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Abstract

Flexible stationary diffusion-type models are developed that can fit both

the marginal distribution and the correlation structure found in many time

series from e.g. finance and turbulence. Diffusion models with linear drift and

a known and prespecified marginal distribution are studied, and the diffusion

coefficients corresponding a large number of common probability distributions

are found explicitly. An approximation to the diffusion coefficient based on

saddlepoint approximation techniques is developed for use in cases where there

is no explicit expression for the diffusion coefficient. It is demonstrated theo-

retically as well as in an study of turbulence data that sums of diffusions with

linear drift can fit complex correlation structures. Any infinitely divisible dis-

tribution satisfying a weak regularity condition can be obtained as marginal

distribution.
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1 Introduction

We consider the problem of choosing a continuous-time model based on discrete-
time observations Xt1 , . . . , Xtn . Ideally the choice of a model should be based on
an understanding of the processes governing the system from which the data are
obtained. Often such a description of a system is made using a number of ordinary
differential equations, i.e.

dXt

dt
= b(Xt), t ≥ 0,

in the case of a single ordinary differential equation. A natural extension of this
model is to add a white noise term,

dXt = b(Xt)dt +
√

v(Xt)dWt, t ≥ 0,

where W is a standard Wiener process. This introduces an uncertainty in the
description of the system behind the data and results in dependence between the
observations. See Pedersen (2000) for an example of this approach in the modelling
of nitrous oxide emission from the soil surface. In this paper we show how, with a
given drift function b, any probability density satisfying weak regularity conditions
can be obtained as marginal distribution by choosing v suitably. This result is useful
when choosing a parametrized class of diffusion coefficients v in the light of data. A
linear specification of b is studied in detail.

In many cases the mechanisms driving the process of interest are not understood well
enough or are too complicated to be described using a simple drift function, b, and a
more data driven approach must be taken. The main aim of this paper is to propose
a method of choosing a model based on data also in such cases. Specifically, we
show how to construct a model for X with a given marginal density f , Xt ∼ f , and
autocorrelation function ρ(t) = Corr(Xs, Xs+t), s, t ≥ 0, where f is infinitely divisi-
ble and satisfies a weak regularity condition, and where ρ(t) belongs to a large and
very flexible class of autocorrelation functions. The model is usually not Markovian.
Expressions for f and ρ are typically chosen so that they fit a histogram of the data
and the empirical autocorrelation function. Äıt-Sahalia (1996) took the same ap-
proach as we do in the case of an exponentially decreasing autocorrelation function,
but instead of a parametric model for the marginal density, he estimated this den-
sity non-parametrically. In Bibby & Sørensen (1997) and Bibby & Sørensen (2001)
a similar approach based only on the marginal density f was used in connection
with financial data. The construction in this paper, which involves sums of diffusion
processes, is related to the sums of Ornstein-Uhlenbeck processes driven by Lévy
processes introduced in Barndorff-Nielsen, Jensen & Sørensen (1998). Therefore, the
models introduced in this paper can be used to construct stochastic volatility models
in analogy with the models of Barndorff-Nielsen & Shephard (2001), see Bibby &
Sørensen (2003a). Constructions different from ours of Markovian martingales with
prescribed marginal distributions have recently been considered by Madan & Yor
(2002).
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In Section 2 we introduce the method in the situation where X is a diffusion pro-
cess with a linear drift and hence has an exponentially decreasing autocorrelation
function. For a large number of commonly used probability distributions, explicit
diffusion models are given with linear drift and with these distributions as marginal
distributions. Moreover, general expressions for exponential families and normal
variance-mixtures are established. Also non-linear drift functions are considered.
Section 3 contains a result on an approximation of the squared diffusion coefficient
that enlarges the class of possible marginal densities, for which a diffusion model
can be handled in practice. The approximation is based on saddlepoint techniques,
and the marginal density of the resulting model is approximately proportional to
the saddlepoint approximation of the original marginal density. In section 4 models
for X with a more realistic autocorrelation functions are constructed based on the
results in sections 2 and 3. These models are finite sums of diffusion processes and
hence not Markovian. Here the marginal distribution must be infinitely divisible.
Relations to long-range dependence are investigated. Infinite sums of diffusions are
briefly considered too. In section 5 multivariate models are introduced. Finally, in
section 6 we study an example involving turbulence data.

2 Construction of diffusions

In this section we describe the construction of diffusion process models with an
exponential autocorrelation function and a specified marginal distribution. The
diffusion will be constructed such that the marginal distribution is concentrated on
the set (l, u) (−∞ ≤ l < u ≤ ∞), and has a prespecified density f with respect to
the Lebesgue measure on the state space (l, u). The approach in this section was
also taken by Äıt-Sahalia (1996), who instead of using a parametric model estimated
the marginal density non-parametrically. In this way he obtained a non-parametric
estimator of the diffusion coefficient. In particular, Äıt-Sahalia (1996) also derived
the basic equations (2.3) and (2.9). In the rest of this section, let f be a probability
density satisfying the following condition.

Condition 2.1 The probability density f is continuous, bounded, and strictly posi-
tive on (l, u), zero outside (l, u), and has finite variance.

Consider the stochastic differential equation

dXt = −θ(Xt − µ)dt +
√

v(Xt)dWt, t ≥ 0. (2.1)

where θ > 0, µ ∈ (l, u) and v is a non-negative function defined on the set (l, u).
We wish to choose v in such a way that X is ergodic with invariant density equal to
the given density function f . Suppose this has been achieved and that

∫ u

l

v(x)f(x)dx < ∞. (2.2)
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Then the solution X is a mean-reverting process, and if it is stationary the autocor-
relation function is e−θt. Theorem 2.3 below shows that if

v(x) =
2θ
∫ x

l
(µ − y)f(y)dy

f(x)
=

2θµF (x) − 2θ
∫ x

l
yf(y)dy

f(x)
, l < x < u, (2.3)

where F is the distribution function associated with the density f , then X is ergodic
with invariant density f , and (2.2) is satisfied.

Lemma 2.2 Suppose the expectation of f is smaller than or equal to µ, and that v
is given by (2.3). Then the function

g(x) = f(x)v(x) (2.4)

is strictly positive for all l < x < u, and limx→l g(x) = 0. If f has expectation equal
to µ, then limx→u g(x) = 0.

Proof: Since g(x) = 2θ
∫ x

l
(µ− y)f(y)dy, we see that g is strictly increasing on (l, µ)

and strictly decreasing on (µ, u), and that limx→l g(x) = 0 and limx→u g(x) ≥ 0.
Hence g(x) > 0 for all l < x < u.

�

Theorem 2.3 Suppose the probability density f has expectation µ and satisfies
Condition 2.1. Then the following holds.

(i) The stochastic differential equation given by (2.1) and (2.3) has a unique Marko-
vian weak solution. The diffusion coefficient is strictly positive for all l < x <
u.

(ii) The diffusion process X that solves (2.1) and (2.3) is ergodic with invariant
density f .

(iii) Equation (2.2) is satisfied. If X0 ∼ f , then X is stationary, E(Xs+t |Xs =
x) = xe−θt + µ(1 − e−θt), and the autocorrelation function for X is given by

Corr(Xs+t, Xs) = e−θt, s, t ≥ 0. (2.5)

(iv) If −∞ < l or u < ∞, then the diffusion given by (2.1) and (2.3) is the only
ergodic diffusion with drift −θ(x − µ) and invariant density f . If the state
space is IR, it is the only ergodic diffusion with drift −θ(x − µ) and invariant
density f the for which (2.2) is satisfied.
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Remark: Also when f has infinite second moment, but finite first moment, the
stochastic differential equation given by (2.1) and (2.3) has a unique Markovian
weak solution with invariant density f . In this case (2.2) is not satisfied. A finite
first moment is obviously needed for the construction (2.3).

Remark: If the state space is the real line, the stochastic differential equation given
by (2.1) and (2.8) with C > 0 has a unique Markovian weak solution with invariant
density f .

Proof: That v(x) > 0 for all l < x < u follows from Lemma 2.2 and the fact that f
is continuous. For l < x < u define the scale density

s(x) = exp

(

2θ

∫ x

x?

y − µ

v(y)
dy

)

= g(x?)/g(x), (2.6)

for some interior point l < x? < u, and the scale function

S(x) =

∫ x

x?

s(y)dy = g(x?)

∫ x

x?

1

g(y)
dy.

The function g is given by (2.4), and we have used that (log g(y))′ = −2θ(y−µ)/v(y).
The function S is strictly increasing, twice continuously differentiable and maps (l, u)
onto IR. If (l, u) = IR, this follows immediately from Lemma 2.2. If u is finite, it
follows from Condition 2.1 that there exists a K > 0 such that

g(x) = 2θ

∫ u

x

(y − µ)f(y)dy ≤ K(u − x),

which implies that limx→u S(x) = ∞. If l is finite, a similar argument shows that
limx→l S(x) = −∞.

The stochastic differential equation

dYt = s(S−1(Yt))
√

v(S−1(Yt))dWt (2.7)

satisfies the conditions of Theorem 2.2 in Engelbert & Schmidt (1985) because the
function s(S−1(x))

√

v(S−1(x)) is continuous on IR. Hence it has a unique Markovian
weak solution with state space IR. By Ito’s formula, the process S−1(Yt) solves (2.1).
This is the only solution because if X is a solution of (2.1), then S(Xt) solves (2.7),
again by Ito’s formula. We have now proved (i).

Regarding (ii), we need only check that the scale measure diverges at both end-
points and that the speed measure has a density proportional to f (and hence is
finite), see e.g. Skorokhod (1989). The invariant density is proportional to the
density of the speed measure, see Karlin & Taylor (1981). We have already proved
the first assertion, and the second follows easily because the speed measure has
density

1

v(x)s(x)
=

f(x)

g(x?)
,
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where we have used (2.4) and (2.6).

Now to (iii). Note that if we can show that (2.2) holds, then it easily follows from
(2.1) that E(Xs+t |Xs = x) = xe−θt + µ(1 − e−θt), which again implies (2.5). If
−∞ < l and u < ∞, (2.2) follows from Lemma 2.2. Otherwise it must be checked
that v(x)f(x) goes sufficiently fast to zero at infinite boundaries. The condition
that f has finite variance is exactly enough to ensure this. If u = ∞,

∫ ∞

µ

g(x)dx = 2θ

∫ ∞

µ

∫ ∞

x

(y − µ)f(y)dydx

= 2θ

∫ ∞

µ

∫ y

µ

dx(y − µ)f(y)dy = 2θ

∫ ∞

µ

(y − µ)2f(y)dy < ∞,

where we have used Tonelli’s theorem. If l = −∞, (2.2) is checked in a similar way.

Finally to show (iv), note that for an ergodic diffusion of the form (2.1) with invariant
density f , necessarily

f(x) =
K

v(x)
exp

(

−2θ

∫ x

x?

y − µ

v(y)
dy

)

for some positive constant K. Here we have used the general expression for the
speed measure. We see that the function g = fv is differentiable, and that

(log g(x))′ = −2θ(x − µ)/v(x)

or
g′(x) = −2θ(x − µ)f(x).

It follows that

v(x) =
2θ
∫ x

l
(µ − y)f(y)dy + C

f(x)
. (2.8)

for some constant C. To ensure that v(x) > 0 for all l < x < u, it is necessary
that C ≥ 0, since by Lemma 2.2 the integral goes to zero at the boundaries. If one
of the boundaries is finite, it is necessary that C = 0 for the scale measure 1/(fv)
to diverge at that boundary, again because the integral in (2.8) goes to zero at the
boundaries. If both boundaries are infinite, (2.8) defines an ergodic diffusion with
invariant density f for all C ≥ 0. However, (2.2) holds only when C = 0.

�

By the arguments used to prove (2.2) for u = ∞ and l = −∞, it follows that under
the assumptions of Theorem 2.3

∫ u

l

v(x)f(x)dx = 2θ

∫ u

l

(y − µ)2f(y)dy = 2θ Var(X0).

The construction in Theorem 2.3 is a particular case of the following general result,
the proof of which is analogous to the proof of Theorem 2.3.
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Theorem 2.4 Let b be a drift function with reversion defined on (l, u), i.e. there
exists a κ ∈ (l, u) such that b(x) > 0 for l < x < κ and b(x) < 0 for κ < x < u.
Suppose f is a strictly positive, continuous probability density on (l, u) satisfying
that

∫ u

l

b(x)f(x)dx = 0,

and that the function bf is continuous and bounded on (l, u) Then

v(x) =
2
∫ x

l
b(y)f(y)dy

f(x)
> 0 (2.9)

for all l < x < u, and the stochastic differential equation

dXt = b(Xt)dt +
√

v(Xt)dWt, t ≥ 0

has a unique Markovian weak solution which is ergodic with invariant density f .

The condition that b has reversion is only made for convenience. A sufficient condi-
tion is that the inequality (2.9) holds for all l < x < u.

In Bibby & Sørensen (2001) another method of constructing diffusion processes
with a given marginal density was discussed. In that paper the squared diffusion
coefficient was chosen proportional to the inverse of the marginal density raised to
a power and an expression for the drift was then determined from the relationship
between the drift, diffusion coefficient and the invariant density. In Bibby & Sørensen
(1997) a special case of this approach was considered, namely a diffusion process with
no drift and diffusion coefficient proportional to 1/

√
f .

When the invariant density belongs to an exponential family with a linear component
in the canonical statistic the squared diffusion coefficient can be determined from
the following theorem.

Theorem 2.5 Consider an invariant density for a diffusion process which belongs
to an exponential family of the following form,

f(x; ξ) = a(ξ)b(x)eξ1x+α(ξ)·t(x), (2.10)

where ξ = (ξ1, . . . , ξp), and where α and t may be vectors. Then the squared diffusion
coefficient is given by

v(x; ξ) = −2θ

∂
∂ξ1

F (x; ξ)

f(x; ξ)
, l < x < u. (2.11)

Proof: Since the cumulant transform for f is given by

κ(t) = log a(ξ) − log a(ξ1 + t, ξ2, . . . , ξp),
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we get that

µ = −
∂

∂ξ1
a(ξ)

a(ξ)
,

and hence that

∂

∂ξ1

F (x; ξ) =

∂
∂ξ1

a(ξ)

a(ξ)
F (x; ξ) +

∫ x

l

yf(y; ξ)dy

= −µF (x; ξ) +

∫ x

l

yf(y; ξ)dy,

yielding (2.11). �

The result of simple linear transformations is given in the following lemma, from
which it follows that we need only consider centered and standardized distributions.

Lemma 2.6 Let X be a stationary diffusion process with linear drift and invariant
density f . Consider the linear transformation given by

Yt = α + σXt, σ > 0, α ∈ IR.

Then

vg(y) = σ2 · vf(
y − α

σ
),

where g denotes the invariant density of Y , and vf and vg denote the squared diffu-
sion coefficients obtained by (2.3) from f and g, respectively.

�

We shall now give examples of diffusions with an invariant density on the whole real
line, that is −l = u = ∞, on the half-line, and with compact support.

Example 2.7 The student-distribution.

In this example we consider a diffusion process with invariant density equal to a
t(ν)-distribution, that is,

f(x) =
Γ(ν+1

2
)√

νπΓ(ν
2
)
(1 +

1

ν
x2)−

ν+1
2 , x ∈ IR, ν > 0.

Here we have taken µ = 0. We only consider t-distributions for which the variance
exists, so we assume that ν > 2. In this case

∫ x

−∞
yf(y)dy = − Γ(ν+1

2
)ν

ν
2

(ν − 1)
√

νΓ(ν
2
)
(ν + x2)−

ν−1
2 ,
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so we get that

v(x) =
2θ

ν − 1
(ν + x2), x ∈ IR.

The function v is well-defined for ν = 2 too, and we saw above that it defines an
ergodic diffusion with the t(2)-distribution as invariant distribution.

�

In the following example we consider an invariant density on the half-axis (l,∞),
where l > −∞. In this situation it may be more convenient to rewrite the expression
in (2.3) in the following way

v(x) =
2θ
(∫∞

x
(1 − F (y))dy − (µ − x)(1 − F (x))

)

f(x)
, x > l. (2.12)

In the case of positive diffusions, that is l = 0, the squared diffusion coefficient can
be expressed in terms of the hazard function λ and the integrated hazard function
Λ in the following way,

v(x) =
2θ
(

eΛ(x)
∫∞

x
e−Λ(y)dy + x − µ

)

λ(x)
, x > 0. (2.13)

Example 2.8 The gamma distribution.

Consider a diffusion process with an invariant density from the gamma distribution,
that is,

f(x) =
λα

Γ(α)
xα−1e−λx, x > 0, α > 0, λ > 0.

In order for the density to be bounded, we suppose that α ≥ 1. In this case the
expectation is µ = α/λ. The distribution function is given by

F (x) =
Γ(λx; α)

Γ(α)
,

where

Γ(x; α) =

∫ x

0

yα−1e−ydy (2.14)

is an incomplete gamma function. For the gamma invariant density we get that
∫ x

0

yf(y)dy =
α

λ
F (x) − x

λ
f(x),

and therefore

v(x) =
2θx

λ
.

This process is well-known and was proposed by Cox, Ingersoll, Jr. & Ross (1985)
as a model for the short term interest rate.
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�

The following is a simple example of an invariant density with compact support.

Example 2.9 The beta distribution.

Consider a diffusion process with an invariant density corresponding to the beta
distribution, that is,

f(x) = B(α, β)−1xα−1(1 − x)β−1, 0 < x < 1, α > 0, β > 0.

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is the beta function. In this case the distribution
function is given by

F (x) = Ix(α, β) =

∫ x

0

yα−1(1 − y)β−1dy/B(α, β), 0 < x < 1,

and the mean is µ = α/(α + β). Similarly we get that

∫ x

0

yf(y)dy =
α

α + β
Ix(α + 1, β), 0 < x < 1.

Since we have that

Ix(α, β) − Ix(α + 1, β) =
Γ(α + β + 1)

Γ(α + 1)Γ(β + 1)
xα(1 − x)β ,

the squared diffusion coefficient takes the form,

v(x) =
2θ

α + β
x(1 − x), 0 < x < 1.

This process has been used to model the variation of exchange rates in a target-zone
by De Jong, Drost & Werker (2001) (for α = β) and Larsen & Sørensen (2003).

�

In Table 1 the squared diffusion coefficient is given for a large number of common
distributions. In the table, Φ denotes the standard normal distribution function,
Γ(x; α) the incomplete gamma function given by (2.14), and Ei is the exponential
integral function given by

Ei(x) = −
∫ ∞

−x

1

y
e−ydy, x < 0.

Furthermore, γ denotes Eulers constant γ = 0.57722.
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Name of Density function State space Mean Parameter space Squared diffusion

distribution f(x) (l, u) µ v(x)

Normal 1√
2π

e
−

1
2x2

(−∞,∞) 0 – 2θ

Student
Γ(

ν+1
2 )ν

ν
2

√
πΓ(

ν
2 )

(ν + x2)−
ν+1
2 (−∞,∞) 0 ν > 1 2θ

ν−1 (ν + x2)

Laplace α2−β2

2α eβx−α|x| (−∞,∞) 2β
α2−β2 α2 > β2 2θ

α2−β2 (1 + α|x| + βx)

2θ[(ex + e−x + 2) log (1 + ex)
Logistic ex

(1+ex)2
(−∞,∞) 0 –

−x(1 + ex)]

Extreme value e−x−e−x

(−∞,∞) γ – 2θex
(

γ−x+ee−x

Ei(−e−x)
)

Pareto α(1 + x)−α−1 (0,∞) 1
α−1 α > 1 2θµx(1 + x)

Exponential λe−λx (0,∞) 1
λ λ > 0 2θ

λ x

Gamma λα

Γ(α)x
α−1e−λx (0,∞) α

λ α ≥ 1, λ > 0 2θ
λ x

χ2 1

2
ν
2 Γ(

ν
2 )

x
ν
2−1

e
−

1
2x (0,∞) ν ν ≥ 2 4θx

Inverse gamma δλ

Γ(λ)x
−λ−1e−δ/x (0,∞) δ

λ−1 δ > 0, λ > 1 2θ
λ−1x2

Inverse Gaussian
√

λ
2πx3 e

−
λ(x−δ)2

2δ2x (0,∞) δ λ > 0, δ > 0 4θδ
f(x) e

2λ
δ Φ

(

−
√

λ
x

(x
δ + 1

)

)

F
α

α
2 β

β
2

B(
α
2 ,

β
2 )

x
α
2 −1

(β+αx)
α+β

2

(0,∞) β
β−2 α ≥ 2, β > 2 4θ

α(β−2)x(β + αx)

2θµ
f(x)

(

Φ( log x−δ
σ )−

log-normal 1√
2πσ2x

e
−

1
2σ2 (log x−δ)2

(0,∞) e
δ+

1
2σ2

σ2 > 0
Φ( log x−δ

σ − σ)
)

2θ
f(x)

(

Γ(1
c +1)(1 − e−xc

)−
Weibull cxc−1e−xc

(0,∞) Γ(1
c+1) c > 0

Γ(xc; 1
c + 1)

)

Uniform 1 (0, 1) 1
2 – θx(1 − x)

Beta
Γ(α+β)
Γ(α)Γ(β)x

α−1(1−x)β−1 (0, 1) α
α+β α > 0, β > 0 2θ

α+β x(1 − x)

Table 1: The squared diffusion coefficient for the most common distributions. For
some parameter values the student, Pareto, inverse gamma, and F distributions do
not have finite variance.
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Example 2.10 Normal variance-mixtures.

Consider the normal variance-mixture

f(x) =

∫ ∞

0

1√
2πu

e−
x2

2u h(u)du

where the mixing distribution has density h on IR+ and finite expectation µh. Let
f ∗ be the normal variance-mixture with mixing density h∗(u) = uh(u)/µh. From
the fact that a diffusion with marginals that are normally distributed with variance
u is obtained when v(x) = 2θu (the Ornstein-Uhlenbeck process), it follows easily
that a diffusion with marginal density f emerges when

v(x) =
2θµhf

∗(x)

f(x)
.

If h belongs to a family of densitites with a factor of the form xγ (γ > 0), h∗ belongs
to the same class. An example is the class of generalized inverse Gaussian densi-
ties which contains among many other the inverse Gaussian densities, the gamma
densities, and the inverse gamma densities. When h is a generalized inverse Gaus-
sian density, both f and f ∗ are explicitly known generalized hyperbolic densities.
This result provides an alternative derivation in the case of the student distribution,
which is a normal variance mixture with an inverse gamma mixing distribution. As
another example, a diffusion with a symmetric variance-gamma density, i.e. (3.9)
with β = 0, is obtained when

v(x) = |x − µ|
Kλ+ 1

2
(α|x − µ|)

Kλ− 1
2
(α|x − µ|) ,

where Kλ is the modified Bessel function of the third kind with index λ. For details
about generalized inverse Gaussian and generalized hyperbolic distributions, see e.g.
Bibby & Sørensen (2003b).

�

3 Approximations

For some useful classes of distributions it is not possible to determine an explicit ex-
pression for the squared diffusion coefficient. However, for several such distributions
the Laplace transform exists and is known explicitly so that the following approxima-
tion can be applied. Let M denote the moment generating function corresponding
to the density f , that is,

M(t) =

∫ u

l

etxf(x)dx, (3.1)
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defined for t in the set

T =

{

t ∈ IR

∣

∣

∣

∣

∫ u

l

etxf(x)dx < ∞
}

.

Similarly, we let κ denote the cumulant transform, κ(t) = log M(t), and note that
it is twice differentiable for all t ∈ int(T ). Consider the following approximation to
v,

ṽ(x) =
2θ(x − µ)

t̂x
, (3.2)

where t̂x is the saddlepoint given by

κ′(t̂x) = x. (3.3)

Clearly ṽ(x) is positive for l < x < u since x − µ = κ′(t̂x) − κ′(0) and κ is a convex
function. Since κ is analytic the singularity of ṽ(x) at x = µ is removable; in fact
the limiting value of ṽ is 2θκ′′(0) and ṽ has derivatives of all orders.

The function ṽ emerges in a natural way when making a substitution in the expres-
sion for v in (2.3). Define

rx = sign(t̂x)

√

2(xt̂x − κ(t̂x)). (3.4)

Then the saddlepoint approximation to the density can be written

f(x) ≈ (κ′′(t̂x))
−1/2ϕ(rx), (3.5)

where ϕ is the normal density function. For the following computation note that rx

is increasing in x, that rxdrx = t̂xdx and that (x− µ)/rx is a differentiable function
when extended by continuity at x = µ where rx = 0. Now define

I(x) =

∫ u

x

(y − µ)f(y) dy =

∫ ru

rx

ryϕ(ry)G(ry) dry,

where

G(ry) =
(y − µ)

ry

f(y)

ϕ(ry)

dy

dry

=
(y − µ)

t̂y

f(y)

ϕ(ry)
.

An integration by parts now yields

I(x) = [−ϕ(ry)G(ry)]
ru

rx
+

∫ ru

rx

ϕ(ry)G
′(ry) dry

≈ ϕ(rx)G(rx) = f(x)
x − µ

t̂x
,

from which the approximation (3.2) is obtained using that v(x) = 2θI(x)/f(x). In
this computation we discarded two terms for the following reasons. First the upper
limit ru is usually infinity, also when u is finite, but even if ru is finite, the term
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−ϕ(ru)G(ru) is exponentially small in standard asymptotic analysis because of the
factor ϕ(ru). Second, although there are no asymptotic considerations in the present
setting, we may consider what happens when the density, f , corresponds to (a stan-
dardized version of) a convolution of n independent replications, thus approaching
the normal. In particular this fits in naturally with the infinitely divisible distri-
butions. In that case the integral arising in the integration by parts above will be
of low order compared to the leading term. More precisely, it is of order O(n−1/2)
relative to the leading term uniformly, improving to a relative error of order O(n−1)
for large deviations, that is, for arguments x − µ growing proportionally to

√
n in

the standardized scale. In view of Condition 4.1 in the following section, it may be
noted that these asymptotic results are valid as n → ∞ for a family of densities, fn

say, with characteristic functions

Cn(t) = {C0(t/
√

n)}neitµ, (3.6)

where C0 is the characteristic function, some power of which must be integrable,
of a centered distribution with finite Laplace transform in some neighbourhood of
zero. For integer values of n this follows from asymptotic results for saddlepoint
approximations. Using the method of contour integrals for the saddlepoint approxi-
mation, see Daniels (1954) and Daniels (1987), the same techniques may be used to
prove the validity for real (positive) values of n when C0 corresponds to an infinitely
divisible distribution. In summary, we may expect the approximation ṽ to work
reasonably near the mean and very well in the tails.

The approximation may be refined by inclusion of further terms according to the
method outlined in Bleistein (1966). In asymptotic analysis as described above the
order of error would improve to O(n−1) by the approximation

I(x) ≈ ϕ(rx)G(rx) + G′(0)(1 − Φ(rx))

where Φ is the standard normal distribution function and

G′(0) =
f(0)

φ(0)

(

− κ3

2
√

κ2
+

f ′(0)

f(0)
κ

3/2
2

)

,

where κ2 and κ3 are the second and third cumulants of the distribution with density
f .

Some properties of a diffusion process with ṽ as squared diffusion coefficient,

dXt = θ(µ − Xt)dt +
√

ṽ(Xt)dWt, t ≥ 0, (3.7)

are stated in the following theorem.

Theorem 3.1 Let the density f have expectation µ and satisfy Condition 2.1. As-
sume that the function

h(x) = xt̂x − κ(t̂x)
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satisfies that
∫ x

µ
exp{h(y)} dy tends to ∞ as x tends to l and as x tends to u. Then

the density

f̃(x) =
c

ṽ(x)
e−(xt̂x−κ(t̂x)), x ∈ (l, u), (3.8)

where c > 0 is a normalizing constant, has mean µ, is the marginal density of a dif-
fusion process given by the stochastic differential equation (3.7), and the conclusions
(i), (ii), and (iii) of Theorem 2.3 hold with v and f replaced by ṽ and f̃ .

Remark: Note that f̃ in (3.8) is approximately proportional to the saddlepoint

approximation to f . This is seen by observing that both ṽ(x) and
√

κ′′(t̂x) are

approximately proportional to κ′′(0) + 1
2κ

(3)(0)t̂x near the mean of the distribution,
while the exponential is identical to that of the saddlepoint approximation. More-
over, ṽ and hence f̃ is continuous.

Remark: The condition on the function h is satisfied at the upper end if u = ∞
and also if u is finite and either the limiting value or any of the derivatives of f at
u is non-zero. Similarly at the lower end, l. The proof of this assertion is trivial
in the case u = ∞ because h(x) tends to infinity; the other part is derived from
Tauberian theorems on the Laplace transform of the density. It seems a reasonable
conjecture that the Theorem holds without the condition on h, but we have not
been able to prove this. Incidentally, the inverse Gaussian distribution provides an
example of a density with a (lower) end-point of support at which the density and
all its derivatives vanish; the conclusion of theorem is, however, valid also for this
distribution.

Proof of Theorem 3.1: Notice first that h is strictly convex with derivative h′(x) = t̂x
and with minimum h(µ) = 0. For later use we now prove that h(x) tends to infinity
as x tends to u. This is trivial if u = ∞; otherwise assume without loss of generality
that u = 0. Then κ(t) is decreasing in t with κ(t) → −∞ as t → ∞. For x satisfying
l < x < 0 we have

tx − κ(t) < h(x),

for any t 6= t̂x because κ is strictly convex and the derivative of the left hand side
vanishes at t = t̂x. For arbitrary but fixed t > 0 we see that h(x) ≥ −κ(t) for x
sufficiently close to zero, because h is increasing and hence has a limit. Since this
holds for any t > 0 and −κ(t) tends to infinity, so does h(x) as x approaches zero.
Thus, h tends to infinity at the upper endpoint, u, and the same result holds for the
lower endpoint, l, by the same argument.

Next we prove that the squared diffusion coefficient corresponding to f̃ derived from
(2.3) is ṽ from (3.2). For x > µ consider the integral

∫ x

µ

(y − µ)f̃(y) dy =

∫ h(x)

0

c

2θ
e−h dh =

c

2θ

(

1 − e−h(x)
)

,



16 B.M. Bibby, I.M. Skovgaard and M. Sørensen

where we have used h′(x) = t̂x to substitute h for y in the integral. Similarly, for
x < µ we have

∫ µ

x

(y − µ)f̃(y) dy = − c

2θ

(

1 − e−h(x)
)

.

Thus, since h tends to infinity at both ends, the mean of f̃ is µ. Furthermore, sub-
stitution in (2.3) shows that ṽ is indeed the squared diffusion coefficient calculated
from this equation when the density is f̃ .

The proof that the pair consisting of ṽ and f̃ admits the remaining conclusions in
(i)–(iii) of Theorem 2.3 now copies the arguments of the proof of that theorem,
except that instead of providing Condition 2.1 for f̃ we have directly assumed that
the scale function is unbounded at the two endpoints. Furthermore notice that the
integral in (2.2) in the present case is proportional to

∫

exp{−h(x)} dx, so that the
convexity of h directly implies that the integral is finite.

�

Let us consider some examples. For background material and detail about the
variance-gamma distribution, the normal-inverse Gaussian distribution, and other
generalized hyperbolic distributoins, see e.g. Bibby & Sørensen (2003b).

Example 3.2 The VG-distribution.

The variance-gamma distribution (VG-distribution) is a special case of the general-
ized hyperbolic distribution that has proved useful in the modelling of turbulence
and financial data. The density function is given by

f(x) =
(α2 − β2)λ

√
πΓ(λ)(2α)λ−1

2

|x − δ|λ−
1
2K

λ−1
2
(α|x − δ|)eβ(x−δ), x ∈ IR, (3.9)

where Kλ is the modified Bessel function of the third kind with index λ. The domain
of the four parameters is λ > 0, α > |β| and δ ∈ IR. The mean is of the form

µ = δ +
2βλ

α2 − β2
. (3.10)

Apart from the symmetric case (β = 0) treated in Example 2.10, it is not obvious
how to determine an expression for the squared diffusion coefficient v. The moment
generating function is however rather simple

M(t) = eδt

(

α2 − β2

α2 − (β + t)2

)λ

, |β + t| < α. (3.11)

The cumulant transform and its first derivative are given by

κ(t) = δt + λ
(

log (α2 − β2) − log (α2 − (β + t)2)
)

,

κ′(t) = δ +
2λ(β + t)

α2 − (β + t)2
,
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and so the saddlepoint is

t̂x =























−β, x = δ,

√
λ2+α2(x−δ)2−λ

x−δ
− β, x 6= δ.

The approximate squared diffusion coefficient thus takes the form,

ṽ(x) =























4θλ
α2−β2 , x = δ,

2θ(x−δ)
(

x−δ− 2βλ

α2
−β2

)

√
λ2+α2(x−δ)2−λ−β(x−δ)

, x 6= δ.

(3.12)

�

Example 3.3 The NIG-distribution.

The normal-inverse Gaussian distribution (NIG-distribution) is another member of
the class of generalized hyperbolic distributions. The NIG-density is given by

f(x) =
αλK1(α

√

λ2 + (x − δ)2)

π
√

λ2 + (x − δ)2
· eλ

√
α2−β2+β(x−δ), x ∈ IR, (3.13)

where we assume that λ > 0, α > |β|, and δ ∈ IR. The mean is

µ = δ +
βλ

√

α2 − β2
.

As in the previous example, the symmetric case (β = 0) can be handled by the result
in Example 2.10, whereas it is hard to determine the squared diffusion coefficient
explicitly in the general case. Again the approximation is readily obtained. The
moment generating function of the NIG-distribution is of the form,

M(t) = eδt+λ(
√

α2−β2−
√

α2−(β+t)2), |β + t| < α, (3.14)

giving the following expression for the derivative of the cumulant transform,

κ′(t) = δ +
λ(β + t)

√

α2 − (β + t)2
.

This means that the saddlepoint is given by

t̂x =
α(x − δ)

√

λ2 + (x − δ)2
− β,
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and therefore the following approximate squared diffusion coefficient emerges,

ṽ(x) =

2θ
√

λ2 + (x − δ)2

(

x − δ − βλ√
α2−β2

)

α(x − δ) − β
√

λ2 + (x − δ)2
. (3.15)

�

Example 3.4 The Inverse Gaussian distribution.

For the inverse Gaussian distribution we have that

v(x) = 4θδ

√

2πx3

λ
e

2λ
δ e

λ(x−δ)2

2δ2x Φ

(

−
√

λ

x

(x

δ
+ 1
)

)

, x > 0, (3.16)

see Table 1. In this case the moment generating function is given by

M(t) = e
λ
δ

(

1−
√

1− 2δ2t
λ

)

, t ≤ λ

2δ2
.

The cumulant transform and its first derivative take the form,

κ(t) =
λ

δ

(

1 −
√

1 − 2δ2t

λ

)

,

κ′(t) =
δ
√

λ√
λ − 2δ2t

.

This means that the saddle point is given by

t̂x =
λ(x + δ)(x − δ)

2δ2x2
,

and so

ṽ(x) =
4θδ2x2

λ(x + δ)
. (3.17)

In Figure 1 the two versions of the squared diffusion coefficient, (3.16) and (3.17),
corresponding to the parameter values θ = 1, λ = 5 and 25, and δ = 5 and 25
are drawn. Note that M(t) is of the form M0(t)

ν with ν = λ/δ and M0(t) =
exp(1−

√

1 − 2δ2t/λ), so from the remarks after (3.6) we expect the approximation
to improve as λ/δ increases, which is in accordance with Figure 1. �

Just like Theorem 2.3 could be generalized to diffusions with non-linear drift func-
tion, as shown in Theorem 2.4, we may generalize Theorem 3.1 to such cases also.
This may be viewed not only as an approximation but also as a result providing a
class of diffusions with non-linear drift and an (exact) analytic expression for the
stationary density. The approximation is derived just as for the case with linear
drift, and the proof follows that of Theorem 3.1.
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Figure 1: The two squared diffusion coefficients, (3.16) and (3.17), corresponding to
the parameter values θ = 1, λ = 5 and 25, and δ = 5 and 25.

Theorem 3.5 Consider a probability density, f , satisfying the conditions of Theo-
rem 3.1, and a drift function, b(x), satisfying b(x) > 0 for l < x < µ and b(x) < 0
for µ < x < u. Assume further that

∫ u

l

1

ṽ(x)
e−(xt̂x−κ(t̂x)) dx < ∞

where

ṽ(x) =
−2b(x)

t̂x

(defined by continuity at x = 0) replaces (3.2). Then the differential equation

dXt = b(Xt) dt +
√

ṽ(Xt) dWt, t ≥ 0,

has a unique Markovian solution which is ergodic with invariant probability density
f̃ given by (3.8).
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Remark: Unlike the linear case it is no longer true in general that µ is the mean
of the distribution with density f̃ . But the mean of the drift function, b(Xt), is zero
(provided X is stationary), so when b(x) is anti-symmetric around µ, the mean is
still µ. Similarly, an anti-symmetric drift guarantees that the same approximation
results, relating f̃ to f , hold as in the case with linear drift, but in the general case
f̃ may not comply with the saddlepoint approximation to f to the same degree of
accuracy around x = 0; see the remark just below Theorem 3.1.

4 Sums of diffusions

Very often the correlation structure found in time series data is more complex than
the exponentially decreasing autocorrelation of the models defined in Section 2.
For diffusion models with a non-linear drift the autocorrelation function is usually
not known explicitly, but the autocorrelation function is bounded by a decreasing
exponential function for all ρ-mixing diffusions. A stationary, ergodic diffusion is
ρ-mixing under rather weak conditions, see Genon-Catalot, Jeantheau & Larédo
(2000). In order to obtain models with a more flexible correlation structure, we
will therefore consider stochastic processes that are sums of processes of the type
introduced in Section 2. Such processes have an explicit autocorrelation function of
the form

ρ(t) = φ1e
−θ1t + φ2e

−θ2t + · · ·+ φme−θmt, t ≥ 0, (4.1)

where φi > 0, i = 1, . . . , m and φ1 + φ2 + · · · + φm = 1. This functional form is
very flexible and can be fitted to a lot of empirical autocorrelation functions, see
the discussion below. The construction considered in this section is closely related
to the sums of Ornstein-Uhlenbeck processes driven by Lévy processes introduced
in Barndorff-Nielsen, Jensen & Sørensen (1998).

Our aim is to construct a stationary process X with a given marginal density f and
with autocorrelation function given by (4.1) for some given integer m. We assume
that f satisfies the following condition.

Condition 4.1 The probability density f , with characteristic function C, is in-
finitely divisible, that is Cφ is a characteristic function for all positive φ. Assume,
moreover, that there exists a φ0 ≥ 0 such that for φ > φ0 the probability distribution
corresponding to Cφ has a density satisfying Condition 2.1.

Note that Condition 4.1 excludes all distributions on a bounded interval since such
distributions cannot be infinitely divisible. If f satisfies Condition 2.1, the only
problem in the last part of Condition 4.1 is the boundedness of the density corre-
sponding to Cφ because infinitely divisible densities are necessarily positive on (l, u).
Properties of infinitely divisible distributions are reviewed in Steutel (1983).
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Let f (i) denote the density function corresponding to the characteristic function Cφi

(i = 1, . . . , m). Since f satisfies Condition 4.1, we can, according to Theorem 2.3,
define a stationary process X(i) of the type introduced in Section 2 with marginal
density f (i), provided that φi > φ0, i = 1, . . . , m. We will assume this to be the case.
Specifically, let W (1), W (2), . . . , W (m) be m mutually independent Wiener processes,
define

vi(x) =
2θi

∫ x

l
(φiµ − y)f (i)(y)dy

f (i)(x)
, i = 1, . . . , m, (4.2)

where µ is the expectation of f , and let X(i) be the solution of the stochastic
differential equation

dX
(i)
t = θi(φiµ − X

(i)
t )dt +

√

vi(X
(i)
t )dW

(i)
t , i = 1, . . . , m. (4.3)

Then the processes X
(1)
t , . . . , X

(m)
t are independent, and X

(i)
t ∼ f (i), i = 1, . . . , m,

i.e. the distribution of X
(i)
t has characteristic function Cφi. Hence the process X

constructed as the sum

Xt = X
(1)
t + X

(2)
t + · · ·+ X

(m)
t , (4.4)

has marginal density f , and since

Corr(X
(i)
s+t, X

(i)
t ) = e−θit, i = 1, . . . , m, (4.5)

the autocorrelation function of X is given by (4.1). It is not difficult to see that

φi =
Var(X

(i)
t )

Var(Xt)
, i = 1, 2, . . . , m. (4.6)

The spectral density of the process X is given by

e(ω) =
2

π

(

φ1θ1

θ2
1 + ω2

+ · · · + φmθm

θ2
m + ω2

)

, (4.7)

which follows immediately from the fact that a process with autocorrelation function
e−θt has spectral density 2θ/(π(θ2 + ω2)).

The motivation for models of the type (4.4) is that the random variation quite
frequently is a compound of processes with different time scales. An example is the
velocity fluctuations in a turbulent wind that are caused by eddies with different
time scales. The process X(i) represents random variation with a time scale θ−1

i .

The construction of the process X is particularly simple if the marginal distribution
of X belongs to a class of distributions which is closed under convolution. The
following two examples illustrate this.
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Example 4.2 The gamma distribution.

Here we construct a stationary stochastic process X for which the marginal density
is a gamma distribution, Xt ∼ Γ(α, λ), and the autocorrelation function is of the
form (4.1). This process can be obtained as the sum of m independent diffusion

processes (4.4), where X
(i)
t is the solution of

dX
(i)
t = θi

(

φiαλ−1 − X
(i)
t

)

dt +

√

2θiλ−1X
(i)
t dW

(i)
t , i = 1, . . . , m. (4.8)

According to Example 2.8 X
(i)
t ∼ Γ(φiα, λ), i = 1, . . . , m, and X

(i)
t satisfies (4.5).

Here the φ0 of Condition 4.1 equals α−1, so the construction is only possible when
φi ≥ α−1, i = 1, . . . , m. If there exists a φi < α−1, then the process X(i) is not
ergodic and can hit the boundary zero in finite time with positive probability.

�

Example 4.3 The VG-distribution.

In this example we construct a stochastic process X whose marginal density is a
VG-distribution, Xt ∼ VG(λ, α, β, δ), see Example 3.2, and whose autocorrelation
function is of the form (4.1). Let X(1), . . . , X(m) be independent diffusions con-
structed according to (4.3) and (4.2) with µ given by (3.10). Then

X
(i)
t ∼ VG(φiλ, α, β, φiδ), i = 1, . . . , m,

and X given by the sum (4.4) has the right distribution and autocorrelation function.
In practice vi has to be replaced by the approximation ṽi, see Example 3.2 and
Section 5.

�

Finally a more difficult example.

Example 4.4 The hyperbolic distribution.

The moment generating function of the centered symmetric hyperbolic distribution
is

M(t) =
α · K1(δ(α

2 − z2))√
α2 − z2 · K1(δα)

, |z| < α.

The hyperbolic distribution is infinitely divisible, so M(t)φi is again a moment gen-
erating function, but there seems to be no way of inverting it to get an expression
for f (i). If one will simulate the process of the type (4.4) with centered symmetric
hyperbolic marginal distribution, it is therefore necessary to use the approximation
introduced in Section 3. This can clearly only be done numerically.

�
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The following theorem states exactly which autocorrelation functions can be ap-
proximated by an autocorrelation function of the form (4.1).

Theorem 4.5 The class of functions obtained as limits, as m → ∞, of point-wise
convergent sequences ρm(t) of autocorrelation functions given by (4.1) equals the
class of all Laplace transforms for distributions on (0,∞), i.e. the class of functions
given by

r(u) =

∫ ∞

0

e−uvdP (v), u ≥ 0,

for some probability measure P on (0,∞).

Proof: An autocorrelation function

ρm(t) = φ
(m)
1 e−θ

(m)
1 t + · · ·+ φ(m)

m e−θ
(m)
m t

is equal to the Laplace transform of the distribution concentrated in θ
(m)
1 , . . . , θ

(m)
m

with probabilities φ
(m)
1 , . . ., φ

(m)
m . If the sequence ρm(t) is convergent, the sequence

of distributions converges weakly to a probability distribution on (0,∞) and the
limit function is the Laplace transform of this distribution. On the other hand,
any probability distribution on (0,∞) can be obtained as the limit of probability
distributions concentrated on a finite set. To see this consider a suitable sequence
of discretizations of the distribution in question.

�

We see in particular that we can only approximate autocorrelation functions that
are decreasing and convex. Moreover, the logarithm of the autocorrelation function
must be convex too. In fact, it is well known that the class of all Laplace transforms
of distributions on (0,∞) equals the class of completely monotone functions r with
r(0) = 1, see p. 439 in Feller (1971). A function r on [0,∞) is called completely
monotone if

(−1)nr(n)(u) ≥ 0, u > 0

for all n ∈ IN, where r(n) is the n’th derivative of r.

One motivation for using models with autocorrelations of the type (4.1) is to be
able to fit a relatively simple model to data to which some might think it necessary
to fit a model with long range dependence. Let us therefore briefly discuss the fact
that an autocorrelation function of the type (4.1) can be close to an autocorrelation
function of a process with long memory. Suppose the series

r(u) =
∞
∑

j=1

φje
−θju (4.9)
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is convergent. If we, moreover, assume that

∞
∑

j=1

φj/θj = ∞, (4.10)

then
∫ ∞

0

r(u)du = ∞,

so r(u) is the autocorrelation function of a process with long memory that can be
approximated as well as we want by an autocorrelation function of the type (4.1).
To give a specific example, we choose

φj ∼ j−1−2(1−H), θj ∼ j−1

with 0 < H < 1. Then
φj/θj ∼ j−2(1−H),

and when 1
2
≤ H < 1,

r(u) ∼ L(u)u−2(1−H),

where L is a slowly varying function (for a definition see p. 276 in Feller (1971)), so
a process with autocorrelation function r has long memory with Hurst exponent H .

The convergence of the sum (4.9) implies mean-square and hence almost sure con-
vergence of the sum

Xt =
∞
∑

i=1

X
(i)
t , (4.11)

where the random variables X
(i)
t are given by (4.2) and (4.3) with f (i) denoting the

density function corresponding to C(t)φi. It is again assumed that f (i), i = 1, . . .,
are continuous and bounded on their support. The limit process X is stationary
with marginal density f and has autocorrelation function r(t). It is thus possible to
define an infinite version of the sum (4.4). Usually this is, however, an unnecessary
complication because a good fit to data can be obtained for a small value of m in
(4.4). When the long memory condition (4.10) is satisfied, the limit process (4.11)
is closely related to the long range dependent processes constructed in Cox (1984),
Barndorff-Nielsen, Jensen & Sørensen (1990) and Barndorff-Nielsen (1998).

5 Multivariate models

In this section we shall briefly show how to construct multivariate processes where
each coordinate is a process of the type introduced in Section 4.

As in Section 4 we consider a probability density f with characteristic function C
satisfying Condition 4.1. For given φi > φ0 (i = 1, . . . , m) satisfying φ1+· · ·+φm = 1,
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define vi(x) by (4.2). Let the processes X
(k,i)
t , i = 1, . . . , m, k = 1, . . . , d be given by

dX
(k,i)
t = −θi

(

X
(k,i)
t − φiµ

)

dt +

√

vi

(

X
(k,i)
t

)

dW
(k,i)
t ,

where W (1,1), . . . , W (d,m) are independent standard Wiener processes. Then we can
define a d-dimensional process X by

Xt = (X1t, . . . , Xdt)

with

Xjt = X
(νj1,1)
t + · · · + X

(νjm,m)
t ,

where νji ∈ {1, . . . , d}, i = 1, . . . , m. The point is that one or more of the νji-s can be
identical for different j-s so that the same process appears in different coordinates.
As previously we can interpret the process X

(k,i)
t as random variation with time-scale

θ−1
i . Dependence between two coordinates is thus caused by the random variation

on certain time scales being the same for the two coordinates. Extra flexibility in
the modelling of dependence can be obtained by taking one or more of the θi-s to be
identical, so that it is possible that only a part of the random variation on a certain
time scale is the same in two coordinates.

The density of Xjt is f , and the autocorrelation function of Xj is given by (4.1).
Moreover,

Corr (Xj1t, Xj2t) =
∑

i∈Mj1j2

φi,

where Mj1j2 = {i | νj1i = νj2i}. The final process is obtained by making location-scale
transformations of the marginals Xjt.

6 A Case Study

In this section we consider a data set consiting of 5415 measurements of the stream-
wise wind velocity component measured at Ferring on the Danish west coast in an
experiment carried out in september 1985. The data were recorded using a sonic
anemometer on a 30 meter mast erected on the shore around 60 meters from the
shoreline, with a 10 Hz frequency. The experiment is described in further detail in
Mikkelsen (1988) and Mikkelsen (1989) and the data were analysed in Barndorff-
Nielsen, Jensen & Sørensen (1993) using a sum of independent autoregressions and
in Bibby & Sørensen (2001) based on a hyperbolic diffusion model. The data are
presented in Figure 2. See also Barndorff-Nielsen, Jensen & Sørensen (1990).
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Figure 2: The stream-wise wind velocity component in meters per second plotted
against time in seconds.

In Figure 3 and 4 a histogram and a log-histogram of the wind velocity data are given
along with fitted curves corresponding to a VG density function, see Example 3.2.
The fitted curves are determined by maximum likelihood based on a multinomial
likelihood function where the groups are defined by the points (mid-points) in Figure
3 and 4.
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Figure 3: A histogram of the wind ve-
locity data with a fitted VG density
function.
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Figure 4: A log-histogram of the wind
velocity data with a fitted VG log-
density function.
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Figure 5: The empirical autocorre-
lation function of the wind velocity
data with fitted curves corresponding
to one, two, and three exponential
functions.
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Figure 6: The log empirical autocor-
relation function of the wind velocity
data with fitted curves corresponding
to the logarithm of one, two, and three
exponential functions.

In Figure 5 and Figure 6 the empirical autocorrelation function and its logarithm
are drawn for lag values up to 500. The following three exponential functions (and
their logarithms) are included in the figures,

ρ1(t) = e−0.0093t,

ρ2(t) = 0.83e−0.0154t + 0.17e−0.0009t,

ρ3(t) = 0.80e−0.0125t + 0.09e−0.0986t + 0.11e−0.0001t.

Based on Figure 3–6 we want to consider a stochastic process with a VG marginal
distribution,

Xt ∼ VG(λ, α, β, δ),

given as the sum of two diffusion processes,

Xt = X
(1)
t + X

(2)
t ,

where

Corr(X
(i)
s+t, X

(i)
t ) = e−θit, i = 1, 2.

This can be done using the construction given in Example 4.3.
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From the fit of the histogram and the empirical autocorrelation function we get that

λ̂ = 3.9134 φ̂1 = 0.8346

α̂ = 13.1760 φ̂2 = 0.1654

β̂ = −7.8230 θ̂1 = 0.0154

δ̂ = 7.8128 θ̂2 = 0.0009

A problem here is that v1 and v2 cannot be determined explicitly by (2.3). Instead
we can consider the approximations given by (3.2). In Figure 7 and 8 the histogram
and log histogram in Figure 3 and 4 are reproduced now with the addition of the
estimated f̃ given by the convolution of f̃1 and f̃2 from (3.8). The convolution had
to be done numerically.
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Figure 7: A histogram of the wind
velocity data with fitted curves corre-
sponding to a VG density (f) and an
approximate VG density (f̃).
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Figure 8: A log-histogram of the wind
velocity data with fitted curves corre-
sponding to a VG log density (f) and
an approximate VG log density (f̃).
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