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Abstract

We consider the problem of estimating P(Y1 + · · · + Yn > x) by
importance sampling when the Yi are i.i.d. and heavy-tailed. The
idea is to exploit the cross-entropy method as a tool for choosing good
parameters in the importance sampling distribution; in doing so, we
use the asymptotic description that given P(Y1 + · · · + Yn > x), n− 1
of the Yi have distribution F and one the conditional distribution of Y

given Y > x. We show in some specific parametric examples (Pareto
and Weibull) how this leads to precise answers which, as demonstrated
numerically, are close to being variance minimal within the parametric
class under consideration. Related problems for M/G/1 and GI/G/1
queues are also discussed.
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1 Introduction

This paper is concerned with importance sampling (IS) and cross-entropy
(CE) techniques for simulating small probabilities, in the presence of heavy-
tailed distributions.

Despite the fact that performance evaluation with heavy tails has re-
ceived considerable attention in recent years, the literature on simulation
methods consists of just a handful papers, in contrast to the light–tailed case
where the number of references is huge. Also, the models and problems for
which satisfying solutions have been developed are quite simple, basically
evaluating P(Y1 + · · ·+ Yn > x) where Y1, . . . , Yn are i.i.d. with common dis-
tribution F concentrated on (0,∞) and heavy-tailed, and n a fixed integer or
an independent random variable, and (closely related) evaluating the tail of
the M/G/1 waiting time distribution; according to the Pollaczek-Khintchine
(PK) formula, this corresponds to taking n above as a geometric r.v.

In the light–tailed case, the intuition behind most efficient algorithms is
that one should perform an i.i.d. change of measure (twist of distribution; say
of Y1, . . . , Yn in the above setting) motivated from an asymptotic description
of the way in which the rare event in question occurs. Heavy tail asymp-
totics, however, usually involves just one or a few big random variables, with
the rest being unaffected by the rare event, cf. e.g. (2) below, and there-
fore one would not apriori expect a good change of measure to be i.i.d. (in
fact, the first efficient algorithm for heavy tails, given in [5], does not even
use importance sampling but a different variance reduction method, namely,
conditional Monte Carlo). Nevertheless, it is found in [6] that the most ob-
vious non–i.i.d. IS schemes do not asymptotically improve the variance, and
a further finding of [6] is that an i.i.d. change of measure may indeed be
efficient. The IS distribution is taken independent of x in [6] but substantial
performance improvements are obtained in [14] by choosing it dependent on
x.

Both in [6] and [14], the change of measure which is asymptotically effi-
cient (in a sense to be made precise in Section 2) is subject to choice within a
rather broad class, in contrast to the light–tailed case where it is essentially
unique, cf. [7] Theorem 17.7. Relevant questions are therefore how sensitive
the performance is to the particular choice, and whether there are general
principles allowing to identify the optimal choice. In Sections 3, 4, we present
numerical examples illustrating the first, and suggest a more theoretical ap-
proach for the second; this has its starting point in the CE method [17] but
also links up with the maximum likelihood method from statistics [18]. The
setting of Section 3 is that of [14], hazard rate twisting, in the two specific
examples of Pareto and Weibull distributions. In Section 4, we study the
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problem of scale twisting in the Pareto case which has not been considered
so far in the literature. Our results essentially indicate that this change of
measure has little promise of leading to algorithms which are more efficient
than existing ones. However, the numerical results support what is maybe
the main message of the paper, that choosing the IS distribution via minimal
CE is a quick and systematic way to find a change of measure which is close
to being variance minimal

The setting of P(Y1 + · · · + Yn > x) is, as noted above, sufficient to deal
with the M/G/1 queue. Nevertheless, a main challenge left by [6, 14] is
to extend to more general models, in particular the GI/G/1 queue (an al-
gorithm is proposed in [10] but unfortunately it applies essentially only to
the Weibull distribution, not to the more standard class of regularly varying
distributions, and further one may object that a truncation step is involved
without explicit bounds allowing to control the error). In [18] and [15] it is
discussed how parametric IS via the CE method can readily give an excel-
lent speed up (variance reduction) for the GI/G/1 queue and more complex
queueing models, for both light and heavy tail distributions. It was not clear
from the numerical results, however, whether in the heavy tail case one gets
polynomial complexity for the GI/G/1 queue. In Section 6 we complement
the counterexamples of [6] by showing in fact the complexity is exponential.
This does of course not contradict the main finding of the rest of the paper,
that in a given setting the CE method does very well in finding the best
change of measure.

The content of the rest of the paper is as follows. Section 2 is a short pre-
liminary on rare events simulation, heavy tails and the cross-entropy method.
Some cruder but sometimes more easily implemented alternative to the CE
method in Section 3 are briefly discussed in Section 5.

2 Preliminaries

We refer to [7] and [12] for general surveys on rare events simulation and
to [11, 3, 1, 20, 18, 15] for heavy tails. The set–up and facts that will be
needed in the paper can be found in these references as well as an abundance
of research articles, and we will therefore only give a brief summary.

2.1 Rare events simulation

We consider a family {A(x)} of events defined on some probability space
(Ω,F , P) and indexed by a parameter x ∈ R, such that z(x) = P(A(x)) → 0
as x → ∞. A Monte Carlo method estimate ẑ(x) of z(x) is obtained by
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simulating N replicates Z1, . . . , ZN of a random variable Z(x) with EZ(x) =
z(x) and letting ẑ(x) be the empirical mean. The traditional measure for

the efficiency of the scheme is the relative error ε(x) =
(
VarZ(x)

)1/2
/z(x),

and the family {Z(x)} is called logarithmically efficient, or for brevity just
efficient, if ε(x) =

(
o(z(x)−δ

)
for any δ > 0; often also the term polynomial

or polynomial time is used.
The crude Monte Carlo method (CMCM) corresponds to Z(x) = I(A(x))

and sampling from the given probability measure P. It has relative error of
order z(x)−1/2 and the CMCM is therefore not efficient. Importance sam-
pling corresponds to Z(x) = WI(A(x)), where now the sampling is done

from a different probability measure P̃ (possibly dependent on x) and W is

the likelihood ratio dP/dP̃. Efficiency or even variance reduction is not guar-
anteed, but there are many examples in the literature where one can indeed
obtain efficiency by an appropriate choice of P̃. The dominant method for
producing such a P̃ is to take P̃ as close as possible to P

(x) = P
(
· |A(x)

)
(the

conditional distribution given the rare event). In particular, this approach
has proved fruitful for light tails where it most often leads to an exponential
change of measure scheme.

2.2 Heavy tails

We consider here a heavy–tailed setting where some underlying distribution
F is subexponential, meaning that the convolution tail F

∗n
(x) satisfies

F
∗n

(x) = P(Y1 + · · ·+ Yn > x) ∼ nF (x) (1)

(here Y1, Y2, . . . are i.i.d. with common distribution F , and a(x) ∼ b(x) means
a(x)/b(x) → 1 as x → ∞). For the intutition behind much of this paper, it
is crucial to note A(x) = {Y1 + · · ·+ Yn > x} occurs by n − 1 of the Yi have
distribution F and one the conditional distribution of Y given Y > x, and all
components being independent. In terms of the order statistics Y(1) < · · · <
Y(n),
∥∥∥P
(
Y(1), . . . , Y(n) ∈ ·

) ∣∣A(x)
∥∥∥ − F ⊗ · · · ⊗ F︸ ︷︷ ︸

n−1

⊗P(Y ∈ · | Y > x) → 0, (2)

see [3] Lemma 5.6 p. 278 (‖ · ‖ = total variation distance).
Our main examples will be Pareto and Weibull distributions, where

F (x) =
1

(1 + x/γ)α
, (3)

F (x) = e−(x/γ)β

, (4)
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respectively; note that γ is just a scale parameter whereas α and β determine
the degree of heavy–tailedness (one needs β < 1 for the Weibull distribution
to be heavy–tailed).

In terms of Λ(x) = − log F (x) and the hazard rate λ(x) = Λ′(x), one may
note that twisting the hazard rate to θλ(x) as in [14] simply means changing
α in (3) and γ in (4).

2.3 The cross–entropy method

The cross-entropy method originated from an adaptive method for estimat-
ing probabilities of rare events in complex stochastic networks [16], and has
quickly evolved into a versatile and unified method for efficient simulation and
combinatorial and multi-extremal continuous optimization, [17, 8, 9, 15, 13].
For our purposes we may view the CE method as a particular implementation
of choosing a good change of measure by making the importance sampling
distribution P̃ look as much alike P

(x) as possible. The idea is to take the
Kullback–Leibler distance

D
(
P

(x), P̃
)

= E
(x) log

dP
(x)

dP̃
(5)

as a measure of closeness and minimize with respect to P̃. The practical im-
plementation in more complex models involves typically a (numerical) mini-
mization problem

min
θ

D(P(x), Pθ), (6)

where we look for P̃ = Pθ not in the set of all absolutely continuous probabil-
ity distributions but rather in a restricted parametric class {Pθ, θ ∈ Θ}. For
example, for the estimation of P(Y1+ · · ·+Yn > x) with a Pareto distribution
as in (3), it is natural to restrict to an i.i.d. change of measure where the
new distribution of Y1, . . . , Yn is again Pareto, only with α, γ changed to α̃, γ̃
(or possibly only one of the parameters changed). If, in general, Y1, . . . , Yn

are i.i.d. random variables with common density fθ(y) with respect to the
Lebesgue measure, then minimization of (6) reduces to the maximization
problem

max
θ

E
(x)

n∑

i=1

log fθ(Yi) . (7)

With rare events, naive numerical optimization of (7) runs into difficulties
because the tilted parameters will typically be far off the given ones, and the
crux of the cross-entropy method is that it provides an adaptive optimization
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algorithm; we will not go into details since the examples of this paper are
simple enough that we can deal directly with the minimization.

It is crucial for the following to note that entropy minimization, as in (6),
is closely related to likelihood maximization in statistics, see [13] and [9]. In
particular, if Y1, . . . , Yn are i.i.d. with common density fθ(y), then the log
likelihood is

n∑

i=1

log fθ(Yi) = n

∫
log fθ(y) Pn(dy) = −nD

(
Pn, Pθ

)
+ const, (8)

where Pn is the empirical distribution. Comparing the minimization problem
(6) with the maximization of (8) shows that maximum likelihood results can
be easily translated into minimum cross-entropy results, by replacing Pn with
P

(x).

3 Parametric cross-entropy minimization —

hazard rate twisting

In this and the next section, we study the estimation of P(Y1 + · · · + Yn >
x) where Y1, . . . , Yn are i.i.d. with common distribution F concentrated on
(0,∞) and heavy-tailed. The method is importance sampling, where one
does not look for the importance sampling distribution F ∗ within the class
of all distributions on (0,∞) but restricts attention to a parametric class
(Fθ)θ∈Θ (θ may be multidimensional). That is, F ∗ = Fθ∗ for some θ∗ ∈ Θ.

Inspired by the classical optimality result in importance sampling, we try
to choose Fθ∗ such that Fθ∗⊗· · ·⊗Fθ∗ is as close as possible to the conditional
distribution of Y1, . . . , Yn given Y1 + · · · + Yn > x. We do this by maximum
likelihood or equivalently minimum cross-entropy, plugging in the asymptotic
form of the conditional distribution given by (2).

3.1 Pareto with γ = 1 fixed

We now take F (x) = (1 + x)−α. Equivalently, the density is f(x) = α(1 +
x)−α−1. We look for F ∗ as another distribution of this form, with parameter
α∗, say.

First, we need to compute the MLE α̂. The log likelihood is n log α −
α
∑n

1 log(1 + yi), which in a straightforward way yields

α̂ =
n∑n

1 log(1 + yi)
=
(∫ ∞

0

log(1 + y)Fn(dy)
)−1

,
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where Fn is the empirical distribution.
The conditional distribution of Y given Y > x has density

α(1 + x)α

(1 + y)α+1
, y > x.

Thus, we take α∗ = 1/Jx, where

Jx =

∫ ∞

0

log(1 + y)
(n − 1

n

α

(1 + y)α+1
+

1

n

α(1 + x)α

(1 + y)α+1
I(y > x)

)
dy

=
n − 1

n α
+

1

n

(
log(1 + x) +

1

α

)

=
log(1 + x)

n
+

1

α
.

It follows that for large x

α∗ ≈ α∗
0 :=

n

log(1 + x)
. (9)

This is to be compared with the suggestion of [14] to take α∗ = b/ log(1 +
x), with b unspecified but arbitrary, and with that of [6] to take F

∗
(x) =

1/ log(1 + x) which has a heavier tail and may be consider as a particular
instance of the boundary case b = 0.

To illustrate the sensitivity to the particular choice of α∗, we performed
a simulation study, taking n = 2 and α = 3/2 (that is, in the range of finite
mean but infinite variance which is often argued to be the one of primary
interest). We considered x = 4 m, 16 m, 64 m, 256 m where m = EY =
1/(α − 1) = 2 and candidates α∗ of the form 2t/2 α∗

0, t ∈ {−6, . . . , 5}, where
α∗

0 is as in (9). For each combination of values of (x, t), R = 10, 000 replicates
of (Y1, Y2) were produced (by inversion of the α∗–c.d.f. and using common
random numbers for fixed x). The IS estimates for P(Y1 + Y2 > x) and the
corresponding 95% confidence intervals are given in Figure 1 with t on the
horizontal axis and P(Y1+Y2 > x) on the vertical; the four panels correspond
to the four x values in lexicographical order. The extra tick on the t axis
correspond to the t–value making α∗ = α, that is, to crude Monte Carlo
simulation.

A number of conclusions to be drawn from this figure are expected: the
efficiency of the IS algorithm deteriorates as α∗ approaches the crude Monte
Carlo value α and goes beyond, and for high values of α∗ the simulation
estimates come out as 0, corresponding to no exceedance of x in the R repli-
cations. Also, the growing width of the confidence intervals as α∗ becomes

7



−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

−10 −5 0 5 10
0

0.005

0.01

0.015

0.02

0.025

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3
x 10

−3

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3
x 10

−4

Figure 1: Estimates of P(Y1 + Y2 > x) for the Pareto case with fixed γ = 1.

small certainly supports some of our (unpublished) numerical studies, that
the choice F

∗
(x) = 1/ log(1 + x) of [6] may well be efficient asymptotically

but not in practical situations.
However, for the present purposes the main conclusion is that indeed

choosing α∗ by (asymptotic) minimal CE appears to be very close to variance
minimality; this is of course crucial for justifying the adaptive CE algorithm
in more comlex situations. Of main interest is also the degree of robustness of
the choice of α∗: it is seen that there is no essential performance degradation
in the interval t ∈ [−3, 2] (at least), meaning α∗ ∈ [0.4α∗

0, 2α
∗
0].

Remark 3.1 The connection to maximum likelihood is suggestive, but of
course entropy minimization can be carried out directly. In this example,
the details are as follows. By taking derivatives, the solution α∗ to (7) is
given as the solution to

E
(x) d

dα

(
n log α − α

n∑

1

log(1 + Yi)

)
= 0,

which is
α∗ =

n

E(x)
∑

i log(1 + Yi)
. 2
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3.2 Weibull with β fixed

We consider the Weibull case F (x) = e−xβ

or equivalently with density
f(x) = βxβ−1e−xβ

for some 0 < β < 1. We write this F as F1 where Fθ

has tail e−θxβ

and look for F ∗ within this class of distributions.
We first need to compute the MLE θ̂ of θ based upon observations y1, . . . , yn.

The density of Fθ is θβxβ−1e−θxβ

so that the log likelihood is

n log θ + n log β + (β − 1)
n∑

i=1

log yi − θ
n∑

i=1

yβ
i .

Differentiating with respect to θ and letting the resulting expression equal to
0, we obtain in a straightforward way that

θ̂ =
n

∑n
1 yβ

i

.

This can be written as (∫ ∞

0

yβFn(dy)
)−1

where as above Fn is the empirical distribution.
The conditional distribution of Y given Y > x has density

βyβ−1e−(yβ−xβ), y > x.

Thus, we take θ∗ = 1/Ix where

Ix =

∫ ∞

0

yβ
(n − 1

n
βyβ−1e−θyβ

+
1

n
βyβ−1e−(yβ−xβ)I(y > x)

)
dy

=
n − 1

n
c +

1

n
cx

where

c =

∫ ∞

0

yββyβ−1e−yβ

dy = 1,

cx =

∫ ∞

x

yββyβ−1e−(yβ−xβ) dy = xβ + 1 .

It follows that for large x

θ∗ ≈
n

xβ
. (10)

This is to be compared with the suggestion of [14] to take β∗ = b/xβ , with b
unspecified but arbitrary, and with that of [6] to take F

∗
(x) regularly varying
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which has a heavier tail and may be consider as a particular instance of the
boundary case b = 0.

We performed a similar simulation study as for the Pareto case, only
replacing the Pareto(α = 3) distribution with the Weibull(β = 1/3) distri-
bution (note that here m = Γ(β)/β). The results are in Figure 2 and the
conclusions are much the same as for the Pareto case. In particular, the θ∗

picked by the CE argument appears to be very close to variance minimal.
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Figure 2: Estimates of P(Y1 + Y2 > x) for the Weibull case with fixed β.

4 Parametric cross-entropy minimization —

scale twisting in the Pareto case

Let F (x) = (1 + x)−α with α > 1 fixed, that is, with density f(x) = α(1 +
x)−(α+1). We look for a change of measure with density α(1 + x/γ)−(α+1)/γ.
The log likelihood is

n log α − n log γ − (α + 1)
∑

log(1 + yi/γ),

so that the MLE γ̂ is determined by

−
n

γ̂
+ (α + 1)

∑ yi/γ̂
2

1 + yi/γ̂
= 0 ;
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that is,
1

1 + α
=

1

n

∑ yi/γ̂

1 + yi/γ̂
=

∫ ∞

0

y/γ̂

1 + y/γ̂
Fn(dy)

(note that the r.h.s. is a decreasing function of γ̂ with limits 1 and 0 at 0,
resp. ∞, so that a solution always exists). Since F (x) has density α(1 +
x)α(1 + y)−α−1, the γ∗ suggested by cross–entropy is determined by

1

1 + α
=

n − 1

n

∫ ∞

0

y/γ∗

1 + y/γ∗
F (dy) +

1

n

∫ ∞

x

y/γ∗

1 + y/γ∗

α(1 + x)α

(1 + y)α+1
dy (11)

There appears to be no closed solution but we computed the numerical one
for α = 3/2, n = 2 and the same x–values as in Section 3.1. These are given
in Table 1.

x 8 32 128 512
γ∗ 7.4 20.2 64.6 233.3

Table 1: Optimal scale parameters for the Pareto case with fixed α = 3/2.

Table 1 suggests that γ∗ ∼ γ∗
0 where γ∗

0 = cx, and we will verify that
indeed the solution of (11) is asymptotically of this form with c the solution
of ∫ ∞

1

1

c + u

α

uα
du =

n

1 + α
(12)

provided that n < 1 + α (as in our example). To this end, note first that
the first integral in (11) goes to 0 as γ∗ goes to ∞. Taking γ∗ = cx and
substituting y = x + xz, the second integral becomes

∫ ∞

x

y

cx + y

α(1 + x)α

(1 + y)α+1
dy =

∫ ∞

0

1 + z

1 + c + z

xα(1 + x)α

(1 + x + xz)α+1
dz

∼

∫ ∞

0

1 + z

1 + c + z

α

(1 + z)α+1
dz =

∫ ∞

1

1

c + u

α

uα
du.

Now just note that a similar consideration as above shows that this can be
put equal to n/(1 + α) for some c if and only if n < 1 + α.

If n > 1 + α, γ∗ does surprisingly not go to ∞ but to γ∗
0 , the solution of

1

1 + α
=

1

n
+

n − 1

n

∫ ∞

0

y/γ∗
0

1 + y/γ∗
0

F (dy) (13)

This follows simply because the second integral in (11) goes to 1 as x → ∞
with γ∗ fixed. As example, we took α = 1/2, n = 2. Since the mean
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x 10 100 1,000 10,000
γ∗ 4.7 9.2 11.3 11.6

Table 2: Optimal scale parameters for the Pareto case with fixed α = 1/2.

is infinite, we cannot use the same x–values as above but considered 10i,
i = 1, 2, 3, 4. The results are displayed in Table 2.

Numerical examples for the two examples are given in Figure 3 (α = 3/2)
and Figure 4 (α = 1/2). They once more shows that minimizing the cross–
entropy works very well for selecting a good IS parameter.
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Figure 3: Estimates of P(Y1+Y2 > x) for the Pareto case with fixed α = 3/2.

There appears to be no theoretical results in the literature concerning
complexity properties of IS using a twist of γ. We next present a set of
results in this direction; the first explains in particular the strange (at a first
look) suggestion of the CE method, to take γ∗

0 bounded if n > α + 1.

Proposition 4.1 Consider an IS scheme given by twisting γ from 1 to γ(x)
for each x and let Z(x, γ(x)) be the corresponding estimators. Assume n >
α + 1 and that the IS is asymptotically no worse than crude Monte Carlo
simulation in the sense that

lim sup
x→∞

VarZ
(
x, γ(x)

)

VarZ(x, 1)
< ∞.
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Figure 4: Estimates of P(Y1+Y2 > x) for the Pareto case with fixed α = 1/2.

Then
lim sup

x→∞
γ(x) < ∞, lim inf

x→∞
γ(x) > 0.

Proof. Assume first that the liminf is 0. By passing to a subsequence if
necessary, one may then assume γ(x) → 0. From

EZ(x, γ(x))2 =

∫
. . .

∫

{y1+···+yn>x}

n∏

i=1

γ(x)(1 + yi/γ(x))α+1

(1 + yi)2α+2
dyi (14)

it follows that

EZ(x, γ(x))2 ≥

∫
. . .

∫

{y1+···+yn>x}

n∏

i=1

γ(x)(yi/γ(x))α+1

(1 + yi)2α+2
dyi

=
1

γ(x)nα

∫
. . .

∫

{y1+···+yn>x}

n∏

i=1

yα+1
i

(1 + yi)2α+2
dyi.

Considering P(Y1+· · ·+Yn > x) for the regularly varying distribution G with
density proportional to yα+1/(1 + y)2α+2 (hence tail of order x−α) shows that
the last integral is of order x−α which is again of the same order as EZ(x, 1)2.
Hence EZ(x, γ(x))2/ EZ(x, 1)2 → ∞. [Note that this part of the proof does
not require n > α + 1].
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If the limsup is ∞, we may similarly assume γ(x) → ∞. Using (14) we
get

EZ(x, γ(x))2

≥

∫
. . .

∫

{y1+···+yn>x}

γ(x)(y1/γ(x))α+1

(1 + y1)2α+2
dy1

n∏

i=2

γ(x)

(1 + yi)2α+2
dyi

= γ(x)n−α−1

∫
. . .

∫

{y1+···+yn>x}

yα+1
1

(1 + y1)2α+2
dy1

n∏

i=2

1

(1 + yi)2α+2
dyi.

Considering P(Y1 + · · · + Yn > x) where Y1 follows the distribution G above
and Y2, . . . , Yn follow the lighter–tailed regularly varying distribution H with
density (2α + 1)/(1 + y)2α+2 shows that the last integral is of order P(Y1 > x)
(cf. [3], Lemma 1.8 p. 255) which in turn has the common order of x−α and
EZ(x, 1)2. Hence EZ(x, γ(x))2/EZ(x, 1)2 → ∞. 2

The next results supports the findings of the CE method in the case
n < α + 1, to take γ(x) of order x.

Corollary 4.1 Consider the setting of Proposition 4.1 with n < α+1. Then
the choice γ(x) = cx is asymptotically optimal in the sense that whenever
lim sup γ(x)/x = ∞ or lim inf γ(x)/x = 0, then

lim sup
x→∞

VarZ
(
x, γ(x)

)

VarZ(x, cx)
= ∞.

Furthermore, VarZ(x, cx) ∼ d(c)/x2α+1−n for some d(c).

Proof. The key step is to show that VarZ(x, γ(x)) is of order h(x) where

h(x) =
1

γ(x)α+1−nxα
+

γ(x)n

x2α+1
. (15)

Indeed, this immediately gives the statement on Varz(x, cx) since both terms
in (15) are of order 1/x2α+1−n when γ(x) is of order x, and further, the first
term is of higher order when lim inf γ(x)/x = 0 and the second of lower order
when lim sup γ(x)/x = ∞.

Combining the two lower bounds in the proof of Proposition 4.1 gives
lim inf VarZ(x, γ(x))/h(x) > 0. To get lim sup < ∞, we use the cr inequality
(a + b)r ≤ 2r(ar + br) with r = α + 1, a = 1, b = yi/γ(x) to conclude as in
the last part of the proof of Proposition 4.1 that

EZ(x, γ(x))2 ≤ γ(x)n
n∑

k=0

ckγ(x)−k(α+1)
Pk(Y1 + · · ·+ Yn > x)

14



where Y1, . . . , Yn are i.i.d. under Pk with distribution G of Y1, . . . , Yk and
H of Yk+1, . . . , Yn. The result now follows by noting that (se again [3])
Pk(Y1 + · · · + Yn > x) is of order x−2α−1 for k = 0 and x−α for k > 0 (thus
the k = 2, . . . , n terms are dominated by the k = 1 term). 2

The results above support the usefulness of the CE method in picking a
good change of measure also for IS using twist of γ. However, for the idea of
twisting γ they are pessimistic since one only can achieve variance reduction
under the condition n < α+1 which is rather unnatural for any given α, not
least in the important range α < 2 (infinite variance). Furthermore, even if
n < α + 1 the order of VarZ(x, cx) is always higher than x−2α in the non–
trivial case n > 1 so that the complexity can never be polynomial. These
negative observations are further supported by:

Corollary 4.2 Consider IS for the M/Pareto/1 queue using simulation from
the PK formula with twisted γ and let ZPK

(
x, γ(x)

)
denote the correspond-

ing estimator. Then no choice of the γ(x) can achieve asymptotic variance
reduction. That is, one always has

lim inf
x→∞

VarPK(Z(x, γ(x))

VarPK(Z(x, 1)
> 0.

Proof. Just note that the algorithm means estimating the tail P(W > x) of
the stationary waiting time W by ZPK(x, 1) = I(Y1 + · · · + YN > x) where
the Yi follow the integrated tail distribution (which is Pareto with α changed
to α− 1) and N is an independent geometric r.v. Thus, from above we have
that the contribution to VarPK(Z(x, γ(x)) from the event N > 1 + α is of
the same order as VarPK(Z(x, 1)). 2

In conclusion, twisting γ may provide some modest variance reduction
for a given x but a twist of α appears the more promising approach.

5 Other ideas for selecting IS parameters

A familiar idea from statistics is to replace ML estimation by the often simpler
device of moment fitting. As a simple example, consider the Pareto case with
γ = 1 fixed as in Section 3.1. Here

EαY =
1

α − 1
, Eα[Y | Y > x] =

αx + 1

α − 1
,
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so that the moment method suggest to determine the α∗ for importance
sampling by means of

1

α∗ − 1
= Eα∗Y =

n − 1

n
EαY +

1

n
Eα[Y | Y > x]

=
n − 1

n

1

α − 1
+

1

n

αx + 1

α − 1
,

i.e.

α∗ =
α(n + x)

n + α x
.

Thus α∗ → 1 which cannot lead to polynomiality. The simplicity of this
example thus indicates that the moment method is unlikely to become useful.

Yet another idea is to make the Pα∗-distribution of Y1, . . . , Yn alike the
P

(x)–distribution by equating to 1 the expected number of Yi with Yi > x.
In the same Pareto example, this gives n/xα∗

= 1, i.e. α∗ = log n/ log x. For
the Weibull example in Section 3.2, one gets γ∗ = log n/xβ. Thus, in both
cases the asymptotic forms are b/ log F (x) as in [14] so that polynomiality
holds. However, the numerical results above indicate that cross–entropy
minimization is superior in terms of finding the optimal b.

Finally, in the Pareto scale example in Section 4, one gets γ∗ = x/(n1/α−
1).

6 Exponential complexity for P(τ (x) < ∞) for

the GI/G/1 queue

Let Sn = X1 + · · · + Xn be a random walk (RW) such that Xk = Uk − Tk

where the Uk are i.i.d. with tail (1+x)−α or equivalently with common density
fα(x) = α/(1 + x)α+1 for some α > 1 and the Tk are i.i.d. (and independent
of the Uk) with mean ET > 1/(α − 1) so that EX < 0 and P(τ(x) < ∞) ∼
c/xα−1 where τ = τ(γ) = inf{n : Sn > γ}, see e.g. [4] Theorem 9.1 p. 296
(P(τ(x) < ∞) is also the probability that the waiting time exceeds x in the
GI/G/1 queue).

Let α∗ = α∗(x) be candidates for the IS parameter, satisfying Pα∗
(τ <

∞) = 1 (that is, α∗ ≤ α0 where α0 = 1 + 1/ET ). The IS estimator is

Z∗ = Z∗(x) =

τ∏

n=1

fα(Un)

fα∗
(Un)

.

Theorem 6.1 Assume that EerT < ∞ for some r > 0. Then the estimator
Z∗ cannot be polynomial for any choice of α∗ = α∗(x) ≤ α0.
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Lemma 6.1 Eα∗
Z2

∗ = E2α−α∗

[
cτ ; τ < ∞

]
where c =

α2

α∗(2α − α∗)
.

Proof. The argument is a small extension of similar steps in [6], [14] and [19],
but is given here for the sake of completeness. Let E

t be the conditional
expectation given T1 = t1, T2 = t2, . . . and

Ak =
{

(u1, . . . , uk) :
k∑

n=1

(un − tn) > x,
∑̀

n=1

(un − tn) ≤ x for ` < k
}
.

Then

E
t

α∗

Z2
∗ =

∞∑

k=1

E
t

α∗

[ k∏

n=1

f 2
α(Un)

f 2
α∗

(Un)
; τ = k

]

=

∞∑

k=1

∫
. . .

∫

Ak

k∏

n=1

f 2
α(un)

f 2
α∗

(un)
fα∗

(u1) . . . fα∗
(uk) du1 . . . duk]

=
∞∑

k=1

∫
. . .

∫

Ak

k∏

n=1

α2

α∗(1 + un)2α−α∗+1
du1 . . . duk]

=
∞∑

k=0

ck

∫
. . .

∫

Ak

f2α−α∗
(u1) . . . f2α−α∗

(uk) du1 . . . duk

=

∞∑

k=1

ck
P

t

2α−α∗

(τ = k) = E
t

2α−α∗

[
cτ ; τ < ∞

]
.

Integrating T1 = t1, T2 = t2, . . . out, the result follows. 2

Proof of Theorem 6.1. Let Gn = σ
(
U1, . . . , Un−1, T1, . . . , Tn

)
, Bk = {T1 +

· · · + Tk ≤ kµ}. Then for each k,

Eα∗
Z2

∗ ≥ ck
P2α−α∗

(τ = k)

= ck
P2α−α∗

(
τ > k − 1, U1 + · · ·+ Uk > x + T1 + · · ·+ Tk

)

≥ ck
P2α−α∗

(
τ > k − 1, U1 > x + T1 + · · · + Tk, Bk

)

≥ ckF (x + kµ)P2α−α∗

(
τ > k − 1, Bk

)

≥ ckF 2α−α∗
(x + kµ)

[
P2α−α∗

(τ > k − 1) − P(Bc
k)
]
.

Choose µ > ET . Then the assumption EerT < ∞ implies by standard large
deviations estimates (e.g. [4] p. 355) that P(Bc

k) goes to 0 exponentially fast.
Further, since 2α − α∗ ≥ 2α − α0 ≥ α, P2α−α∗

(τ > k − 1) is bounded from
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below by Pα(τ > k − 1) ≥ Pα(τ = ∞) which goes to 1 as k → ∞. Taking
k = k(x) = x, we get the asymptotic lower bound

cxF 2α−α∗

(
x(1 + µ)

)
≥ cx 1

(
1 + x(1 + µ)

)2α

for EZ2
∗ which rules out polynomiality since c > 1 (note that the quadratic

α∗(2α− α∗) attains it maximum α2 at α∗ = α so that a lower bound for the
α∗ in question is α0(2α − α0) < α2). 2

For the switching regenerative estimator, consider now τ s = τ ∧ τ− where
τ− = inf{n > 0 : Sn ≤ 0} is the descending ladder epoch.

Theorem 6.2 Assume that EerT < ∞ for some r > 0. Then the estimator

Zs
∗ = I(τ < τ−)

τs∏

n=1

fα(Un)

fα∗
(Un)

for P(τ < τ−) cannot be polynomial for any choice of α∗ = α∗(x) ≤ α0.

Proof. It is shown in [2] that P(τ < τ−) ∼ Eτ−/(1 + x)α. Exactly as above,

Eα∗Zs
∗ ≥ ckF (γ + kµ)P2α−α∗

(
τ s > k − 1, Bk

)

≥ ckF (γ + kµ)
[
P2α−α∗

(τ > k − 1) − P2α−α∗
(τ− > k − 1) − P(Bc

k)
]
.

Here the second term in [· · · ] is uniformly small in α∗ for large k, and the
proof is completed exactly as above. 2

Let next F = F1 where Fθ is the Weibull distribution with tail e−θxβ

where 0 < β < 1 is fixed. Let θ0 < 1 correspond to 0 drift and consider a
change of measure where the IS distribution is Fθ∗ = Fθ∗(x) where θ∗ ≤ θ0.

Theorem 6.3 The IS scheme given by the θ∗ cannot be polynomial, neither
for P(τ < ∞) nor for P(τ < τ−).

Proof. From fθ(x) = θβxβ−1e−θxβ

we get

f 2
1 (x)

fθ∗(x)
=

1

θ∗
βxβ−1e−(2−θ∗)xβ

=
1

θ∗(2 − θ∗)
f2−θ∗(x).

With c = 1/θ∗/(2− θ∗), we have c ≤ 1/θ0/(2− θ0) < 1 because of θ0 < 1 and
get as before

Eα∗
Z2

∗ = E2−θ∗

[
cτ ; τ < ∞

]
≥ ck

P2θ−θ∗(τ = k)

≥ ckF 2θ−θ∗(x + kµ)
[
P2θ−θ∗(τ > k − 1) − P(Bc

k)
]

≥ cke−(2θ−θ∗)(x+kµ)β[
P2θ−θ∗(τ > k − 1) − P(Bc

k)
]
.
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Taking k = xα where 1 − β < α < 1, one has P2θ−θ∗(τ > k − 1) → 1, cf.
[4] Th. 6.5 p. 405, and the rest of the argument is now precisely as for the
Pareto case. 2

Remark 6.1 [10] shows polynomiality of the same algorithm truncated to
terminate at latest at time cx1−β for some large c. Of course, this is no
contradiction, cf. the way k was chosen in the proof. 2
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