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It has been known since the rigorous result by Angelescu and Corciovei [A-C]
that the answer to the question in the title is negative for the Perfect Bose
Gas (PBG). The main result of the present paper is that the answer could
become positive if the bosons are simultaneously embedded in a periodic ex-
ternal potential. We show that it is true for PBG, as well as for the Bose gas
with a mean-field repulsive particle interaction.
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1 Introduction

Consider a system of boson atoms confined by a nonhomogeneous magnetic
field at temperature T ≥ 0, and subjected to a cooling laser radiation. Nowa-
days this is a standard picture of the so-called magneto-optical traps. But the
bosons in a magnetic field were studied even much earlier, back in the sixties,
when experimentalists were exploring for artificial systems manifesting the
Bose-Einstein Condensation (BEC). One of the first of them was the atomic
Hydrogen, where atoms were prevented from recombining into molecules due
to the presence of a strong homogeneous magnetic field. Since it was argued
that this system remained a gas up to the temperature of absolute zero and
since this gas was very diluted, it was expected to manifest at low temper-
atures a BEC similar to that in the PBG. But the rôle of magnetic field in
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these experiments was reduced to preparation and trapping neutral boson
atoms for further cooling.

The question in the title and the present paper are motivated by an-
other problem. Namely, how thermodynamic properties of (charged) quan-
tum gases will change in the presence of a magnetic field in the approximation
when we neglect particle interaction? The first rigorous result in this direc-
tion was due to [A-C], who studied both Bose and Fermi perfect gases. One
of their conclusion is a sort of “no-go” theorem forbidding BEC of the PBG
in dimension d = 3. Since at the same time their result allows the BEC at
higher dimensions (d > 4), it is clear that the impact of the homogeneous
magnetic field reduces to a modification of the one-particle density of states
at the bottom of the spectrum.

The aim of the present paper is to find an external (“electric”) potential
which is able to restore BEC in d = 3. Motivated by recent experiments with
optical lattices (see e.g. [BeS-M] and references therein) we construct a class
of periodic potentials with this property.

Now we come to our mathematical model. Denote by Λ1 ∈ Rd an open,
convex and simply connected domain with smooth boundary ∂Λ1, containing
the origin of coordinates; here 1 ≤ d ≤ 3. The box which traps our system
is given by (L > 1)

ΛL := {x ∈ R
d, x/L ∈ Λ1}. (1.1)

In this paper we consider continuous Zd−periodic external potentials V (i.e.
γ ∈ Zd, V (x + γ) = V (x),x ∈ Rd), VL denotes the restriction of V to ΛL. If
d = 3 we also consider a magnetic vector potential of the form:

a(x) = ωa0(x), ω ≥ 0 (1.2)

where either one of the two types of gauge: symmetric (transverse) a0(x) =
1/2(−x2, x1, 0) or Landau a1(x) = (0, x1, 0) will be used; in both cases this
generates a unit magnetic field “parallel to the third direction”. Now let

hL = hL(ω) = (−i∇− a)2 + VL, (1.3)

be the one particle Hamiltonian defined on L2(ΛL) with Dirichlet boundary
conditions (DBC) on ∂ΛL. Then hL has purely discrete spectrum [R-SIV],
we denote the set of eigenvalues (counting multiplicities and in increasing
order) by {λj}j≥1 and by {uj}j≥1 the corresponding set of eigenfunctions. We
denote by h∞ the unique self-adjoint extension of the operator (−i∇−a)2+V
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defined on C∞
0 (Rd) [R-SII]. Because of the magnetic field, the nature of the

spectrum of h∞ is not known in general; but since by our assumptions h∞ is
bounded from below and commutes with the (magnetic) translations, then
h∞ has no discrete spectrum. Let us denote by E0 := inf σ(h∞). Moreover,
due to standard arguments involving the min-max principle, for all L > 1 we
have E0 ≤ λ1 [R-SIV].

We first consider a perfect Bose gas (PBG) confined in the volume ΛL,
each particle of the gas interacts with the background potential VL and the
external magnetic field. The case of an imperfect gas with a Mean-Field
(MF) type of particle potential will be considered in Section 5. In the grand-
canonical ensemble, the pressure of a perfect gas at inverse temperature β > 0
and chemical potential µ < E0 is given by the well known expression, see e.g.
[Hu] and also Section 5:

pL(β, z) := − 1

β|ΛL|
∑

j≥1

ln(1 − ze−βλj ), (1.4)

where {λj}j≥1 is the set of eigenvalues of the one particle Hamiltonian (1.3);
z is the fugacity z := eβµ. The density of the gas is:

ρL(β, z) := βz
∂pL
∂z

(β, z) =
1

|ΛL|
∑

j≥1

ze−βλj

1 − ze−βλj
. (1.5)

Since the semigroup e−βhL generated by hL is trace class, i.e.
∑

j≥1 e
−βλj <∞

[S 1], the series in (1.4) and (1.5) are absolutely convergent. It is known that
under our assumptions the thermodynamic limit (L→ ∞) of the pressure pL
and of the particle density ρL exist [A-C] and we are now interested in the
behavior of ρ∞(β, z) := limL→∞ ρL(β, z) near the critical value zc = eβE0 , β >
0 since this determines whether the Bose-Einstein condensation takes place
for our system [Hu], [Z-U-K].
Let PI(hL) be the spectral projection of the operator hL for a Borel set
I ⊂ R. Denoting by NL(λ) := |ΛL|−1Tr (P(−∞,λ)(hL)) the counting function
of eigenstates of hL (the number of eigenstates of hL for eigenvalues less than
λ), we have:

ρL(β, z) = −
∫ ∞

E0

[

∂λ
zeβλ

1 − zeβλ

]

NL(λ)

|ΛL|
dλ. (1.6)

3



Recall that the integrated density of states for h∞, denoted by n∞(λ) is
defined as a weak limit:

n∞(λ) = lim
L→∞

NL(λ)

|ΛL|
(1.7)

on the space of continuous functions C0([E0,∞)), see e.g. [P-F].
Moreover, let χΛL

be the characteristic function of ΛL and PI(h∞) be
the spectral projection of h∞ for a Borel set I ⊂ R. Then under even more
general conditions than ours, for any λ ∈ R \ σp(h∞), the pointwise limit

ñ∞(λ) := lim
L→∞

Tr(χΛL
P(−∞,λ)(h∞)χΛL

)

|ΛL|
(1.8)

exists, is continuous and coincides with n∞(λ) (see e.g. [B-S], [H-S] and
[D-I-M]).

Notice that by (1.6) and (1.7), the density ρL(β, z) admits for z < zc a
thermodynamic limit of the form:

ρ∞(β, z) = −
∫ ∞

E0

[

∂λ
z e−βλ

1 − z e−βλ

]

n∞(λ)dλ. (1.9)

We easily see from (1.9) that the limit density ρ∞(β, z = eβµ), increases with
µ and decreases with β. Moreover, ρ∞(β, ·) has an analytic extension to the
domain C \ [zc,∞).

Definition 1.1. The homogeneous Bose gas manifests the Bose-Einstein
condensation (BEC) if for every β > 0, it admits a finite critical density
ρc(β), where

ρc(β) := lim
µ↗E0

ρ∞(β, z = eβµ) <∞. (1.10)

Corespondingly, the critical temperature 1/βc(ρ) for a given density ρ is de-
fined as the unique solution of the equation ρ = ρc(β), i.e.

ρ = ρc(βc(ρ)).

For the “free” PBG, when ω = 0 and V = 0, the integrated density of
states is known explicitely n∞(λ) = [d(2

√
π)dΓ(d/2)]−1λd/2, see e.g. [R-S

IV]. Hence, by (1.9) one gets ρc(β) <∞ for d > 2. This implies the BEC of
the perfect gas for these dimensions.
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On the other hand, we know from [A-C] that for a perfect Bose gas, the
BEC does not exist (i.e. ρc(β) = ∞) in the presence of a homogeneous
magnetic field (ω 6= 0, V = 0). We will see that this is related to the fact
that

n∞(λ) = Bω,d · (λ− E0(ω))d/2−1 + o((λ− E0(ω))d/2−1)

for λ↘ E0(ω). Hence, integral (1.9) diverges for z = zc.
In what follows, we will show that by adding a certain external periodic

potential, we can restore the BEC in our system with magnetic field. In
particular, we prove the following main theorem:

Theorem 1.2. Consider a three dimensional perfect Bose gas in a homo-
geneous magnetic field, where the one-particle Hamiltonian is given by h0,L =
(−i∇−a)2 on L2(ΛL) with DBC on ∂ΛL; here a = ωa0, a0(x) := 1/2(−x2, x1, 0)
and ω > 0.

Then there exist Z3−periodic and continuous external potentials V , such
that the perturbed system described by the one-particle Hamiltonian hL =
h0,L + VL on L2(ΛL), manifests the BEC.

This statement remains true by switching on a mean-field particle inter-
action.

The proof of the Theorem 1.2 is actually based on the following remark.
Since the diamagnetic inequality (see [S 2]) yields h∞ ≥ −∆ + min(V ), by
the Weyl estimate we get a polynomial upper bound ∼ λd/2 for n∞(λ) at
infinity. Therefore, the only factor which can decide whether the limit in
(1.10) is finite or not is the behavior of n∞(λ) near the bottom E0 of the
spectrum σ(h∞). Indeed, one can easily see that a sufficient condition for
having a finite critical density is the estimate:

n∞(λ) ≤ const · (λ− E0)
1+α, λ ∈ (E0, E0 + ε) (1.11)

for some α > 0 and finite ε > 0. On the contrary, a sufficient condition for
an infinite critical density (or zero critical temperature) is the estimate

n∞(λ) ≥ const · (λ−E0), λ ∈ (E0, E0 + ε) (1.12)

for some finite ε > 0.

Remark 1.3. More generally, a necessary and sufficient condition for having
a finite critical density for every β > 0 is the following estimate:
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∫ E0+1

E0

n∞(λ)

(λ−E0)2
dλ <∞. (1.13)

This condition also implies that ρc : (0,∞) → (0,∞) is smooth and invertible
(one shows that ρc is decreasing and onto).

By the virtue of Definition 1.1, an equivalent way of defining BEC is
imposing that the critical temperature βc(ρ)

−1 exists and is positive for every
density. If the critical density is infinite, we set βc(ρ) = ∞.

We close this section by giving some technical points which are important
in this paper. Let f ∈ C∞

0 (R), we have, (see [D-I-M]):

lim
L→∞

1

|ΛL|
Tr [χΛL

f(h∞)χΛL
] = −

∫

R

f ′(t)n∞(t)dt. (1.14)

Moreover, we will show in Appendix 1 that f(h∞) is an integral operator with
a smooth integral kernel fh∞(x,x′). Since h∞ commutes with the magnetic
translations (see Appendix 2, (5.36) for their definition), then:

∀γ ∈ Z
d, fh∞(x + γ,x + γ) = fh∞(x,x), ∀x ∈ R

d. (1.15)

Therefore

lim
L→∞

1

|ΛL|
Tr [χΛL

f(h∞)χΛL
] = −

∫

R

f ′(t)n∞(t)dt =
1

|Ω|

∫

Ω

fh∞(x,x)dx,

(1.16)
where Ω := (−1/2, 1/2)d is the elementary cell, see Section 2.

Assume that the operator h∞ is (magnetic) translation invariant in some
subpace Rd′ of Rd, d′ < d. For all x ∈ Rd we write x = (x, x), where x is the
component of x in the subpace Rd′ . The kernel’s diagonal of fh∞ then is x
independent. Thus (1.16) reads as

lim
L→∞

1

|ΛL|
Tr [χΛL

f(h∞)χΛL
] =

1

|Ξ|

∫

Ξ

fh∞((0, x); (0, x))dx. (1.17)

where now Ξ ⊂ R
d−d′ is the elementary cell in the subspace orthogonal to

Rd′ .

Our paper is organized as follows: Section 2 is devoted to a discussion on
various results concerning the BEC for a perfect Bose gas in the presence of
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periodic external potential without magnetic field. Most of the facts given in
this section are known but they are instructive for the rest of the paper. In
Section 3 we discuss the stability of the BEC after an external magnetic field
is switched on; we will also prove there the first part of Theorem 1.2. The
results of Section 3 are applied in Section 4 where we study the imperfect
Bose gas, in the case of a mean-field type interaction. We collect in Section
5 technical Appendices indinspensable for proofs placed in Section 3.

2 BEC for a Bose gas in a periodic external

potential

In this section we assume that each particle of the Bose gas interacts with
a continuous, Z

d- periodic potential V ; without loss of generality we will
choose min(V ) = 0. The one particle Hamiltonian hL = −∆ + V is then a
self-adjoint operator on L2(ΛL) (with DBC on ∂ΛL) as well as the infinite-
volume Hamiltonian h∞ = −∆ + V on L2(Rd).

We now apply the standard Floquet theory for periodic operators (see [R-
S IV]). Let Ω∗ = 2πΩ = (−π, π)d ⊂ Rd be the elementary cell of the lattice
dual to Zd, which is generated by translations of the cell Ω = (−1/2, 1/2)d.
Define a unitary operator:

U : L2(Rd) 7→
∫ ⊕

Ω∗

L2(Ω)dk, (Uf)(k, x) :=
∑

γ∈Zd

1

(2π)d/2
e−ik·(x+γ)f(x+ γ),

where k ∈ Ω∗ and x ∈ Ω. Then the unitary transformation of h∞ is de-
composable into the direct integral: Uh∞U

∗ =
∫

Ω∗
h(k)dk. Here the fiber

Hamiltonians:

h(k) = (−i∇ + k)2 + V, k ∈ Ω∗ (2.1)

live in L2(Ω) with periodic boundary conditions. They have purely discrete
spectrum which accumulates at infinity; for a given k ∈ Ω∗, we denote the
set of corresponding eigenvalues by {λj(k)}j≥1.

An important ingredient for us is a result due to Kirsch and Simon [K-S]
about the band structure of σ(h∞):

Proposition 2.1. Assume that the potential V is Zd-periodic, continuous
and min(V ) = 0. Consider the operator h∞ = −∆ + V on L2(Rd) and let
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{λj(k)}j≥1 be the eigenvalues of the fiber Hamiltonians h(k),k ∈ Ω∗, defined
in (2.1). Denoting by E0 = inf σ(H∞) ≥ 0, we have:

(i). λ1(k) has E0 as a nondegenerate minimum at k = 0 i.e.

min
k∈Ω∗

λ1(k) = λ1(0) = E0, λ1(k) = E0 +Q(k,k)+ o(|k|2), for k → 0, (2.2)

where Q is a positive quadratic form on Rd;
(ii). E0 is isolated from the rest of the spectrum σ(h∞) i.e.

inf
j≥2

{min
k∈Ω∗

λj(k)} − E0 =: λ0 > 0. (2.3)

The eigenvalues of the quadratic form Q are related to the so-called effective
masses in the corresponding directions.

The main result of this section is contained in the next proposition:

Proposition 2.2. Under the same assumptions as in Proposition 2.1, the
critical density defined as the limit in (1.10) is infinite for d = 1 or d = 2. If
d = 3, the critical density (1.10) is finite and the PBG manifests the BEC.

Proof. We show that if d ∈ {1, 2} then (1.12) holds while if d = 3 then (1.11)
holds. Let f ∈ C∞

0 (R). Since the kernel fh∞(x, x′) is jointly continuous
and decay polynomialy with respect to the variable x − x′ (see Appendix
1), the operator f(h(k)) admits an integral kernel which due to the fiber
decomposition has for x and x′ ∈ Ω the representation:

fh(k)(x, x
′) =

∑

γ∈Zd

fh∞(x+ γ, x′) e−ik·(x−x
′+γ). (2.4)

We will see in the next section an extension of this formula for the more
general magnetic case (cf. (3.17)). Now (2.4) implies that fh(k)(x, x

′) is
jointly continuous in x and x′. On the other hand f(h(k)) is a finite rank
operator and due to the smoothness property evoked above, its trace equals
the integral of its kernel’s diagonal:

Trf(h(k)) =
∑

j≥1

f(λj(k)) =

∫

Ω

fh(k)(x, x)dx =
∑

γ∈Zd

∫

Ω

fh∞(x+γ, x) e−ik·γdx.

(2.5)
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Then integrating (2.5) with respect to the k variable we have:

∑

j≥1

1

(2π)d

∫

Ω∗

f(λj(k))dk =

∫

Ω

fh∞(x, x)dx = −
∫

R

f ′(t)n∞(t)dt, (2.6)

where the second equality comes from (1.16). Take a weakly converging
sequence fn(t) → χ[E0−0,λ](t), n → ∞, and λ ≤ maxk∈Ω∗ λ1(k). Then (2.6)
and Proposition 2.1 imply:

n∞(λ) =
1

(2π)d

∫

Ω∗

χ[E0−0,λ](λ1(k))dk, (2.7)

where χI denotes the indicator of the set I ⊂ R. Now, Proposition (2.1) (i)
and a change of variables in (2.7) give:

n∞(λ) = Ad(λ−E0)
d/2 + o((λ− E0)

d/2), (2.8)

for λ ↘ E0. Notice that this is exactly the same behavior as in the “free”
case (i.e. V = 0), and the proposition is proven.

3 BEC for a Bose gas in presence of a con-

stant magnetic field

In this section we prove the first part of our main Theorem 1.2. As it has
been mentioned before, we are motivated by the work of Angelescu-Corcovei
[A-C] who showed that for a free, three-dimensional Bose gas, the critical
density is infinite in the presence of a constant magnetic field, i.e. BEC
disappears. The mechanism of that is described in Section 1: by creating
the Landau levels, the magnetic fields leads to increasing of the integrated
density of states at the bottom of the spectrum σ(h0(ω 6= 0)). We only
consider the case of dimension d = 3, for which the BEC in the PBG holds
when a = 0 even for a periodic external potential by Proposition (2.2). We
first give an example of a periodic potential V where the BEC is distroyed
by any constant magnetic field. Then we show that this is not always the
case, i.e. we prove the first part of Theorem 1.2.
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3.1 Instability of BEC in the presence of a magnetic
field

We start with a simple case where the continuous external potential V (x) =
v(x1) i.e. it only depends on one variable and v is Z-periodic. Throughout
this section, we use the Landau gauge a1(x) = (0, x1, 0) ∈ R3. Notice that
the choice of a particular gauge is irrelevant since the density of states is
gauge invariant. Under these conditions, the “bulk” Hamiltonian is:

h∞ = (−i∇− ωa1)
2 + v = −∂2

x1
+ v(x1) + (−i∂x2 − ωx1)

2 − ∂2
x3
, (3.1)

acting on L2(R3), where ω ≥ 0.

Proposition 3.1. Consider a perfect Bose gas described by the one particle
Hamiltonian hL defined as the restriction of the operator (3.1) to L2(ΛL) with
DBC. Then for every ω > 0, the critical density is infinite, i.e. the BEC is
destroyed.

Before coming to the proof of Proposition 3.1, we need some technical results.
We will often write a vector u ∈ R3 as u = (u1, ũ) with ũ = (u2, u3) ∈ R2.
Decompose L2(R3) with the help of the partial Fourier transform with respect
to x2 and x3:

U : L2(R3) 7→
∫

R2

L2(R)dk̃, U =

∫

R2

Uk̃dk̃, (Uk̃f)(t) =
1

2π

∫

R2

e−ik̃x̃f(t, x̃)dx̃.

(3.2)
Then

Uh∞U
∗ =

∫

R2

h(k̃)dk̃, h(k̃) = − d2

dt2
+ (ωt− k2)

2 + v(t) + k2
3. (3.3)

If z ∈ C \ R denote by (h∞ − z)−1(x1, x̃; x
′
1, x̃

′) and [h(k̃) − z]−1(t, t′) the
integral kernels of the corresponding operators. We are interested here in
the analog of (2.4).

Lemma 3.2. If f ∈ C∞
0 (R), then f(h∞) admits a smooth integral kernel

fh∞(t, ỹ; t′, ỹ′) and we have the representation

fh(k̃)(t, t
′) =

∫

R2

e−ik̃ỹfh∞(t, ỹ; t′, 0)dỹ, (3.4)

for the kernel of the operator in (3.3) where the integral is absolutely conver-
gent.
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Proof. Let f ∈ C∞
0 (R). Then f(h∞) admits a smooth integral kernel which

decays faster than any polynomial in y for t and t′ fixed [S 1], [G-Kl] (see
also Appendix 1). Moreover, by standard arguments [S 1], it is enough to
prove (3.4) for the resolvent operator. Let g ∈ C∞

0 (R3). Then we have:

[Uk̃(h∞ − z)−1U∗g](t) (3.5)

=

∫

R

dt′
∫

R2

dx̃′
∫

R2

dx̃
e−ik̃x̃

2π
(h∞ − z)−1(t, x̃; t′, x̃′)

∫

R2

dk̃′
eik̃

′x̃′

2π
g(t′, k̃′).

The above integral makes sense because (h∞ − z)−1(t, x̃; t′, x̃′) decays expo-
nentially in |x̃− x̃′| for t and t′ fixed (see [G-Kl]). Since h∞ commutes with
translations in both directions x2 and x3, we get:

(h∞ − z)−1(t, x̃; t′, x̃′) = (h∞ − z)−1(t, x̃− x̃′; t′, 0).

Then the integrals in (3.5) take the form

[Uk̃(h∞ − z)−1U∗g](t)

=

∫

R

dt′
{
∫

R2

e−ik̃ỹ(h∞ − z)−1(t, ỹ; t′, 0)dỹ

}

g(t′, k̃). (3.6)

By virtue of (3.2) and (3.3), this yields the equality

[h(k̃) − z]−1(t, t′) =

∫

R2

e−ik̃ỹ(h∞ − z)−1(t, ỹ; t′, 0)dỹ, (3.7)

which has to be understood as equality between smooth functions outside
the diagonal t = t′.

Proof of Proposition 3.1. By the conditions on the external potential
v(t), the fiber operator h(k̃) has purely discrete spectrum for any k̃ ∈ R2.

We denote by {λn(k2)}n≥1 the nondegenerate eigenvalues of the operator
h(k2, 0) = −d2/t2 +(ωt−k2)

2 +v(t), and by {ψn(·, k2)}n≥1 the corresponding
eigenfunctions. Let f ∈ C∞

0 (R). Then we have

fh(k̃)(t, t
′) =

∑

n≥1

f(λn(k2) + k2
3)ψn(t, k2)ψn(t

′, k2). (3.8)

Here the sum over n is finite, since f has compact support, but limn→∞ λn(k2) =
∞ uniformly in k2 ∈ R. Hence, fh(k̃) is a finite-rank operator. This can be
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explicitely seen from the fact that the fiber operator h(k̃) in (3.3) is unitarily
equivalent to the operator:

− d2

dt2
+ ω2t2 + v(t+ k2/ω) + k2

3,

which is a harmonic oscilator plus a bounded perturbation. Moreover, this
representation makes evident that Z−periodicity of v implies Zω−periodicity
of λn(k2) for all n ≥ 1.

Notice that we are only interested in what happens near the bottom of
the spectrum, E0 = inf σ(h∞) = infk2 λ1(k2). Because of the non-degeneracy
of the eigenvalues {λn(k2)}n≥1, E0 is isolated from the other bands, i.e from
Ran(λn) with n ≥ 2. Applying usual arguments (see [R-S IV]), ψ1 can be
chosen positive. Hence, if f is supported close enough to E0, by (3.8) we
obtain:

fh(k̃)(t, t) = f(λ1(k2) + k2
3) ψ

2
1(t, k2).

Then taking the Fourier transform in (3.4) we get

1

4π2

∫

R2

fh(k̃)(t, t)dk̃ =
1

4π2

∫

R2

f(λ1(k2) + k2
3) ψ

2
1(t, k2)dk̃ = fh∞(t, 0; t, 0).

(3.9)
Note that the second integral in (3.9) converges, since by standard methods
we can prove that ψ1 is sharply localized near k2/ω and that it has a gaussian
decay of the form const e−α(t−k2/ω)2 (see [Ag]). Now using (1.16), (1.17) for
λ close to E0, we eventually get (in a way similar to (2.7)) that (3.9) implies

n∞(λ) =
1

4π2

∫

Ξ

∫

R2

χ[E0−0,λ](λ1(k2) + k2
3) ψ

2
1(t, k2)dt dk̃, (3.10)

where Ξ = [−1/2, 1/2].
In the particular case when v = 0, we have E0 = ω = λ1(k2). Fix λ

between the first two Landau levels: λ ∈ (ω, 3ω). Then by integrating with
respect to k2 we obtain

∫

R

ψ2
1(t, k2)dk2 = ω,

thus n∞(λ) = ω
2π2 (λ − ω)1/2 for the pure magnetic case. Notice the “bad”

exponent 1/2 which makes the critical density to diverge, see (1.12).
Now we show that even if v 6= 0, the integrated density of states still

behaves like in (1.12). First, the general theory insures that λ1(k2) is a real

12



analytic function of k2 [R-S IV]. If it is constant, then we are essentially back
to the case v = 0, since one has a lower bound for n∞ of the form:

n∞(λ) ≥ 1

4π2

(
∫

R

χ[E0−0,λ](E0 + k2
3)dk3

)

inf
−1/2≤t≤1/2

∫

R

ψ2
1(t, k2)dk2, (3.11)

for every λ ∈ (E0, E0+ε). Since ψ2
1(t, k2) is jointly smooth in both arguments

and positive, the mapping

[−1/2, 1/2] 3 t→
∫

R

ψ2
1(t, k2)dk2 ∈ R

has a positive minimum, so n∞(λ) ≥ a(λ−E0)
1/2 +o((λ−E0)

1/2) for λ↘ E0

and for some a > 0, i.e. we get back to case (1.12).
Let λ1(k2) be not constant. Since it is a real analytic function and Zω-

periodic, there exists a finite set of points {ξ1, ..., ξN} ⊂ [0, ω), where λ1 takes
its minimal value E0. Let λ1(ξj) = E0, j ∈ {1, . . . , N}. Then there exists a
positive integer nj ≥ 1 and a constant Cj so that for k2 close to ξj

λ1(k1) ∼ E0 + Cj(k2 − ξj)
2nj .

To get a lower bound for n∞(λ) we may take the integral (3.10) with respect
to k̃ over compact domains around the minima of the function λ1(k2). In
fact, for λ close to E0 we can bound n∞ from below by taking into account
just one of those minima:

n∞(λ) ≥ const

(

∫ 1/2

−1/2

ψ2
1(t, ξj)dt

)

·
∫

R2

χ[E0,λ](E0 + δCj(k2 − ξj)
2nj + k2

3) dk̃,

(3.12)
for some δ > 1. This leads to

n∞(λ) ≥ const(λ− E0)
1
2
+ 1

2nj ,

which clearly implies (1.12) for λ− E0 small enough. Therefore, the propo-
sition is proven.

Remark 3.3. Proposition 3.1 can be easily extended to Z2−periodic poten-
tials v = v(x1, x3). In this case, a similar analysis shows that the correspond-
ing Hamiltonian h∞ is unitarily equivalent to the operator

∫

R×(−π,π)
h(k̃)dk̃,

where now

h(k̃) = −∂2
t + (ωt− k2)

2 + (−i∂s + k3)
2 + v(t, s) (3.13)

13



on L2(R × (−1/2, 1/2)) with periodic boundary conditions on R × {±1/2}.
Notice that for every k̃ ∈ R × (−π, π), the fiber Hamiltonnian h(k̃) has a
compact resolvent which is positivity improving (see [R-S IV]). Let {λ(k̃)}n≥1

denote the set of eigenvalues of h(k̃) and {ψn(·, k̃)}n≥1 be the corresponding
eigenvectors. Then λ1(k̃) is continuous and nondegenerate for any k̃. Let E0

be the minimal value of λ1(k̃). Then there exists a point (ξ, ζ) ∈ R× (−π, π),
(n,m) ∈ N2 and (C,D) ∈ R2 two non-negative constants such that in the
neighborhood of (ξ, ζ) we have the expansion

λ1(k̃) = E0 +C(k2 − ξ)2n +D(k3 − ζ)2m + o((k2 − ξ)2n +(k3 − ζ)2m). (3.14)

Notice that by a standard Thomas’ argument (see [R-S IV]) concerning the
k3 variable one concludes that λ1 cannot be constant in k3, which implies
D > 0 and m ≥ 1.

If we choose λ close to E0, formula (3.10) now takes the form

n∞(λ) =
1

2π

∫

Ξ2

dsdt

∫

R×(−π,π)

dk̃ χ[E0−0,λ](λ1(k̃)) ψ
2
1(s, t, k̃).

Then the rest of the reasoning follows the same lines as above. For C = 0 in
(3.14), we use the argument as the one for (3.11), while for C > 0 we take
the estimate (3.12). This gives

n∞(λ) ≥ const(λ− E0)
1
2n

+ 1
2m ,

for λ ↘ E0, which implies (1.12), even for non-degenerate minimum n =
m = 1 in (3.14).

3.2 An example of finite critical density for non-zero
uniform magnetic field

The previous subsection showed that the Bose condensate can be destroyed
by turning on a no matter how weak constant magnetic field. Here we want
to show that this is not always true. Let dimension d = 3. We choose in
this subsection the gauge a0(x1, x2) = 1/2(−x2, x1, 0) and we construct an
external periodic potential, which depends on all three variables such that
the critical density becomes finite.

We assume that the external potential has the following form:

Vε(x) = ε · [v1(x1) + v2(x2)] + v3(x3), (3.15)

14



where ε > 0 and small, each of the functions {vj}3
j=1 is smooth Z−periodic

potential, and we also suppose that neither one of v1 and v2 is constant.
Take the magnetic field intensity ω = 2π, then the “bulk” Hamiltonian

can be written as

h∞ = (−i∇x − 2πa0(x1, x2))
2 + Vε = hε ⊗ 1 + 1 ⊗ h3, (3.16)

where the operator hε = (−i∇− 2πa0)
2 + ε(v1 + v2) lives in L2(R2) while the

operator h3 = −d2/dx2
3 + v3 lives in L2(R).

First, let us introduce some notation. We write an arbitrary vector x ∈
R3 as x = (x, x3) where x := (x1, x2). We often use the notation Ξ =
(−1/2, 1/2). The elementary cell is Ω = Ξ3 and the one of the dual lattice
Ω∗ is given by

Ω∗ := {2πξ, ξ ∈ Ξ3} = 2πΞ3.

According to Appendix 2, the operator h∞ is unitarily equivalent to
∫

Ξ3 h(ξ)dξ, where the fiber operator can be further written as

h(ξ) = hε(ξ) ⊗ 1 + 1 ⊗ h3(ξ3).

Here the operators hε(ξ) = h0(ξ) + εV (x), h0(ξ) := [−i∇x − a(x) + k(ξ)]2

live in L2(Ξ2) with “magnetic” periodic boundary conditions (see Appendix
2 for definition), and h3(ξ3) = (−id/dx3 + ξ3)

2 + v3(x3) in L2(Ξ).
Recall that a(x) = 2πa0(x) and k(ξ) = 2π(e1ξ1 + e2ξ2). If f is a C∞

0 (R)-
function then the integral kernel of f(h(ξ)) is given by

f
h(ξ)

(x, x3; x
′, x′3) =

∑

γ∈Z2

∑

γ3∈Z

e−iφ(x,γ)−ib(γ)−2πiξ·(x+γ−x′)e−2πiξ3(x3+γ3−x′3)

× fh∞(x+ γ, x3 + γ3; x
′, x′3), (3.17)

for every x,x′ ∈ Ω, where φ(x, γ) = π(x2n − x1m) and b(γ) = πmn for
γ = me1 + ne2, see Appendix 2. Notice that the third coordinate is not
influenced by the magnetic field, while the first two coordinates are essentially
treated in the Appendix 2; see for instance (5.47). Then by integrating the
trace of f

h(ξ)
with respect to ξ we obtain

∫

Ξ3

Tr f
h(ξ)

dξ =

∫

Ξ3

∫

Ω

f
h(ξ)

(x,x)dxdξ =

∫

Ω

fh∞(x,x)dx. (3.18)

Now, since we put the magnetic flux through Ξ2 to be exactly 2π, all eigen-
values of hε(ξ) are simple and belong to an interval of width of order ε around
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the old Landau levels due to the analysis of Appendix 2. Denote them by
(see also (5.54))

{2π(2n+ 1) + εan(ε, ξ), ξ ∈ Ξ2}n≥0 (3.19)

and by lm(ξ3), m ≥ 1 the eigenvalues of h3(ξ3). Then the spectrum of h∞ is
given by the closure of the range of the function

2π(2n+ 1) + εan(ε, ξ) + lm(ξ3), ξ = (ξ, ξ3) ∈ Ξ3, n ≥ 0, m ≥ 1.

Notice that by Proposition 2.1 we know that the branch l1 reaches its
minimum at zero and l1(ξ3) ∼ l1(0) + Cξ2

3 in its neighborhood. Then the
bottom of the spectrum σ(h∞) is equal to

E0 = 2π + εmin
ξ∈Ξ2

a0(ε, ξ) + l1(0).

Moreover, E0 is isolated from the other bands if ε is small enough, as it is
in the nonmagnetic case. Thus, we can repeat our arguments leading to the
estimate of the integral in (2.7) for λ ↘ E0 and we get for the integrated
density of states in this limit exponent 3/2, provided the minimum of a0(ε, ·)
is nondegenerate. (See Lemma 3.4 for the definition of a nondegenerate
minimum for ε = 0).

This would prove the first part of Theorem 1.2. Thus we continue by the
following statement.

Lemma 3.4. Assume a0(0, ·) has a nondegenerate (local) minimum at ξ0 ∈
Ξ2, i.e. there exists a symmetric and positive matrix Q ∈ M2(R) such that
for small |ξ − ξ0| we have

a0(0, ξ) = a0(0, ξ0) + 〈ξ − ξ0, Q(ξ − ξ0)〉 + O(|ξ − ξ0|3). (3.20)

Here 〈·, ·〉 is the scalar product in C2.
Then for ε small enough, there exists ξε close to ξ0 such that the functional

a0(ε, ·) has ξε as nondegenerate minimum.

Proof. By assumption, we have ξ0 ∈ Ξ2 so that (∇ξa0)(0, ξ0) = 0 while the
differential at ξ0 given by [Dξ(∇ξa0)](0, ξ0) = Q is invertible. Due to the
smoothness properties of a0(ε, ξ) with respect to all its variables, one can
easily verify the hypotheses of the Implicit Function Theorem, which finishes
the proof.
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Remark 3.5. . Assume that a0(0, ·) has a finite number of nondegenerate
local minima, only. Then due to the joint analyticity of a0 with respect to
(ε, ξ), there exists ε0 > 0 small enough such that for |ε| < ε0, the absolute
minimum of a0(ε, ·) will also be nondegenerate and there are no other critical
points than the ones given by Lemma 3.4.

Therefore, the only thing which remains to be studied is the behavior of
a0(0, ·) near its absolute minimum. But (see Appendix 2), we have already
got a fairly explicit expression for it in (5.55), where we have now to put
V (x1, x1) = v1(x1) + v2(x1), ω = 2π and n = 0. We use the notation

(v̂)γ =

∫ 1/2

−1/2

e−2πiγxv(x)dx, γ ∈ Z,

for the discrete Fourier transform, to obtain, by virtue of (5.55), that

a0(0, ξ) = b0,1(ξ) + b0,2(ξ), (3.21)

b0,1(ξ) = b0,1(ξ2) =
∑

γ2∈Z

e−2πiξ2γ2 e−πγ
2
2/2(v̂1)γ2 ,

b0,2(ξ) = b0,2(ξ1) =
∑

γ1∈Z

e2πiξ1γ1 e−πγ
2
1/2(v̂2)γ1 .

It is easy to see that by a judicios choice of v1 and v2 we can create any
profile we want for the functions b0,1 and b0,2. In particular, we can make
the local minima nondegenerate. Indeed, choose two nonconstant functions
p, q : (−1/2, 1/2) 7→ R which admit C∞-extensions to R; assume they have
nondegenerate absolute minima correspondingly at ξ0,p and ξ0,q in the interval
(−1/2, 1/2). Denote by

p̃s(x) =
s
∑

k=−s

e2πixk(p̂)k, s > 1, x ∈ (−1/2, 1/2)

the approximation of p by its first 2s + 1 Fourier components. Since p is
smooth, then for s = M large enough the approximation p̃M will have a
nondegenerate absolute minimum at ξM,p close to ξ0,p. Define

v1(x) :=
M
∑

k=−M

e2πixkeπk
2/2(p̂)k, x ∈ (−1/2, 1/2).
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Then by (3.21) it follows that b0,1(ξ2) = p̃M(−ξ2). Thus, b0,1 has a nonde-
generate absolute minimum at −ξM,p. Similar line of reasoning involving the
function q implies the same conclusion for b0,2. This finishes the proof of the
first part of Theorem 1.2.

Remark 3.6. By inspection of this line of reasoning, one finds that there is
no need to restrict the potential periodic in directions (x1, x2) to a separable
form, see (3.15). In fact. our proof goes through verbatim for Z2-periodic
potential

ε · [v1(x1) + v2(x2) + δ · v(x1, x2)]

for δ small enough.

4 Imperfect Bose gas: mean-field interaction

To discuss whether the BEC found in the two previous sections survives the
switching on of a particle interaction, we consider here the simplest version
of it, known as the Mean-Field (MF) interaction, see e.g. [Z-B].

To this end we need the second quantized form of the interacting gas
Hamiltonian in the boson Fock space FB(L2 (ΛL)):

HΛL
(µ) := HΛL

− µNΛL
= TΛL

− µNΛL
+ UΛL

. (4.1)

Here

TΛL
:=

∫

ΛL

dxa∗(x)hLa(x) (4.2)

is the kinetic-energy part with one-particle operator hL defined by (1.3) and

UΛL
:=

1

2

∫

(ΛL)2
dxdy a∗(x)a∗(y)v(x − y)a(y)a(x), (4.3)

is the interaction defined by the two-body potential v(x−y), where a∗ (x) , a(x)
are usual boson-field operators,

NΛL
:=

∫

ΛL

dx a∗(x)a(x) (4.4)

is the particle-number operator, and µ is the chemical potential.
To ensure the existence of the thermodynamics of the Bose gas (4.1) for

all parameters (β, µ) of the grand-canonical ensemble, it used to suppose that

18



the interaction v(x− y) is superstable [Ru]. For example, let the pair inter-
action potential v(x) = v(−x) be a real, non-negative continuous function
from L1(Rd). Since v ∈ L1(Rd), the Fourier transform v̂(q) exists, and

v̂(0) =

∫

Rd

dx v(x) > 0 with v̂(0) ≥ v̂(q), q ∈ R
d. (4.5)

It is known [Ru] that the corresponding interaction is superstable, i.e. the
n-body potential satisfies the inequality

∑

1≤i<j≤n

v(xi − xj) ≥
A

2|ΛL|
n2 − Bn (4.6)

for some constants A > 0, B ≥ 0, for all n ∈ N, xi,xj ∈ ΛL and L large
enough which implies that the thermodynamic potentials exist for all values
of the chemical potential µ.

To introduce the MF interaction consider the scaled potential :

vλ(x) := λdv(λx), λ ≥ 0. (4.7)

Denote by

pΛL

[

Hλ
ΛL

]

(β, µ) :=
1

β|ΛL|
lnTrFB(L2(ΛL))e

−β(Hλ
ΛL

−µNΛL
)

(4.8)

the grand-canonical pressure defined by the Hamiltonian Hλ
ΛL

with the two-
body interaction vλ(x). Then the limit

lim
λ→0

lim
L→∞

pΛL

[

Hλ
ΛL

]

(β, µ) = pvdW (β, µ), (4.9)

exists and it is known as the van der Waals limit [deSm-Z]. If one chooses
the scaled two-body potential (4.7) in the form

vL(x) := g|ΛL|−1, (4.10)

Then the limit
lim
L→∞

pΛL

[

HλL

ΛL

]

(β, µ) = pMF (β, µ), (4.11)

exists and it is known as the Mean-Field limit [deSm-Z]. Notice that by virtue
of (4.4) the interaction (4.3) in this case takes the form :

UMF
ΛL

=
1

2

∫

(ΛL)2
dxdy a∗(x)a∗(y)vL(x − y)a(y)a(x) =

1

2

g

|ΛL|
NΛL

(NΛL
− I),

(4.12)
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i.e., the corresponding Hamiltonian in the Fock space FB(L2 (ΛL)) is defined
by HMF

ΛL
:= TΛL

+ UMF
ΛL

.
Since the spectrum of the one-particle kinetic-energy operator is such that

inf σ(h∞) = E0, see Section 1, thermodynamic behaviour of the boson gas
(4.1) is E0-dependent.

Lemma 4.1 (Thermodynamic Functions). The grand-canonical pressure
pMF,E0(β, µ) (4.11) of the M-F boson gas (4.1) exists for all β ≥ 0, µ ∈ R

and is given by the Legendre transformation:

pMF,E0(β, µ) = sup
ρ≥0

(

µρ− fMF,E0(β, ρ)
)

, (4.13)

where the canonical free-energy density fMF,E0(β, ρ) at inverse temperature
β and density ρ is given by

fMF,E0(β, ρ) = fPBG,E0(β, ρ) +
g

2
ρ2. (4.14)

Here fPBG,E0(β, ρ) is the free-energy density of the PBG, corresponding to
(4.2).

Proof. The grand-canonical thermodynamic pressure of the PBG (4.2) is
given by the limit

pPBG,E0(β, µ) = lim
L→∞

pPBG,E0

ΛL
(β, µ) = lim

L→∞

1

β|ΛL|
TrFB(L2(ΛL))e

−β(TΛL
−µNΛL

),

(4.15)
which implies that in order to be well defined, the chemical potential µ must
be bounded from above: µ < E0, see Section 1. On the other hand, one has

pMF,E0

ΛL
(β, µ) =

1

β|ΛL|
ln

∞
∑

N=0

eβ(µN−gN(N−1)/2|ΛL |)TrFB
N

(L2(ΛL))e
−βT

(N)
ΛL , (4.16)

where T
(N)
ΛL

is a restriction of the kinetic-energy operator (4.3) on the N -
particle sector FB

N (L2 (ΛL)) of the Fock space FB(L2 (ΛL)), N = 0, 1, 2, ....
Put

fPBG,E0=0(β, ρ) := fPBG(β, ρ),

pPBG,E0=0(β, µ) := pPBG(β, µ). (4.17)
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Since the canonical free-energy density fPBG,E0(β, ρ), is the Legendre trans-
formation of pPBG,E0(β, µ), by definitions (4.17) one gets:

fPBG,E0(β, ρ) = sup
µ≤E0

(

ρµ− pPBG,E0(β, µ)
)

= sup
µ≤E0

(

ρ(µ−E0) − pPBG(β, µ−E0) + E0ρ
)

= fPBG(β, ρ) + E0ρ. (4.18)

The free-energy density of the mean-field model (4.12) at temperature β and
density ρ = N/|ΛL| is defined by

fΛL
[HMF

ΛL
](β, ρ) = − 1

β|ΛL|
lnTrFB

N
(L2(ΛL))e

−βH
MF (N)
ΛL , (4.19)

where TrFB
N

(L2(ΛL))(·) denotes the trace over the Hilbert space FB
N (L2 (ΛL))

of symmetrized functions for N = ρ|ΛL| bosons. Since FB
N (L2 (ΛL)) is the

proper space of the particle-number operator NΛL
with the proper value N ,

the mean-field interaction term on this space is constant. Thus, we immedi-
ately find (4.14) in the thermodynamic limit:

lim
L→∞

fΛL
[HMF

ΛL
](β, ρ) = lim

L→∞
fΛL

[TΛL
](β, ρ) +

g

2
ρ2. (4.20)

By (4.16) the pressure of the mean-field gas is well-defined for all µ ∈ R, and
it is again the Legendre transform of fMF (β, ρ), yielding formula (4.13). �

Corollary 4.2. (Pressure of the M-F Bose Gas)
The grand-canonical pressure of a mean-field Bose Gas (4.13) is given by

pMF,E0(β, µ) =

{

µρ(β, µ) − fMF,E0(β, ρ(β, µ)), for µ ≤ E0 + gρc(β);

(µ− E0)
2/2g + pPBG(β, 0), for µ > E0 + gρc(β),

(4.21)
where ρ(β, µ)) is a unique solution of the chemical potential equation

µ = ∂ρf
MF,E0(β, ρ) = ∂ρf

PBG(β, ρ) + E0 + gρ. (4.22)

Here ρPBG,E0(β, µ) = ρPBG(β, µ − E0) is the total density of the Perfect
Bose gas and ρPBG,E0(β,E0) ≡ ρc(β), defined by (1.10).
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Theorem 4.3. For the mean-field Bose gas (4.12), one gets the following ex-
pressions for particle densities in the thermodynamic limit. The total grand-
canonical density is given by

ρMF,E0(β, µ) =

{

ρ(β, µ)), for µ ≤ E0 + gρc(β),

(µ− E0)/g, for µ > E0 + gρc(β).
(4.23)

The condensate density is given by

ρMF,E0
0 (β, µ) =

{

0, for µ ≤ E0 + gρc(β),

(µ− E0)/g − ρc(β), for µ > E0 + gρc(β).
(4.24)

Proof: Since the total grand-canonical density of the mean-field Bose gas is
defined by thermodynamic relation ρMF,E0(β, µ) = ∂µp

MF,E0(β, µ), the part
(4.23) of our theorem follows directly from (4.21) and (4.22).

The part (4.24) is a more delicate matter. It is based on the strong
equivalence of ensembles for the mean-field Bose gas and the fact that ex-
pectations in the canonical ensemble coincide with those for the PBG. This
implies [vdB-L-deSm],[P-Z] that the particle density in the states with the
energies higher than some δ > 0 is equal to

lim
L→∞

1

|ΛL|
∑

{j:λj>E0+δ}

〈a∗(uj)a(uj)〉ΛL
(β, µ) =

∫ ∞

E0+δ

dn∞(λ)

eβ(λ−µ+gρMF,E0 (β,µ)) − 1
,

(4.25)
where a∗(uj) =

∫

ΛL
dxuj(x)a∗(x) = (a(uj))

∗ for the eigenvectors {uj(x)}j≥1

of the operator hL (1.3). By virtue of (4.23) we get from (4.25) that

lim
δ→0

lim
L→∞

1

|ΛL|
∑

{j:λj>E0+δ}

〈a∗(uj)a(uj)〉ΛL
(β, µ) = ρc(β) <∞ (4.26)

for µ > E0 + gρc(β). Since the total particle density

ρMF,E0(β, µ) = lim
L→∞

1

|ΛL|
∑

j≥0

〈a∗(uj)a(uj)〉ΛL
(β, µ) (4.27)

is equal to (4.23), the limit (4.26) proves the Bose-Einstein condensation
(4.24) in the following form:

ρMF,E0
0 (β, µ) = lim

δ→0
lim
L→∞

1

|ΛL|
∑

{j:λj≤E0+δ}

〈a∗(uj)a(uj)〉ΛL
(β, µ). (4.28)

�
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5 Appendices

5.1 Appendix 1: Smoothness and decay for the inte-
gral kernel of fh∞

For simplicity we consider her only the dimension d = 3, and the operator
h∞ = (−i∇− a)2 + V as in Introduction. Let f ∈ C∞

0 (R). We write

f(h∞) = exp(−h∞) · f̃(h∞) · exp(−h∞), f̃(t) = e2tf(t). (5.29)

It is well-known (see e.g. the arguments via Feynman-Kac-Ito formula in [S
2]) that exp(−h∞) admits an integral kernel, denoted by e−h∞(x,x′), which
obeys the so-called diamagnetic inequality

∣

∣e−h∞(x,x′)
∣

∣ ≤ e−min(V ) · 1

(4π)3/2
e−|x−x

′|2/4.

Moreover, let K ∈ R
3 be a compact set, and α1, α2 ∈ N

3. Under the smooth-
ness conditions we assumed for a and V , the semigroup kernel obeys (see [S
2])

∣

∣∂α1
x
∂α2

x′ e
−h∞(x,x′)

∣

∣ ≤ C1 · e−C2|x−x′| <∞, x′ ∈ R
3, x ∈ K, (5.30)

where C1 and C2 are constants which may depend on α’s and K.
By virtue of the previous estimate, we can then write down the kernel of

f(h∞) as

fh∞(x,x′) =

∫

R3

e−h∞(x,y)
[

f̃(h∞)e−h∞(·,x′)
]

(y)dy. (5.31)

By the Cauchy-Schwarz inequality with respect to the y variable in (5.31),
we get that the above kernel belongs to L∞(R3 ×R3). Since this is also true
for f̃ , we can then rewrite (5.31) as

fh∞(x,x′) =

∫

R6

e−h∞(x,y) · f̃h∞(y,y′) · e−h∞(y′,x′)dydy′.

This together with (5.30) allow us to conclude that fh∞(·, ·) ∈ C∞(R6).
Finally, regarding the decay of the above kernel, we recall a result of

Germinet and Klein [G-Kl], which adapted to our setting assures such that
for every N ≥ 1, there exists a positive constant CN,f so that

|fh∞(x,x′)| ≤ CN,f · (1 + |x − x′|)−N , x,x′ ∈ R
3.

23



5.2 Appendix 2: Magnetic field in two dimensions and
banding of Landau levels

Consider a 2-dimensional particle subjected to a constant magnetic field B =
(0, 0, ω), which is orthogonal to the plane R2, where the particle is allowed to
move. We use here the transverse (symmetric) gauge i.e. a(x) = 1

2
B ∧ x =

ωa0(x) = ω/2(−x2, x1). Therefore, it is a two dimensional restriction of the
model we consider in Section 3.2.

Take e1 and e2 as elements of the standard orthonormal basis in R2 and
consider the lattice Z2. Let Ξ = (−1/2, 1/2), the we denote the elementary
cell in R

2 by Ξ × Ξ.
We denote the dual lattice by (Z2)∗, and define the dual elementary cell

by
(Ξ2)∗ := {k(ξ) := ξ1k1 + ξ2k2, ξ = (ξ1, ξ2) ∈ Ξ2} = 2πΞ2,

where k1,2 = 2πe1,2.
We suppose here that the magnetic field satisfies the “rationality con-

dition”, i.e. there exists N ∈ N∗ such that the magnetic flux through Ξ2

is:
B · (e1 ∧ e2) = ω|e1 ∧ e2| = 2πN . (5.32)

It is well-known (see e.g. [B-E-S], [J-P] and references therein) that for
the particle restricted to the plane R2, the “free” magnetic Hamiltonian
h0 = (−i∇ − a)2 has only pure point spectrum (Landau levels), which is
given by the set σ(h0) = {(2n+ 1)ω : n ∈ {0, 1, . . .}}. Let V ∈ C0(R2) be a
Z2-periodic external potential. For ε ≥ 0 the perturbed Hamiltonian

hε = h0 + εV

acts on L2(R2). We now are interested in two questions: first, to justify the
representation (3.17) and second, to investigate the nature of the spectrum
of hε.

For x, y ∈ R
2, define the “magnetic phase”

φ(x,y) := −1

2
B · (x ∧ y) (5.33)

and recall that its main property is:

exp [−iφ(x,y)](−i∇x − a(x)) exp [iφ(x,y)] = −i∇x − a(x − y) . (5.34)
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For all e = me1 + ne2 ∈ Z2, define b(e) := πNmn. Let f = pe1 + qe2 ∈ Z2.
Then by virtue of (5.32)

φ(e, f) = −1

2
B · (e ∧ f) = πN(pn− qm) . (5.35)

These imply that b(e)+b(f)−b(e+ f)−φ(e, f) ∈ 2πZ, and that the modified
magnetic translations

(Teψ)(x) := exp [iφ(x, e) + ib(e)]ψ(x − e), e ∈ Γ, ψ ∈ L2(R2) (5.36)

form an abelian group, i.e. TeTf = Te+f , which commutes with the perturbed
Hamiltonian hε, ε ≥ 0. This means that in the case of “rational” magnetic
fields some sort of the Floquet banding of Landau levels should exist.

Now we explicitely decompose the operator hε into a direct fiber integral.
This will be done first for h0 (in fact for its resolvent) and then for hε. Define
a direct fiber integral of L2(Ξ2)-spaces, H :=

∫ ⊕

Ξ2 L
2(Ξ2) dξ, together with the

unitary operator U : L2(R2) 7→ H whose action on smooth and compactly
supported functions is:

(Uψ)(ξ, x) =
∑

e∈Z2

exp [−ik(ξ) · e − iφ(x, e) − ib(e)]ψ(x+ e), (5.37)

here x denotes the position variable (x1, x2) ∈ Ξ2. Formula (5.37) is then
extended by continuity on L2(R2). Its adjoint reads as (e ∈ Z

2):

(U∗ψ)(x+ e) =

∫

Ξ2

dξ′ exp [ik(ξ′) · e + iφ(x, e) + ib(e)]ψ(ξ′, x). (5.38)

It is known (see [J-P], [C-N] and references therein) that for z from the
resolvent set ρ(h0), the resolvent (h0 − z)−1 admits the following integral
kernel K0(x,x

′; z):

K0(x,x
′; z) = eiφ(x,x′) G0(x,x

′; z)

≡ γ(α)

4 π
eiφ(x,x′) e−ψ(x,x′)F(α, 1; 2 ψ(x,x′)) (5.39)

where ψ(x,x′) = ω|x − x′|2/4, α = − (z/ω − 1) /2 6= −1,−2, . . . , γ is the
Euler function, and F(α, β; ζ) is the confluent hyper-geometric function [Ab-
St].
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Take any g ∈ C∞
0 (R2). Since

(

Te(h0 − z)−1g
)

(x) =
(

(h0 − z)−1Teg
)

(x) (5.40)

for any x ∈ R
2 and e ∈ Z

2 , one has:

K0(x,x
′ + e; z) exp (iφ(x′, e)) = exp (iφ(x, e))K0(x − e,x′; z) (5.41)

for any x′ ∈ R2 and for each e′ ∈ Z2 one has

K0(x, x
′ + e′; z) exp (iφ(x′, e′)) = exp (iφ(x, e′))K0(x − e′, x′; z), (5.42)

for any x′ ∈ Ξ2 (notice that φ(x,x) = 0). Take a smooth g ∈ H. Then by
(5.38) and (5.42), we get

{[(h0 − z)−1]U∗g}(x) =
∑

e′∈Z2

∫

Ξ2

dx′
∫

Ξ2

dξ′eik(ξ′)·e′+iφ(x,e′)+ib(e′)

× K0(x − e′, x′; z)g(ξ′, x′) . (5.43)

Then with the help of (5.37) in the above equation, the expression for
{U [(h0 − z)−1]U∗g}(ξ, x) reads as:

∑

e,e′∈Z2

∫

Ξ2

dx′ exp [−iφ(x, e) − ib(e) + iφ(x+ e, e′) + ib(e′)] (5.44)

× K0(x+ e − e′, x′; z) exp [−ik(ξ) · e]

∫

Ξ2

dξ′ exp [ik(ξ′) · e′]g(ξ′, x′) .

Changing the summation over the variable e to f = e−e′, one gets for (5.43)
that:

∑

e′∈Z2

∑

f∈Z2

∫

Ξ2

dx′ exp [−iφ(x, f) − ib(e′ + f) + iφ(f , e′) + ib(e′)]

× K0(x+ f , x′; z) exp [−ik(ξ) · f ] exp [−ik(ξ) · e′]

×
∫

Ξ2

dξ′ exp [ik(ξ′) · e′]g(ξ′, x′). (5.45)

Since by the magnetic flux rationality (5.32) one has −b(e′ + f) + φ(f , e′) +
b(e′) + b(f) ∈ 2πZ, and since

∑

e′∈Z2

exp [−ik(ξ) · e′]

∫

Ξ2

dξ′ exp [ik(ξ′) · e′]g(ξ′, x′) = g(ξ, x′), (5.46)
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we conclude by (5.45) that the resolvent (h0 − z)−1 is is decomposable, and
its fibers are integral operators on L2(Ξ2) with kernels:

K0(ξ; x, x
′; z) =

∑

f∈Z2

exp [−iφ(x, f) − ib(f) − ik(ξ) · f ]K0(x+ f , x′; z). (5.47)

In order to obtain decomposition of the operator h0 into fibers h0(ξ) which
have a common domain (i.e. independent of ξ), one has to “rotate” H with
the unitary operator V defined on each fiber by the multiplication V(ξ, x) =
exp [−ik(ξ) · x]. Let U := VU . Then U(h0 − z)−1U∗ =

∫

Ξ2 dξ[h0(ξ) − z]−1

and

[h0(ξ) − z]−1(x, x′) = exp [−ik(ξ) · x]K0(ξ; x, x
′; z) exp [ik(ξ) · x′]. (5.48)

One can see that the range [h0(ξ) − z]−1C∞
0 (Ξ2) is contained in the restric-

tion to Ξ2 of all C∞(R2)-functions ψ with the property that both ψ(x) and
[−i∇x−a(x)]ψ(x) are invariant with respect to the modified magnetic trans-
lations (5.36). We say that the functions with such property verify “mag-
netic” periodic boundary conditions. Denote this restriction by D. Then the
operator h0(ξ) := [−i∇x − a(x) + k(ξ)]2 with “magnetic” periodic boundary
conditions is essentially self-adjoint on D. Now, if ε > 0, everything remains
true for hε, whose fibers are defined as operator sum:

hε(ξ) = h0(ξ) + εV (x), x ∈ Ξ2. (5.49)

Then from (5.48) and (5.49) we derive (3.17).

As it is well-known (see e.g. [B-E-S]), the orthogonal projectors of h0

corresponding to the n-th Landau eigenvalue ω(2n+1) are integral operators,
with the kernel (see also (5.39) for notations):

P0,n(x,x
′) =

ω

2π
eiφ(x,x′) e−ψ(x,x′)Ln+1(2ψ(x,x′)), (5.50)

where Lm(ζ) is the m-th Laguerre polynomial, with Lm(0) = 1, for any
m ≥ 1.

Then for each fiber h0(ξ) we have h0(ξ) =
∑

n≥0 ω(2n+ 1)P0,n(ξ), where
similar to (5.47) the “free” fiber projectors have the kernels:

P0,n(ξ; x, x
′) =

∑

f∈Z2

exp [−iφ(x, f) − ib(f) − ik(ξ) · (x+ f − x′)]P0,n(x+f , x′; z).

(5.51)
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Notice that the rank r of P0,n(ξ) can be easily obtained from:

r =

∫

Ξ2

dx P0,n(ξ; x, x)

=
ω

2π

∑

f∈Z2

∫

Ξ2

dx exp [−2iφ(x, f) − ib(f) − ik(ξ) · f ]

× exp [−ωf2/4] Ln+1(ωf2/2). (5.52)

Since f = f1e1 + f2e2 ∈ Z2 and x = x1e1 + x2e2 ∈ Ξ2, then −2iφ(x, f) =
2iπN(f1x2 − f2x1). Therefore, the integral

∫

Ξ2

dx exp [−2iφ(x, f)] (5.53)

is zero except for f = 0, when it is equal to |Ξ2| = |e1 ∧ e2|. Then by
virtue of (5.32) we get r = N , for any n ≥ 0. Then if ε > 0 and small
enough, by analytic perturbation theory one obtains that hε(ξ) has in the
neighborhood of each Landau level ω(2n+ 1) exactly N discrete eigenvalues

{λ(n)
j (ε, ξ)}Nj=1. If Pε,n(ξ) is the projector corresponding to each group of

eigenvalues {λ(n)
j (ε, ξ)}Nj=1 and if Sε,n(ξ) is the intertwining unitary:

Sε,n(ξ)Pε,n(ξ) = P0,n(ξ)Sε,n(ξ) ,
then after rotation by Sε,n(ξ) of the “reduced” perturbed Hamiltonian given
by Pε,n(ξ)hε(ξ)Pε,n(ξ), one obtains that its eigenvalues

{λ(n)
j (ε, ξ) =: ω(2n+ 1) + εan,j(ε, ξ)}Nj=1 (5.54)

are localized (up to an error of the order ε2 and uniformly in ξ) in the neigh-
borhood of the eigenvalues of the operator

Ln,ε(ξ) := ω(2n+ 1)P0,n(ξ) + εP0,n(ξ)V P0,n(ξ) .

In the particular case of Section 3.2, when N = 1 (or ω = 2π), one obtains
that the operator Ln,ε(ξ) has only one eigenvalue which differs from 2π(2n+1)
by εan,N=1(ε = 0, ξ), where (see (3.19))

an(ε = 0, ξ) := an,N=1(ε = 0, ξ) =

∫

Ξ2

dx V (x)P0,n(ξ; x, x)

=
∑

f∈Z2

exp [−ib(f) − ik(ξ) · f ] exp [−πf2/2] Ln+1(πf
2)

×
∫

Ξ2

dx V (x) exp [−2iφ(x, f)]. (5.55)
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Denote with

v̂f1,f2 :=

∫

Ξ2

dx1 dx2 e
−2πi(f1x1+f2x2)V (x1, x2)

the Fourier components of V (f1, f2 ∈ Z). Since ω = 2πN and N = 1 then
∫

Ξ2

dx V (x) exp [−2iφ(x, f)] = v̂f2,−f1 .

By virtue of (5.55) we get that
∫

Ξ2

dξ |∇ξan(ε = 0, ξ)|2 =
∑

f∈Z2

f2 exp [−πf2/2] L2
n+1(πf

2) |v̂f2,−f1|2 . (5.56)

If the above quantity is nonzero, then by analyticity of an(ε = 0, ξ) one
obtains that this function is not a constant. For example, if n = 0, then
L1(ζ) = 1 and (5.56) imply that any nonconstant potential εV transforms
(at least for small ε) the unperturbed (ε = 0) Landau fundamental state into
a simple, absolutely continuous spectral band.
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