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An efficient Markov chain Monte Carlo method for
distributions with intractable normalising constants

J. Møller1, A.N. Pettitt2, K. K. Berthelsen1 and R.W. Reeves2

Abstract

We present new methodology for drawing samples from a posterior distribu-
tion when (i) the likelihood function or (ii) a part of the prior distribution is
only specified up to a normalising constant. In the case (i), the novelty lies in
the introduction of an auxiliary variable in a Metropolis-Hastings algorithm and
the choice of proposal distribution so that the algorithm does not depend upon
the unknown normalising constant. In the case (ii), similar ideas apply and the
situation is even simpler as no auxiliary variable is required. Our method is
“on-line” as compared with alternative approaches to the problem which require
“off-line” computations. Since it is needed to simulate from the “unknown dis-
tribution”, e.g. the likelihood function in case (i), perfect simulation such as the
Propp-Wilson algorithm becomes useful. We illustrate the method in case (i) by
producing posterior samples when the likelihood is given by an Ising model and
by a Strauss point process.

Keywords: Autologistic model; Auxiliary variable method; Hierarchical mod-
el; Ising model; Markov chain Monte Carlo; Metropolis-Hastings algorithm; Nor-
malising constant; Partition function; Perfect simulation; Strauss point process.

1 Introduction

Unnormalised probability distributions with intractable normalising constants arise in
a number of statistical problems, including the definition of Gibbs distributions such as
Markov random fields (Besag, 1974; Cressie, 1993) and Markov point processes (Ripley
and Kelly, 1977; Møller and Waagepetersen, 2003b). A simple example is given by
the Ising model on a rectangular lattice. For large lattices and most neighbourhood
structures the computation of the normalising constant is not feasible, although a
number of special results are available (e.g. Bartolucci and Besag, 2002; Pettitt et al.,
2003; Reeves and Pettitt, 2003).

We consider the problem of wanting to draw from a posterior density

π(θ|y) ∝ π(θ)π(y|θ) (1)

when the likelihood
π(y|θ) = qθ(y)/Zθ (2)

is given by an unnormalised density qθ(y) but its normalising constant (or partition
function) Zθ is not known. By “not known”, we mean that Zθ is not available ana-
lytically and/or that exact computation is not feasible. A related problem occurs for
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Bayesian hierarchical models, or more generally directed graphical models, with an
unobserved layer: Let θ = (θ1, θ2) and π(θ) = π(θ1)π(θ2|θ1), where

π(θ2|θ1) = qθ1
(θ2)/Zθ1

(3)

depends on an unknown normalising constant Zθ1
, while now π(y|θ) is known. For

specificity, unless otherwise stated, we consider the setting of (1) with Zθ in (2) un-
known, but the ideas presented later in this paper also apply when Zθ1

in (3) is un-
known. In Section 2.2 we take up the issue of using our methodology in a hierarchical
model.

It is not straightforward to generate samples from (1) by Markov chain Monte Carlo
(MCMC) algorithms. In a Metropolis-Hastings algorithm, if θ is the current state of
the chain and a proposal θ′ with density p(θ′|θ) is generated, θ′ is accepted as the new
state with probability α(θ′|θ) = min{1, H(θ′|θ)}, and otherwise we retain θ, where

H(θ′|θ) =
π(θ′|y)p(θ|θ′)

π(θ|y)p(θ′|θ)

is the Hastings ratio (e.g. Tierney, 1994). By (2),

H(θ′|θ) =
π(θ′)qθ′(y)p(θ|θ′)

π(θ)qθ(y)p(θ′|θ)

/

Zθ′

Zθ

(4)

is unknown, since it depends on the ratio of unknown normalising constants Zθ′/Zθ.
Ratios of unknown normalising constants also appear in other types of algorithms,
including the sampling/importance resampling (SIR) algorithm (Rubin, 1987).

Because of their intractability, earlier work attempted to avoid algorithms involving
unknown normalising constants. Three different examples of this are:

1. Besag et al. (1991), who considered an ad hoc procedure for a Bayesian hierar-
chical model for location of archaeological sites, which at one layer included an
Ising prior (this may be considered as an example of (3) above with a uniform
hyperprior on θ1, though Besag et al. did not specify any such hyperprior). They
adjusted the posterior density in an iterative MCMC scheme where the param-
eter of the Ising model (here θ1) was estimated by pseudo likelihood (Besag,
1975).

2. Heikkinen and Högmander (1994) approximated the likelihood term (2) in (1)
by a pseudo likelihood function of easily derivable full conditional distributions.
The approximation involves improperly normalised distributions, and Heikkinen
& Högmander admit that it is unclear what the distribution is that they are
actually simulating.

3. Instead of estimating the entire posterior distribution, Heikkinen and Penttinen
(1999) focused on finding the maximum a posteriori estimate for the interaction
function in a Bayesian model where the likelihood function is given by a pairwise
interaction point processes and its normalising constant is unknown (for a more
detailed Bayesian analysis, see Berthelsen and Møller, 2003).
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More recent papers dealing with a ratio of unknown normalising constants in a Me-
tropolis-Hastings algorithm, use a Monte Carlo technique to estimate it:

4. Green and Richardson (2002), Sebastiani and Sørbye (2002), Dryden et al.
(2003), and Berthelsen and Møller (2003) use this ‘off-line’ approach. Specifically,
they use path sampling or, as it is known in statistical physics, thermodynamic
integration. This is based on the path sampling identity

log
Zθ′′

Zθ′
=

∫ 1

0

v(γ(t))T d

dt
γ(t) dt (5)

where γ is a path in the parameter space, with θ′ = γ(0) and θ′′ = γ(1), and

v(θ) = Ey|θ

{

d

dθ
log qθ(y)

}

(6)

(for details, see Gelman and Meng, 1998). Here v(θ) is found by generating
values of y from π(y|θ), which is possible using a regular Metropolis-Hastings
algorithm, for example, since the normalising constant Zθ is fixed and cancels in
the Hastings ratio for proposals.

The approach introduced in this paper avoids approximations such as those in
points 1 to 4 above. Instead, we introduce an auxiliary variable x into a Metropolis-
Hastings algorithm for (θ, x) so that ratios of normalising constants no longer appear
but the posterior distribution for θ is retained. Generally, auxiliary variables have been
introduced into MCMC schemes in order to improve mixing of the chains, and ease
simulation of variables (Swendsen and Wang, 1987; Edwards and Sokal, 1988; Besag
and Green, 1993; Higdon, 1998). Another motivation for auxiliary variables is the
improvement of particle filters which are generally sensitive to outliers in the particle
sample; see Pitt and Shephard (1999). Our auxiliary variable method is inspired by a
certain kinship to path sampling, when the expectation in (6) is replaced by a single
sample and the path in (5) is considered to be an infinitesimal one, thus collapsing the
differentiation and integration. Furthermore, access to algorithms for making perfect
(or exact) simulations (Propp and Wilson, 1996) from (2) or (3) is another motivation
as explained later.

Section 2 presents the method in a general setting. Section 3 applies the method
to the autologistic model, and compares MCMC posteriors for θ to the analytically
obtained posterior modes for lattices where the normalising constant is tractable using
recursion methods (Reeves and Pettitt, 2003). We also show MCMC posteriors for
larger lattices where the normalising constant is intractable. Section 4 illustrates the
method applied to a Strauss point process. Section 5 concludes with some further
discussion.

2 General methods

In this section we develop methods for eliminating unknown normalising constants
in the Hastings ratio. Section 2.1 consider the basic case (1) where the normalising
constant Zθ in the likelihood (2) is unknown. Section 2.2 considers the case of a
hierarchical model with a hidden layer which is specified by a density (3) with an
unknown normalising constant.
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2.1 Auxiliary variable method

In case of (1) when Zθ in (2) is unknown, we introduce an auxiliary variable x defined
on the same space as the state space of y. Assume that x has conditional density
f(x|θ, y), so that the joint density of (θ, x, y) is given by

π(θ, x, y) = f(x|θ, y)π(y|θ)π(θ).

The posterior density with π(y|θ) given by (2),

π(θ, x|y) ∝ f(x|θ, y)π(θ)qθ(y)/Zθ (7)

still involves the unknown Zθ.
A Metropolis-Hastings algorithm for drawing from π(θ, x|y) has a Hasting ratio

given by

H(θ′, x′|θ, x) =
π(θ′, x′|y)p(θ, x|θ′, x′)

π(θ, x|y)p(θ′, x′|θ, x)
=

f(x′|θ′, y)π(θ′)qθ′(y)p(θ, x|θ′, x′)

f(x|θ, y)π(θ)qθ(y)p(θ′, x′|θ, x)

/

Zθ′

Zθ

(8)

where p(θ′, x′|θ, x) is the proposal density for (θ′, x′). The proposal density can be
factorized as

p(θ′, x′|θ, x) = p(x′|θ′, θ, x)p(θ′|θ, x) (9)

and the choice of proposal distribution is arbitrary from the point of view of the
equilibrium distribution of the chain of θ-values. We take the proposal density for the
auxiliary variable x′ to be the same as the likelihood, but depending on θ′, rather than
θ,

p(x′|θ′, θ, x) = p(x′|θ′) = qθ′(x
′)/Zθ′. (10)

Then

H(θ′, x′|θ, x) =
f(x′|θ′, y)π(θ′)qθ′(y)qθ(x)p(θ|θ′, x′)

f(x|θ, y)π(θ)qθ(y)qθ′(x′)p(θ′|θ, x)
. (11)

does not depend on Zθ′/Zθ, and the marginalisation over x of the equilibrium distri-
bution π(θ, x|y), gives the desired distribution π(θ|y). In contrast to (4) we now have
a much simpler problem of finding the ratio of the distributions of the proposed and
current auxiliary variable, f(x′|θ′, y)/f(x|θ, y), the other factors in (11) presenting no
difficulty in evaluation.

The reader may wonder why we have not proposed using a Metropolis within Gibbs
algorithm (also known as hybrid Metropolis-Hastings), i.e. a Metropolis-Hastings algo-
rithm which shifts between updates of θ and x. In such an algorithm, when updating
θ given x (and y), let p(θ′|θ, x) be the proposal density for θ′. By (7),

π(θ|x, y) ∝ f(x|θ, y)π(θ)qθ(y)/Zθ,

so the Hasting ratio is given by

H(θ′|θ, x) =
f(x′|θ′, y)π(θ′)qθ′(y)p(θ|θ′, x)

f(x|θ, y)π(θ)qθ(y)p(θ′|θ, x)

/

Zθ′

Zθ

.

Here it seems difficult to choose f(x|θ, y) and p(θ′|θ, x) so that the ratio of normalising
constants cancels. It is the choice (10) which makes the Metropolis-Hastings algorithm
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given by (8) practicable, but this choice is not available for the Metropolis within Gibbs
step, with x fixed.

Henceforth, for simplicity, we assume that

p(θ′|θ, x) = p(θ′|θ) (12)

does not depend on x. For simulation from the proposal density (9) we suppose
that it is straightforward to make simulations from p(θ′|θ) but not necessarily from
p(x′|θ′, θ, x); for p(x′|θ′, θ, x) given by (10) appropriate perfect simulation algorithms
are desirable to avoid convergence questions of straightforward MCMC algorithms.

A critical design issue for the algorithm is to choose an appropriate auxiliary density
f(x|θ, y) and proposal density p(θ′|θ) so that the algorithm has good mixing and
convergence properties. Assume for the moment that Zθ is known and the algorithm
based on (4) has good mixing properties. If we let f(x|θ, y) = qθ(x)/Zθ, then by
(12), (11) reduces to (4), and so the mixing and convergence properties of the two
Metropolis-Hastings algorithms using (4) and (11) are the same. Recommendations on
how to tune Metropolis-Hastings algorithms to obtain optimal acceptance probabilities
may exist in the case of (4) (see e.g. Gelman et al. (1996), Roberts et al. (1997), Roberts
and Rosenthal (1998) and Breyer and Roberts (2000)). This suggests that the auxiliary
distribution should approximate the distribution given by qθ,

f(x|θ, y) ≈ qθ(x)/Zθ. (13)

Sections 3 and 4 consider cases where

f(x|θ, y) = qθ̃(x)/Zθ̃ (14)

and θ̃ is fixed, for example θ̃ = θ̃(y) is an approximate maximum likelihood estimate or
maximum pseudo likelihood estimate for θ based on the data y. Then, since f(x|θ, y)
does not depend on θ, the normalising constant Zθ̃ in

f(x′|θ′, y)/f(x|θ, y) = qθ̃(x
′)/qθ̃(x)

conveniently cancels. The choice (14) may work well if θ is expected to be close to θ̃ or
if qθ(·)/Zθ does not strongly depend on θ. Another choice is considered in Section 4.2
where f(x|θ, y) depends on θ (but not on y) in a way so that (13) is expected to hold.

2.2 Hierarchical models

When the unnormalised distribution appears as an unobserved layer in a hierarchical
model, cf. (3), while π(y|θ) is known, we consider the following idea inspired by the
auxiliary variable technique. Assume that we update θ using the proposal density

p(θ′|θ) = qθ′
1
(θ′2)p(θ′1|θ1)/Zθ′

1
. (15)

A proposal is then generated by first generating θ′1 ∼ p(θ′1|θ1) and next θ′2 ∼ qθ′
1
(θ′2)/Zθ′

1
.

Using (15) the Hastings ratio is

H(θ′|θ) =
π(y|θ′)π(θ′1)p(θ1|θ

′
1)

π(y|θ)π(θ1)p(θ′1|θ1)
,
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where the unknown normalising constants and terms in qθ′
1
(·) and qθ′

1
(·) all cancel.

Instead of updating θ1 and θ2 simultaneously, an alternative which may improve
mixing is to use a Metropolis within Gibbs algorithm where we shift between updating
θ1 and θ2. Updates of θ1 then involve a ratio of unknown normalising constants, but
introducing an auxiliary variable θ3 corresponding to θ2 and with conditional density
f(θ3|θ1, θ2, y), the ratio can be eliminated. Specifically, in analogy with (10)–(12),

• for the update of (θ1, θ3) (when θ2 is fixed), generate a proposal θ′1 ∼ p(θ′1|θ1)
and θ′3 ∼ qθ′

1
(θ′3)/Zθ′

1
, and calculate the Hastings ratio

H(θ′1, θ
′
3|θ1, θ3) =

f(θ′3|θ
′
1, θ2, y)π(θ′1)qθ′

1
(θ2)π(y|θ′1, θ2)qθ1

(θ3)p(θ1|θ
′
1)

f(θ3|θ1, θ2, y)π(θ1)qθ1
(θ2)π(y|θ1, θ2)qθ′

1
(θ′3)p(θ′1|θ1

• the update of θ2 (when (θ1, θ3) is fixed) is straightforward, using e.g. a random
walk proposal for θ′2, and calculating the Hastings ratio (where the unknown
normalising constants cancel).

Here, in analogy with (13), we want

f(θ3|θ1, θ2, y) ≈ qθ1
(θ3)/Zθ1

which may be achieved by

f(θ3|θ1, θ2, y) = qθ̃1
(θ3)/Zθ̃1

,

where θ̃1 is fixed (compare with (14)), or by other suitable methods (see e.g. Section
4.2). For example, θ̃1 may be an approximate MLE, considering θ2 as missing data
and

π(y|θ1) = hθ1
(y)/Zθ1

=

[
∫

π(y|θ1, θ2)qθ1
(θ2) dθ2

]/

Zθ1

as the likelihood, and using MCMC methods for estimating ratios hθ′
1
(y)/hθ1

(y) and
Zθ′

1
/Zθ1

when finding the approximate MLE, see e.g. Geyer (1999) and Møller and
Waagepetersen (2003b).

In the case where both (2) and (3) are unknown we introduce an auxiliary variable x
with density f(x|θ, y) chosen as discussed in Section 2.1. Then, if (θ, x) is the current
state of our Metropolis-Hastings algorithm for drawing from π(θ, x|y), we may first
generate a proposal θ′ from the proposal density (15), then generate x′ ∼ qθ′(x

′)/Zθ′,
and finally calculate the Hastings ratio

H(θ′, x′|θ, x) =
f(x′|θ′, y)qθ′(y)qθ′

1
(θ′2)π(θ′1)qθ(x)qθ1

(θ2)p(θ1|θ
′
1)

f(x|θ, y)qθ(y)qθ1
(θ2)π(θ1)qθ′(x′)qθ′

1
(θ′2)p(θ′1|θ1)

Another possibility, instead of generating θ′ from (15) we may introduce yet another
auxiliary variable θ3 in line with the Metropolis within Gibbs algorithm above.
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3 Application to the autologistic model

The autologistic model (Besag, 1972; Cressie, 1993) is an example of a distribution for
which the normalising constant is difficult to compute for problems of reasonable size
(e.g. Pettitt et al., 2003). We apply the method of Section 2.1 to the autologistic model,
and show how posterior distributions of the autologistic parameters are obtained for
fairly large problems.

3.1 The autologistic model

An autologistic model for y = (y1, . . . , yk) where k > 0 is a given integer, has unnor-
malised density

qθ(y) = exp

( k
∑

i=1

θiyi +
∑

1≤i<j≤K

θi,jyiyj

)

, y ∈ {±1}k (16)

where the θi and θi,j are real parameters (usually, most θi,j are set to zero). A particular
important example is the Ising model considered in Section 3.2. For compatibility with
the Ising model we let y ∈ {±1}k; in the literature, it is also common to let y ∈ {0, 1}k

in (16); the two cases lead to equivalent classes of autologistic models.
We exploit that the full conditionals are logistic distributions: Let y−i = (y1, . . . , yi−1,

yi+1, . . . , yk) denote the collection of all yj with j 6= i. Then

(yi + 1)/2 | y−i ∼ Bernoulli
(

(yi + 1)/2; logit(2(θi +
∑

j:j 6=i

θi,jyj))
)

(17)

where θi,j = θj,i, logit(a) = ea/(1 + ea), and Bernoulli(z; p) = pz(1 − p)1−z for a ∈ R,
p ∈ (0, 1), and z ∈ {0, 1}.

Various perfect simulation procedures exist for the autologistic model. One method
is the Propp-Wilson algorithm (Propp and Wilson, 1996) or its extensions (Häggström
and Nelander, 1998; Møller, 1999), which are all based on coupling from the past
(CFTP). The most tractable cases are if either all θi,j ≥ 0 (the Gibbs sampler based
on the full conditionals (17) is then monotone) or all θi,j ≤ 0 (Gibbs sampling is
then anti-monotone). Another method is Fill’s algorithm, which applies both in the
monotone case (Fill, 1998) and in the anti-monotone case (Møller and Schladitz, 1999).

Inference methods for the autologistic model are well established. For convenience
we use in Section 3.2 the maximum pseudo likelihood estimate (MPLE), which max-
imises the pseudo likelihood function given by

PL(θ; y) =

k
∏

i=1

Bernoulli
(

(yi + 1)/2; logit(2(θi +
∑

j:j 6=i

θi,jyj))
)

(18)

(Besag, 1975). The MPLE is easily found using standard software packages, since by
(17) and (18), the MPLE is formally equivalent to the maximum likelihood estimate
(MLE) in a logistic regression model (Possolo, 1986; Strauss and Ikeda, 1990). The
MLE of the autologistic model is a more efficient estimate (Geyer, 1991; Friel and Pet-
titt, 2003), and it can be approximated by MCMC computation of the log normalising
constant ratio (e.g. Geyer and Thompson, 1992; Gelman and Meng, 1998; Gu and Zhu,
2001).
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3.2 Results for the auxiliary variable method

3.2.1 Model assumptions and other details

This section specifies the likelihood, prior, and auxiliary variable density for our ex-
periments. Further details for the auxiliary variable algorithm are given in Appendix
A.

The autologistic model, in its simplest form, is an Ising model, which models in-
teractions on a binary m × n lattice. Its unnormalised density is given by

qθ(y) = exp(θ0V0 + θ1V1)

with real parameters θ0 and θ1 and sufficient statistics

V0 =

m
∑

i=1

n
∑

j=1

yi,j and V1 =

m−1
∑

i=1

n
∑

j=1

yi,jyi+1,j +

m
∑

i=1

n−1
∑

j=1

yi,jyi,j+1.

where i and j now index the rows and columns of the lattice and yi,j ∈ {−1, 1} denotes
a response at location (i, j). Here θ1 can be regarded as an association parameter; as
in most statistical applications, we exclude negative values of θ1 in Sections 3.2.2 and
3.2.3. For θ1 = 0, the y(i,j) are i.i.d., and for θ1 large, the values of the y(i,j) tend
to associate together, so that ‘clumps’ of ‘1’ and ‘-1’ are expected to appear. When
θ0 = 0 and the model is extended to the infinite lattice Z

2, phase transition happens
at the so-called critical value of θ1 ≈ 0.44. This marks the introduction of long range
dependence into the model, and realisations drawn from the Ising model with θ1 in
the vicinity of, or greater than this critical value, tend to ‘crystallise’, that is most
lattice locations will be either ‘1’ or ‘-1’: When θ0 = 0, there is an equal chance of
crystallising toward ‘1’ or ‘-1’, while if e.g. θ0 > 0, the probability of crystallising
around ‘1’ is greater than the probability of crystallising at ‘-1’.

We use the MPLE for θ̃ in (14) and also use it as the initial state for θ in the
Metropolis-Hastings algorithm of Section 2. Furthermore, if θ = (θ0, θ1) is the cur-
rent state of the algorithm, we draw proposals θ′0 and θ′1 from independent normal
distributions with means θ0 and θ1, so p(θ|θ′)/p(θ′|θ) = 1. The standard deviations
of these proposal distributions can be adjusted to give the best mixing of the chain.
Also we assume a uniform prior on θ ∈ Θ = [min θ0, max θ0] × [0, max θ1], where
min θ0 < 0, max θ0 > 0, and max θ1 are large but finite numbers (an improper uni-
form prior on θ ∈ (−∞,∞) × [0,∞) leads to an improper posterior in the extreme
cases where the y(i,j) are equal or form a chess board pattern). In practice, the ex-
act values of min θ0 < 0, max θ0 > 0, and max θ1 have very little influence on the
chain, as long as they are large enough so that proposals very rarely fall outside of
them. Ranges for θ0 of ±1 and for θ1 of [0, 1) are quite adequate for the examples we
consider. Then π(θ′)/π(θ) = 1[θ′ ∈ Θ] (the indicator function that θ′ ∈ Θ), and the
Metropolis-Hastings ratio (11) reduces to

H(θ′, x′|θ, x) = 1[θ′ ∈ Θ]
qθ̃(x

′)qθ′(y)qθ(x)

qθ̃(x)qθ(y)qθ′(x′)
. (19)

8



3.2.2 Analytic and empirical results for a small lattice

Table 1 summarises some results for a 10× 30 lattice with data simulated (by perfect
simulation) from Ising models at five different values of θ. For this size lattice, the
posterior modes can be computed exactly using a forward recursion algorithm for the
normalising constant (Reeves and Pettitt, 2003). We can also analytically estimate
the posterior standard deviation using Laplace’s method (e.g. Gelman et al., 1995,
p. 306), which entails fitting a quadratic to the posterior in the region of the mode,
from which the Hessian is estimated. In Table 1, we compare the analytically obtained
posterior mode and estimated posterior standard deviation to the posterior mean and
posterior standard deviation given by the MCMC algorithm after 100,000 iterations.
The respective posterior mode and mean are rather close, the standard deviations are
of the same magnitude, and each posterior mode or mean departs from the true values
of θ0 or θ1 with at most one or two times the posterior standard deviation, results
consistent with adequate convergence. The MCMC standard errors were computed
using the “CODA” package (Best et al., 1995).

True Analytic Posterior θ0 MCMC Posterior θ0

θ0 θ1 Mode Est. STD Mean STE STD
0.0 0.1 -0.085 0.054 -0.084 16×10−5 0.055
0.0 0.2 0.020 0.034 0.021 6.1×10−5 0.036
0.0 0.3 0.015 0.023 0.023 6.9×10−5 0.027
0.1 0.1 0.085 0.050 0.084 11×10−5 0.047
0.1 0.2 0.074 0.039 0.079 8.9×10−5 0.038

True Analytic Posterior θ1 MCMC Posterior θ1

θ0 θ1 Mode Est. STD Mean STE STD
0.0 0.1 0.057 0.042 0.059 5.0×10−5 0.034
0.0 0.2 0.223 0.038 0.219 5.1×10−5 0.037
0.0 0.3 0.320 0.034 0.311 7.8×10−5 0.033
0.1 0.1 0.109 0.042 0.109 8.7×10−5 0.042
0.1 0.2 0.264 0.038 0.258 9.9×10−5 0.038

Table 1: Summary of analytic and MCMC estimates for the posteriors of θ0 and
θ1 for five different Ising models on a 10 × 30 lattice. Data was simulated using
CFTP at the true values of θ0 and θ1. The standard deviations for the analytically
estimated posterior modes, were estimated by Laplace’s method. The means and
standard deviations of the MCMC draws are calculated from 100,000 iterations of the
chain, with no burn in. The standard errors (STE) of the means were computed taking
into account the correlation within samples.

Figure 1 shows traces of parameters θ0 and θ1 for the MCMC posterior simulations.
Some stickiness is apparent in isolated areas of the traces, and this becomes increasingly
prevalent for higher parameter values of θ1. The reasons for this and possible ways to
overcome it are discussed further in Section 3.2.3.
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Figure 1: The first 20,000 MCMC draws of θ0 and θ1, when the data are simulated as
in Table 1 at nominal parameter values θ0 = 0.0 and θ1 = 0.1 (top) and θ0 = 0.0 and
θ1 = 0.3 (bottom). The analytically computed posterior mode appears as an unbroken
line, while the simulation average (over 100,000 iterations) is shown as a dashed line.

3.2.3 Empirical results for larger lattices

We have also increased the lattice size considerably, to sizes typically encountered in
statistical analyses. Applications that we have in mind are similar to recent analyses by
Green and Richardson (2002), Sebastiani and Sørbye (2002), and Dryden et al. (2003)
(although these analyses use the closely related Potts model); Sebastiani and Sørbye
and Dryden et al. consider images of 64 × 64 pixels, while Green and Richardson
consider the spatial arrangement of 94 local areas. While we now cannot compare
MCMC methods of computing posterior summaries with an analytic equivalent, we can
demonstrate that the chains appear to be mixing reasonably well by viewing histograms
of the posteriors, the parameter traces, and examining the mean acceptance rates and
lagged autocorrelations. This is illustrated in Table 2 and Figure 2.

For θ1 approaching the critical value 0.44 (when θ0 = 0), the perfect sampling
algorithm begins taking a much longer time, and mixing of the Metropolis-Hastings
chain becomes problematic. While tuning the variance of the proposals for parameters
θ0 and θ1 can go some way toward improving the mixing, such tuning becomes less
effectual as θ1 becomes greater than 0.4. For both these reasons, the auxiliary variable
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100 × 100 50 × 50 50 × 50 50 × 50
True θ0 0.1 0.2 0.2 0.0

θ1 0.2 0.1 0.1 0.3

MPLE θ̂0 0.115 0.225 0.217 -0.001

θ̂1 0.195 0.105 0.108 0.309
MCMC Prop σ 0.005 0.005 0.01 0.005

θ̄0 0.111 0.220 0.220 0.000
σθ̄0

7.7 × 10−6 6.4 × 10−5 2.6 × 10−5 7.9 × 10−6

σθ0
0.0083 0.023 0.023 0.007

θ̄1 0.199 0.108 0.107 0.312
σθ̄1

4.6 × 10−6 3.2 × 10−5 1.4 × 10−5 9.8 × 10−6

σθ1
0.0066 0.015 0.015 0.011

cθ0
0.192 0.502 0.208 0.089

cθ1
0.132 0.431 0.183 0.125

MAcP 0.278 0.387 0.329 0.347
Extr 0.085 0.020 0.057 0.041

Table 2: Summary of MCMC posteriors for θ0 and θ1 for different lattices where
posterior modes are unavailable analytically. Data were simulated from Ising models
at the true parameter values indicated, using CFTP. The maximum pseudo likelihood
estimates (MPLEs) of the parameters are shown, for interest. The MCMC calculations
are based on 100,000 iterations of the chain, with no burn in, and the following shown:
“Prop σ”, the proposal standard deviation for θ0 and θ1; the posterior means θ̄0 and
θ̄1 and their standard errors σθ̄0

and σθ̄1
; the posterior standard deviations σθ0

and σθ1
;

cθ0
and cθ1

, the corresponding lag 100 autocorrelations; “MAcP”, the mean acceptance
probability; and “Extr”, the proportion of acceptance ratios below exp(-10).
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method appears to be inapplicable for θ1 greater than approximately 0.4. If θ0 is
also particularly high, then this further reduces the allowable range of θ1. Since the
MPLEs are typically further from the true posterior modes as θ1 approaches the critical
value (Geyer, 1991), the density of the auxiliary variable may also less adequately
approximate the true likelihood, qθ(·)/Zθ, contributing to the poor mixing. A partial
corrective action is to run the chain twice, the second time using the posterior means
as parameter estimates to replace the MPLEs in the auxiliary variable distribution.
This improves the mixing, but the chain is still slow to compute due to the length of
time taken to draw a perfect sample. Alternatively, a better approximate MLE could
be used.

Fortunately, for the construction of statistical models to study spatial association,
the useful parameter range for θ1 is probably from 0 up to about 0.4; otherwise the
Ising model tends toward a predominance of one value over the other on the lattice.
If it is required to extend the useful range of θ1 above 0.4, it is possible to use perfect
simulation for the random cluster model with which the Ising model has an equiv-
alence via the Fortuin-Kastelyn-Swendsen-Wang representation (e.g. Swendsen and
Wang, 1987). CFTP for the random cluster model is known to work in the vicinity
of the critical value, and also for much larger lattices than considered in the present
paper (Propp and Wilson, 1996, 1998).

4 Application to the Strauss process

We now consider the auxiliary variable method in the setting of spatial point processes.
We restrict attention to a Strauss point process (Strauss, 1975; Kelly and Ripley, 1976).

4.1 The Strauss process

Let the Strauss process be defined on a bounded region S ⊂ R
2 by a density

π(y|θ) =
1

Zθ

βn(y)γsR(y) (20)

with respect to µ which denotes a homogeneous Poisson point process on S with
intensity one. Here y is a point configuration, i.e. a finite subset of S; θ = (β, γ, R),
with β > 0 (known as the chemical activity in statistical physics), 0 < γ ≤ 1 (the
interaction parameter), and R > 0 (the interaction range); n(y) is the cardinality of
y; and

sR(y) =
∑

{ξ,η}⊆y:ξ 6=η

1[‖η − ξ‖ ≤ R]

is the number of pairs of points in y within a distance R from each other. Figure 3
shows a realisation y of a Strauss point process, where sR(y) is given by the number
of pairs of overlapping discs. For γ = 1, we obtain a homogeneous Poisson process on
S with intensity β. For γ < 1, typical realisations look more regular than in the case
γ = 1. This is due to inhibition between the points, and the inhibition gets stronger
as γ decreases or R increases. The normalising constant is unknown when γ < 1 (e.g.
Møller and Waagepetersen, 2003b).
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Figure 2: Traces of the first 20,000 iterations (left) and posterior histograms (right)
for θ0 and θ1 based on 100,000 iterations. Data was simulated for an Ising model with
θ0 = 0.1, θ1 = 0.2, and lattice size 100 × 100.

A Strauss point process is an example of a so-called locally stable point process.
Such point processes can be simulated perfectly by an extension of the Propp-Wilson
CFTP algorithm, called dominated CFTP, see Kendall and Møller (2000). Maximum
likelihood and maximum pseudo likelihood estimation for spatial point processes and
particularly the Strauss process is well established (Besag, 1977; Jensen and Møller,
1991; Geyer and Møller, 1994; Geyer, 1999; Baddeley and Turner, 2000; Møller and
Waagepetersen, 2003a,b).

4.2 Specification of auxiliary point processes

In Section 4.3 we consider results for three different kinds of auxiliary variables with
densities f = f1, f2, f3 with respect to µ. In the sequel, for simplicity, we fix R, though
our method extends to the case of varying interaction radius, but at the expense of
further calculations.

The simplest choice is a homogeneous Poisson point process on S. We let its
intensity be given by the MLE n(y)/|S| based on the data y, where |S| is the area of
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Figure 3: Realisation of a Strauss point process on the unit square, with (β, γ, R) =
(100, 0.5, 0.05), and generated by dominated CFTP. Circles centred at points have radii
0.025.

S. Then the auxiliary point process has density

f1(x|θ, y) = e|S|−n(y)(n(y)/|S|)n(x) (21)

(e.g. Møller and Waagepetersen, 2003b). We refer to (21) as the fixed Poisson process.
The second choice takes the interaction into account. Its density is given by

f2(x|θ, y) ∝ β̂n(x)γ̂sR(x) (22)

where (β̂, γ̂) is the MLE based on y and approximated by MCMC methods (Geyer and
Møller, 1994; Møller and Waagepetersen, 2003b). We refer to (22) as the fixed Strauss
process.

The densities f1 and f2 do not depend on the parameters β and γ, and they are both
of the type (14). The third choice we consider takes both interaction and parameters
into account, but not the data y. Its density is more complicated to present, but it
is straightforward to make a simulation in a sequential way: Choose a subdivision Ci,
i = 1, . . . , m of S into, say, square cells Ci of equal size. The simulation is then done
in a single sweep, where the cells are visited once in some order. Each visit to a cell
involves updating the point configuration within the cell in a way that only depends
on the point configuration within the cells already visited.

Specifically, let I = {1, . . . , m} be the index set for the subdivision and for each
i ∈ I let Xi be a point process on Ci. Furthermore, we introduce a permutation
ρ : I 7→ I of I; we shall later let ρ be random but for the moment we condition
on ρ. Then, let Xρ(1) be a Poisson point process on Cρ(1) with intensity κ1 and for
i = 2, . . . , m, conditional on Xρ(1) = x1, . . . , Xρ(i−1) = xi−1, let Xρ(i) be a Poisson point
process on Cρ(i) with intensity κi, where κi may depend on x1, . . . , xi−1 (which is the
case below). Then X = ∪m

i=1Xi is a point process which is an example of a so-called
partially ordered Markov model (POMM).

POMMs were introduced by Cressie and Davidson (1998) and Davidson et al.
(1999) who applied POMMs in the analysis of grey scaled digital images. POMMs
have the attractive properties that their normalising constants are known (and equal
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one), and that they can model some degree of interaction. Cressie et al. (2000) consider
what they call directed Markov point processes (DMPP) as limits of POMMs. Such
POMMs and our POMM point process X are of the same type.

When specifying κi, i ∈ I we want to approximate a Strauss point process. To do
so we introduce the following concepts and notation. To each cell Ci, i ∈ I we associate
a reference point ξi ∈ Ci. Two cells Ci and Cj, i 6= j, are said to be neighbour cells if
‖ξi − ξj‖ ≤ RP , where RP > 0 is the POMM interaction range (to be specified below).
Further, for a given point configuration x ⊂ S, let ni(x) = n(x ∩ Cρ(i)) denote the
number of points in cell Cρ(i), and let si,RP ,ρ(x) =

∑

j∈I:j<i nj(x)1[‖ξj − ξi‖ ≤ RP ]
be the number of points in the cells Cj, j < i, which are neigbours to Ci (setting
s1,RP ,ρ(x) = 0). Note that we have suppressed the dependence on {Ci : i ∈ I} and

{ξi : i ∈ I} in the notation. Setting κi = βP γ
si,RP ,ρ(x)

P we have that X is a POMM
point process with density

fP (x|βP , γP , RP , ρ) = exp
(

− βP

∑

i∈I

|Ci|γ
si,RP ,ρ(x)

P

)

β
n(x)
P

∏

i∈I

γ
ni(x)si,RP ,ρ(x)

P (23)

with respect to µ.
Cressie et al. (2000) use a Strauss like DMPP which suffers from clear directional

effects (incidentally this does not show up in the examples they consider). Since our
POMM point process (when ρ is fixed) resembles the POMM point processes used in
Cressie et al. (2000), we will now consider ρ as an additional random variable and
assume the following in an attempt to reduce any order dependent bias: We assume
that ρ is independent of (θ, y) and is uniformly distributed over all permutations of I,
and in the auxiliary variable method we use a uniform proposal ρ′. Further, we assume
that x given (θ, y, ρ) has density f3 as specified below. Then the Hastings ratio (11)
in the auxiliary variable method is modified by replacing f(x′|θ′, y)/f(x|θ, y) with
f3(x

′|θ′, ρ′, y)/f3(x|θ, ρ, y) when (θ, x, ρ) is the current state of the chain and (θ′, x′, ρ′)
is the proposal; for details, see Appendix B.

It remains to specify f3 and (βP , γP , RP ) in terms of θ = (β, γ, R). Let (βP , γP , RP ) =
g(θ) ≡ (g1(θ), g2(θ), g3(θ)) where g : (0,∞)× (0, 1]× (0,∞) 7→ (0,∞)× (0, 1]× (0,∞).
Conditional on (θ, ρ, y), the POMM auxiliary point process has density

f3(x|θ, ρ, y) = fP (x|g(θ), ρ). (24)

When specifying g we note that for point configurations x (except for a null set with
respect to a homogeneous Poisson process),

∑

i∈I si,RP ,ρ(x) tends to sRP
(x) as m → ∞.

This motivates setting g3(θ) = R when the cell size is small compared to R. We would
like that

(g1(θ), g2(θ)) = E[argmax(β̃,γ̃)fP (Y |β̃, γ̃, R, ρ)] (25)

where Y is a Strauss process with parameter θ = (β, γ, R) and ρ is uniformly dis-
tributed and independent of Y . As this expectation is unknown to us, it is approx-
imated as explained in Appendix C. In Table 3, Section 4.3, we refer to (25) as the
“MLE”. For comparison, we also consider the identity mapping g(θ) = θ in Section 4.3,
where we in Table 3 refer to this case as the “identity”.
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Aux.proc. g Prop σβ Prop σγ MAcP Extr cβ cγ

Fixed Poisson 2 0.05 0.128 0.151 0.88 0.53
POMM (N=100) identity 2 0.05 0.171 0.127 0.86 0.54
POMM (N=200) identity 2 0.05 0.213 0.064 0.85 0.47
POMM (N=50) MLE 2 0.05 0.246 0.055 0.85 0.46
Fixed Strauss 2 0.05 0.393 0.031 0.79 0.46

POMM (N=100) MLE 4 0.1 0.298 0.030 0.52 0.21
POMM (N=200) MLE 4 0.1 0.366 0.014 0.41 0.14
POMM (N=100) MLE 2 0.05 0.321 0.013 0.79 0.38
POMM (N=200) MLE 2 0.05 0.406 0.002 0.75 0.33

Table 3: Empirical results: For each auxiliary process considered, one million updates
were generated. “Aux.Proc.” is the type of auxiliary process used; g is the type of
mapping used for each POMM point process (see the end of Section 4.2); “Prop σβ”
and “Prop σγ” are the proposal standard deviations for β and γ; “MAcP” is the mean
acceptance probability; “Extr” is the fraction of acceptance ratios below exp(−10); cβ

and cγ are the lag 100 autocorrelation for β and γ.

4.3 Results for the auxiliary variable method

In our simulation study, the data y is given by the perfect simulation in Figure 3,
where S = [0, 1]2, β = 100, γ = 0.5, R = 0.05, n(y) = 75, and sR(y) = 10. For
the MLE, we obtained β̂ = 108 and γ̂ = 0.4. A priori we assume that R = 0.05 is
known and β and γ are independent and uniformly distributed on (0, 150] and (0, 1],
respectively; perfect simulations for β > 150 can be slow (Berthelsen and Møller, 2002,
2003). For the POMM point process we divide S into m = N2 square cells of side
length 1/N . Below we consider the values N = 50, 100, 200, or in comparison with
R = 0.05, 1/N = 0.02, 0.01, 0.005. Further details on the auxiliary variable method
can be found in Appendix B.

The results are summarised in Table 3 for the different auxiliary processes, and
in the POMM case, for different choices of N , the function g in (24), and proposal
distributions. Experiments with the algorithm for the fixed Poisson and Strauss and
the POMM processes with smaller values of N showed that trace plots of n(x) and
sR(x) (not shown here) may exhibit seemingly satisfactory mixing properties for several
million updates and then get stuck — sometimes for more than 100,000 updates.
Therefore, as in Table 2, we consider the fraction of acceptance probabilities below
exp(−10) as an indicator for the mixing properties of the chain. Table 3 also shows
the mean acceptance probability and the lag 100 autocorrelation of β and γ.

The different cases of auxiliary processes in Table 3 are ordered by the values of
“Extr” (the fraction of extremely low acceptance probabilities). Seemingly the results
for the autocorrelations depend predominantly on the choice of proposal standard
deviations for β and γ. Using the POMM point process with N = 200 and g = MLE
appears to give the best mixing. Figure 4 shows the marginal posterior distribution
for β and γ when using the POMM process with N = 200, g = MLE, and proposal
standard deviations for β and γ equal to 2 and 0.05. Apart from Monte Carlo errors,
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Figure 4: Empirical posterior distribution of β (left plot) and γ (right plot) generated
using a POMM auxiliary process with N = 200 and g = MLE.

the posterior mode and the MLE are expected to agree: by Figure 4, the MLE γ̂ = 0.4
is not far from the marginal posterior mode whereas β̂ = 108 is around 10% higher.

In conclusion, to obtain a significant improvement by using a POMM auxiliary
process with g = MLE compared to using a fixed Strauss process, a cell side length
less than about R/10 is needed. Computer times show that using the POMM with
N = 100 are not much slower than using the fixed Strauss process. For N = 200 the
POMM takes twice as long as for N = 100.

5 Concluding remarks

The technique proposed in this paper adds significantly to the ability of statisticians
to analyse models that have previously been subject to one or another approximate
analysis. By using the auxiliary variable method presented here in conjunction with
perfect sampling, we remove the need for stochastic estimation of normalising con-
stant ratios, which require extensive MCMC runs to estimate before the analysis can
begin (e.g. Berthelsen and Møller, 2003). We expect therefore that our method will
be easier to setup for many problems as, apart from the perfect sampling, it involves
only a single Markov chain.

A major issue with this method is the choice of auxiliary variable distribution.
Experience shows that this has a major influence on mixing and, if poorly chosen,
the chain may not mix at all. Mixing is also affected by the variance of the proposal
distributions for the parameters, in the usual way. The only question here is whether
the auxiliary variable given data and parameters can be simulated perfectly. If not,
the requirement for generating a perfect sample can be relaxed somewhat, though
this would introduce an additional undesirable stochasticity into the algorithm, which
would place it in the same category as current methods. We have found that if ordinary
Gibbs sampling replaces perfect sampling in the example of the Ising model, adequate
convergence in each draw of the auxiliary variable is critical. The overall algorithm
run considerably more slowly as a result.

We have demonstrated that a workable auxiliary variable distribution has the at-
tribute of closely matching the unnormalised likelihood, while not requiring the com-
putation of a normalising constant. Perhaps the most important consequence of this
is that the proposal for the auxiliary variable is then very similar to its full conditional
density, which we expect to promote good mixing. The auxiliary variable distribution
must be a legitimate probability distribution, ruling out direct use of pseudo likeli-
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hoods. An auxiliary variable density based on the unnormalised likelihood evaluated
at pseudo likelihood or approximate maximum likelihood parameter estimates, proved
to be a suitable choice for both the autologistic model and Strauss point processes.
However, it is by no means the only possible auxiliary variable density, as we have
demonstrated in the case of Strauss point processes where we applied a partially or-
dered Markov model as the auxiliary variable density.

Future work should address the potential extensions of our method, particularly
the following:

• The construction of useful auxiliary variable distributions which take both the
parameter θ and the data y into account (for the examples of applications in this
paper, f(x|θ, y) depends on either θ or y but not both).

• The application of our method to hierarchical models where the unnormalised dis-
tribution appears as an unobserved layer (Section 2.2) should be demonstrated.
A simple example to consider would be an Ising prior for the archaeological sites
studied in Besag et al. (1991), imposing a hyperprior on the parameter of the
Ising model. In reference to the hierarchical models in Green and Richardson
(2002), Sebastiani and Sørbye (2002), and Dryden et al. (2003), there seems no
impediment to extending the technique to the Potts model, which through its
connection with the random cluster model, is amenable to perfect sampling.

• The extension of the methods in Sections 2.1 and 2.2 to the more general setting
of graphical models, e.g. when the joint density factorizes according to a directed
acyclic graph (e.g. Lauritzen, 1996).

• While these extensions seem theoretically feasible, they remain to be practically
demonstrated, particularly in regard to adequate mixing.

Appendix A

The auxiliary variable method applied to the Ising model in Section 3.2 can be sum-
marised as follows.

1. Estimate the MPLEs for parameters θ0 and θ1, from the data y. Use these as
initial values of the Markov chain, as well as retaining for the evaluation of the
Metropolis-Hastings ratio in step 4. As initial value of x use a perfect simulation
from the Ising model with the MPLE parameter estimates.

2. Draw proposals θ′0 and θ′1 from independent normal distributions with means θ0

and θ1.

3. Use perfect sampling to draw the proposal x′ from qθ′(·).

4. With probability min{1, H}, with H given by (19), set (θ, x) = (θ′, x′).

5. Repeat from step 2.

The standard deviations of the normal distributions in step 2 can be adjusted to give
the best mixing of the chain.
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Appendix B

We now give details for the auxiliary variable method considered in Sections 4.2 and 4.3.
Consider first the Metropolis-Hastings algorithm for (θ, x) updates using either

a fixed Poisson or a fixed Strauss auxiliary variable distribution, see (21) and (22).
Recall that θ = (β, γ, R) where R = 0.05 is fixed. As initial values we choose θ =
(n(y), 1, 0.05) and x is a realisation of a Poisson point process on S = [0, 1]2 with
intensity n(y). Then, if (θ, x) comprises the current state of the Metropolis-Hastings
algorithm with θ = (β, γ, R), the next state is generated as follows with f in step 3
replaced by either f1 (fixed Poisson case) or f2 (fixed Strauss case).

1. Draw proposals β ′ and γ′ from independent normal distributions with means β
and γ.

2. Generate a realisation x′ from a Strauss process specified by θ′ = (β ′, γ′, R) and
using dominated CFTP.

3. With probability

min
{

1, 1[0 < β ′ ≤ 150, 0 < γ′ ≤ 1]

(

β ′

β

)n(y) (

γ′

γ

)sR(y)
f(x′|y, θ′)

f(x|y, θ)

βn(x)γsR(x)

β ′n(x′)γ′sR(x′)

}

set θ = θ′ and x = x′, otherwise do nothing.

The standard deviations of the normal distributions in step 2 can be adjusted to give
the best mixing of the chain.

Consider next using a POMM auxiliary process. Then an extra auxiliary variable,
the random permutation ρ, and an additional step is required in the update above. If
the current state consists of (β, γ), ρ, and x, then steps 1 and 2 above are followed by

3. Generate a uniform random permutation ρ′.

4. With probability

min
{

1, 1[0 < β ′ ≤ 150, 0 < γ′ ≤ 1]×

(

β ′

β

)n(y) (

γ′

γ

)sR(y)
f3(x

′|y, θ′, ρ′)

f3(x|y, θ, ρ)

βn(x)γsR(x)

β ′n(x′)γ′sR(x′)

}

set (θ, ρ, x) = (θ′, ρ′, x′), otherwise do nothing.

Here f3 is given by (24).

Appendix C

When the mapping g in Sections 4.2 and 4.3 is not the identity, it is specified as follows.
Based on the range of the empirical posterior distributions in the fixed Strauss

case (not shown here) we define a grid G = {50, 52, . . . , 150} × {0.1, 0.2, . . . , 1.0} ×
{0.05}. For each grid point θ = (β, γ, R) ∈ G, using dominated CFTP, we generate
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Figure 5: Plot of difference between g(θ) and θ for θ ∈ G: g1(β, γ, R) − β (left) and
g2(β, γ, R) − γ (right).

10 independent realisations x(1), . . . , x(10) of a Strauss point process with parameter
θ together with the generation of 10 independent random permutations ρ(1), . . . , ρ(10).
For θ ∈ G, g(θ) is given by

(g1(θ), g2(θ)) =
1

10

10
∑

i=1

argmax(β̃,γ̃)fP (x(i)|β̃, γ̃, R, ρ(i)),

and g3(θ) = R. For (β, γ, 0.05) 6∈ G, we set g(β, γ, 0.05) = g(β̃, γ̃, 0.05) where
(β̃, γ̃, 0.05) ∈ G is the grid point closest to (β, γ, 0.05).

Figure 5 shows g1(β, γ, R) − β and g2(β, γ, R) − γ for a range of β and γ values
when N = 200. Results for N = 50 and N = 100 are almost identical to those for
N = 200. In cases of strong interaction, i.e. for combinations of low values of γ and
high values of β, the parameters βP = g1(β, γ, R) and γP = g2(β, γ, R) in the POMM
process are much smaller than β and γ in the Strauss process. This is explained by the
fact that the interaction in the POMM auxiliary process is weaker than in the Strauss
process with the same values of β, γ, and R.
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