T*) are given by the following lemma

Lemma 2.3. |5, Appendix| Let f € D. Then
Ep(TfT") = L(f) and Ep(T*fT) = L*(f)
and Eo(TfT) = En(T*fT*) = 0.

3. MOMENTS AND R-TRANSFORM OF (T'— A1)*(T — A1)
Let T be the quasi-diagonal DT-operator and define
~ 0 T
(0.
Since (T, T*) is a D-Gaussian pair, it follows from lemma 2.2, that cumulants

of the form

K%(@)((Wh ® A1) @py(D) *** Da(D) (Mg @ a))
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vanishes when n # 2, my,ma,...,m, € My(C) and ay,as,...,a, € {T,T*}.

Hence by the linearity of T 2@),

,1242(@) (T QMo (D) T @My (D) * ** DMy (D) T) =0

when n # 2, i.e. T is a My(D)-Gaussian element in My(M) under the condi-
tional expectation Ey, ) : Ma(M) — My(D) given by

B - @11 a2 N ED(GH) Eﬁ(am)
Mx(D) - Q1G22 Ep(az) Eoplax))’
Since T is My(D)-Gaussian the R-transform of T is by (2.4) the linear mapping
My(D) — Ms(D) given by

RY2D) (2) = By (T2T)

T

(P L)

For A € C, we put T, — T\ 1 and define
- (0 T¥\ & (0 X
TA_(TA o)‘T ()\1 o)
A

Since (;)1 0 ) € Ms(D) we have by My(D)-freeness that the R-transform is

additive [11, Th. 4.1.22] L.
MDYy oMo [0 AL\ _ [(L*(222) —AL

One easily checks, that if 6 € C, § # 0, § # —# and p € C is one of the
two solutions to

(o

2 € 2
=—(14+ 1)\
W= —(1+ \Po),

then
211 = poe? @1
Z192 = —XO'
(3.1)
291 — — Ao
299 = poe %

is a solution to

RTMAZ(D)(Z) + 27t = ul,.
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Here x is the variable for the function in D = L*([0, 1]). In particular z;5 and
291 are constant operators. If ¢ — 0 then |u| — oo and ||z|| — 0, so by lemma
2.1 there exists p > 0 such that |o| < p implies

GIJL/T(D)(MM) _ (le 7512) ’

221 222

where (2;5)ijeq1,2) Is given by (3.1) and
§=+ %(1 +|A\[20).

On the other hand the Cauchy-transform of T in 1, is
211 212\ _ ~Ma(D)
(2’21 222) N GT} (p12)
-1
- pl 0\ (0 Ty
. pl -1\
= LMa(D) ~T\ pul

—E p(p*l = TT) ™ TX(p?l = TTY) ™
MO\ T (121 = T3 p(u?l = TNTH)™ ) )

Thus
2 = pEp((p?1 = T3Ty) ™)
212 = Ep(T5 (121 — ThTY) ™)
Z21 = ED(TA<N21 - T;T/\>_1)
299 = B ((pP1 = ThTY)™)
Combining (3.1) and (3.2) we have

Ep((p*1 = TXT2) ™)
En(TX(1*1 = ThTY) ™)
En(T\(p1 = TyT\) ™)
Y

(3.2)

1

= ge?l@7l)
~ e

3.3

(3.3) —

=oe 7"

ED((M 1=T17%)"

We can now compute the R-transform of 77T\ (wrt. C) from (3.3) and the
defining equality for p?.

o -1 1
tr ((e—(l + |APo)1 — T;T)\) ) = / oe?@ Ddz
o 0

= [ea(xfl)}(l] =1- er.

Thus
e’ o
G (S0 0o) =1
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le.
C —o\ __ i 2 o 1
RT;TA(l —e )= o (1+[A[%0) T
for 0 in a neighboorhood of zero. Substituting z = 1 — e we get 0 =
—log(1 — 2), so

1
RC* —_ —
0 ) = T T e = 2)
Hence we have proved the following extension of [4, Theorem 8.7(b)]:

Theorem 3.1. Let T be the quasinilpotent DT-operator. Let A € C and put
T\ =T — Al. Then

(1= [Alog(1 - 2)) —

IS

1 1 n A2
1—2)log(l—2) =z 1—=z
for z in some neighborhood of 0.

ZR%TA(Z’) = _<

We next determine the D-valued (resp. C-valued) moments of 75T for all
A € C. The special case A = 0 was treated in |9, Theorem 5| (resp. [4, Theorem
8.7(a)|) by different methods.

Theorem 3.2. Let A € C and let T, T\ be as in theorem 3.1

(a) Let Q,, be the sequence of polynomials on R uniquely determined by the
following recursion formula

Qo(z) =1,

3.4 v
(3:4) Qni1(z) = A2Qul(z + 1) —i—/o Qnly + 1)dy] forn>1.

Then
Ep((TXT\)")(x) = Qn(z), =z €][0,1], n € N.

N ~ T\ |y 2n—2k
(D) = 3 g () e mew

Proof. By (3.3), we have

(3.5) En((Z(1+ M2o)l = T5Ty) ") = ge@ D
for o € B(0,p) \ {0} for some p > 0. Put
_ o _ 1
Vo) = A+ o) 7€ C\ =t

Since ¥(0) = 0 and ¢’'(0) = 1, ¢ has an analytic invers ¢~" defined in a
neighborhood B(0, ) of 0, and we can choose § > 0, such that ¢~ (B(0,§)) C
B(0, p). By (3.5)

Ep((j1 =TT ™) = w0 ()e? O
for t € B(0,06) \ {0}. By power series expansion of the left hand side, we get
(36) Nt E(TET)") = Y (e 0D

n=0
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for t € B(0,¢"), where 0 < ¢ < § and where the LHS of (3.6) is absolutely
convergent in the Banach space L>°([0, 1]). Hence by Cauchy’s integral formu-
las

W= w< Dt )d
(3.7) En((IT)") = 5 / tn+2 .

as a Banach space integral in L>°([0,1]), where C' = 0B(0,r) with positive
orientation and 0 < r < ¢’. For each fixed z € R

£ D () OE-D

is an analytic function in B(0,¢") which is 0 for ¢ = 0. Hence the function has
a power series expansion of the form

(38) O 2 Qu(a)t™
for t € B(0,4"), where the numbers (Qn(x))n_o are given by

(z—1)
(3.9) / e T

In particular the @,,’s are continuous functions of x € R. Substituting o = 1(t)
in (3.8) we get

Z Qn n+1 o O_ea(x—l)

for o € B(0,p'), where p' € (0, p). Put

Ro(x) = 0 )
Ros(2) = MPQulz + 1) + / Qula)dy, n>0.
0
Then

[e.e]

> Ru(x)p(o)" = (1 + Z R (z n+1>

n=0

—vi) (14 |A|2(2Qn<x+1>) [ (Z@n@m)dy)

n+0 n+0

= (o) (1 + [A[Poe” + / ae"ydy)
0

— B(o) (Ao + 1o = gerleD = ZQn

for all o € B(0,p'). Since ¥(B(0,p')) is an open neighborhood of 0 in C, it
follows that R,(z) = Q,(z) for all n € N and all z € R.

Hence (Qn(x))22, is the sequence of polynomials given by the recursive
formula (3.4). Moreover by (3.7) and (3.9), Ep((TXT)\)") = Q. as functions in
L>°([0,1]). This proves (a).
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(b) By (3.7), we have

* n ! * n 1 1 - eiw<71>(t)
(T = [ BT = 5 [ =i
Note that C" = ¢(C) is a positively oriented simple path around 0. Hence by
the substitution ¢ = (o), we get

(D)) =5 |

27

¥'(0)
(o)t

1 1 1 d
1—e7)d
27T1/C/TL+177/J( )”+1dcr( ¢77)do

1 / L oy
“omi(n+ 1) Jo p(oys 7

1 1 no (1 2 _\n+1
L (L[ e,
n+1\27 J ontl
no 2 \n+1
1 R%(e(LHMJ) ﬁ)

n—+1 ontl

(1—e)do

where the second equation is obtained by partial integration and the last equal-
ity is obtained by the Residue theorem.
The above Residue is equal to the coefficient of ¢” in the Power series ex-

pansion of
oo = (50 (S (7 )

k=0 =1

Hence

“nkfn+1 e
T((TXT)" —n“Zp( )|)\|2( g

— 1 - nk n |)\|2n—2k;
n+ 14 (k+1)!1\k '

4. SPECTRUM AND BROWN-MEASURE OF T + /€Y’

Let T be the quasinilpotent DT-operator and let Y be a circular operator
x-free from 7. In this section we will show, that

dT+¢&j:§@,l%6 )

1+€1)

and that the Brown-measure ppy £y is equal to the uniform distribution on

B (0, ﬁ), i.e. it has constant density w.r.t. the Lebesque measure on
og(l+2
this disk.
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Theorem 4.1. For every ¢ > 0

_ 1
(4.1) o(T + eY) = B(o, \/W).

Proof. The result can be obtained by the method of Biane and Lehner [3,
Section 5]. Let a € C\ {0}. Since o(T") = {0} we can write

al = (T + €)Y =e(1 = Y(al =T)7')(al = T).

Hence

(4.2) a¢o(T+eY) iff (Y(al =T)7").

1
Vit

Let Y = UH be the polar decomposition of Y. Then Y (al — T)™' =
UH(al —T)~!, where U is #-free from H(al —T)~'. Hence Y(al —T)7! is
R-diagonal. Moreover, since 0 ¢ o(Y), Y(al —T)~! is not invertible, so by |7,
Prop. 4.6.(ii)]

(4.3) o(Y(al=T)"") = B(0,||Y(al =T)7"|,)-
By *-freeness of Y and (al —T)~! we have
(4.4) 1Y (al = T)7Ys = VI3 ]| (a2 — 1),
) = 7|
= ||(a1 —T) 1”2 - Z artt ]|,
n=0

Applying now [4, lemma 7.2] to D =1 and A = % and p = &g, we get
2
1
(o))
2 |al?

Y (al — T)_le = exp( ! > -1

Jaf?

Thus for a € C\ {0} we get by (4.2) and (4.3)

e}

TTL
2w

n=0

Hence by (4.4)

1
ago(T++eY) 7 ¢o(Y(al-T)")
€
— L ( ! )—1 < |a| > !
—= > exp(—73) — al > ——.
Ve [al log(1+ 1)
_ Ao L : . .
Hence o(T + /eY) U {0} = B<O7 m) Since o (T + /€Y') is closed it
~Blo ——__
follows that (T + /&Y) = B(O, ) O

In order to compute the Brown measure of T'+ /€Y, we first observe that
T + /€Y has the same *-distribution as

S = \/aT, + VT
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when T and T5 are two D-free quasidiagonal operators and a = 14+¢€ and b = ¢
[1]. We next compute the Brown measure of S for all values of a,b € (0, 00).

Lemma 4.2. Let jg be the Brown measure of an operator @ in a tracial
W*-probability space (M,tr). Let r > 0 and assume that pug(0B(0,7)) = 0.
Then

T a—0t

o) = o tim 3( [ (@i + Q)
0B(0,r)

where Q) = Q — Al for A € C.

Proof. Let A : M — [0,00) be the Fuglede-Kadison determinant on M, and
put L(A) = log A(Q,) and
La(N) = log A((Q3Qx + a1)'/?) = 5tr(log(Q5Qx + al))

for A € C.
Put \; = R\, A = S\ and let V2 = a,\2 + a,\2 denote the Laplace operator

on C. Then by [6, Section 2| V2L, >0 and for each a > 0, the measure

1

(45> Mo = Q—VQLQ()\)d)\ld)\Q
7

is a probability measure on C. Moreover

(4.6) hr% fo = [

in the weak* topology on Prob(C). Also from [6, Section 2| the gradient
(:2-, %) of L, is given by

oA 8)\
(47) S La(N) = —R(HQAQ3x + 1))
(4.8) a%La(A) — —3(r(QA(Q3Qx + a1) ™)
By (4.6)

lm [ ¢dp :/ oy
a=0 J¢ C

for all ¢ € Cy(C). Since 1p(,y is the limit of an increasing sequence ()52,
of Cy(C)-functions with 0 < ¢,, < 1 for all n € N it follows that

po(B(0,r)) = lim ¢nduQ

n—od

= lim (lin%/gbnd,ua) < lim (limiglf/ 13(07r)d/¢a>
n—oo \ a— n— a— C
= lim inf ta(B(0,7))

Writing 15, as the limit of a decreasing sequence (¢,)52; of Cp(C)-functions,
with 0 <, <1, one gets in the same way

o(B(0,1)) = limsup ua(B(0, 7))
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Hence if 1(0B(0,r)) = 0 we have
imsup ra (B0, 1)) < pa(B(0,7)) < gt o (B(0,1)),

a—0
and therefore
o (B(07)) = lim 1, (B(0,7)).

Using (4.5) together with Green’s theorem applied to the vector-field

oL, 0L,
Py Qa) = (=52, ==
(Pa;y Qa) = ( Dy’ O
we get
1
1o (B0, 7)) = / V2L, (\)dAdAs
27 B(0,r)
1 0Q, 0P,
= — — dAidA
27T B(O,T) ( 8A1 aAQ ) ! 2
1
= 5 Pad)\l + Qad)\2
27 JaB(o.)
1 OL oL
= — ——2d\ —2d)\
27T aB(D,T) 8A2 ! + a)\l 2

1 oL oL
—s (= o 220 ) (dx, +id)
N (27T /BB(O,T) <3>\1 18>\2) (@A 2))

By (4.7) and (4.8)

0L, 0L, _ . P
—io= = —tr(QA(Q3@x +al) ) = —tr((Q3Qx + al) ' Q)).
O\ LY
Hence
1 . —1 %
k(B0 =3 (5 [ ul(@30n+an Q)
™ JoaB(0,r)
which completes the proof of the lemma. 0J

Let S = v/aTi + VbTy with 0 < b < a. Since ¢S and S have the same
x-distribution for all ¢ € T, the Brown measure pug of S is rotation invariant
(i.e. invariant under the transformation z — cz, z € C when |c| = 1). Hence
by lemma 4.2 we can compute g, if we can determine

tr((SySy + 041)’15;)

for all A € C, where S, = S — A1, and for all « in some interval of the form
(0, ). This can be done by minor modifications of the methods used in section

3:
Put
s (0 5%
5= (2 %)
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Then there exists a 6 > 0 (depending on a,b and 7) such that when ||z]| <6
and |pu| > % the equality

(4.9) R (z) + 271 = il

implies that
(4.10) 2 =GP (1)

. PP = S50 8K - 8187
= (id ® Ep) (S)\(,qu _ S;S)\)fl ,U(M21 — S,\S;)*l .

~ 0 S*
Moreover, S = ( S 0

is a D-Gaussian set. Hence for z = (z;;)7 -, € My(D),

) is My (D)-Gaussian by lemma 2.2 since (71, 75, T2, T)

) <o [En(S*z8 0
Ry (D)(Z):EMQ(D)(SZS):( 0 (5" 2225) >

0 E@(SZHS*)

Using that (71, 77) and (Ty,T5) have the same D-distribution as (7,7™) and
that (77, TY) and (Ty, T5) are two D-free sets, we get

Ep(S2225) = (aL” + bL)(z22)
Ep(S21157) = (aL + bL")(211),

where L(f) : fxl f(y)dy and L*(f) : 2 — [ f(y)dy for f € D.

- 0 A\ .
Since Sy, =5 — ()\1 0 ) it follows that
RMQ(D)(Z) _ (CLL + bL*)(ZQQ) —Xl
S Al (&L* + bL) (211) '

Thus (4.10) becomes

: 0 pl) Al (aL* 4+ bL)(211)
1 222  TRX12
+det(z) (—221 2 )

In analogy with section 3, we look for solutions z;; € D = L*[0, 1] of the
form

(4.12) z11 212\ _ (cenexp(ox) C12 7
221 %22 Ca1 022exp(—aa:)
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€21 C22
a solution to (4.11) if the following 5 conditions are fulfilled:

where 0 € C and ¢ = (CH 612) € GL(2,C). It is easy to check that (4.12) is

det(c) = p—
ol oA
A= e b e —
oA _ou
AT -
The first of these conditions is consistent with the remaining 4 if and only if
(o)? N2 o

(ae® —b)(a—be=°) (a—0b)2 a—b
which is equivalent to

o (ae” —b)(a—be ?)(a—b+ o]
(4.13) pu = (a b7 .

Put
min a-b lo (a)
0 = — _— =) .
0 |A|2 , 108 b
Then for oy < o < 0, the right hand side of (4.13) is negative. Let in this case
p(o) denote the solution to (4.13) with positive imaginary part, i.e.
aeo/? - be—o/Q

(4.14) (o) = im\/a N

for 0yp < 0 < 0. Then with

. ou(o) oA

U aer —b N —
oA o)

AT T b 2T beo

the matrix z(o) = (Z“ 212) given by (4.12) is a solution to
22
RY (=(0) + 2(0) " = e
By (4.14) lim,_o- |u(0)| = 0o and lim, o~ |op(o)| = 0 and therefore
lim [[2(0) | = 0.
Hence for some oy € (09,0) we have |u(o)] > 5 and ||z(c)|| > & when

o € (01,0) where 6 > 0 is the number described in connection with (4.9).
Thus

(4.15) 2(0) = G (p(o)12)
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for o € (01,0). But since both ¢ +— z(0) and ¢ — u(o) are analytic functions
(of the real variable o) it follows that (4.15) holds for all ¢ € (09,0). Note
that o — —iu(o) is a continuous strictly positive function on (o9, 0), and

Ulirgl_(—iu(o)) = 400 lim (—i,u(a)) =0.

0'—>O'0

Hence for every fixed real number o« > 0 we can chose o € (09, 0), such that

—ip(o) = Va.
Thus by (4.10) and (4.15)

oA

E@(S;<—Oél — S)\S;)il) = 2(0')12 = _CL b

which is a constant function in L*°[0, 1]. Hence
A
t(S3(S1S5 +al) ™) = —=
a J—

from which

or?

a —

/ tr(S5(SaS5 + al)™H)dA = 2ri
dB(0,r)

when o¢ < 0 < 0, where as before 0g = — min { VR log( )}

Now a — 07 corresponds to o — oy . Hence

1
li - —S tr(Sy \ 1)~HdA
afﬁl+ < QW\S/aB((),r) M al) ) )

2
S Z—I—min{l r 10g( >}

a—>b a—>b

Obeserve that S;(S\S% + al)™ = (S:Sy + a1)71S5. Thus by lemma 4.2 we
have for all but countably many r > 0, that

sz , ,/a__b
ts(B(0,7)) = min {1 r log_( b) } = ag_ b - 1Zg_(%b) :
1, r > 1/@

Since the right hand side is a continuous function of r, the formula actually
holds for all » > 0. This together with the rotation invariance of ug shows,
that pg is equal to the uniform distribution on

E(o,,/%),

g()

i.e. has constant den51ty on this ball, and vanishes outside the ball.
Puttinga=1+e¢and b =¢ We get in particular
Theorem 4.3. The Brown measure of T + /€Y is equal to the uniform dis-

tribution on E(O, S —
log(14+€—1)
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The Brown mesure of 7'+ /€Y can be used to give an upper bound of the
microstate entropy of T'+ /€Y. By [8] we have for S € M

(416)  \(S) < /C /C log |21 — 2|djig(z1)dpig(z2) + Z +log(my/20ds)

where pg is the Brown measure of S on C and odg is the off-diagonality of S
defined by

(4.17) odg :=7(S5*) — / |27 dps(2).
C
Lemma 4.4. For R > 0 we have

I:= / / log |21 — 2| dz1dzy = m*(R*log R — }l)
B(O,R) J B(0,R)

Proof. Polar substitution in I gives

, [RR/1 e y
I:=A4rx — log |r — €“s|df | rdrsds.
o Jo \27m Jg

Let 0 < s <r. z+> log|r — zs| is the real value of the complex holomorphic
function z +— Log(r — zs), where Log is the principal branch of the complex
logarithm, so z +— log |r — zs| is a harmonic function in B(0, Z). By the mean
value property of harmonic functions

! 27T1 “s|do =1

5 | ol = esldf = log(r),

so symmetry in r and s reduces [ to

R (R
I:= 4#2/ / max{log(r), log(s)}rdrsds
o Jo

8 /0 ’ ( /0 ' log(r)sds) rdr

R
4#2/ 3 log(r)dr = m*R*(log(R) — 1).
0

4

Theorem 4.5.
(4.18) X(T+VeY) < —Lllog (log(1+€e ') — 1 +1logm

1 1
—1 1+26e — ————— .
+2 6 ( +ee log(1 + 61))

Proof. Let v be the uniform distribution on B(0, R). Since vg has constant
density (7R?*)™! on B(0, R), we have by lemma 4.4

1
/ / log |21 — 2z9|dvRr(21)dvr(z2) = log R — —.
cJc 4
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The Brown measure of S = T 4 /€Y is jug = vp with R = log(14+¢1)"2, and
1 R?

1
ods:§+e—/(c|z|2dyR:§—l—e—7.

Hence by (4.16)
X(T+VeY) <logR—1+1logm+ Llog(l + 2¢ — R?).
This proves (4.18). O
In [1] the first author proved that the microstate-free analog, 65(7"), of the

free entropy dimension is equal to 2. From Theorem 4.5 one gets only the
trivial estimate of the free entropy dimension dy(7"), namely

. x(T +V26Y)
. < A S ———
(4.19) 60(T) <2+ lim Togd

If T+ /eY was a DT-operator for all ¢ > 0 then by [§] equality would hold
n (4.18), and hence also in (4.19). In the rest of this section, we prove that
unfortunately 7'+ /€Y is not a DT-operator for any € > 0.

If R=D+ T isaDT(u,l) operator it follows from [4, lemma 7.2] that for

A < IR,
Z)\”R”
n=0

where M, (k,l) = fU(R) 2 dpg(2).
If thus pup is the uniform distribution on a disk with radius d then

MMD(ka l) =0

2
- |A1|2 (exp( S AT, (k1) — 1))
2

k=1

when k£ # [ and

1
M, (k, k) = — /Od)|z\2kdz

:2_7T/ P2y — 2 2 [ 22 d*
Td J, 2 (2%+2], k+1

for k € N. Thus

[e'e) 2 [e’e)
1 d2k
(4.20) Z)\”(D +1)|| =5 [exp(z ,)\,2(k+1)_> _ 11
n=0 2 Al P k+1
1 1 A
’)\Pexp (—log(l — d*| )| ))

|A1|2 (- ey & 1),

If instead D + ¢T is a DT (up, ¢) operator with up being the uniform distribu-
tion on a disc of radius d then

D+cT=c¢(D +T)
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where D’ now has the uniform distribution on B(0, ), so from (4.20) we obtain

2

i N'(D 4+ cT)"

n=0

(4.21)

2

[e's) 2 1 o2

D/+T 2:W|:(1_d2’)\’2)_d2_1i|

0

Lemma 4.6. Let a > b > 0 and let S = \/aT} + \/BTQ* where T, and Ty are
two D-free quasidiagonal DT-operators. Then

00 2
A
n=0

2

1 e g A< L
T M2 a — bela-bNE ||5|;2'

Proof. Let F,(z) = Ep((S*)"S™) for n € N and z € [0, 1]. For t < define

the D-valued function

(4.22) F(t,x) = io:Fn(:r)t

By Speicher’s cumulant formula we have by D-Gaussianity of S that

F,=Ep((S)"S") = Y rr((59)%*" @55%")
7TeNC(2n)
— I€2® (S* R E@((S*)n_lsn_l)S)
= (aL* +bL)(Ep((S*)"*S" 1)) = (aL* 4+ bL)(F,_1),

IISII2

so we get the following recursive algorithm for determining the F},’s.
Fo(l’) =1
Fo(x) = al*(Fo_1)(z) + bL(F,_1)(z), x€[0,1]

where L*(f) : @ — [ f(y)dy and L(f) : x — f; f(y)dy. Observe that

d * _
EL(f)(g;):—f(:v) and @L (M) = f(2),

and that
F,.(0) = aL*(F,-1)(0) + bL(F,,—1)(0) = b/1 Fo1(x)dx = br(F,—1)

for n > 1. Using (4.22) we have the following differential equation and initial
condition in x

%F(t r) = (a—btF(t), = €0,1]

F(t,0) = f(t),
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where the function f is given by

F(t) = F(t,0) =) F,(0)"

=1+btr(F(t,-))
We thus have the unique solution
(4.23) F(t,z) = f(t)elee,

where we can now use (4.23) and the initial condition to find the function f.

f(t) :1+bt/1 F(t,z)dx

1 (a=b)t _
=1+0bt { S0 e(a—bﬁx] =1+ bf(t)—(e : 1).

(a —b)t 0 a—>b
Hence
N a—>b
f( ) a — be(“_b)t
so that
—b (a—b)tx
F(t,z) = (a=be

Now observe that

n=0

. =7 (F(|\? 2))

1 a—b)| 2

1 ele=dA* _1q
_ 2 _
_/O PN, 2)dr = (1 i

Theorem 4.7. The operator T + /€Y is not a DT-operator.
Proof. By substituting a = 1+ ¢ and b = € in lemma 4.6 we have

21 e

4.24 =
(4.24) s AP 1+e— el

io: N(T + ey )"
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for all X in a neighborhood of 0. If T+ /€Y is a DT-operator, then by Theorem
4.3 and (4.21), there exists a ¢ > 0, such that when d = log(1 + %)_%

oo 2

1
> AT +eY)"
n=0

_ TN
(4.25) 2_c2yw<(1 E|N?) 1)

for all A in a neighborhood of 0. Consider the two analytic functions,

e’ —1
J(s) = 1+€e—ece’’

1 , e
g(s)z;(l—ds) az —1)

which are both defined in the complex disc U = B(0,log(1 + %)_%). By (4.24)
and (4.25) f(s) = g(s) for s in some real interval of the form (0, ) and hence
f(s) = g(s) for all s € U. Moreover f has a meromorphic extension to the
full complex plane with a simple pole at sq = log(1 + %) Hence ¢ also has a
meromorphic extension to the full complex plane with a simple pole at log(1+
1) = d~2. This implies ¢ = d. In this case

g(s) = (1= )" —1)

which is analytic in C \ {so}. However f has infinitely many poles, namely
1
s, = log (1+E> +p2m, peEeZ.

Since the meromorphic extensions of f and g must coincide, we have reached
a contradiction. Therefore T + /€Y is not a DT-operator. 0
5. SNIADY’S MOMENT FORMULAS. THE CASE k = 2.

Let k € N be fixed, and let (P )5, be the sequence of polynomials defined
recursively by

Pk,n<$) = 1,
(5.1) P®(x) = Pupi(z + 1), n=12,....
Pia(0) = P©0) = PED0) =0, n=1,2,...

where P,Elq)l denotes the I'th derivative of P ,. As in the previous sections, T
denotes the quasinilpotent DT operator. Sniady’s main results from [9] are:

Theorem 5.1. |9, Theorem 5 and Theorem 7|
(a) For all k,n € N:

(5.2) Ep ((TH*T*)") (z) = Py (), z€]0,1].

(b) For all k,n € N:

nnk

(5.3) T (((TH*TH)") = k1)1



22 LARS AAGAARD AND UFFE HAAGERUP

Actually Sniady considers Eqp((T*(T*)F)") instead of Eqp(((T*)*T*)"), but
it is easily seen, that Theorem 5.1 (a) is equivalent to [9, Theorem 5], by the
simple change of variable z +— 1 — x.

Sniady’s proof of Theorem 5.1 is a very technical combinatorial proof. In
this and the following section we will give an analytical proof of Theorem 5.1
based on Voiculescu’s R-transform with amalgamation.

As in [5, (2.11)] we put

p(z) = =Wy(=2),  z€C\[;,00),

where Wy is the principal branch of Lambert’s W-function. Then p is the
principal branch of the inverse function of z +— ze™. We shall need the
following result from |5, Prop. 4.2].

Lemma 5.2. [5, Prop. 4.2] Let (Py,)2, be a sequence of polynomials given
by (5.1). Put fors€C, |s|<iandj=1,... .k

(5.4) a;j(s) = p(sei%)7

a(s) . 1
o =am 0k

(5.5) Vi(s) = #
1
E, s=0.
Then
(56> Z(ks nkPkn ny] kaJ s)T
n=0

for all x € R and all s € B(0, E>'

The case k = 1 of theorem 5.1 is the special case A\ = 0 of theorem 3.2. To
illustrate our method of proof of theorem 5.1 for k > 2, we first consider the
case k = 2.

Define T' € My(A) by

00 0 T¢
. T 0 0 0
=107 0 o
0 0 T 0

Then ||T|| = ||T|| = v/e. (cf. [4, Corollary 8.11]) For y € C, |u| < % we let
z = (1), denote the Cauchy transform of T at ji = pl Ma(a) Wrt. amalgamation
over My(D) i.e.

z = FEp ((ﬂ — T)_l) .

Clearly
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By direct computation

0 0 (T*)2 0
72 0 0 0 TT™*
|7 o0 0 0 ’
0 T*T 0 0
0 (T*)2T 0 0
73 0 0 T(T"‘)2 0
o 0 0 0 T2T*
T*T? 0 0 0
and
(T*)2T2 0 0 0
7 0 T(T*)QT 0 0
o 0 0 T2(T*)2 0
0 0 0 T*T?T*

Hence using the fact that the expectation Ep of a monomial in 7" and T*
vanishes unless 7" and T™* occur the same number of times, we get from (5.7)
that z is of the form

zz 0 0 0
0 2992 0 294
0 0 233 0
0 249 0 244

(5.8) z=

where 211, 222, 224, 233, 242, 244 € D are given by

21 = p  Ep((1—p (T T?) 7,

290 = i ' Ep((1— p*T(T*)*T)71),

233 = p Ep((1— p*T(T*)*) ),
(

1 —4T*T2T*) )
2oy = ,LL?SECD ( 74<T*)2T2> T*),
2y = B (T*(1 — p*T*(T*)*) 7).

Zy = p ' Ep

(
(
(
(T

For the last 2 identities, we have used, that
A(l—nBA)™'=(1-nAB)'A
for A, B € A and n € C whenever both sides of this equality are welldefined.
By lemma 2.1, we know, that there exists a 6 > 0 such that when w €
My (D)inv and p € C satisfies |w|| < 0, [u] > 3 and

(5.9) Ry P (w) +w™h = plag

then w = Ey, () (2 — T)~') = 2. In particular
wyy = 2y = p (1= p~H(T*T?)7h),
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Hence, if we can find a suitable solution to (5.8) for all 1 € C in a neighborhood
of 0o, we can find Ep(((T%)*T*)") for n = 1,2,... by determining the power
series expansion of wy; as a function of p~?.

Since (T',T*) is a D-Gaussian pair by [5, Appendix] it follows from lemma
2.2 that

KM () @ a1) @aryp) -+ Dasy(py (M @ ay)) = 0
when n # 2, my,ma,...,m, € My(C) and ay,as,...,a, € {T,T*}. By defini-
tion
T = (621 + 632) QT+ (643 + 614) QT

so by linearity of k2™ it follows that

,ianl(?D)(’_f O My(D) *** Dury(D) ’f’) =0
when n # 2 i.e. T is My(D)-Gaussian.
Hence using (2.4) we get

92;44(93)(10) — ,{é\@(ﬂ)) (T ®na(D) wT) = Enty(m) (TU;T>

T*w42T 0 T*w44T* 0

—E 0 0 0 T’U}HT*
SN Twe T 0 TwTr 0
0 TrwsT 0 0

for w = (wij)i,jzl 77777 4 € M4(®)
Since Ep(TfT) = Ep(T*fT*) = 0, and Ep(T* fT) = L*(f), Ep(TfT*) =
L(f) for f € L*>([0,1]), we have:

L* (U)42> 0 0 0
M4 (D) . 0 0 0 L(’U)H)
0 L*(w33) 0 0

for w € M4(D). By (5.8) we only have to consider w of the form

W11 0 0 0
0 Wo2 0 Waq
0 0 W33 0
0 W42 0 W44

(5.10) w =

For w € My(D)iny of the form (5.10), (5.9) reduces to the three equations

(

1
L*(w42) 4+ — = ,ulD
w11

1
0 L(wyy) Waz Wy
(5.11) 4 — 1
L*(ws3) 0 Wyp  Wasq HMe(D)

1
L(WQ4) +— = ,LLLD
\ w33
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Definition 5.3. Let f € C([0,1]). We call (f(=™)L_, for the succesive an-
tiderivatives of f if

dix(f(")) = 0= for n =2,3,...,1
and
d, .
@(f( DENE

Lemma 5.4. Let f € C?([0,1]) and let =V and f2 be the succesive an-
tiderivatives of f for which

(i) fCV(1) =0, (1) =4’
Assume further, that

(it) f(0) = p~" and fO(0) =0.
(111) For all z € [0,1],

flx) #0

F0@) f()
f@)  fO@)] 7O

while
fO ) fOD(x)  f(x)
fCY@) f) W) =0
flx) D) fO(x)
Then w1, Wag, W33, Way, Way, Wz € C([0,1]) given by
(wn =f
Fe g
AR
Wa2 = Wag = —— IE
VA
1 F foofo
Wy = —
(5.12) < e J?
f(l)
Wqe2 = 7
for
f f(l) f(2)
W33 = M2 3
FARE |
f f(l)
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is a solution to (5.11). Moreover

‘f“l) /
1 (1)
519 el
and
( L(wy) = —fCY
‘f(—2) f(—l)
(-1)
L(w24)zu—%f 7 /
(5.14) ,
L (wa2) = pp — 7
: I
L*(ws3) = _M2‘f(‘1)—f
\ f f(l)

Proof. Assume w1, Wag, W33, Wyy, Way, Wyo is given by (5.12). Then (5.13) fol-
lows immediately. Note that for f € C([0,1]), the functions ¢ = L(f) and
h = L*(f) are characterized by

gV =—f and g(1)=0
AY = f  and h(0) =0.
Hence (5.14) is equivalent to (5.15) and (5.16) below.

( %f(_l) = w11
f(—2) f(—l)
a /1|y
dr (u_ 7 ) o
(5.15) Y. i
)
d ) f(l) B
£<_ D g )_w33
f f(l)

(5.16) Fo) =o,
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Now, (5.16) is trivial from (i) and (ii). Next we prove (5.15): Clearly

d ., d 1 f

af( ):f:wn and a<—?>:7:w4z
Moreover

’f(2) fE0
d /|fEY  f
d —
(5.17) d:c< f >

(-2) (2 f-1 )
! o -0l 7, B .
I? J?
and
(-1 (-1)
d, fo ‘f f f{l) 1 = ‘ffa) o £
@(f(—l) f )_ fED 2
f f(l) f f(1)
(1)
f ’ f{n §<2> ]
- FED 2 :_Ewgg'
‘ f f(l)

Hence (5.15) holds. It remains to be proved that wiy, wag, W33, Way, Way, Wyo is
a solution to (5.11). By (5.12) and (5.14), we have

L*<w42)+iz (M—l>+%zﬂ-

W11 f

Moreover by (5.12) and (5.13)

-1
Waoo Wa4 . 1 Wag  —Wa4
Wy W4aq WoolWyay — WogatWyo \ —W4a2 W22

[ A
— 2 f(l)
:u f(fl) f /‘L
f f(l)

which proves that the first and the second inequality in (5.11).
By (5.12) and (5.14),

' f f(1) f(—2) f(—l)

f(l) f(2) f(fl) f o

w33(u — L(w24)) = ‘f(_l) f 2 - f(—l) f 2
for for
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where
B B 3 9 f(—2) f(—l) f
P i B L A I I
fo gl Ty | T g PR A
Hence by (iii), ¢ = 0. Therefore wss(x) # 0 for all € [0,1] and wg;' =
p — L(way), proving the last equality in (5.11). O

Lemma 5.5. Let a;(s),v,(s) for j = 1,2 be as in lemma 5.2 for k = 2, i.e.
1(0) = 3(0) = 0, 11(0) = 15(0) = & and for 0 < |s| < e
a1(8> - p(S), a2(8> - p(_8)7
ai(s)
S)= ——F~—
1) = ) - )

Let p e C, |u] > /e, put s = 572 and

2
(5.18) f@) =2 (L), ek
7j=1
L (N~ ls)
(-1) _ = J 205 (s)x
(5.9 =g (D). e
L ()
(=2) - J 20 (s)x
(5.20) / <x>_4ﬂ(;aj(s)26 ) ccR
Then
(i) fV, f&2 are succesively antiderivatives of f,
(5.21) @ =0, ) =4
and
(5.22) fO)y=pt, M) =0
(ii) The following asymptotic formulas holds for |u| — oo:
@) =6+ 0™
V@) = (@ = Dt +0(u™)
flx)=pt +0(u™)
fO(2) = ap™® + 0"
fO(x) = ap™ + O(u™)

where the error estimates holds uniformly in x on a compact subset in R.
(111) There exists po > /e such that the restriction of f to [0,1] satisfies all
the conditions in lemma 5.4, when |u| > o.
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Proof. Clearly £V and f(=2) are succesively antiderivatives of f and

= %;%(S) ==
- %;axsm@ -

To prove (5.21), note first, that since p : C\ [1,00) — C is a branch of the
inverse function of z — ze™*, we have

1
p(w)e ™) = w, |Jw| < =
e

and therefore

eQaj (s) — Q' (S>

R g=172
Since s? =1 1,74 it follows that
(5.23) @ +1)=p'f(z), zeR
(5.24) fC@+1) =p'fV(x), zeR
(5.25) flx+1) =p*fP@), ek

In particular
FE) = p'f(0) =
FE) = ptfO(0) =

By the proof of |5, Prop. 4.2], a;(s) and p;(s) are continuous functions of
s € B(0, %) Hence, regarding f as a function of pu,

|u1|1inoo wf(x Z% Je2ai O — 1

where the limit holds uniformly in « on compact subsets of R. Hence by (5.25)

f@(z) = O(u™°) as |u| — oo uniformly in = on compact subsets of R. By
(5.22),

(5.26) fO@)y= [ fO)at
0
(5.27) fo) =+ [ Y@
0
which implies, that f)(z) = O(u~°) and
(5.28) flx)=pt+0(u®)

uniformly in  on compact subsets of R.
Using again (5.25), (5.26) and (5.27), we get

fOz) = p° +0(u™?)
fO(x) = ap™ +0(u™?).
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By (5.21)
ﬂ”@—fﬂmt

R S TR
@ =+ [0
Hence by (5.28),
SOV @) = (z =™+ O0(u™)
FON @) =y +0(u™)

where all estimates holds uniformly on compact subsets of R. This proves (ii).
By (i), £, f&2 coinside with the succesive antiderivatives of f considered
in lemma 5.4 and f(0) = p~ !, fM(0) = 0.

Moreover, by (ii),

fl@)=p"+0(u™)

‘f(”(x) f(x) ‘

fl@)  fO()

where the error terms holds uniformly in z € [0, 1]. Hence there exists ug > /e,
such that

=p+0(p")

(D(2)
f(z) # 0 and ’ff(x() ) f{l()(a)v) #0

for all = € [0,1]. Moreover by the matrix factorization

fO@) fCD() f(a)
(5:29) | fTV(x)  flx)  fY(x)
fl)y  fW@) fO()
(s) at(s)x
da1(s)? dao(s)? 0 %emz@z 1 202(s) daa(s)?

4ag(s

it follows, that the matrix on the left hand side has rank less than or equal to
2, i.e.
fOP @) fCV() f(x)
fo@) fl@)  fD(2)] =0
flx)  fO@) fO(2)
for x € [0,1]. Hence f satisfies all the conditions in lemma 5.4, when |u| >
Ho- 0

Proof of Theorem 5.1 in the case k = 2: By lemma 2.1 there exists a § > 0,
such that when w € My(D)sy and p € C satisfies ||Jw| < 6, |u| > 3 and

(5.30) 3%14,44(@) (w) +w™ ! = Pz, (m)

then w = Ep((i — T)~1). In particular
(5.31) wi = p Ep((1— ™ H(T7)*T%) 7).
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Let € C,|u| > /e, put s = 2p72 and

40

for x € [0,1] as in lemma 5.5. By lemma 5.5 (iii) there exists a py > /e, such
that when |u| > po, then f satisfies all the requirements af lemma 5.4. Hence
by lemma 5.4, the matrix w € My(D) given by (5.10) and (5.12) is a solution
o0 (5.30). Moreover by the asymptotic formulas in lemma 5.5 (ii),

@) fD(2)
fV@) f@)

PR BN}

/
1) i o
Hence by (5.12) and the asymptotic formulas for f(=V, f and f’, we have

wy = p o+ O(p0),

Wy = wag = p~ ' +O(u),

way = (1 —x)p™> +0(u™),

Wy = o2 4+ O(p™?),

wsz =+ O(u™?),

where all the error estimates holds uniformly in = € [0, 1]. Hence, there exists
p11 > max{po, 3}, such that when |u| > p then ||w|| < ¢, and hence

w = Epy)((i = T)7).
By (5.12), wy; = f. Hence by (5.31) and (5.18)

=1+ 0(p™?),

Eo((1— 5 {(T")PT?) ) (a) Z% rostee

where s = 2472, ie. for |s| < 2p77,

En((1— (28)(T")°T Z% e

and therefore

o0

(5.32) S (28) Ep((T)°T Z% .

§=0
Hence by lemma 5.2 and by the uniqueness of the power series expansions of
analytic functions, we have

Ep(((T")*T*)")(x) = Paa(2)
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for n € N and z € [0,1]. This proves theorem 5.1(a) in the case k = 2.
Theorem 5.1 (b) also follows from (5.32) by integrating the right hand side of
(5.32) from 0 to 1 with respect to = (cf. [5, remark 4.3]). O

6. SNIADY’S MOMENT FORMULAS. THE GENERAL CASE.

The above proof of Theorem 5.1 in the case £k = 2 can fairly easily be
generalized to all k > 2 (Recall that the case k = 1 is contained in theorem
3.2).

Let k > 2 and define T' € My, (A) by

k

T=> (T®ej1;+T" @ rpjrirts)

j=1
where the indices are computed modulo 2k, such that egyy12r = €12¢. For
peClul < \/Lé, we put i = ulg, and

2= 2(1) = Enymy (2 = T) 7).

Then only the diagonal entries 211, . .., 22, 21 and the off-diagonal entries 2 o,
239k—1, - - - » Z2k,2 can be non-zero. Moreover,

o = p Ep((1— p725(T) )7,

The operator T is Moy, (D)-Gaussian, and repeating the arguments for k = 2,
we get that for w € My,(D), the matrix

(6.1) u =R (w)

can have at most 2k non-zero entries, namely the entries
*
ujp = L (w2k,2)

Ugg2 = L (war—13)

(6.2) Uktok = L (Wet1 541)
U1 o1 = L(wg g12)

Uk k+2 = L<wk71,k+3)

ug ok = L(wy ).

By lemma 2.1 there exists a 6 > 0 (depending on k), such that if w €
Moy (D)iny, |w|| < 8,0 € C, |u| > § and
(6:3) RPN w) + w7t = plag, o),
then

w =2 = By () (72— T)_l).
In particular

wi = i Ep(1= (1) T ).
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Next we construct an explicit solution to (6.3). By the above remarks on
z, it is sufficient to consider those w € Mok (D)iny for which only the entries
211y« -y Zok 2k a0d 299k, Z3.9k—1, - - - , 222 can be non-zero. For such w, (6.3) can

by (6.1) and (6.2) be reduced to the k + 1 identities:

.

11
0 L(wjq1,254+1—5)
(6.4) <L*(w2k717]l]'+3) ’ 0 ’ > +(
1
L(w;@k_'_g) + — = Ml@.
\ Wk+1,k+1

Definition 6.1. For j € NU {0} and g € C¥*% we let A;(g) denote the

determinant

(6.5) Aj(g) =

In particular Ay(g) = g.

. 1
L*(wor2) + — = plo
w

g g
g

gt 7 g2i=1) g(20)

W2+4j,24) Waij2k—j
Wok—j,245 W2k—j,2k—j

) = ilagyo),

i=01,... k-2,

g0

g(2i-1)

Lemma 6.2. Let g € C¥2(R) and j € N. Then
(6.6) Aj(9®)Aj(9) = Aj(g™)* = 2j1(9?) A (9)

and
d

(6.7)  Aja(9®) - (85(9) = Ail9) -

The proof of lemma 6.2 relies on elementary matrix manipulations and is
contained in lemma A.1 of appendix A. More specifically (6.6) is a direct
consequence of (a) from lemma A.1, and (6.7) follows from (b) of lemma A.1

by using the elementary fact that

that is, differentiating (6.5) is the same as differentiating the last row of (6.5).
The next two lemmas are the generalizations of lemma 5.4 and lemma 5.5

to arbitrary k& > 2.

d

g
g

gD

gu+n o

(A;1(9®) = Aja(g™M) A (™).

g T g

g(23=1)
T g(2i=2) g(2i-1)

g2 g(2i+1)
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Lemma 6.3. Let f € C*([0,1]) and let (f"D)k_, be the antiderivatives of f
for which,

(i)
0, 1<j<k-—-1,
=k
(i1) Assume further that
fO) =gt and fCP0)=0for1<j<k-—1.
(i11) For all x € [0,1],
Aj(fCN) (@) #0, forj=0...k—1

and
Ak(fH) () =0

Then the set of 4k — 2 functions listed in (6.8), (6.9) and (6.10) below is a
solution to (6.4).

("w11 =f
gy = Wy = — L1
22 2k,2k L f2
(6.8) 1 fEVA(FD)
Wz 2k = P fQ
fo
\w2k,2 = ?
Forj=1,....k—2
(o LA (AL ()
j+2,+2 = Wak—j2k—j = 1 A;(f=9))2
1 AT A L (fCD)
(69) 4 Wj422k—j = ,u2j+2 Aj(f(*j))2
A (f(lfj))A.(f(lfj))
\wzkfmw K A (fED)2

Ao () Apa (FEY)
_ 2k+2 k=2 k-1
(6.10) Wiy pp1 = Ay (FO)2

Moreover for j =0,.... k—2

Witg i w; _ 1

J+2,5+2 J+2,2k=2| _

(6.11) - | T W22
Wok—j,j+2 W2ak—j2k—j M
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and
(L(wll) frd —f(_l)
L M)
(612) L(wj+2’2k7j) - _M2j+2 A](f(_j)) ) 0 S J S k—3
1 Apy(fO)
L = —
\ (Whit2) = p P2 N, o (fCR)
/ . 1
L*(way2) = p — 7
A (f(f%j)) .
* o= i ) -
(6.13) LM (wak—j2+5) = —p A ) 1<j<k-2
L Aa(f8)
* _ 2k—2 —k—2
\L (wk+1,k+1) = —H m
Proof. Let w1, waa, . .., Wik, W2 2k, W3 2k—1, - - . , War2 be given by (6.8), (6.9)

and (6.10). Then for 1 < j < k — 2 the left hand side of (6.11) is equal
to

LA ()AL (f0)A

VT
where A = A, y(F079) 0 (FC179) — A, (£ A, (FC10),

By applying (6.6) to g = f(=179) it follows that A = —A;(f=)2, which
proves (6.11) for 1 < j <k — 2. The case j = 0 of (6.11) follows immediately
from (6.8).

The proofs of (6.12) and 6.13) can be obtained exactly as in the case k = 2
provided the following two identities holds: For j =0,...,k — 2:

d (Aj+1(f(_2_j))> A (TT)A L ()
dz \ A;(fCD) ) Aj(fED)?

(6.14)

Forj=1,....k—1:

d (AP AL (A ()
L\ a0 )T AP

However (6.14) follows from (6.7) with g = f(279) after changing j in (6.7)
to j + 1. In the same way (6.15) follows from (6.7) with ¢ = f(=7) and j
unchanged. It remaims to be proved, that w1, ..., Wek, Wa o, ..., Wor 2 form a

solution to (6.4). The proof of the first 2 identities in (6.4) is exactly the same
as in the case k = 2. Let us check the next k& — 2 identities in (6.4) i.e.

(6.16) ( 0 L(wj+1,2k+1—j))

L*(wak—1-j,j+3) 0

(6.15)

-1

Wotj2+45  W24j2k—j

+ P ped = plyn (o)
W2k —j,245 W2k—j2k—j
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for j = 1,...,k —2. By (6.11) and the fact that woijor; = wop—jon—; (cf.
(6.8)) we have
-1
Watjoatj Warjok—j \ _ (#lo B
Wok—j2+j Wak—j2k—j v oplp)’

3=— Wo+j2k—j

L A(f)
Warjorg P A (fUD)

where

and

v Wak—j245 _ (22 A (f7) ‘
Watj2+j Aja (fC19)
Hence by (6.12) and (6.13)
B = —L(wj1.20—j41) and ¥ = =L (wak-1-jj+3)
for j =1,...,k—2. This proves (6.16). Observe next that by (6.10) and (6.12)
Ap-1(fE ) A (f9)
Ay (fR))2

W1 g1 (10— L(wg pt2)) =

g
1 -
+ Akfl(f(l_k)>2’

where
0 = D (fEN A (fTF) = A (FP)2
By (6.6) and the assumptions (iii) in lemma 6.3
0 = Do (fE)AL(fY) = 0.

Hence wyt1p41(p — L(wg 42)) = 1, which proves the last equality in (6.4).
This completes the proof of lemma 6.3. 0J

Lemma 6.4. Let k € N,k > 2 and let a;(s),v;(s) for j = 1,...,k and
0 <|s| <?ibeasinlemma5.2. Let p € C, |u| > /e, put s =1~ and

( k
1
fla) = —(Z%@emu(sm), -
A\
(6.17) = |
~j 1 T(s) .
() = — v\5) ko (s)z CR =1 . &
f@) puk? (Zl a,,(s)ae )’ x J=1...
\ v=
Then
(i) (fTD)Ey are succesive antiderivatives of f. Moreover

(6.18) {ﬂﬁVU—O, 1<j<k-1
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and

f0)=p
(6.19) {f@(o):o, l<i<ko1

(ii) The following asymptotic formulas holds for |u| — oo

([ ) =+ O
f (@) = %(m W0, 1<k
(6.20) fla) ==t + 0= :
R T N ES E
| W) = 0

where the error estimates holds uniformly in x on compact subsets of R.
(111) There exists a o > /e, such that the restriction of f to [0,1] satisfies
all the conditions in lemma 6.3, when |u| > po.

Proof. From the proof of [5, Prop. 4.2|, we know that «;(s) and 7;(s) are
analytic functions of s € B(0,1). Moreover by [4, Prop. 4.1]

ZPYV(S) =1

(6.21)

k
Z’yl,(s)au(s)j =1, j=1,...,k—1

\ v=1

(2m]
Moreover, since a;(s) = p(e' & ), where p satisfies
p(w)e ?™) = for |w| < 2

we have (ozy(s)e_o‘v(s))k = s and therefore

Sk

(w(s))*

for v = 1,...,k. Having (6.21) and (6.22) in mind, the proof of (i) and
(ii) in lemma 6.4 is now a routine generalization of the proof of lemma 5.5.
Concerning (iii) in lemma 6.4, we have

(6.22) ekov(s) =

(6.23) where o(j) =1 for j = 0,3 (mod 4)
and o(j) = —1 for j = 1,2 (mod 4)
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because the leading term in the determinant A;(f(=7)) comes from the antidi-
agonal, i.e.

0 ... 0 f

Aj(f(*j)) _ P 0 _'_O(Mf%fjfl) = o(j) fH —|—O(/f2k*j*1)
o .- .
f 0 ... 0

since the matrix in question has size j+1. Hence A;(f9)(x) # 0 for z € [0,1]
and 0 < j < k — 1, when |y is sufficiently large. Moreover A, (f(=%) = 0 for
x € [0, 1], because in analogy with (5.29), Ax(f®(z)) is the determinant of
the (k+1) x (k+ 1) matrix

F= (f(i+j7k))i,j=o ..... k

which has the factorization F' = ADA?!, where A is the (k+ 1) X k matrix with
entries

ag = (kay(s)), i=0,....k, I=1,...,k

and D is the k& x k diagonal matrix, with diagonal entries

rW(‘S) koy(s)
dy = ————¢e"™ l=1,...,k
1 (/{?OZZ(S))ke ) ) )
0

Proof of Theorem 5.1 in the general case. Let py be as in lemma 6.4, let p €
C,|u| > po and put s = zp72. Put as before

fla) = %(2%(8)6’“‘”(3)””)

for z € [O, 1], and define W11, W22y - -+ y Wi oy W2 2k, W3 2k—15 - - - » Wk 2 by (68),
(6.9) and (6.10), and put all other entries of w € Moy (D) equal to 0. Then by
lemma 6.4, (6.4) holds, and therefore

RTM%(D) (w) + wl = 1ty ().

Let 6 > 0 be chosen according to lemma 2.1. If we can find a p; > max{py, %},
such that
(6.24) i > = ol <6
then w = Epp,, (0) (it — 7)~1). In particular
(6.25) f=wn=p"Bp((1 - pH(T)TH ),
and the proof of theorem 5.1 for &£ > 2 can be completed exactly as in the case
k = 2. By (6.23)

AN(fT) =07, 0<j<k-1
(6.26) 1

— J+1 <5< b
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uniformly in = € [0, 1] for |u| — co. We claim that

A (fEIDYy = 0(u Y, 0<j<k-2
(=k)y — k
(6.27) Apa () = O(N_)l_ ) | '
A (fO) = O(u T, 0<j<k-2
AV 1( - k)) O(u~")

Recall by definition 6.1 that
Aj(g) = det (( (ot ))klfo ..... j) .

Hence for 0 < j < k—2, A;(f77Y) is the determinant of a (j+1) x (j+1) ma-
trix, where each entry is equal to one of the functions f(=7=1, f(=9) fG=1,
By (6.20) all these functions are of order O(u~!) as |u| — oco. Hence

Aj(f0) = 0@

proving the first estimate in (6.27). By the same argument, A,_;(f(=) is the
determinant of a k x k matrix for which the upper left entry is of the order
O(p*~1) and all the other entries are of order O(u~'). Hence Ay _(fF) =
O~ 1)k = O(u*). Let 0 < j <k —1. Then A;(f1=9) is by (6.20) a
determinant of a (j + 1) x (j + 1) matrix M = (mg,)k,—o,..; for which

Mg = O(u‘l) when k£ +1<0
mp; = O ") whenk+1>0
Hence for any permutation 7 of {0,1,...,k} the product

Moz (0)Mir(1) " " M (5)

—2k—1)

contains at least one factor of order O(u . Therefore

Aj(f(l_j)) = det(M) = Z (‘USign(ﬂ)moﬂ(O)mlw(l) s Mk (k)
TFESj+1
is of order O(p~2*"1(u1)7) = O(pu=2k=7=1). This proves the last two estimates
n (6.27). Clearly all estimates holds uniformly in z € [0, 1]. Combining (6.8),
(6.9), (6.10) and (6.27), we get
wy = O(,ufl), 1 < l < 2k

Wisook—; = O 7%, 0<j<k-2.

Wap—jjra = O(u %), 0<j <k —2
In particular all the entries of w are of size O(u™') as |u| — oo uniformly in

€ [0,1]. Hence there exists 1 > max{uo, %} such that (6.24) holds. Hence

by (6.25) we have for |s| < +417,

o0

> (ks)™ En(((T*)FT*)" 27 Jeks9r g e [0, 1].

k=0

Now Theorem 5.1 follows from lemma 5.2 and [5, remark 4.3] as in the case

k= 2. U
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APPENDIX A. DETERMINANT-IDENTITIES ON HANKEL-MATRICES

We need the following lemma on Hankel-determinants.

Lemma A.1. Let a_(,—1),a—(n—2), ..., 01,0, € C for somen € N. Then

(a)

A_(n-1) @ (n-2) G—(n-8) G—(n-a) * G0
@ (nog) A (nay © a0 @ (n—2) G (n—3) G—(n—4)
A || e e T ana
An—4 a_(n—4) L L L Qn—4 Gn—3
ao e an—4 An—3 L L L Ap—4 Gp—3 Gp—2
ag S An—4 Ap—3 Gp—2 Gp—1
G_(n—1) G—(n—2) T an G_(n—3) G_(n—4) S
— om0 T | ey
an—4 . ' . ' . ' An—2
a—1 B T ay T a2 an_1
2
a_(n_z) a_(n_3) . ' ap
_ | a=(n-3)
an—3
aop o an—3 An—2
(b)
_(n-2) G—(u-3) - @1 ||a_(n-2) aou-z) - a0
A ) Ae
an—1 - an—s
ai T an—1 an ao T an—3 an—2
G—(n—1) @—(n-2) T ao A (n—3) O—(n—4) a1
—= af(n72) .- ) - ' - ' ai(”*‘l)
an—3 . . . Apn—2
a—1 an—3 an—2 .
ay az an ay . ap—2 Ap—1
a—(n-1) 3—(n-2) 7 a G (n—-3) G—(n—4) A
_ | %(n-2) - - - - a_(n_4)
an—2 an—3
. ao An—3 Gn—2
ag - An—2 Gp—1 a2 as an
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Proof. To prove (a) we actually prove the more general equation

ail ai2 ai3z - Aln
(A 1) e azr as2 asz -+ a3n
an—1,2 An—1,3 *** Gn—1,n—1 Gn,1 Gn,2 Gn,3 = Gn,n

all a2 al1,n—1 a2 a3 - a2n

a21 a22 a2 n—1 asz2 az3z -+ a3n

an—1,1 Gn—1,2 *** An—1,n—1 an,2 An,3 *** An,n

a2 a3 ai,n a1 a2 v A2.p—1

a22 a23 a2.n a3z1 az2 -+ a3,n-—1

n—1,2 Gpn—1,3 *** An—1,n an,1 Gn,2 *** Gn.n—1

for a;; € Cand 4,5 € {1,...,n}.
We first add some zero terms to the left-hand side (LHS) of (A.1).

a2z azmn—1 ail -+ Gln
an—-1,2 *** Gn—-1,n—1 an,1 *** An.n
n—1 a1 az k—1 a2 k+1 a2 n—1 a2 - alg a1k a1k+1 0 A2,n-—1
asi ag,k—1 a3 k+1 az n—1 a2 - Gk A2k G2 k+1 0 A3,n—1
k=2 |an—11  @Gn-1k—1 Gn-1k+1 " Gn-1,n—1 | | @n2 = Gnk Gnk Qnkt1 "= Gn—1,n—1

We note that the last matrix in the sum is zero because coloumn k£ — 1 and k
are equal. Now we expand LHS after the k’th coloumn of the second matrix
in the £’'th addent. We get

a2 ain
n a2 a2,n—1 . .
_ 1+j aj—1,2 ©* Aj—1,n
LHS = E :(_1) aj,1 : Tj41,2 7 A4l
j=1 an—-1,2 *** Gn—1,n—1
a7;,2 an,n
a2 ai,n
n—1 n a1 az k—1 a2 k+1 a2,n—1 : :
k+j aj—1,2 * Aj—1,n
+ (_1) gk : : : @jy1,2 0 Gjtin
k=2 j=1 n—1,1 = Ap—1,k—1 An—1k+1 **° An—1,n—1
a7;,2 an,n
where 7 = 1 and 7 = n means leave out row 1 and n respectively. Switching
the indices we have
a2 aln
n : : a2 az,n—1
_ aj—1,2 *** Aj—1,n _1\1+7 .
(A.2) LHS= E arire g | (1) Mag | :
j:l an—-1,2 *** AGn—1n—1
ar;,Q An,n
n—1 a1 a2 k-1 az k+1 a2,n—1
k+j
(=) aj : : :
k=2 an—1,1 *** Gpn—1,k—1 Gn—1,k+1 *** An—1,n—1
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But the parenthesis on the right-hand side is exactly expansion along the j’th
row of the following determinants

p a1 al,n—1
: ol a=1
an—1,1 *** An—1,n—1
a1 v a2,p—1
(A3) ! Jercenal_g 2<ji<n—1
: aj1 a1 | T Y SJ=n
an,1 **° Gnn—1
a1 - G2,p—1
- : : y ] = n.
\ an,1 *** Gnn-—1

Combining (A.2) and (A.3) we obtain the right-hand side of (A.1) and thus
also the proof of (a).
To prove (b) we prove the more general equation

a1

a2 - a2n

a1z a13 al,n
a31 a32 a3,n a2 a3 az,n
(A 4) aq1 aq2 a4,n
. . : An—1,2 An— Qg
An+1,1 Gnt1,2 ** Gntln n—1,2 Gn—-1,3 n—1,n
a a a
as az asy || 022 02z v a2m
’ az2 a3z "t a3;n
an—1,1 Gn—-1,2 *** An—-1,n . .
, , a a - a
An+1,1 An+1,2 = Gntln m,2 4n,3 wn
ail a12 al,n a22 az,n
a21 a2 az2.n as2 asz,n
an—1,1 An—-1,2 *** Gn—1,n an—-1,2 Gn—-1,3 *** An—1n
an,1 an, 2 an,n an+1,2 An+1,3 *** An4l,n

for a;; € C, i € {1,...n+ 1} and j € {1,...,n}. We remark that Hankel-
matrices are symmetric and for these (A.4) reduces to (b). Observe that for

k€ {2,...,n} we have

ai,k ail ai2 al,n
az i ai2 a22 az,n
0= (-1)*
an k an, 2 an, 3 an,n
An41,k An+1,2 Gn+1,3 *** Gn41,n
a2 ail,n
n+l : : :
_ (_1)k s (_1)j+1 Gj-1,1 aj-1,2 * Gj—1,n
- Jsk @j+1,1 Q41,2 Qjtln
Jj=1

an+1,1 An+41,2

an+1,n
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where the j = 1 and j = n + 1 are interpreted as remove the 15 and (n + 1)
coloumn respectively. Thus also

azy - Aggp_1 G k41 v G2n
n
Z azy -+ a3 gp-1 A3 k41 . G3n
k=2 |an_12 - @Gpn_1k—1 Gn-1,k+1 = On-1n
air a2 - Aln
n+1

. k} ' , JHL |- aj 12 g
(_1) ajyk(_l) @j+1,1 @541,2 © Gjtln
j=1 . . .

an+4+1,1 Gn+1,2 *° Antl,n

Switching the indices we have

ail ai2 - ain
eU :
(A 5) O — aj—1,1 @j-1,2 " Aj—1,n
: Aj+1,1 Gj41,2  Qjtln
j=1 . . .
An+1,1 Gn+1,2 **° An+ln
n azz v A2 k—1 ag k+1 - A2n
) a2 - G3,k—1 A3 k4+1  G3.n
(_1>k+371a,
Jsk
k=2 An-12 ** Ap_1k-1 An_1k+1 " AGn—1,n

The parenthesis of (A.5) is expansion along the j' row of the following ex-
pression except for j = n + 1 where we expand along the n'* row.

( ai2 aiz -+ Gln
a2 a3 v a2n )
;g =1
an;1,2 an;l,S anil,n
0, jed{2,....n—1}
(A.6) Gos aag — Goin
) J=n
an2 An3 - Ann
a2 a3 0 a2n
— : : j=n+1
n—1,2 Gn—-1,3 *** AGn—-1,n
\ an+4+1,2 An+1,3 " Ant1,n
Combining (A.5) and (A.6) we obtain (A.4) and this finishes the proof of
(b). 0
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