
MaPhySto
The Danish National Research Foundation:
Network in Mathematical Physics and Stochastics

Lecture Notes
no. 14 May 2004

Peter Gaenssler

and Daniel Rost:

Empirical and Partial-sum

Processes; Revisited as Random

Measure Processes

ISSN 1398-2699



MaPhySto
Centre for Mathematical
Physics and Stochastics

Summer School on

Empirical Processes

University of Aarhus, 9-20 August 1999

Prinicipal Course on

EMPIRICAL AND PARTIAL - SUM PROCESSES
REVISITED AS RANDOM MEASURE PROCESSES

by Peter Gaenssler (Munich)

BASED ON THE PRESENT

Lecture Notes
by

Peter Gaenssler and Daniel Rost

Mathematical Institute

University of Munich

Theresienstrasse 39

D-80333 Munich

Germany

Second edition



Preface

The interest of the first author of the present Lecture Notes in empirical process theory arose after

having studied Ron Pyke’s beautiful survey [Py72] on Empirical Processes where Ron underlines his

view that “the development of empirical processes provides an excellent illustration of the interplay be-

tween statistics and probability and of increased sophistication of mathematical techniques which have

been introduced into these disciplines in recent years.” Since then the theory of empirical processes

has grown in an enormous way initiated by Dudley’s [Du78] fundamental paper and culminating in

his book [Du99]. Also the books of Shorack-Wellner [Sh86] and van der Vaart-Wellner [Va96] together

with Pollard [Po84],[Po90] and the overview given by Giné [Gi96] confirm Pyke’s early view in a very

impressive way.

In view of the large literature on empirical processes which have appeared in recent years, the present

Lecture Notes will only cover a small amount of the subject. Our approach in revisiting Empirical and

Partial-Sum Processes as so-called Random Measure Processes had its origin in the papers by Pyke

[Py84] and Ossiander-Pyke [Os85].

We hope to raise with our presentation further interest in empirical process theory.

Munich, July 1999 Peter Gaenssler and Daniel Rost

Preface to the second edition

The present extended version of our Lecture Notes, first published as MaPhySto Lecture Notes no. 5

in August 1999, is based on Lectures by the first author given at the Ludwig-Maximilians-University

in Munich during the Summer-term 2001. Compared with the first edition the additional sections

are marked by an asterik; besides of the opening Section 0 and the closing Section 8 the additional

sections are slight modifications of results as presented in Duembgen [Due00].

Munich, September 2003 Peter Gaenssler and Daniel Rost
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0 To open the door by examples

This section is to present some typical examples in order to demonstrate how general empirical process

theory (to be presented in the following sections) works w.r.t. applications in (nonparametric) statistics

(cf. [Al85] and [We92]).

Let ξi, i ∈ N, be independent identically distributed (i i d) random elements (re’s) in an arbitrary

measurable space X = (X,X ) with law ν ≡ L{ξ} on X , the ξi’s being defined as coordinate projections

on the probability space (≡ p-space)

(Ω,A,P) :=
(

XN,XN ≡
⊗

N

X , νN ≡
⊗

N

ν
)

,

i.e. in the i i d - case we always impose this so-called canonical model as underlying p-space.

In general, ξ is called a re in X = (X,X ) :⇐⇒ ∃ p-space (Ω,A,P) such that (s.t.) ξ : Ω −→ X is

A,X -measurable, i.e. ξ−1(B) ∈ A ∀B ∈ X , where

ξ−1(B) := {ω ∈ Ω : ξ(ω) ∈ B} ≡ {ξ ∈ B}.

Let νn be the empirical measure based on ξ1, ..., ξn, i.e.

(0.1) νn(B) := n−1
∑

j≤n
δξj (B) , B ∈ X .

where δx denotes the Dirac measure in x ∈ X, i.e.

δx(B) :=

{

1 , if x ∈ B
0 , if x ∈ {B ≡ X\B

.

The nth empirical process βn = (βn(B))B∈X is defined by

βn(B) := n1/2
(
νn(B)− ν(B)

)
;

thus βn(B) is the normalized deviation from its expected value of the fraction of the random points

ξ1, ..., ξn which fall into B

××
×

×
× ×

×
B

X

ξ·
E(νn(B)) =

n−1
∑

j≤nE(δξj (B)) =

n−1
∑

j≤n P(ξj ∈ B) = ν(B)

More generally, given a measurable function f : X −→ R and a signed measure Q on X , let Q(f) :=
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∫

X

f dQ; in this way, given a class F of measurable functions f : X −→ R, βn may be viewed as a

stochastic process βn = (βn(f))f∈F indexed by F , with

βn(f) :=

∫

X

f dβn = n−1/2
∑

j≤n

(

f(ξj)− E(f(ξj))
)

.

(Note that for Q := νn − ν we have

Q(f) = (νn − ν)(f) = νn(f)− ν(f)

=

∫

X

f dνn − ν(f) = n−1
∑

j≤n

(
f(ξj)− ν(f)

)

= n−1
∑

j≤n

(

f(ξj)− E(f(ξj))
)

,

since, by the transformation theorem ([Gae77], 1.10.4)

E(f(ξj)) :=

∫

Ω

f(ξj(ω)) P(dω) =

∫

X

f(x) ν(dx) = ν(f) ).

βn may also be viewed as a process indexed by some class C ⊂ X ; taking (X,X ) = (R,B) and

C := {(−∞, t] : t ∈ R}

makes βn equivalent to the normalized empirical distribution function (edf)

(

n1/2(Fn(t)− F (t))
)

t∈R
,

where Fn(t) := n−1
∑

j≤n δξj ((−∞, t]) and F (t) := P(ξj ≤ t) = ν((−∞, t]), t ∈ R. By identifying sets

with indicator functions, however, we may consider, when desired, also indexing by functions (see 4.3.

below).

Part of what makes function-indexed empirical processes of interest to statisticians is that many

statistics of interest can be expressed as functionals of such processes.

For example, if, as before, βn is indexed by C = {(−∞, t] : t ∈ R}, then

h(βn) := sup
C∈C
|βn(C)| = sup

t∈R

n1/2|Fn(t)− F (t)|,

with Fn being the empirical distribution function based on the random variables (rv’s) ξ1, ..., ξn with

df F , is the Kolmogorov-Smirnov statistic.

If βn = (βn(f))f∈F , indexed by some class F , converges weakly (L - convergence), in a sense to be

described below in Section 2.3, to a Gaussian process Gν = (Gν(f))f∈F (βn
L−→

sep
Gν), then the limit

distribution of any statistic h(βn) will be immediately identified as the distribution of h(Gν) at least

for “nice” h; see the Continuous Mapping Theorem (CMT) 2.3.16 below).
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For example, Donsker’s (1952) Functional Central Limit Theorem (FCLT) states (see Theorem 1.1.6

below) that the uniform empirical process αn = (αn(t))t∈[0,1] converges weakly (in law) to a Brownian

bridge B◦ = (B◦(t))t∈[0,1], which shows the limit distribution of the Kolmogorov-Smirnov statistic to

be that of sup
t∈R

|B◦(t)|.
Thus for ν ≡ U [0, 1] (uniform distribution on [0, 1]) and C := {[0, t] : t ∈ R} the process Gν =

(Gν(C))C∈C is given by Gν(C) = B◦(t) for C = [0, t].

In general, Gν = (Gν(f))f∈F is an mean-zero Gaussian process with the same covariance structure as

βn = (βn(f))f∈F , i.e. cov(Gν(f), Gν(g)) = ν(f · g)− ν(f) · ν(g) for f, g ∈ F .

All of this motivates the study of empirical processes. This will be done in the more general context

of the so-called Random Measure Processes (RMP) to cope at the same time with another class of

important processes in probability theory, namely the partial-sum processes with either fixed or random

locations (see Section 3 below).

Now, we are going to present some examples towards applications in Nonparametric Statistics where

general empirical process theory proves to be an efficient and useful tool:

0.2. Example.

In dimension d = 1, the Kolmogorov-Smirnov statistic is a natural way to measure the distance between

νn and ν. In dimension d > 1 however, the analogue

sup
t∈Rd

n1/2
∣
∣Fn(t)− F (t)

∣
∣,

is less natural. It corresponds to the class

C := {(−∞, t] : t ∈ Rd}

of “lower left orthants” having few symmetries and giving special preference, for no good reason, to

the “lower left” direction in which all coordinates approach −∞.

The statistic sup
C∈C

n1/2|νn(C)−ν(C)| for a class C with more symmetries, e.g. the class of all half spaces,

or all ellipsoids if ν is normal, seems more natural (cf. the Remarks after Theorem 2.1.6 below).

0.3. Example.

An M-estimator ϑ̂n for an unknown parameter ϑ ∈ Θ ⊂ Rd, d ≥ 1, is obtained by choosing ϑ̂n to

minimize an expression of the form

(0.4)
∑

j≤n
γ(ξj , ϑ)

for some function γ : X × Θ −→ R and given i i d re’s ξj in (X,X ), j ∈ N, with law ν ≡ L{ξj} =

Q1,ϑ0, ϑ0 ∈ Θ, being the true but unknown parameter; again the ξj’s are considered as coordinate

3



projections on the p-space (Ω,A,P) :=
(

XN,XN,
⊗

N

Q1,ϑ0

)

. The true parameter ϑ0 is considered to be

that which minimizes

(0.5)

∫

X

γ(x, ϑ)Q1,ϑ0(dx);

γ might, for example, be the negative of the log likelihood in case of Maximum Likelihood Estimators

(MLE’s).

In many situations estimators that minimize a certain expression like (0.4) also solve a system of

equations:

In particular, in the i i d case as before, let ϑ̂n satisfy the equation

(0.6)
∑

j≤n
ψ(ξj , ϑ) = 0;

ψ might, for example, be the derivative of the log likelihood in case of MLE’s ϑ̂n.

Solutions of (0.6) are called Z-estimators (from “zero”) for ϑ0 being a solution of

(0.7) H(ϑ) :=

∫

X

ψ(x, ϑ)Q1,ϑ0(dx) = 0.

(in (0.5) and (0.7) it is tacitly assumed that the integrals exist.)

We note that in the literature sometimes the name M-estimator is (also) used for what van der Vaart

and Wellner ([Va96] call Z-estimator and the distinction between the different types of estimators is

not always made.

Note also that (0.6) is the empirical analogue of (0.7) replacing in (0.7) the true underlying p-measure

by the empirical measure νn based on the observations ξ1, ..., ξn (known as “plug-in-method”), i.e.

(0.6) is equivalent to

(0.6)′
∫

X

ψ(x, ϑ)νn(dx) = 0.

We are going to prove ASYMPTOTIC NORMALITY OF THE SEQUENCE (ϑ̂n)n∈N of Z- (M-)

ESTIMATORS via general empirical process theory:

For this, let ψϑ(x) := ψ(x, ϑ) and F := {ψϑ : ϑ ∈ Θ0}, where Θ0 ⊂ R is some compact neighborhood

of ϑ0, and consider the empirical F-process βn = (βn(f))f∈F , where

βn(f) := n−1/2
∑

j≤n

(

f(ξj)− E(f(ξj))
)

.

Assume the following three conditions to hold (where
P−→ denotes convergence in probability):

(0.8) ϑ̂n
P−→ ϑ0

4



(i.e. weak consistency of (ϑ̂n)n∈N)

(0.9) βn
L−→

sep
β0

where β0 = (β0(f))f∈F is a stochastic process with sample paths in U b(F , d) := {x : F −→ R : x

bounded and uniformly d-continuous } with d(ψϑ, ψϑ′) := ||ϑ − ϑ′|| (|| · || denoting the Euclidian

norm in Rd)

(0.10) H is differentiable on Θ0 with continuous derivative H ′ and H ′(ϑ0) 6= 0.

Then

(0.11) n1/2(ϑ̂n − ϑ0)
L−→ N

(
0,

σ2

[H ′(ϑ0)]2
)
,

where σ2 :=
∫

X

ψ2(x, ϑ0)Q1,ϑ0(dx) (tacitely assuming that σ2 > 0).

(0.9) constitutes a Functional Central Limit Theorem (FCLT) for the empirical process βn indexed

by F . Such a theorem holds e.g., if the “size of F” is not too large, e.g., if F is a so-called Vapnik-

Chervonenkis graphclass (VCGC) and if the metric d is equivalent to the pseudometric

d(2)
ν (ψϑ, ψϑ′) :=

[ ∫

X

(
ψ(x, ϑ)− ψ(x, ϑ′)

)2
Q1,ϑ0(dx)

]1/2

being the case under weak smoothness conditions on ψ(x, · ).
(cf. Sections 4.3 and 7.3 below).

Now, according to a CHARACTERIZATION THEOREM OF L-CONVERGENCE (see Theorem

2.3.9 below) condition (0.9) implies the so-called ASYMPTOTIC EQUICONTINUITY CONDITION

(AEC)

(0.12) ∀ ε, η > 0 ∃ δ = δ(ε, η) > 0 and ∃ n0 = n0(ε, η) ∈ N such that ∀ n ≥ n0

P∗
(

sup
ϑ,ϑ′∈Θ0,||ϑ−ϑ′||≤δ

∣
∣βn(ψϑ)− βn(ψϑ′)

∣
∣ ≥ ε

)

≤ η

(P∗ denotes outer probability, defined for any A ⊂ Ω by P∗(A) := inf{P(B) : A ⊂ B,B ∈ A}.)
As we will see, (0.12) will be crucial in proving (0.11).

PROOF of (0.11). Let ε, η > 0 be arbitrary and choose δ > 0 such that {ϑ : ||ϑ − ϑ0|| ≤ δ} ⊂ Θ0

and (0.12) holds; then

P

(∣
∣βn(ψϑ̂n)−βn(ψϑ0)

∣
∣ ≥ ε

)

≤ P

({∣
∣βn(ψϑ̂n)−βn(ψϑ0)

∣
∣ ≥ ε

}

∩
{
||ϑ̂n−ϑ0|| ≤ δ

})

+P(||ϑ̂n−ϑ0|| > δ),

where P(||ϑ̂n − ϑ0|| > δ) −→
n→∞

0 by (0.8).

Thus

lim sup
n→∞

P

(∣
∣βn(ψϑ̂n)− βn(ψϑ0)

∣
∣ ≥ ε

)

≤ lim sup
n→∞

P∗
(

sup
ϑ,ϑ′∈Θ0,||ϑ−ϑ′||≤δ

∣
∣βn(ψϑ)− βn(ψϑ′)

∣
∣ ≥ ε

)

≤
(0.12)

η

5



for all η > 0, whence

(+) βn(ψϑ̂n)− βn(ψϑ0)
P−→ 0.

Now, noticing that H(ϑ0) = 0 by (0.7), we get by the definition of H(ϑ):

n1/2(H(ϑ̂n)−H(ϑ0)) = n1/2

∫

X

ψ(x, ϑ̂n)Q1,ϑ0(dx).

Since, by (0.6)′
∫

X

ψ(x, ϑ̂n)νn(dx) = 0 we get

n1/2(H(ϑ̂n)−H(ϑ0)) = −
[

n1/2

∫

X

ψ(x, ϑ̂n)νn(dx)

︸ ︷︷ ︸

=n−1
∑

j≤n
ψ
ϑ̂n

(ξj)

−n1/2

∫

X

ψ(x, ϑ̂n)Q1,ϑ0(dx)

︸ ︷︷ ︸

=E(ψ
ϑ̂n

(ξ1)) = n−1
∑

j≤n
E(ψ

ϑ̂n
(ξj)),

where the expectation E is only

taken w.r.t. the ξi’s

]

,

i.e.

n1/2(H(ϑ̂n)−H(ϑ0)) = −n−1/2
∑

j≤n
(ψϑ̂n(ξj)− E(ψϑ̂n(ξj))

= −βn(ψϑ̂n)
= − [βn(ψϑ̂n)− βn(ψϑ0)]

︸ ︷︷ ︸

P−→0 by (+)

−βn(ψϑ0)

= −βn(ψϑ0) + oP(1).

(In this context, for a sequence (ηn)n∈N of random variables (rv’s) defined on a common p-space

(Ω,A,P)

ηn = oP(1) :⇐⇒ ηn
P−→ 0 . )

Therefore, we have shown

n1/2(H(ϑ̂n)−H(ϑ0)) = −βn(ψϑ0) + oP(1)

and, since by the classical CLT

−βn(ψϑ0) = −n−1/2
∑

j≤n

[
ψ(ξj , ϑ0)− E(ψ(ξj , ϑ0))

] L−→ N (0, σ2)

with σ2 :=
∫

X

ψ2(x, ϑ0)Q1,ϑ0(dx) (tacitly assuming σ2 > 0), we have

(++) n1/2(H(ϑ̂n)−H(ϑ0))
L−→ N (0, σ2).

6



Now (0.11) follows easily from

n1/2(H(ϑ̂n)−H(ϑ0)) = n1/2H ′(ϑ∗n)(ϑ̂n − ϑ0),

where ϑ∗n is between ϑ̂n and ϑ0, using (++) and a Cramér-Slutzky theorem (note that by (0.8) and

the continuity of H ′ we have

H ′(ϑ∗n)
P−→ H ′(ϑ0) 6= 0 ).

2

0.3 Example - continued.

Concerning Huber’s paper [Hu67], the crucial step in establishing Asymptotic Normality of Maximum

Likelihood Estimators ϑ̂n is proving that for some d0 > 0 (with ϑ0 ∈ Θ ⊂ Rd, d ≥ 1, being the true

but unknown parameter and again with || · || denoting the Euclidian norm)

(0.13) sup
||τ−ϑ0||≤d0

Zn(τ, ϑ0)
P−→ 0,

where Zn(τ, ϑ) := βn(ψτ−ψϑ)

1+n1/2|ν(ψτ−ψϑ)| (see Huber’s Lemma 3). As Pollard has observed, under Huber’s

assumptions, the crucial condition (0.13) holds, whenever

(0.14) βn
L−→
sep

Gν

where βn = (βn(f))f∈F and Gν = (Gν(f))f∈F are indexed by

F := {ψτ : ||τ − ϑ0|| ≤ d0}.

Let us postpone here again what
L−→
sep

means (cf. Section 2.3).

One PROOF is as follows:

Huber’s assumptions readily imply that for some positive constants a, b and all τ with ||τ − ϑ0|| ≤ d0

(*) |ν(ψτ − ψϑ0)| ≥ a||τ − ϑ0||, and

(**) ν(ψτ − ψϑ0)
2 ≤ b||τ − ϑ0||.

Therefore, for any ε > 0 and M <∞

ν( sup
||τ−ϑ0||≤d0

|Zn(τ, ϑ0)| > ε) ≤ ν
(

sup
||τ−ϑ0||≤d0

{

|βn(ψτ − ψϑ0)| : |ν(ψτ − ψϑ0)| ≤
M

εn1/2

}

> ε
)

+ ν
(

sup
||τ−ϑ0||≤d0

{

|βn(ψτ − ψϑ0)| : |ν(ψτ − ψϑ0)| >
M

εn1/2

}

> M
)

≤ ν
(

sup
||τ−ϑ0||≤d0

{

|βn(ψτ )− βn(ψϑ0)| : ν(ψτ − ψϑ0)
2 ≤ bM

a εn1/2

}

> ε
)

+ ν
(

sup
||τ−ϑ0||≤d0

|βn(ψτ )| >
M

2

)

.
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(Note: |ν(ψτ − ψϑ0)| ≤ M
εn1/2 =⇒ ν(ψτ − ψϑ0)

2 ≤
(∗∗)

b||τ − ϑ0|| ≤
(∗)

b |ν(ψτ−ψϑ0
)|

a ≤ b
a

M
εn1/2 −→

n→∞
0.)

But weak convergence of βn (i.e. βn
L−→

sep
Gν) implies that (βn)n∈N is stochastically bounded (cf. [St94],

1.6) whence, since M is arbitrary, the term ν( sup
||τ−ϑ0||≤d0

|βn(ψτ )| > M
2 ) can be made arbitrarily small

as n→∞.

Concerning the other term, the same holds as n→∞ due to the (AEC) (with d replaced by d
(2)
ν ; cf.

2.3.12 below). Thus (0.13) is shown. 2

In the next example we will see that by a result of Ossiander ([Os87]) βn
L−→

sep
Gν (indexed by F) (i.e.

(0.14) holds true under Huber’s assumptions). In this way Huber’s result follows fairly directly from

a FCLT for function-indexed empirical processes.

0.15. Example.

We are going to prove (0.14), i.e. βn
L−→
sep

Gν, where the processes βn, n ∈ N, and Gν are indexed by

F := {ψτ : ||τ − ϑ0|| ≤ d0}

(ψτ := ψ(· , τ)).

Suppose that the function

u(x, ϑ, r) := sup
τ : ||τ−ϑ||≤r

|ψτ (x)− ψϑ(x)|

(assumed to be measurable as a function in x) satisfies Huber’s critical assumption

(+) ν(u(· , ϑ, r)2) ≤ cr ∀ r > 0 and ∀ ||ϑ− ϑ0|| ≤ d0 for some c > 0.

Fix ε > 0 and let τ1, ..., τN(ε) be points in Θ0 := {τ : ||τ − ϑ0|| ≤ d0} such that ∀ τ ∈ Θ0 ∃ τi, 1 ≤
i ≤ N(ε) s.t. ||τ − τi|| ≤ ε2

4c .

The number N(ε) of points needed is of order O(ε−2d) as ε→ 0 in case Θ ⊂ Rd. Now, if ||τ −τi|| ≤ ε2

4c ,

then, by the definition of u (with r := ε2

4c)

fl(x) := ψτi(x)− u(x, τi,
ε2

4c
) ≤ ψτ (x) ≤ ψτi(x) + u(x, τi,

ε2

4c
) =: fu(x)

where

d(2)
ν (fl, fu)

2 := ν(|fu − fl|2) = ν
(

[2u(· , τi,
ε2

4c
)]2

)

≤
(+)

4c
ε2

4c
= ε2,

whence d
(2)
ν (fl, fu) ≤ ε. Therefore

N [ ](ε,F , d(2)
ν ) ≤ N(ε) = O(ε−2d) as ε→ 0,

whence

(++)

1∫

0

(
logN [ ](ε,F , d(2)

ν )
)1/2

dε <∞.
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Here, given a class F of measurable functions f : X −→ R, suppose that for each ε > 0 there exists

a finite collection F(ε) of measurable functions on X s.t. for each f ∈ F there are functions fl, fu in

F(ε) with fl ≤ f ≤ fu s.t. d
(2)
ν (fl, fu) ≤ ε, where d

(2)
ν (fl, fu) = ν(|fu − fl|2)1/2.

The minimal cardinality of such a collection F(ε) is denoted by

N [ ](ε,F , d(2)
ν )

and the function logN [ ](· ,F , d(2)
ν ) is called METRIC ENTROPY WITH BRACKETING OF F w.r.t.

the metric d
(2)
ν .

Now, by a fundamental result of Ossiander ([Os87]) (++) implies that the empirical process βn =

(βn(f))f∈F indexed by F converges weakly (in law) to Gν (βn
L−→

sep
Gν) (cf. [Gee00], Theorem

6.3), where Gν = (Gν(f))f∈F is a mean-zero Gaussian processes with sample paths in the space

U b(F , d(2)
ν ) := {x : F −→ R : x bounded and uniformly d

(2)
ν -continuous}

and the covariance structure given by cov(Gν(f1) , Gν(f2)) = ν(f1 ·f2)−ν(f1) ·ν(f2), fi ∈ F , i = 1, 2;

(cf. also Theorem 7.3.5 below).

This, as said before, provides the crucial step in [Hu67] to proving asymptotic normality of Maximum

Likelihood Estimators.

0.16. Example (Pollard’s k-means clustering procedure, to be considered in more detail in Section

4.3 A below).

Given data points x1, ..., xn ∈ X = Rd viewed as realizations of i i d re’s ξj in (Rd,Bd), the k-means

(with k being arbitrary but fixed and given in advance) empirical cluster centers a∗n1, ..., a
∗
nk ∈ Rd are

the k points which best approximate ξ1, ..., ξn in the sense that
∑

j≤n
min

1≤i≤k
|ξj − ai|2 is minimized by

(a∗n1, ..., a
∗
nk) over all (a1, ..., ak) with ai ∈ Rd.

Pollard [Po82b] applied empirical process theory (as examined in [Po84], Chapter VII) with (cf. 0.3

Example)

γ(x, (a1, ..., ak)) := min
1≤i≤k

|x− ai|2

to obtain asymptotic normality of (a∗n1, ..., a
∗
nk) as n→∞ whenever E(|ξ1|2) <∞.

0.17. Example (DENSITY ESTIMATION).

(considered within the frame of so-called smoothed empirical processes in Sections 6.4 and 7.4).

Let ηj, j ∈ N, be i i d re’s in (Rd,Bd) with ν := L{ηj} having an unknown density g w.r.t. Lebesgue

measure. Let K ≥ 0 be a kernel function on Rd with
∫

Rd

K(v) dv = 1, and let (hn) be a given sequence

of bandwidths. Then the density g can be estimated by the so-called kernel density estimator ĝn, defined

by

ĝn(t) := h−dn
1

n

∑

j≤n
K(

t− ηj
hn

) = h−dn

∫

Rd

K(
t− y
hn

) νn(dy) , t ∈ Rd.

9



Now, we have with Kn(t)(·) := h−dn K( t−·
hn

)

ĝn(t) = νn(Kn(t)),

whence (with βn(f) := n1/2(νn(f)− ν(f)) ) βn(Kn(t)) is the random part

n1/2(ĝn(t)− E(ĝn(t)))

in the decomposition

ĝn(t)− g(t) = ĝn(t)− E(ĝn(t)) + E(ĝn(t))− g(t)

with E(ĝn(t))− g(t) being the “BIAS”.

(Note also that under regularity conditions

E(ĝn(t)) = h−dn E

(

K(
t− η1

hn
)
)

= ν(Kn(t))

= h−dn

∫

Rd

K(
t− y
hn

)g(y) dy −→
n→∞

g(t).)

Using this point of view, empirical process techniques are in order with indexing sets given by

F := {K
( t− ·
hn

)

: t ∈ Rd}.

Now, results from general empirical process theory will be available if, as already remarked in connec-

tion with (0.9), F is not too large, e.g. if F is a VCGC (see Definition 4.3.16 below) or, equivalently

(cf. [Va96], Problem 11, p. 152), a Vapnik-Chervonenkis Subgraph Class (VCSGC), where the sub-

graph of a function f : X −→ R is defined by SGf := {(x, r) ∈ X × R : r < f(x)} or (equivalently

(cf. [Va96], Problem 10, p. 152)) SGf := {(x, r) ∈ X × R : r ≤ f(x)}.

6
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Now, F is a VCSGC :⇐⇒ {SGf : f ∈ F} is a Vapnik-Chervonenkis Class in (X × R,X⊗B).

For the definition of a Vapnik-Chervonenkis Class (VCC) of sets see Section 4.2 below. As to the
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VCC-property, let us mention here the following result (Lemma 4.2.5):

(0.18) Let G be an arbitrary m-dimensional vector space of real-valued functions g being

defined on an arbitrary set X equipped with the σ-field X = P(X) (whence each

g is measurable). Then the class

C := {{g ≥ 0} : g ∈ G} is a VCC.

Based on this result we are going to show next

(0.19) Let H : R+ −→ R be monotone increasing (or decreasing), X := Rd, d ≥ 1, and

F := {H(b||t− ·||2) : b > 0, t ∈ Rd}.

Then F is a VCSGC.

PROOF(Taken from [Due00]): This is easily seen if H can be extended to an isotone bijection on

R; in this case one has for any f(x) = H(b||t− x||2), x ∈ Rd:

SGf = {(x, r) ∈ Rd × R : b||t||2 − 2btTx+ bxTx−H−1(r) ≥ 0} = {g ≥ 0}

(where xT denotes the transpose of x =





x1...
xd



) with g ∈ G, G being the (d + 3)- dimensional vector

space generated by the functions g0(x, r) := 1, gi(x, r) := xi, 1 ≤ i ≤ d, gd+1(x, r) := xTx, and

gd+2(x, r) := H−1(r), whence the assertion follows from (0.18).

In the general case, one must find a proper substitute for H−1 to argue in a similar way: For this,

let F be an arbitrary finite subset of Rd × R and suppose that for any F ′ ⊂ F there exists an

f ′ ∈ F , i.e. f ′ = H(bF ′ ||tF ′ − ·||2) with bF ′ > 0, tF ′ ∈ Rd, such that F ′ = F ∩ SGf ′ . Then, one

shows that this necessarily implies F ′ = {(x, r) ∈ F : g(x, r) ≥ 0} = F ∩ {g ≥ 0} for some

g ∈ G := span{g0, g1, ..., gd+1, gd+2} where now gd+2(x, r) := H̄(r) := min{t ∈ T : H(t) ≥ r} with

T := {bF ′ ||tF ′ − x||2 : (x, r) ∈ F,F ′ ⊂ F}. Thus again the assertion follows from (0.18). 2

0.20. Example (from classical probability theory: A strong law of large numbers).

Let ξi, i ∈ N, be i i d rv’s with law ν = L{ξi}, the ξ′is being defined as coordinate projections on the

p-space (Ω,A,P) = (RN,BN, νN). Assume E(|ξ1|) <∞ and let µ := E(ξ1) and ξ̄n := n−1
n∑

i=1
ξi. Then

(1) An := n−1
n∑

i=1

|ξi − ξ̄n| −→ a := E(|ξ1 − µ|) P− a.s.

PROOF (by Empirical Process Methods).

Let νn be the empirical measure based on ξ1, ..., ξn. For t ∈ R, let ft(x) := |x − t|, x ∈ R, Hn(t) :=

νn(ft) and H(t) := ν(ft). Then An = Hn(ξ̄n) and a = H(µ). Next, let F := {ft : t ∈ R}, then

11



the ENVELOPE F of F , defined by F (x) := sup
t∈R

|ft(x)|, x ∈ R, is the function F ≡ ∞. Considering

instead for a fixed δ > 0 the class

Fδ := {ft : |t− µ| ≤ δ},

the envelope Fδ of Fδ is given by Fδ(x) = |x− µ|+ δ, x ∈ R, i.e. Fδ is real-valued and ν-integrable:

ν(Fd) = E(|ξ1 − µ|+ δ) = E(|ξ1 − µ|) + δ <∞,

since E(|ξ1|) <∞ by assumption.

(Note that ft(x) ≤ |x− µ|+ |µ− t| ≤ |x− µ|+ δ if |µ− t| ≤ δ.)
According to the strong law of large numbers, ξ̄n −→ µ P− a.s, i.e. ∀ ε > 0 ∀ δ > 0

(2) lim
m→∞

P( sup
n≥m
|ξ̄n − µ| > δ) < ε.

Concerning the class Fδ one shows (cf. (0.19)) that Fδ is a VCSGC (equivalently a VCGC) and thus

it follows from 6.3.3 (cf. (6.3.5) below) that

(3) ||νn − ν||Fδ := sup
|t−µ|≤δ

|(νn − ν)(ft)| −→ 0 P− a.s.

But now,

|An − a| = |Hn(ξ̄n)−H(µ)|
≤ |Hn(ξ̄n)−H(ξ̄n)| + |H(ξ̄n)−H(µ)|.

︸ ︷︷ ︸

−→0 P−a.s., since ξ̄n−→µ P−a.s. and H being continuous.

So, it remains to show that ∀ ρ > 0

(4) lim
m→∞

P( sup
n≥m
|Hn(ξ̄n)−H(ξ̄n)| > ρ) = 0

For this, let ρ > 0 be arbitrary; then

P( sup
n≥m
|Hn(ξ̄n)−H(ξ̄n)| > ρ) ≤ P

(

{ sup
n≥m
|Hn(ξ̄n)−H(ξ̄n)| > ρ}

∩ { sup
n≥m
|ξ̄n − µ| ≤ δ}

)

+ P( sup
n≥m
|ξ̄n − µ| > δ)

≤
(2)

P( sup
n≥m

sup
|t−µ|≤δ

|Hn(t)−H(t)| > ρ) + ε

= P( sup
n≥m
||νn − ν||Fδ > ρ) + ε.

Since ε > 0 was arbitrary, the assertion (4) follows from (3). 2

Of course, (1) follows more or less immediately from the strong law of large numbers, nevertheless
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the proof here nicely reveals the elegant operation principle how a (functional) uniform law of large

numbers as given in (3) may be applied.

Further applications of empirical process theory together with the concepts and results already

mentioned will be considered in the following chapters presenting also the theoretical background

to cope with future applications beyond our present knowledge.

In fact, as already emphasized in [We92], “modern empirical process theory deals with empirical mea-

sures and processes based on data with values in completely arbitrary, perhaps infinite-dimensional

sample spaces. This aspect of the theory will undoubtly become more important in future applica-

tions as statisticians develop methods for dealing with ‘function’- and ‘picture’-valued data such as

seismographs, noise level tracings, electrodiagrams, and high-dimensional biomedical data (survival

times together with hundreds of covariates)”

“I (Wellner) believe that one important consequence of the rapid developments in modern empirical

process tools and techniques is a shortening of the lag time between the introduction of a new method

(e.g. a new estimator or test statistic) in statistics and the development of an understanding of the

properties and performance of the method.”

In an announcement for a workshop on ‘Statistical Modelling – Nonparametric Models’ it was said:

“As in all areas of science, models serve as a portrayal of the reality. Their quality and usefulness

thereby heavily depends on the complexity of the model itself. A simple model can only mirror simple

things. Moreover, as in all quantitive sciences, classical quantitative models suffer from being para-

metric.

Nonparametric models go beyond this scope by modelling relations and effects nonparametrically.

Various applications have been developed in the last years. Numerical and theoretical results allow a

wide range of applications of Nonparametric models.

Further research is required to make more profit of this powerful modelling technique.

Investigation of theoretical aspects and applicability of the available routines in more depth is de-

manded to access and describe their impact.

Finally, a fair comparison of different methods is still rudimentary but desired.”

Hopefully, the present COURSE ON SELECTED TOPICS IN MATHEMATICAL STOCHASTICS

will serve as a solid basis to cope with applications in nonparametric statistics based on empirical

process theory.
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Summary
In a general framework of so-called Random Measure Processes (RMP’s) we present uniform laws

of large numbers (ULLN) and functional central limit theorems (FCLT) for RMP’s yielding known

and also new results for empirical processes and for so-called smoothed empirical processes based on

data in general sample spaces. At the same time one obtains results for Partial-sum processes with

either fixed or random locations. Proofs are based on tools from modern empirical process theory as

presented e.g. in [Va96].

Our presentation will be also guided by showing up some aspects of the development of empirical

process theory from its classical origin up to its present generality which now offers a wide variety of

applications in statistics as demonstrated e.g. in Part 3 of [Va96].

1 Introduction to the theory of empirical processes (and

partial-sum processes)

1.1 The uniform empirical process αn

Two important processes in probability and statistics are the empirical and partial-sum process.

Let ηj , j ∈ N, be independent identically distributed (i i d) random variables (rv’s) with law L{ηj} =

U [0, 1] (the uniform distribution on I = [0, 1]), defined on a basic probability space (p-space) (Ω,A,P),

i.e. ηj : Ω −→ I with P(ηj ≤ t) = F (t) := t ∀t ∈ I.
Let Fn be the empirical distribution function (edf) based on η1, ..., ηn, i.e.

Fn(t) := n−1
∑

j≤n
1[0,t](ηj). t ∈ I;

to indicate that Fn is random, i.e. depending on ω ∈ Ω, we also write instead of Fn(t)

Fn(t, ω) = n−1
∑

j≤n
1[0,t](ηj(ω)).

(1A denotes the indicator function of a set A.)

THEN:

∀t ∈ I E(Fn(t)) = F (t) (i.e. Fn(t) is an unbiased estimator for F (t))

∀t ∈ I by the classical central limit theorem (CLT)

αn(t) := n1/2
(
Fn(t)− F (t)

) L−→ N (0, F (t)(1 − F (t))

(where
L−→ denotes convergence in law), and by the strong law of large numbers (LLN)

∀t ∈ I Fn(t) −→ F (t) P-almost surely (a.s.)
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(i.e.
(
Fn(t)

)

n∈N
is a strongly consistent sequence of estimators for F (t));

moreover, by the GLIVENKO-CANTELLI THEOREM,

sup
t∈I
|Fn(t)− F (t)| −→ 0 P− a.s.

(Note that supt∈I |Fn(t) − F (t)| is measurable since it remains unchanged when replacing I by the countable

index set I ∩Q.)

FUNCTIONAL VIEWPOINT
The stochastic process αn = (αn(t))t∈I is called UNIFORM EMPIRICAL PROCESS (of sample size

n). Its sample paths

αn(ω) =
(

n1/2
(
Fn(t, ω)− F (t)

))

t∈I
are contained in the space D := {x ∈ RI : x satisfies (i)− (iii)}:
(i) ∀t ∈ [0, 1) ∃x(t+ 0) := lims↘t x(s)

(ii) ∀t ∈ (0, 1] ∃x(t− 0) := lims↗t x(s)

(iii) ∀t ∈ [0, 1) x(t) = x(t+ 0).

Since supt∈I |x(t)| <∞ ∀x ∈ D, it is tempting to endow the space D with the sup-metric ρ, i.e. with

ρ(x1, x2) := sup
t∈I
|x1(t)− x2(t)|, x1, x2 ∈ D,

which is usually considered in the space C ≡ C(I) of continuous functions on I.

Note that (C, ρ) is a closed separable subspace of (D, ρ) being also complete (cf. [Bi68], p.220).

In contrast, (D, ρ) is not separable and αn : Ω −→ D is not A,B(ρ)-measurable if D is equipped with

the σ-field B(ρ) of Borel sets w.r.t. the ρ-topology; cf. [Bi68],p.152.

At this place there were two ways to overcome this difficulty (cf. [Bi68]):

(i) Skorokhod’s metric s being weaker than ρ which makes αn : Ω −→ D A,B(s)-measurable

(B(s) := Borel σ-field in (D, s))

(ii) [Du66] (cf. also [Wi68] and [Gae83]):

Consider instead of B(ρ) the smaller σ-field Bb(ρ) generated by the open ρ-balls in (D, ρ); then

again αn : Ω −→ D becomes A,Bb(ρ)-measurable, since Bb(ρ) = σ({πt : t ∈ I}) (≡ σ-field

generated by the projections πt : D −→ R, πt(x) := x(t)).

1.1.1. Remarks.

Let B(C, ρ) be the Borel σ-field in (C, ρ) and Bb(C, ρ) be the σ-field generated by the open ρ-balls in

(C, ρ); then B(C, ρ) = Bb(C, ρ) = C ∩ Bb(ρ), whence

(1.1.2) B(C, ρ) = σ({restCπt : t ∈ I});
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furthermore C ∈ Bb(ρ) and (cf. [Bi68], Th. 14.5) B(s) = σ({πt : t ∈ I}), whence

(1.1.3) B(s) = Bb(ρ).

In the following let B = (B(t))t∈I be the Wiener process (Brownian Motion) with parameter set

T = I, and let B◦ = (B◦(t))t∈I be the Brownian Bridge (B◦(t) := B(t)− tB(1)); both processes are

mean-zero Gaussian processes with sample paths in C, whose covariance structure is given by

cov(B(t1), B(t2)) = t1 ∧ t2, t1, t2 ∈ I, and(1.1.4)

cov(B◦(t1), B
◦(t2)) = t1 ∧ t2 − t1 · t2, t1, t2 ∈ I,(1.1.5)

respectively. Both processes can be viewed as random elements (re) in (C,B(C, ρ)) or as random

elements in (D,Bb(ρ)) with L{B}(C) = 1 and L{B◦}(C) = 1 respectively.

HERE: Given a measurable space (X,X ), we say that η is a re in (X,X ) :⇐⇒ ∃ p-space (Ω,A,P)

s.t. η : Ω −→ X is A,X -measurable.

The following prospect is taken from [Do49]:

“Noticing that, by the multivariate CLT, the finite-dimensional distributions (fidis) of αn are asymptotically (as n → ∞) the same
as those of B◦, we may assume– until a contradiction frustrates our devotion to heuristic reasoning – that in calculating asymptotic
distributional results for the αn-process one may simply replace the αn’s by B◦.”

This prospect was justified by the following Functional Central Limit Theorem (FCLT):

1.1.6. THEOREM ([Don51],[Don52],[Pro56]).

αn
L−→ B◦ in (D, s),

i.e. limn→∞ E(f(αn)) = E(f(B◦)) ∀f ∈ Cb(D),

where Cb(D) := {f : D −→ R : f s-continuous and bounded }.

Note also that L{B◦}(C) = 1 in view of 1.1.7 below.

Taking instead of s the sup-metric ρ one gets

1.1.6′ THEOREM.

αn
Lb−→ B◦ in (D, ρ),

i.e. limn→∞ E(f(αn)) = E(f(B◦))) ∀f ∈ Cbb (D),

where Cbb(D) := {f : D −→ R : f ρ− continuous, Bb(ρ)−measurable and bounded}.
In fact 1.1.6 and 1.1.6′ are equivalent according to the following lemma. For this, let ηn, n ≥ 0, be a

sequence of re’s in (D,Bb(ρ)) =
(1.1.3)

(D,B(s)), and

ηn
L−→ η0 :⇐⇒ lim

n→∞
E(f(αn)) = E(f(B◦)) ∀f ∈ Cb(D), and

ηn
Lb−→ η0 :⇐⇒ lim

n→∞
E(f(αn)) = E(f(B◦)) ∀f ∈ Cbb(D),
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respectively.

(Note that L{ηn}, n ≥ 0, is well defined on Bb(ρ) = B(s) and that limn→∞ E(f(αn)) = E(f(B◦)) ⇐⇒ limn→∞
∫

D
fdL{ηn} =

∫

D fdL{η0}.)

1.1.7. Lemma ([Gae83],Lemma 18.p.93).

ηn
L−→ η0 and L{η0}(C) = 1 =⇒ ηn

Lb−→ η0;

conversely, ηn
Lb−→ η0 =⇒ ηn

L−→ η0.

The same situation is met in Section 1.2 in connection with the classical partial-sum process.

As we shall see in Section 2.3 the concept of weak convergence (L - convergence) can be generalized in

such a way that the approximating sequence (ηn)n∈N is not assumed to consist of re’s, i.e. arbitrary

ηn’s will be allowed; measurability is solely assumed for η0 to which ηn converges weakly.

1.2 The classical partial-sum process ζn

Let ξj, j ∈ N, be i i d rv’s defined on a basic p-space (Ω,A,P) with E(ξj) = 0 and E(ξ2j ) = 1. Let

ζn(t) := n−1/2
∑

{j:j/n≤t}
ξj , t ∈ I;

THEN:

E(ζn(t)) = 0 and ζn(t)
L−→ N (0, t) ∀t ∈ I

and cov(ζn(t1), ζn(t2)) = t1 ∧ t2 , t1, t2 ∈ I.

FUNCTIONAL VIEWPOINT

The stochastic process ζn = (ζn(t))t∈I is the CLASSICAL (standardized) PARTIAL-SUM PROCESS

(of sample size n).

( with < a >:= max{z ∈ Z : z ≤ a}, a ∈ R, ζn(t) can also be written as ζn(t) = n−1/2
∑<nt>

j=1 ξj . )

Its sample paths ζn(ω) =
(
n−1/2

∑

j≤<nt> ξj(ω)
)

t∈I are contained in D. ζn can be viewed as re in

(D,Bb(ρ)) = (D,B(s)) and the FCLT for ζn is also due to Donsker:

1.2.1. THEOREM.

ζn
L−→ B in (D, s) or, equivalently,

ζn
Lb−→ B in (D, ρ).
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Theorem 1.2.1 and 1.1.6 are special cases of FCLT’s to be considered in Section 7.

Nevertheless we want to present here proofs in a form due to Franz Strobl [St90] yielding some indications when dealing later with
more general processes.

The following proofs are based on the characterization theorem of L-convergence (CTL-C) presented
in Section 2.3 (here with parameter space T = I and metric d(t1, t2) := |t1 − t2|, t1, t2 ∈ I).

PROOF OF THEOREM 1.1.6. According to CTL-C we have to show (i) and (ii), where

(i) αn
P−→

fidi
B◦, i.e. weak convergence of the finite-dimensional distributions (fidis) of αn to the corre-

sponding fidis of B◦.

(ii) limδ→0 lim supn→∞ P∗(wαn
(δ) > ε) = 0 ∀ε > 0,

where P∗(A) := inf{P(B) : A ⊂ B,B ∈ A} ∀A ⊂ Ω, and where

wαn
(δ) := supt,t′∈I |t−t′|≤δ

|αn(t)− αn(t′)| ∀δ > 0.

The proof of (i) follows by the multivariate CLT and can be found in standard textbooks (c.f. e.g. [Gae77],

12.2.1).

PROOF OF (ii). Let ε > 0 be arbitrary; w.l.o.g. let

(1) δ ∈ Q, 0 < δ <
1

4
and n ≥ 9216 · δ−3.

STEP 1: “We are going back to a grid of span δ” in the parameter-space T = I; then

{wαn
(δ) > ε} = {∃ti ∈ I, i = 1, 2, s.t. 0 < t2 − t1 ≤ δ and |αn(t1)− αn(t2)| > ε}.

Now, to each gridpoint ti we associate a ki ∈ Z+ s.t. kiδ < ti ≤ (ki + 1)δ, where k2 − k1 ≤ 1 if t2 − t1 ≤ δ.

Then

{wαn
(δ) > ε} =

⋃

k∈Z+

k< 1
δ

{∃t ∈ (kδ, (k + 1)δ] ∩ I : |αn(t)− αn(kδ)| > ε/3},

whence

P∗(wαn
(δ) > ε) ≤

∑

k∈Z+

k< 1
δ

P∗
(

sup
t∈(kδ,(k+1)δ]∩I

|αn(t)− αn(kδ)| > ε/3
)

=
∑

k∈Z+

k< 1
δ

P

(

sup
t∈(kδ,(k+1)δ]∩I∩Q

∣
∣n−1/2

∑

i≤n

(
1(kδ,t](ηi)− (t− kδ)

)∣
∣ > ε/3

)

≤ (
1

δ
+ 1) P

(

sup
t∈(0,δ]∩Q

|αn(t)| > ε/3
)

,

i.e. we have

(2) P∗(wαn
(δ) > ε) ≤ (

1

δ
+ 1) P

(

sup
t∈(0,δ]∩Q

|αn(t)| > ε/3
)

.

Now, let Tm ⊂ (0, δ] ∩Q be s.t. |Tm| = m ∀m ∈ N, and Tm ↗ (0, δ] ∩Q as m→∞; then we have

(3) P

(

sup
t∈(0,δ]∩Q

|αn(t)| > ε/3
)

= lim
m→∞

P

(

sup
t∈Tm

|αn(t)| > ε/3
)

.
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STEP 2: Let m ∈ N be arbitrary but fixed, Tm = {t1, ..., tm}, 0 =: t0 < t1 < ... < tm ≤ δ, and A :=

{supt∈Tm
|αn(t)| > ε}; then A ⊂ B +

∑

k≤m A+
k +

∑

k≤m A−
k with

B :=
{∑

i≤n

1[0,δ](ηi) > n/2
}
,

A+
k := {αn(tj) ≤ ε/3, j = 1, ..., k − 1, αn(tk) > ε/3 ,

∑

i≤n

1[0,tk](ηi) ≤ n/2},

A−
k := {αn(tj) ≥ −ε/3, j = 1, ..., k − 1, αn(tk) < −ε/3 ,

∑

i≤n

1[0,tk](ηi) ≤ n/2}, 1 ≤ k ≤ m;

now, we are going to show

(4) P(A
+/−
k ) ≤ 4 P

(

A
+/−
k ∩

{
αn(2δ) ≥/≤ αn(tk)

1− 2δ

1− tk
})

∀ 1 ≤ k ≤ m :

Let k ∈ {1, ...,m} be arbitrary but fixed and

R := {r = (r1, ..., rk) : ri ∈ Z+, n
−1/2(r1 + ...+ rj − ntj) ≤ ε/3 ∀1 ≤ j ≤ k − 1,

n−1/2(r1 + ...+ rk − ntk) > ε/3 , r1 + ...+ rk ≤ n/2};

then

P

(

A+
k ∩

{
αn(2δ) ≥ αn(tk)

1− 2δ

1− tk
})

= P

(

n−1/2
( ∑

i≤n

1[0,tj](ηi)− ntj
)
≤ ε/3, j = 1, ..., k − 1, n−1/2

( ∑

i≤n

1[0,tk](ηi)− ntk
)
> ε/3,

∑

i≤n

1[0,tk](ηi) ≤ n/2,
∑

i≤n

1(tk,2δ](ηi) ≥
( ∑

i≤n

1[0,tk](ηi)− ntk
)1− 2δ

1 − tk
+ 2nδ −

∑

i≤n

1[0,tk](ηi)
)

=
∑

r∈R
r:=r1+...+rk

P

(∑

i≤n

1(tj−1,tj ](ηi) = rj , j = 1, ..., k,
∑

i≤n

1(tk,2δ](ηi) ≥ (n− r)2δ − tk
1− tk

)

=
∑

r∈R
r:=r1+...+rk

∑

s∈[(n−r)
2δ−tk
1−tk

,n−r)∩Z+

(
n

r1, ..., rk, s, n− r − s

)

· (t1 − t0)r1 . . . (tk − tk−1)
rk · (2δ − tk)s(1 − 2δ)n−r−s

=
∑

r

∑

s

(
n

r1, ..., rk, n− r

)
(n− r)!

s!(n− r − s)! · (t1 − t0)
r1 . . . (tk − tk−1)

rk(1− tk)n−r (2δ − tk)s(1− 2δ)n−r−s

(1− tk)n−r

=
∑

r

P

(∑

i≤n

1(tj−1,tj ](ηi) = rj , j = 1, ..., k
)

·
∑

s

P

( ∑

i≤n−r

1
[0,

2δ−tk
1−tk

]
(ηi) = s

)

;
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since σ2 := V ar(1
[0,

2δ−tk
1−tk

]
(η1)) = 2δ−tk

1−tk
· 1−2δ

1−tk
· ≥

(1)
δ/2, it follows that

∑

s

P

( ∑

i≤n−r

1
[0,

2δ−tk
1−tk

]
(ηi) = s

)

= P

( ∑

i≤n−r

1
[0,

2δ−tk
1−tk

]
(ηi) ≥ (n− r)2δ − tk

1− tk

)

= P

( ∑

i≤n−r

1
[0,

2δ−tk
1−tk

]
(ηi)− (n− r)2δ − tk

1− tk
≥ 0

)

≥
(BERRY-ESSÉEN)

1

2
− 6√

n− rσ3
E

(∣
∣1

[0,
2δ−tk
1−tk

]
(η1)−

2δ − tk
1− tk

∣
∣
3
)

≥
(r≤n/2)

1

2
− 6

√

n/2(δ/2)3/2
≥
(1)

1

4
;

therefore

P

(

A+
k ∩

{
αn(2δ) ≥ αn(tk)

1− 2δ

1 − tk
})

≥
1

4
P

(

αn(tj) ≤ ε/3, j = 1, ..., k − 1, αn(tk) > ε/3 ,
∑

i≤n

1[0,tk](ηi) ≤ n/2
)

,

which proves (4) for A+
k . Analogously one shows that

P(A−
k ) ≤ 4 P

(

A−
k ∩

{
αn(2δ) ≤ αn(tk)

1− 2δ

1 − tk
})

.

STEP 3: According to STEP 2 we have for any fixed m ∈ N with Tm = {t1, ..., tm} and 0 =: t0 < t1 < ... <

tm ≤ δ that

P
(

sup
t∈Tm

|αn(t)| > ε
)
≤

P
( ∑

i≤n

1[0,δ](ηi) >
n

2

)
+ 4

∑

k≤m

P

(

A+
k ∩

{
αn(2δ) ≥ αn(tk)

1− 2δ

1 − tk
})

+

4
∑

k≤m

P

(

A−
k ∩

{
αn(2δ) ≤ αn(tk)

1− 2δ

1 − tk
})

.

Now, 1−2δ
1−tk

≥
(1)

1
2 implies that ∀1 ≤ k ≤ m

A+
k ∩

{
αn(2δ) ≥ αn(tk)

1− 2δ

1− tk
}
⊂ A+

k ∩ {αn(2δ) ≥ ε/6} and

A−
k ∩

{
αn(2δ) ≤ αn(tk)

1 − 2δ

1 − tk
}
⊂ A−

k ∩ {αn(2δ) ≤ −ε/6},

whence (noticing that the A+
k ’s as well as the A−

k ’s are pairwise disjoint (p.d.))

P
(

sup
t∈Tm

|αn(t)| > ε
)
≤

P
( ∑

i≤n

1[0,δ](ηi) >
n

2

)
+ 4 P

(
|αn(2δ)| ≥ ε/6

)
.
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STEP 4: We are now in the position to verify that

lim
δ→0

lim sup
n→∞

P∗(wαn
(δ) > ε) = 0 ∀ε > 0 :

P∗(wαn
(δ) > ε) ≤

(2)+(3)
(
1

δ
+ 1) lim

m→∞
P
(

sup
t∈Tm

|αn(t)| > ε/3
)

≤
(STEP 3)

(
1

δ
+ 1)

(

P
(∑

i≤n

1[0,δ](ηi) >
n

2

)
+ 4 P

(
|αn(2δ)| ≥ ε/6

))

≤
(1)

2

δ

[

P

(
∑

i≤n 1[0,δ](ηi)− nδ
√

nδ(1− δ)
>

n/2− nδ
√

nδ(1− δ)
)

+ 4P
(
|αn(sδ)| ≥ ε/6

)]

@ > CLT > n→∞ >
2

δ

[

0 + 4 · 2
(
1− Φ(

ε

6
√

2δ(1− 2δ)

)]

,

where Φ denotes the standard normal df.

Therefore, ∀ε > 0

lim sup
n→∞

P∗(wαn
(δ) > ε) ≤ 2

δ
· 86

√

2δ(1− 2δ)

ε

1√
2π
e
− ε2

2·36·2δ(1−2δ)

≤ 2

δ
· 8 6

√
2δ

ε
√

2π
· 144 · δ(1− 2δ)

ε2
@ >> δ → 0 > 0.

2

PROOF OF THEOREM 1.2.1. According to CTL-C we have to show (i) and (ii), where

(i) ζn
P−→

fidi
B, and

(ii) limδ→0 lim supn→∞ P∗(wζn
(δ) > ε) = 0 ∀ε > 0.

As before, we skip the standard proof of (i).

PROOF OF (ii). Let ε > 0 be arbitrary; w.l.o.g. let

(5) 0 < δ <
1

2
(
ε

12
)2, δ ≤ 1, nδ ≥ 1.

As in STEP 1 of the proof above we get

P∗(wζn
(δ) > ε) ≤

∑

k∈Z+

k< 1
δ

P∗
(

sup
t∈(kδ,(k+1)δ]∩I

|ζn(t)− ζn(kδ)| > ε/3
)

≤
∑

k∈Z+

k< 1
δ

P

(

sup
t∈(kδ,(k+1)δ]∩I∩Q

∣
∣
∣n−1/2

<nt>∑

i=<nkδ>+1

ξi

∣
∣
∣ > ε/3

)

≤ (
1

δ
+ 1) P

(

sup
1≤k≤<2nδ>

∣
∣
∣n−1/2

∑

i≤k

ξi

∣
∣
∣ > ε/3

)

.

To obtain an upper estimate for the last expression we make use of the first Lévy-inequality as follows:
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Let m :=< 2nδ >, Sk :=
∑

i≤k ξi/n
1
2 , ε′ := ε/3, s2m :=

∑

i≤m V ar(ξi/n
1
2 ) = m/n = <2nδ>

n ≤ 2δ, i.e.

sm ≤
(5)
ε/12; then

P( sup
1≤k≤<2nδ>

∣
∣
∣n−1/2

∑

i≤k

ξi

∣
∣
∣ > ε/3) =

P( sup
1≤k≤m

|Sk| > ε′) ≤ P( sup
1≤k≤m

Sk > ε′) + P( sup
1≤k≤m

(−Sk) ≥ ε′)

≤
(1. Lévy-Ineq.)

a2

a2 − 1

[
P(Sm ≥ ε′ − asm) + P(−Sm ≥ ε′ − asm)

]

for all a > 1. Taking a = 2 and noticing that ε′ − 2sm ≥ ε/3− 2ε/12 = ε/6 > 0, the last expression is

≤ 4

3
P(|Sm| ≥ ε/6) =

4

3
P(|n−1/2

∑

i≤<2nδ>

ξi| ≥ ε/6).

Therefore (note that 1 ≤
(5)

1
δ ) we get

P∗(wζn
(δ) > ε) ≤

2

δ

4

3
P

(

|n−1/2
∑

i≤<2nδ>

ξi| ≥ ε/6
)

=
8

3δ
P

(∣
∣ < 2nδ >−1/2

∑

i≤<2nδ>

ξi
∣
∣ ≥

( n

< 2nδ >

)1/2 ε

6

)

≤ 8

3δ
P

(

| < 2nδ >−1/2
∑

i≤<2nδ>

ξi| ≥
ε

6
√

2δ

)

@ > CLT > n→∞ >
8

3δ
2

(
1− Φ(

ε

6
√

2δ
)
)
@ >> δ → 0 > 0 (as in Step 4 above).

2

1.3 The multivariate case

Let d ≥ 1 and ηj , j ∈ N, be i i d random vectors uniformly distributed on Id = [0, 1]d, defined on a
basic p-space (Ω,A,P), i.e. ηj : Ω −→ Id with P(ηj ≤ t) = F (t) :=

∏

i≤d
ti ∀t := (t1, ..., td) ∈ Id. Let

αn = αn(t)t∈Id be defined by

αn(t) := n1/2
(
Fn(t)− F (t)

)
, t ∈ Id,

where Fn(t) := n−1
∑

j≤n 1[0,t](ηj) and [0, t] = [0, t1]× · · · × [0, td].

The stochastic process αn = (αn(t))t∈Id is called MULTIVARIATE UNIFORM EMPIRICAL PRO-
CESS (of sample size n).

The MULTIVARIATE (standardized) PARTIAL-SUM PROCESS (of sample size n) ζn = (ζn(t))t∈Id
is defined by

ζn(t) := n−d/2
∑

j∈Jn:j/n∈[0,t ]

ξj , t ∈ Id,
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where Jn := {1, ..., n}d, j = (j1, ..., jd), and where the rv’s ξj, j ∈ Nd, are assumed to be i i d with

E(ξj) = 0 and E(ξ2j ) = 1.

The EMPIRICAL MEASURE νn pertaining to Fn = (Fn(t))t∈Id is given by νn = n−1
∑

j≤n δηj ,
where δy denotes the Dirac measure in y ∈ Id.
The following picture illustrates νn in comparison with ζn:
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Generalizations of the FCLT’s 1.1.6 and 1.2.1 to the multivariate case were obtained by Bickel and Wichura [Bi71], Neuhaus [Ne71]
and Straf [Str71] after having extended the Skorokhod-metric to D(Id), d > 1, to ensure the necessary measurability of the processes
considered. In contrast, based on the concept of weak convergence (L-convergence) of Hoffmann-Jørgensen [Ho84], [Ho91] in Section
2.3 below, the corresponding FCLT’s for αn and ζn in the multivariate case can also be obtained in a much simpler way by choosing
a proper metric space, endowed with its natural sup-metric, as sample space of the processes, where the αn’s adn ζn’s need not be
measurable as we shall see (cf. Section 7).

1.4 αn and ζn as set-indexed processes

Identifying each t ∈ Id with the quadrant C := [0, t] ⊂ Id, d ≥ 1, one gets the representations

αn(C) = n1/2(νn(C)− ν(C)) , C ∈ C,(1.4.1)

where νn(C) = n−1
∑

j≤n
1C(ηj) and

ν := Lebesgue measure on Id, and

ζn(C) = n−d/2
∑

j∈Jn
1C(j/n)ξj , C ∈ C,(1.4.2)

with C := {[0, t] : t ∈ Id}.(1.4.3)
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Both processes can be considered as set-indexed Partial-sum processes with random or fixed locations.

Their sample paths are contained in the Banachspace

l∞(C) := {x : C −→ R : ||x||C := sup
C∈C
|x(C)| <∞},

endowed with the sup-norm || · ||C .
Moreover, both processes will occur as special cases of so-called RANDOM MEASURE PROCESSES

to be considered in Section 3.

1.5 A first glance at Glivenko-Cantelli convergence and Vapnik-
Chervonenkis classes of sets

(Cf. also [Gae79] at this place.)

Let ξj, j ∈ N, be i i d rv’s with ν := L{ξj}, defined on a basic p-space (Ω,A,P); then the classical

GLIVENKO-CANTELLI THEOREM ([Gl33], [Ca33]) states:

∀ν sup
C∈C
|νn(C)− ν(C)| −→ 0 P− a.s.,(1.5.1)

where νn(C) = n−1
∑

j≤n
1C(ξj) and

C := {(−∞, t] : t ∈ R}.

There are a lot of generalizations of (1.5.1) in the literature. Let us mention here only a few of them:

(1.5.2) Wolfowitz[Wo60], Dehardt [De71]

(1.5.1) is also valid for re’s ξj in (Rd,Bd), d ≥ 1,

being i i d with law ν and with C := {(−∞, t] : t ∈ Rd}.
(Bd := Borel σ − field in Rd.)

(1.5.3) Ranga Rao [Ra62]

(1.5.1) is also valid for re’s ξj in (Rd,Bd), d ≥ 1,

being i i d with law ν and with C := {C =
⋂

i≤mHi : Hi halfspace in Rd},
where m ∈ N is arbitrary but fixed.

(1.5.4) Elker-Pollard-Stute [El79]

(1.5.1) is also valid for re’s ξj in (Rd,Bd), d ≥ 1,

being i i d with law ν and with C := {C ⊂ Rd : C closed Euclidian ball}.

The proofs of (1.5.2) - (1.5.4) are mainly based on geometric arguments.

That Glivenko-Cantelli convergence fails to hold for any ν when choosing larger classes of sets can be

seen from the following

24



1.5.5. Example.

Let d ≥ 2 and C := {C ⊂ Rd : C convex Borel set}; let ν be the (normalized) uniform distribution on

the unit sphere S1 in Rd and ξj, j ∈ N, be identically distributed with L{ξj} = ν (defined on (Ω,A,P)).

Let νn be the empirical measure based on ξ1, ..., ξn; then ∀n ∈ N

sup
C∈C
|νn(C)− ν(C)| = 1 P− a.s.

In fact, given any xj = ξj(ω), 1 ≤ j ≤ n, where ξj(ω) ∈ S1 for P-almost all ω ∈ Ω, there exists a

C ∈ C with C ⊂ {z ∈ Rd : |z| ≤ 1} s.t. C ∩ S1 = {x1, ..., xn}: Choose C := co({x1, ..., xn}) where

co(A) denotes the convex hull of A ⊂ Rd. But then νn(C) = 1, wheras ν(C) = 0.
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Choosing even C = Bd one gets for i i d re’s ξj in (Rd,Bd) with law ν:

1.5.6. Lemma.

The following assertions are equivalent:

(i) ∃Ω0 ∈ A with P(Ω0) = 1 s.t. supC∈Bd |νn(C,ω) − ν(C)| −→ 0 ∀ω ∈ Ω0.

(ii) ν is discrete, i.e. ν =
∑

i∈N miδxi , xi ∈ Rd,mi > 0,
∑

i∈N mi = 1, N ⊂ N.

PROOF. (i) =⇒ (ii): By assumption there exists Ω0 ∈ A with P(Ω0) = 1 s.t. supC∈Bd |νn(C, ω)−ν(C)| −→
0 ∀ω ∈ Ω0; thus Ω0 6= ∅ and for ω0 ∈ Ω0 we have limn→∞ νn(C, ω0) = ν(C) ∀C ∈ Bd, whence for C0 :=

{ξj(ω0) : j ∈ N} ∈ Bd ν(C0) = limn→∞ νn(C0, ω0) = 1, since νn(C0, ω0) = 1 ∀n ∈ N by definition of C0. But

ν(C0) = 1 implies that ν is discrete.

(ii) =⇒ (i): Let ν be discrete, i.e. ν =
∑

i∈N miδxi
, xi ∈ Rd,mi > 0,

∑

i∈N mi = 1, N ⊂ N; then, by the strong

law of large numbers, there exists N1 ∈ A with P(N1) = 0 s.t. ∀ω ∈ {N1 and ∀i ∈ N limn→∞ νn({xi}, ω) =

ν({xi}). Furthermore, since ν concentrates on D := {xi : i ∈ N}, there exists N2 ∈ A with P(N2) = 0 s.t.

∀ω ∈ {N2 and ∀n ∈ N νn(A,ω) = 0 ∀A ⊂ Rd\D. Therefore, ∀ω ∈ {(N1 ∪ N2) (νn( · , ω))n∈N is a sequence of

p-measures on (D,P(D)) (where P(D) denotes the power set of D) which converges pointwise (i.e. ∀xi : i ∈ N)
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towards ν. Applying Scheffé’s lemma yields
∑

i∈N

|νn({xi}, ω)− ν({xi})| −→ 0 as n→∞,

and therefore limn→∞

(
sup∆∈P(D) |νn(∆, ω)− ν(∆)|

)
= 0, yielding (i) with Ω0 := {(N1 ∪N2). 2

In the following let X = (X,X ) be an arbitrary measurable space, ξj, j ∈ N, be i i d re’s in X with

ν := L{ξj} defined as coordinate projections on the p-space

(Ω,A,P) := (XN,XN ≡⊗

N

X , νN ≡ ×
N
ν);

this is what we call CANONICAL MODEL which will always be imposed as our basic p-space when

dealing with i i d re’s in X.

Let νn be the empirical measure based on ξ1, ..., ξn, i.e.

(1.5.7) νn(B) := n−1
∑

j≤n
1B(ξj) ≡ n−1

∑

j≤n
δξj (B) , B ∈ X .

Now, especially from the statistical point of view (i.e. when ν is unknown), it is of interest to know

whether

(1.5.8) ∀ν sup
C∈C
|νn(C)− ν(C)| −→ 0 P− a.s.,

for suitable classes C ⊂ X (taking over the role of the classes considered in the special cases (1.5.1) -

(1.5.4)).

According to 1.5.5 and 1.5.6 the classes C ⊂ X for which (1.5.8) holds true are not allowed to be too

“rich”. As we shall see later in Section 6.3, up to measurability, (1.5.8) will hold true in case of i i d

re’s ξj in X, if C ⊂ X is a so-called VAPNIK-CHERVONENKIS CLASS (VCC), i.e. if C fulfills

(1.5.9) ∃s ∈ N s.t. ∀F ⊂ X with |F | = s ∆C(F ) < 2s,

where ∆C(F ) := |{F ∩C : C ∈ C}|. (1.5.9) means that a VCC is not too rich in a combinatorial sense,

namely that from a certain s on “no s-element subset of X can be shattered by C” (i.e. ∀F ⊂ X with

|F | = s there is at least one F ′ ⊂ F for which F ′ 6= F ∩ C ∀C ∈ C).
Note that for F ⊂ X with |F | = n ∆C(F ) ≤ 2n ≡ number of all subsets of F including the empty set, i.e. the

case were F ∩C = ∅ is also counted here and in the following.)

In the special case X = R and C = {(−∞, t] : t ∈ R} (1.5.9) holds true with s = 2:

- R×
x1

×
x2

∀F = {x1, x2}, x1 < x2 =⇒
{x2} 6= F ∩ (−∞, t] ∀t ∈ R.

In contrast, considering again 1.5.5 and choosing for any s ∈ N F := {x1, ..., xs} with pairwise dif-

ferent xi ∈ S1, it follows that every subset F ′ = {xi1 , ..., xik} of F can be represented as F ′ = F ∩ C

26



with a convex Borel set C:

Choose C := co({xi1 , ..., xik}).

⊗

⊗

⊗

×

×
×

x1

xs

C

 
















































d = 2

F = {x1, ..., xs} ⊂ S1

F ′ = {⊗}
C = co(F ′).

The next example of Durst and Dudley [Dur80] shows that (1.5.8) may fail to hold for a VCC without

imposing additional measurability assumptions (cf. [Gae83], p.37-38):

1.5.10. Example.

Let X = (X,<) be an uncountable well-ordered set such that all its initial segments {x ∈ X : x <

y}, y ∈ X, are countable (cf. [Ke61], p.29-). Then C := {{x ∈ X : x < y}, y ∈ X} does not shatter

any F ⊂ X with |F | = 2 (in fact: ∀F = {x1, x2} ⊂ X with x1 < x2 we have {x2} 6= F ∩ C ∀C ∈ C,
since x2 ∈ C would necessarily imply that x1 ∈ C ∀C ∈ C).
Note that C is linearly ordered by inclusion.

Now, by choosing ν properly, we will see that

sup
C∈C
|νn(C)− ν(C)| ≡ 1 :

For this, let X := {B ⊂ X : B countable or {B countable}, and let ν on X be defined by

ν(B) :=

{

0 , if B is countable

1 , if {B is countable
, B ∈ X .

Then C ⊂ X and ν(C) = 0 ∀C ∈ C.
On the other hand, given any observations xi, 1 ≤ i ≤ n, n ∈ N, of i i d re’s ξ1, ..., ξn in X = (X,X )

with L{ξj} = ν, there exists a C ∈ C s.t. xi ∈ C ∀1 ≤ i ≤ n, whence

sup
C∈C
|νn(C)− ν(C)| ≡ 1.

To avoid discussions about measurability assumptions we shall usually assume for simplicity that the

index sets like C ⊂ X are countable.
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Even so, note that in cases where

sup
C∈C
|νn(C)− ν(C)| = sup

C∈C0

|νn(C)− ν(C)|

with a countable C0 ⊂ C, this is no restriction.

Also in case of empirical processes and partial-sum processes considered in 1.1 and 1.2, respectively,

their sample paths are completely determined through the behaviour on a countable index set.

When considering later classes F of measurable functions f : X −→ R (instead of 1C ≡ {1C : C ∈ C}) there will be instances where
∀δj ∈ {−1, 1}, 1 ≤ j ≤ n,

(+) ||
∑

j≤n
δjf(xj)||F := sup

f∈F
|
∑

j≤n
δjf(xj)| = sup

f∈F0

|
∑

j≤n
δjf(xj)|

for a countable subclass F0 of F , implying measurability of (x1, ..., xn) 7−→ ||∑j≤n δjf(xj)||F . The underlying measurability

concept can be found in [Va96], Example 2.3.4, called there “Pointwise measurability of F” which means that there exists a
countable F0 ⊂ F s.t. ∀f ∈ F there exists a sequence (fn) ⊂ F0 with fn(x) −→ f(x)∀x ∈ X. In fact, this property implies (+):

It is enough to show that for any ε > 0 there exists fn0
∈ F0 s.t. |∑j≤n δjfn0

(xj)| > ||∑j≤n δjf(xj)||F − ε. For this, choose

f ∈ F with |∑j≤n δjf(xj)| > ||∑j≤n δjf(xj)||F − ε/2 and (fm) ⊂ F0 s.t. fm(xj) −→ f(xj) as m −→ ∞ ∀ 1 ≤ j ≤ n which

implies |∑j≤n δjfm(xj)| −→ |∑j≤n δjf(xj)| whence there exists an n0 s.t. |∑j≤n δjfn0
(xj)| > ||∑j≤n δjf(xj)||F − ε.

For more about measurability concepts we refer to [Du99].

When restricting to countable C ⊂ X one may wonder if one ends up with a VCC; this is not the case

as seen by the following example:

Let (X,X ) := (R,B), J1 := {[a, b] : a < b, a, b ∈ Q} and ∀n ∈ N J(n) :=
⋃

i≤n Ji with Ji ≡ J1. Then

C :=
⋃

n∈N J(n) is a countable subclass of B with with the following property:

∀n ∈ N ∃F ⊂ R with |F | = n s.t. |{F ∩ C : C ∈ C}| = 2n,

i.e. C is not a VCC.

More about VCC’s in arbitrary sample spaces X = (X,X ) and so-called Vapnik-Chervonenkis graph

classes (VCGC) of X -measurable functions f : X −→ R will be contained in Sections 4.2 and 4.3 below.
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2 Empirical measures in general sample spaces

2.1 Empirical discrepancies, Glivenko-Cantelli convergence and some

consequences in statistics

Let X = (X,X ) be an arbitrary measurable space serving as sample space of i i d re’s ξj, j ∈ N, with

L{ξj} = ν, defined as coordinate projections on (Ω,A,P) := (XN,XN, νN), i.e. our basic model will be

the canonical one as introduced in Section 1.5.

Let νn be the empirical measure based on ξ1, ..., ξn (cf. (1.5.7)) and let C ⊂ X be arbitrary but

countable for simplicity. The so-called EMPIRICAL DISCREPANCY is defined by

(2.1.1) ||νn − ν||C := sup
C∈C
|νn(C)− ν(C)|

(Since C is supposed to be countable, ||νn − ν||C is a rv, defined on (Ω,A,P).)

The empirical discrepancies have the following property; in case of arbitrary (i.e. not necessarily count-

able) index sets we refer to [St95]:

2.1.2. Lemma.

(||νn − ν||C)n∈N is a reversed sub-martingale w.r.t. the sequence (Gn)n∈N of σ-fields

Gn := σ
(
{νk(B) : k ≥ n,B ∈ X}

)
,

i.e. ||νn − ν||C is Gn-measurable and P-integrable ∀n ∈ N, and ∀n,m ∈ N with m ≤ n one has

(2.1.3) ||νn − ν||C ≤ E(||νm − ν||C |Gn) P− a.s.

PROOF. As shown in [Gae77], 6.5.5(c), the following holds:

∀C ∈ C the sequence (νn(C)−ν(C))n∈N is a reversed martingale w.r.t. (Gn)n∈N, i.e. ∀n,m ∈ N

with m ≤ n one has

νn(C)− ν(C) = E((νm(C)− ν(C))|Gn) P− a.s.;
therefore, since C is countable, it follows that P− a.s.

sup
C∈C
|(νn(C)− ν(C)| =

sup
C∈C
|E((νm(C)− ν(C))|Gn)| ≤ E(sup

C∈C
|νm(C)− ν(C)| |Gn),

i.e. (2.1.3). 2

Now, as in the case of sub-martingales, there holds an analogous CONVERGENCE THEOREM

FOR REVERSED SUB-MARTINGALES (cf. e.g. [Gae77], 6.5.10) stating that for any reversed sub-

martingale (Tn)n∈N (on some p-space (Ω,A,P)) w.r.t. a monotone decseasing sequence (Gn)n∈N of
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sub-σ-fields of A satisfying the condition that infn∈N E(Tn) > −∞ there exists an P-integrable rv. T∞
s.t. Tn −→ T∞ P-a.s. and in the mean.

From this and Lemma 2.1.2 one obtains a rather simple proof of the following result (cf. [Po81]) which,

in a similar form, was one of the main results in [Ste78] proved there with different methods based on

ergodic theory of subadditive processes.

2.1.4. Lemma.

Let (τn)n∈N be an arbitrary sequence of non-negative integer-valued rv’s on (Ω,A,P) such that

τn
P−→ ∞ (where

P−→ denotes convergence in probability); then

||νn − ν||C −→ 0 P− a.s. ⇐⇒ ||ντn − ν||C
P−→ 0;

in particular, ||νn − ν||C P−→ 0 =⇒ ||νn − ν||C −→ 0 P− a.s., whence

(2.1.5) E(||νn − ν||C) −→ 0 =⇒ ||νn − ν||C −→ 0 P− a.s.

Note that (2.1.5)will lead later to an essential simplification in proving Glivenko-Cantelli convergence

of νn = (νn(C))C∈C . Especially we will obtain along this way (cf. Section 6.3)) the following funda-

mental result of Vapnik-Chervonenkis ([Vap71]):

2.1.6. THEOREM.

Let C ⊂ X be a VCC; then – under appropriate measurability conditions – it is true that ∀ν one has

||νn − ν||C −→ 0 P− a.s.

PROOF OF 2.1.4 =⇒: τn
P−→ ∞ implies that for any subsequence (τn′) of (τn) there exists

a further subsequence (τn′′) s.t. τn′′ −→ ∞ P-a.s., whence ||ντn′′ − ν|| −→ 0 P-a.s. as n′′ tends to

infinity, and therefore ||ντn − ν||C
P−→ 0.

⇐=: According to 2.1.2 (||νn − ν||C)n∈N is a reversed sub-martingale. It is uniformly bounded;

therefore, by the convergence theorem for reversed sub-martingales mentioned before, there exists an

P-integrable rv T∞ s.t. ||νn− ν||C −→ T∞ P-a.s. From this it follows as in the first part of our proof

that ||ντn − ν||C
P−→ T∞ whence, by assumption, it follows that T∞ = 0 P-a.s. 2

Some consequences in statistics

In his book on Probability Theory Alfred Rényi considers the (classical) Glivenko-Cantelli theorem

to be the “Fundamental Theorem of Mathematical Statistics” ([Re70], Chap.VII, §8). Given data

x1, x2, ... viewed as realizations of re’s ξ1, ξ2, ... in (X,X ) with L{ξi} = ν, Theorem 2.1.6 yields in-

formation about an unknown ν through its “statistical pictures” in form of the empirical measures
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νn, e.g. in connection with a test for the null-hypothesis H0 : ν = ν0, ν0 being a given hypothet-

ical distribution on X , versus the alternative H1 : ν 6= ν0. In the classical case the corresponding

Kolmogorov-test is based on the test-statistic

Dn(C, ν0) ≡ ||νn − ν0||C

with (cf. (1.5.2)) C := {(−∞, t] : t ∈ Rd}:

Reject H0 if Dn(C, ν0) > c, c > 0.

Another possibility would be to use a Kolmogorov-test based on

Dn(C0, ν0) with C0 := {x+ C0 : x ∈ Rd},

where C0 is a given closed Euclidian ball. Also in this case one has for any ν that for the so-called

“scan-statistic”

lim
n→∞

Dn(C0, ν) = 0 P− a.s. (cf.(1.5.4)),

and under H1 : ν 6= ν0 one has

lim
n→∞

Dn(C0, ν0) = d P− a.s.,

where d := ||ν − ν0||C > 0 (cf. [Py84], Theorem 6.1), i.e. Kolmogorov-tests based on Dn(C0, ν0) are

also consistent against all alternatives.

Furthermore, simulation results in [Py84], Section 6, indicated a considerable improvement in power

that is possible when using the scan-statistic Dn(C0, ν0) instead of Dn(C, ν0); cf. also the very interest-

ing Monte-Carlo study of Pyke and Wilbour ([Py88]) concerning the power of such tests; as mentioned

in [We92] it would be of some interest to have available sufficient theory in order to theoretically com-

pute (or at least approximate) the power of their tests.

2.2 Functional Central Limit Theorems for set-indexed empirical and

partial-sum processes, respectively

Let X = (X,X ) be an arbitrary sample space, ηj, j ∈ N, be i i d re’s in X, ν = L{ηj}, and νn be the

empirical measure based on η1, ..., ηn. Let C ⊂ X be a VCC and βn = (βn(C))C∈C be the empirical

C-process (of sample size n), defined by

βn(C) := n1/2(νn(C)− ν(C)), C ∈ C.

Then, under appropriate measurability conditions, the following generalization of Theorem 1.1.6 has

been obtained by Dudley:
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2.2.1. THEOREM ([Du78]).

βn
L−→ Gν in (l∞(C), || · ||C),

where Gν = (Gν(C))C∈C is a mean-zero Gaussian process whose covariance structure is given by

cov(Gν(C1), Gν(C2)) = ν(C1 ∩ C2)− ν(C1) ν(C2), C1, C2 ∈ C,

and
L−→ -convergence is defined as in Section 2.3 below.

The sample paths of Gν are contained in the space

U b(C, dν) := {x ∈ l∞(C) : x uniformly dν -continuous},

dν being the pseudo-metric in C, defined by dν(C1, C2) := ν(C1∆C2) , C1, C1 ∈ C.

(C1∆C2 denotes the symmetric difference between C1 and C2; note that a pseudo-metric has all properties of a metric besides that
dν(C1, C2) = 0 does not imply C1 = C2.)

Compare Theorem 2.2.1 with Theorem 1.1.6 in case of the uniform empirical process αn, where X = I ≡ [0, 1],X = I ∩ B, ν =
Lebesgue measure on X , C = {[0, t] : t ∈ I} being a VCC, dν(C1, C2) = |t1 − t2| for Ci = [0, ti] and where Ub(C, dν) = C ≡ C(I).

Functional Central Limit Theorems (FCLT’s) for set-indexed partial-sum processes have been obtained

by the SEATTLE-SCHOOL around Ron Pyke: cf. [Py84], [Os84], [Ba85], [Os85], [Al86], and Section

7.2 below.

At this place here we want to mention only the following two results. The first is concerned with the

multivariate (standardized) partial-sum process ζn = (ζn(C))n∈N of Section 1.4 (cf. (1.4.2) and (1.4.3))

generalizing Theorem 1.2.1:

2.2.2. THEOREM ([Al86] and [Gae94], Remark 2.16).

ζn
L−→ Gν in (l∞(C), || · ||C), ν ≡ Lebesgue measure on Id,

where Gν = (Gν(C))C∈C is a mean-zero Gaussian process whose covariance structure is given by

cov(Gν(C1), Gν(C2)) = ν(C1 ∩ C2), C1, C2 ∈ C,

and again
L−→ -convergence is defined as in Section 2.3 below.

Also here the sample paths of Gν are contained in U b(C, dν).

The second result is concerned with set-indexed partial-sum processes with random locations (cf. 3.2.1

and 7.2 below):
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2.2.3. THEOREM (cf. [Gae94], Cor. 2.15).

Let C ⊂ X be a VCC in an arbitrary sample space X = (X,X ) and ξnj := j(n)−1/2ξj for each

1 ≤ j ≤ j(n) and n ∈ N with j(n) −→ ∞ as n −→ ∞, the ξj’s being i i d rv’s with E(ξj) = 0 and

E(ξ2j ) = 1. Let (ηnj)1≤j≤j(n),n∈N be a triangular array of rowwise independent (but not necessarily

identically destributed) re’s in X which is independent of (ξj)j∈N.

Assume that there is a p-measure ν on X s.t. with νnj := L{ηnj} the following two conditions are

fulfilled:

(i) limn→∞ j(n)−1
∑

j≤j(n) νnj(C ∩D) = ν(C ∩D) ∀C,D ∈ C

(ii) limδ→0 lim supn→∞ sup{C∈C:ν(C)≤δ} j(n)−1
∑

j≤j(n) νnj(C) = 0.

Then (

j(n)−1/2
∑

j≤j(n)

1C(ηnj) · ξj
)

C∈C
L−→ Gν in (l∞(C), || · ||C),

where Gν = (Gν(C))C∈C is a mean-zero Gaussian process whose covariance structure is given by

cov(Gν(C1), Gν(C2)) = ν(C1 ∩ C2), C1, C2 ∈ C,

and again
L−→ -convergence is defined as in Section 2.3 below. Also here the sample paths of Gν are

contained in U b(C, dν).

2.3 Weak convergence (L-convergence) in the sense of Hoffmann-

Jørgensen

The classical concept of weak convergence (convergence in law) for random elements (re’s) ηn, n ≥ 0,

in a metric space S = (S,B(S)), endowed with its Borel σ-field B(S), is defined by (cf. [Bi68])

(2.3.1) ηn
L−→ η0 :⇐⇒ lim

n→∞
E(f ◦ ηn) = E(f ◦ η0) ∀f ∈ Cb(S)

where Cb(S) := {f : S −→ R : f continuous and bounded}.
For such ηn’s, being re’s in (S,B(S)), their laws L{ηn} are well defined on B(s), whence (2.3.1) is

equivalent to

(2.3.1)′ ηn
L−→ η0 ⇐⇒ lim

n→∞

∫

S
fdL{ηn} =

∫

S
fdL{η0} ∀f ∈ Cb(S).

But, as we have learned from the uniform empirical process, the approximating sequence (ηn)n∈N of

a limitting re η0 may not be ad hoc measurable and this leads to the concept of weak convergence

(L-convergence) in the sense of Hoffmann-Jørgensen ([Ho84], [Ho91]). In this context, i.e. where the

ηn’s, n ∈ N, are allowed to be completely arbitrary maps, we will speak of RANDOM QUANTITIES
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(rq’s) instead of RANDOM ELEMENTS (re’s). So, given a basic p-space (Ω,A,P), let ηn : Ω −→ S

be rq’s and η0 : Ω −→ S be A,B(S)-measurable (i.e. only η0 is assumed to be a re in (S,B(S))); then:

(2.3.2) ηn
L−→ η0 :⇐⇒ lim

n→∞
E∗(f ◦ ηn) = E(f ◦ η0) ∀f ∈ Cb(S).

Here, given an arbitrary g : Ω −→ R (defined on a p-space (Ω,A,P)), the so-called “outer expectation”

(“outer integral”) of g w.r.t. P is defined by

(2.3.3) E∗(g) := inf{E(h) : h ≥ g, h : Ω −→ R measurable and E(h)exists}.

In view of (2.3.2) one should note that E(f ◦η0) is well defined, since f ∈ Cb(S) =⇒ f B(S),B-measurable and bounded =⇒ f ◦η0 P-
integrable (i.e. f ◦ η0 ∈ L(Ω,A, P). If, in addition, also the ηn’s, n ∈ N, are B(S),B-measurable, then E∗(f ◦ ηn) = E(f ◦ ηn), i.e. in
this case (2.3.2) coinces with the classical definition (2.3.1).

In connection with (2.3.2) the following definitions and formulas are in order:

Let the so-called “inner expectation” (“inner integral”) of g : Ω −→ R w.r.t. P be defined by

E∗(g) := sup{E(h) : h ≤ g, h : Ω −→ R measurable and E(h) exists},

then, for any A ⊂ Ω, E∗(1A) = P∗(A) := sup{P(B) : B ⊂ A,B ∈ A}, whereas E∗(1A) = P∗(A) :=

inf{P(B) : B ⊃ A,B ∈ A}; furthermore

E∗(g) = −E∗(−g) , E∗(g) ≤ E∗(g);(2.3.4)

g1 ≤ g2 =⇒ E∗(g1) ≤ E∗(g2) and E∗(g1) ≤ E∗(g2)

E∗(g1 + g2) ≤ E∗(g1) + E∗(g2)

|E∗(g1)− E∗(g2)| ≤ E∗(|g1 + g2|) if |E∗(gi)| <∞, i = 1, 2;

E∗(g) = E∗(g) = E(g), if g ∈ L(Ω,A,P);

P∗(A) + P∗({A) = 1 ∀A ⊂ Ω.

For some applications it might be useful to allow also rq’s ηn, n ∈ N, with values in a larger space

E ⊃ S; one may think (in case of stochastic processes with parameter set T ) of E = RT ⊃ S := l∞(T ),

where S is endowed with the sup-metric ||x||T := supt∈T |x(t)|; this leads to the following more general

model of weak convergence (L-convergence) considered in [St94]:

Let S = (S, s) be a metric space (with metric s) and E ⊃ S be arbitrary; let

ηn : Ω −→ E be rq’s, n ∈ N, and η0 : Ω −→ S be A,B(S)-measurable; then

(2.3.5)

ηn
L−→ η0 :⇐⇒ limn→∞ E∗(f ◦ ηn) = E(f ◦ η0)

∀f : E −→ R, f bounded and restS(f) ∈ Cb(S), where restS(f) denotes the

restriction of f onto S.

(2.3.6)

If, in addition (compare with the classical situation of Section 1), for a separable subspace S0 of S

with S0 ∈ B(S), P(η0 ∈ S0) = 1, then the limiting re η0 is said to be separable and in this case we

write ηn
L−→

sep
η0.
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Within this general model of L-convergence the known results from the classical theory of weak con-

vergence, like the Portmanteau-Theorem, Cramér-Slutzky-type result, Continuous Mapping Theorem,

etc. remain valid as we shall see below.

In passing we mention the following two facts:

(cf. [Va96], 1.3.7 and 1.3.8(i)): ηn
L−→ η0 =⇒ E∗(f ◦ ηn) − E∗(f ◦ ηn) −→ 0

∀f : E −→ R, f bounded and restS(f) ∈ Cb(S), i.e. the ηn’s are “asymptotically

measurable”.

(2.3.7)

ηn
L−→ η0 =⇒ P∗(ηn ∈ S) −→ 1.(2.3.8)

In case of stochastic processes ηn = (ηn(t))t∈T , indexed by a pseudo-metric parameter space T = (T, d),

being all defined on some basic p-space (Ω,A,P), the following theorem characterizes weak convergence

(L-convergence), i.e. ηn
L−→

sep
η0 based on the situation (2.3.5) with S = (l∞(T ), || · ||T ) ⊂ E = RT .

2.3.9. CHARACTERIZATION THEOREM OF L-CONVERGENCE (CTL-C).

Let ηn = (ηn(t))t∈T , n ∈ N, be a sequence of stochastic processes, indexed by a pseudo-metric parameter

space T = (T, d), being all defined on some basic p-space (Ω,A,P) and let η0 = (η0(t))t∈T be a

stochastic process viewed as coordinate process on (RT ,BT ,L{η0}) (where the law L{η0} of η0 is well

defined on the product σ-field BT ≡⊗

T

B according to Kolmogorov’s theorem) such that

(2.3.10) ηn
P−→

fidi
η0, i.e. weak convergence of the finite-dimensional distri-

butions (fidis) of ηn to the corresponding fidis of η0.

Then, if

(2.3.11) (T, d) is totally bounded,

and if the so-called “Asymptotic Equicontinuity Condition” (AEC) is fulfilled, i.e. if

(2.3.12) lim
δ→0

lim sup
n→∞

P∗(wηn(δ) > ε) = 0 ∀ε > 0,

there exists a stochastic process η0 = (η0(t))t∈T with sample paths in S0 ≡ U b(T, d) ((U b(T, d), || · ||T )

being a separable subspace of S = (l∞(T ), || · ||T )) such that

(2.3.13) ηn
L−→
sep

η0,

where η0
L
=
fidi

η0, i.e. η0 and η0 have the same fidis.

Conversely, (2.3.13) (with S0 = (U b(T, d), || · ||T ) as separable subspace of S = (l∞(T ), || · ||T )) implies

(2.3.11) and (2.3.12).
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Here, U b(T, d) := {x ∈ l∞(T ) : x uniformly d -continuous}, and for any x ∈ RT and δ > 0

wx(δ) := sup
t,t′∈T,d(t,t′)≤δ

|x(t)− x(t′)|

is the oszillation-modulus of x. Note that (2.3.10) will be fulfilled in most of the later applications

according to the classical multivariate CLT’s.

There are several possibilities presented in the literature for proving the CTL-C; cf. e.g. [Gi86], [An87],

Theorem 5.5, [Po90], Theorem 10.2, [Du92], Theorem 3.7.2, [Gae92], Theorem 3.10, and [Va96], Sec-

tion 1.5. Independently, we want to give here a different (and as we think rather lucid) proof of 2.3.9

based on the following auxiliary lemma and partially on ideas of [Po90] (cf. STEP 2 below).

AUXILIARY LEMMA (Cf. [Bi68], Cor. 1, p. 14, and [Gae83], Thm. 8).

Given the situation as in (2.3.5), let S0 ⊂ S be separable and P(η0 ∈ S0) = 1. Suppose that the class

C ⊂ {B ∈ B(S) : P(η0 ∈ ∂B) = 0}

(where ∂B denotes the boundary of B) satisfies

(?) ∀G open ⊂ S and ∀x ∈ G∩Sc0 (where Sc0 denotes the closure of S0 in S)

∃Cx ∈ C s.t. x ∈ C0
x ⊂ Cx ⊂ G (where C0

x denotes the interior of Cx).

Then the following two statements are equivalent:

(i) ηn
L−→
sep

η0

(ii) lim sup P∗(ηn ∈ C) ≤ P(η0 ∈ C) and

lim inf P∗(ηn ∈ C) ≥ P(η0 ∈ C) ∀C ∈ C∩f ,

where C∩f denotes the class of all subsets of S which are finite intersections of sets in C.

PROOF OF THE CTL-C 2.3.9 (carried out in three steps).

Assume (2.3.11) and (2.3.12).

STEP 1: According to (2.3.11) there exists a countable and d-dense subset D of T . We are going to show:

There exists a stochastic process η0 = (η0(t))t∈T with sample paths in S0 ≡ U b(T, d) such that

η0,D
L
=
fidi

η0,D, where η0,D := (η0(t))t∈D and η0,D = (η0(t))t∈D.

For this, let U(D, d) := {x : D −→ R : x uniformly d -continuous}. Then it suffices to show that

(a) there exists a stochastic process η0,D := (η0(t))t∈D on some proper p-space (Ω0,A0,P0) with sample

paths in U(D, d) such that η0,D
L
=
fidi

η0,D.
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In fact, once (a) is shown, we can define for each ω ∈ Ω0 η0(ω) as the uniquely determined uniformly d-

continuous extension on T of η0,D(ω) being also bounded since T is totally bounded, whence η0(ω) ∈ U b(T, d)

for each ω ∈ Ω0.

Now, verifying (a) is equivalent (cf. [Gae77], 7.2.31 and 7.1.18) with proving

(b) Pη0
(η0,D ∈ U(D, d)) = 1, where Pη0

:= L{η0}.

For this, let D = {t1, t2, ...}; then

Pη0
(η0,D ∈ U(D, d))

= Pη0

(

∀ε > 0 ∃δ > 0 ∀t, t′ ∈ D : d(t, t′) ≤ δ =⇒ |η0(t)− η0(t
′)| ≤ ε

)

= Pη0

(

∀ε > 0 ∃δ > 0 ∀m ∈ N ∀1 ≤ i, j ≤ m : d(ti, tj) ≤ δ =⇒ |η0(ti)− η0(tj)| ≤ ε
)

= Pη0

(

∀ε > 0 ∃δ > 0 ∀m ∈ N ∀1 ≤ i, j ≤ m : (η0(t1), ..., η0(tm)) ∈ Fij(ε, δ,m)
)

,

where

Fij(ε, δ,m) :=

{

Rm, if d(ti, tj) > δ

{(r1, ..., rm) ∈ Rm : |ri − rj | ≤ ε}, if d(ti, tj) ≤ δ.
By the way, since the Fij ’s are closed and since we may restrict ourselves to rational ε’s and δ’s, this shows that

{η0,D ∈ U(D, d)} is measurable.

Furthermore, by σ-continuity of Pη0

Pη0
(η0,D ∈ U(D, d)) =

lim
ε→0

lim
δ→0

lim
m→∞

Pη0

(

(η0(t1), ..., η0(tm)) ∈
⋂

1≤i,j≤m

Fij(ε, δ,m)
)

≥

lim
ε→0

lim
δ→0

lim
m→∞

lim sup
n→∞

P

(

(ηn(t1), ..., ηn(tm)) ∈
⋂

1≤i,j≤m

Fij(ε, δ,m)
)

,(+)

where the inequality follows by (2.3.10) and the classical Portmanteau-Theorem ([Bi68], Theorem 2.1 with

S = Rm); furthermore,

(+) ≥ lim
ε→0

lim
δ→0

lim sup
n→∞

P∗
(

∀t, t′ ∈ T : d(t, t′) ≤ δ =⇒ |ηn(t)− ηn(t′)| ≤ ε
)

= lim
ε→0

lim
δ→0

lim sup
n→∞

P∗
(
wηn

(δ) ≤ ε
)

=
(2.3.12)

1.

The proof of the following step is due to Franz Strobl ([St94], Thm. 2.1).

STEP 2: Using the auxiliary lemma from above, we are going to show now

(2.3.13) ηn
L−→

sep
η0, where w.l.o.g η0 is assumed to be also defined on our basic p-space

(Ω,A,P) properly enlarged.

Since (by (2.3.11)), S0 = U b(T, d) is a separable and closed subspace of (S, s) = (l∞(T ), || · ||T ) (cf. [Gae90],

Corollary 2), we can apply the auxiliary lemma. For this, let

C := {B(x, r) : x ∈ S0, r > 0,P(η0 ∈ ∂B(x, r)) = 0},
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where B(x, r) := {y ∈ S : ||y − x||T ≤ r}. Then one easily verifies

(?) ∀G open ⊂ S and ∀x ∈ G ∩ Sc
0 = G ∩ S0 ∃Cx ∈ C s.t. x ∈ C0

x ⊂ Cx ⊂ G.

Therefore, to verify (2.3.13) it remains to show

(c) lim sup P∗(ηn ∈ C) ≤ P(η0 ∈ C) and

(d) lim inf P∗(ηn ∈ C) ≥ P(η0 ∈ C) for all C ∈ C∩f = {⋂i≤n Ci : n ∈ N, Ci ∈ C, 1 ≤ i ≤ n}.

Now, given any C ∈ C∩f one can choose appropriate g, h ∈ U b(T, d) such that C can be represented as

C = {y ∈ S : g(t) ≤ y(t) ≤ h(t) ∀t ∈ T }.

(If C = B(x, r), choose g := x − r and h := x + r; in case of finite intersections of balls B(xi, ri) one has to

choose maxima and minima of such gi’s and hi’s, respectively.)

Next, given C =
⋂

i≤nB(xi, ri) = {y ∈ S : g ≤ y ≤ h} and an arbitrary ε > 0, choose λ = λ(ε) > 0 s.t. with

Cλ := {y ∈ S : g + λ ≤ y ≤ h− λ}
(e) P(ηo ∈ C) ≤ P(η0 ∈ C5λ/4) + ε/2.

Before making the next step rigorous, we argue at first informally:

By the AEC (2.3.12) one can choose δ > 0 s.t. for n large enough up to probability ε/2 the oscillation of ηn

within span δ is at most λ/2 and this is also true for g and h (due to their uniform continuity). Since T is

totally bounded, we can choose a δ-net {t1, ..., tm} ⊂ T (which means that for each t ∈ T there is a ti with

d(t, ti) < δ); since the oscillations of g, h and ηn (up to probability ε/2) within V (ti) := {t ∈ T : d(t, ti) < δ}
are at most λ/2, we get

(f) P(∀i : g(ti) + λ < ηn(ti) < h(ti)− λ) ≤ P∗(ηn ∈ C) + ε/2,

whence by fidi-convergence we obtain (d):

P(η0 ∈ C) ≤
(e)

P
(
η0 ∈ C5λ/4

)
+ ε/2 ≤ P

(
∀i : g(ti) + λ < η0(ti) < h(ti)− λ

)
+ ε/2

←−
n→∞

P
(
∀i : g(ti) + λ < ηn(ti) < h(ti)− λ

)
+ ε/2

≤
(f)

P∗(ηn ∈ C) + ε/2.

Now, making the above reasoning rigorous, note first that Cλ ↑ C0 as λ ↓ 0 and P(η0 ∈ ∂C) = 0 implies that

for each ε > 0 there exists a λ = λ(ε) > 0 s.t. (e) holds true.

Since P(η0 ∈ U b(T, d)) = 1, there exists a δ = δ(ε) > 0 s.t. P(η0 ∈ H) ≥ 1− ε
2 , where

H := {y ∈ S : sup
t,t′∈T,d(t,t′)<δ

|y(t)− y(t′)| ≤ λ/2}.

By (2.3.12), choosing δ small enough, we have in addition that

lim sup
n→∞

P∗(ηn ∈ {H) < ε/2 ({H ≡ RT \H).

Since g, h ∈ U b(T, d), we may also assume that g, h ∈ H (again by choosing δ small enough).
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Now, let D = {t1, t2, ...} be as above and m ∈ N large enough s.t. T =
⋃

i≤m V (ti, δ) with V (ti, δ) := {t ∈ T :

d(t, ti) < δ} (such an m exists by (2.3.11) and since D is d-dense in T ).

Then, for any x ∈ H and t ∈ T we have the following implications (choosing i ∈ {1, ...,m} s.t. d(t, ti) < δ):

x(ti) < h(ti)− λ =⇒ x(t) ≤
(x∈H)

x(ti) + λ/2 < h(ti)− λ/2 ≤
(h∈H)

h(t), and

x(ti) > g(ti) + λ =⇒ x(t) ≥
(x∈H)

x(ti)− λ/2 > g(ti) + λ/2 ≥
(g∈H)

g(t).

Thus,

{ηn ∈ H and g(ti) + λ < ηn(ti) < h(ti)− λ ∀1 ≤ i ≤ m} ⊂ {ηn ∈ C},
and therefore

P∗(ηn ∈ C) ≥ P∗

(

{ηn ∈ H} ∩ {g(ti) + λ < ηn(ti) < h(ti)− λ ∀1 ≤ i ≤ m}
)

= 1− P∗
(

{ηn ∈ {H} ∪ {{g(ti) + λ < ηn(ti) < h(ti)− λ ∀1 ≤ i ≤ m}
)

≥ 1− P∗(ηn ∈ {H)− P∗
(

{{g(ti) + λ < ηn(ti) < h(ti)− λ ∀1 ≤ i ≤ m}
)

= P∗

(

g(ti) + λ < ηn(ti) < h(ti)− λ ∀1 ≤ i ≤ m)
︸ ︷︷ ︸

= P((ηn(t1), ..., ηn(tm)) ∈ G), where

−P∗(ηn ∈ {H)

G := {(r1, ..., rm) ∈ Rm : g(ti) + λ < ri < h(ti)− λ ∀1 ≤ i ≤ m} is an open subset of Rm.

Thus, (2.3.10) and the classical Portmanteau-Theorem together with STEP 1 (according to which η0,D
L
=
fidi

η0,D)

imply

lim inf
n→∞

P∗(ηn ∈ C) ≥ lim inf
n→∞

P((ηn(t1), ..., ηn(tm)) ∈ G)− lim sup
n→∞

P∗(ηn ∈ {H)

> P((η0(t1), ..., η0(tm)) ∈ G)− ε/2

= P

(

g(ti) + λ < η0(ti) < h(ti)− λ ∀1 ≤ i ≤ m
)

− ε/2

≥ P
(
η0 ∈ C5λ/4

)
− ε/2 ≥

(e)
P(η0 ∈ C)− ε.

Since ε > 0 was choosen arbitrary, (d) is shown.

As to (c), the proof runs quite similarly: For λ > 0 let

Cλ := {y ∈ S : g(y)− λ ≤ y(t) ≤ h(t) + λ ∀t ∈ T }.

Since Cλ ↓ C as λ ↓ 0, we can choose ∀ε > 0 a λ = λ(ε) > 0 s.t.

P(η0 ∈ Cλ) ≤ P(η0 ∈ C) + ε/2.

Let H, δ and m be as before. Then, analogously, for x ∈ H, t ∈ T and i ∈ {1, ...,m} with d(t, ti) < δ:

x(ti) ≤ h(ti) =⇒ x(t) ≤ x(ti) + λ/2 ≤ h(ti) + λ/2 ≤ h(t) + λ, and

x(ti) ≥ g(ti) =⇒ x(t) ≥ x(ti)− λ/2 ≥ g(ti)− λ/2 ≥ g(t)− λ.
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Now, P∗(ηn ∈ C) ≤ P∗(g(ti) ≤ ηn(ti) ≤ h(ti) ∀1 ≤ i ≤ m} = P((ηn(t1), ..., ηn(tm)) ∈ F ), where F :=

{(r1, ..., rm) ∈ Rm : g(ti) ≤ ri ≤ h(ti) ∀1 ≤ i ≤ m} is a closed subset of Rm. Thus, as before (2.3.10) and the

classical Portmanteau-Theorem together with STEP 1 imply

lim sup
n→∞

P∗(ηn ∈ C) ≤ P((η0(t1), ..., η0(tm)) ∈ F ) = P

(

g(ti) ≤ η0(ti) ≤ h(ti) ∀1 ≤ i ≤ m
)

≤ P(η0 ∈ {H) + P

(

g(t)− λ ≤ η0(t) ≤ h(t) + λ ∀t ∈ T
)

≤ ε/2 + P(η0 ∈ Cλ) ≤ P(η0 ∈ C) + ε.

Since ε > 0 was choosen arbitrary, also (c) is shown. Thus, (2.3.13) is proved.

It is now easy to verify η0
L
=
fidi

η0 using the continuous mapping theorem 2.3.16 below together with (2.3.10).

The proof of the converse part of 2.3.9 is as follows:

STEP 3: (2.3.13) (with U b(T, d) as a separable subspace of l∞(T )) implies (2.3.11) (according to [Gae90],

Corollary 2). So it remains to show that (2.3.13) implies the AEC (2.3.12):

For this, let ε > 0 and H(δ) := {x ∈ RT : wx(δ) ≥ ε}, δ > 0; then H(δ)∩S is a closed subset of S, and therefore,

by Theorem 2.3.14 (ii) below

lim
δ→0

lim sup
n→∞

P∗(wηn
(δ) > ε) ≤

lim
δ→0

lim sup
n→∞

P∗(ηn ∈ H(δ)) ≤ lim
δ→0

P(η0 ∈ H(δ)) =

lim
δ→0

P( sup
t,t′∈T,d(t,t′)≤δ

|η0(t)− η0(t′)| ≥ ε) =
(σ−continuity of P)

P(∀δ > 0 : sup
t,t′∈T,d(t,t′)≤δ

|η0(t)− η0(t′)| ≥ ε) ≤ P(η0 /∈ U b(T, d)) = 0. 2

REMARK. The just given proof together with 2.3.14 below also shows:

If ηn = (ηn(t))t∈T with T = (T, d) being totally bounded, n ∈ N, is a sequence of RANDOM QUANTITIES ηn : Ω −→ RT (i.e. with

ηn(t), t ∈ T , not being necessarily rv’s on (Ω,A,P), if η0 is a re in l∞(T ) with sample paths in Ub(T, d) s.t. (ηn(t1), ..., ηn(tm))
L−→

(η0(t1), ..., η0(tm)) (in the sense of (2.3.6)) ∀t1, ..., tm ∈ D,m ∈ N (i.e. if the fidi-convergence on D holds true), then (2.3.12) implies

(2.3.13) (in the sense of (2.3.6) with S = l∞(T ), E = RT , S0 = Ub(T, d)).

The following theorem is part of the Portmanteau-Theorem needed for our purposes. For a more

comprehensive list of equivalent conditions for L-convergence in our general model (2.3.5) we refer to

[St94], Thm. 1.5; cf. also [Va96], Thm. 1.3.4.

2.3.14. THEOREM .

Given the general model (2.3.5), the following assertions are equivalent:

(i) ηn
L−→ η0 (in the sense of (2.3.6))

(ii) lim supn→∞ P∗(ηn ∈ H) ≤ P(η0 ∈ H) ∀H ⊂ E,H ∩ S closed in S

(ii′)
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lim supn→∞ P∗(ηn ∈ F ) ≤ P(η0 ∈ F ) ∀F closed ⊂ S, and

lim supn→∞ P∗(ηn ∈ E\S) = 0

(iii) lim infn→∞ P∗(ηn ∈ H) ≥ P(η0 ∈ H) ∀H ⊂ E,H ∩ S open in S

(iii′) lim infn→∞ P∗(ηn ∈ G) ≥ P(η0 ∈ G) ∀G open ⊂ S.

The proof of 2.3.14 is tailored along arguments used to prove the classical Portmanteau-Theorem as in [Bi68].

2.3.15. THEOREM (Cramér-Slutzky-type result) ([St94], Thm. 1.16).

Given a basic p-space (Ω,A,P), a metric space S = (S, s) and an arbitrary E ⊃ S, let ηn, ζn : Ω −→
E,n ≥ 1, be rq’s and η0 : Ω −→ S be a re in (S,B(S)) such that

(+) lim
n→∞

P∗(ηn, ζn ∈ S and s(ηn, ζn) ≤ ε) = 1 ∀ε > 0

where s(ηn, ζn)(ω) := s(ηn(ω), ζn(ω)), ω ∈ Ω. Then

ηn
L−→ η0 ⇐⇒ ζn

L−→ η0.

PROOF. By symmetry, it suffices to show “=⇒”: We are going to use the criterion (ii) from 2.3.14. For

this, given any H ⊂ E and ε > 0 s.t. H ∩ S is closed in S, the set

F := (H ∩ S)ε := {x ∈ S : inf
y∈H∩S

s(x, y) ≤ ε}

is also closed in S, whence

lim sup
n→∞

P∗(ζn ∈ H) ≤ lim sup
n→∞

[

P∗(ζn ∈ H, ηn, ζn ∈ S and s(ηn, ζn) ≤ ε)+

P∗({{ηn, ζn ∈ S and s(ηn, ζn) ≤ ε})
]

≤

lim sup
n→∞

P∗(ηn ∈ F ) + 1 − lim inf
n→∞

P∗(ηn, ζn ∈ S and s(ηn, ζn) ≤ ε) =
(+)

lim sup
n→∞

P∗(ηn ∈ F ) ≤
2.3.14(ii)

P(η0 ∈ F ).

Since H ∩ S is closed in S, we have (H ∩ S)ε ↓ H ∩ S as ε ↓ 0, whence for ε ↓ 0

P(η0 ∈ F ) ↓ P(η0 ∈ H ∩ S) = P(η0 ∈ H),

and therefore

lim sup
n→∞

P∗(ζn ∈ H) ≤ P(η0 ∈ H)

from which ζn
L−→ η0 follows according to 2.3.14(ii). 2

2.3.16. THEOREM (Continuous Mapping Theorem (CMT)) ([St94], Thm. 1.8; cf. also [Va96],

Thm. 1.3.6)).

In addition to our general model (2.3.5), let S′ = (S′, s′) be a further metric space and E′ be arbitrary,

E′ ⊃ S′. Let g : E −→ E′ be a given map with g(S) ⊂ S′ and let Sg ∈ B(S) be such that restSg is

continuous at every point in Sg; then, assuming in addition that η0 takes its values in Sg, ηn
L−→ η0

implies g ◦ ηn L−→ g ◦ η0.
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In connection with RANDOM QUANTITIES (rq’s) ζ : Ω −→ R := R ∪ {±∞} (being not necessarily

rv’s) the following concept and its consequences turn out to be useful at some places later on; cf.

[Va96], Lemma 1.2.1 and Lemma 1.2.2; cf. also the Notes on p. 75 in [Va96] refering to early papers

by Blumberg in 1935 and by Eames and May in 1967.

(2.3.17) Let (Ω,A,P) be a p-space and ζ : Ω −→ R be a rq. Then there exists a

measurable function ζ∗ : Ω −→ R with

(i) ζ∗ ≥ ζ , and

(ii) ζ∗ ≤ η P− a.s ∀ measurable η : Ω −→ R with η ≥ ζ P− a.s.

ζ∗ is P − a.s. uniquely determined and for any ζ∗ fulfilling (i) and (ii), it holds that E∗(ζ) = E(ζ∗),
provided E(ζ∗) exists; the latter is certainly true if E∗(ζ) < ∞; furthermore one has P∗(ζ > t) =

P(ζ∗ > t) ∀t ∈ R.

The function ζ∗ is called minimal measurable majorant of ζ, or also called MEASURABLE COVER

or ENVELOPE FUNCTION.

Before concluding this section, let us have once more a glance onto the Characterization Theorem

2.3.9:

As already remarked there, the condition (2.3.10) will be fulfilled in most cases due to classical mul-

tivariate CLT’s. Also, (2.3.11) will be fulfilled by choosing the pseudo-metric d appropriately; e.g. in

the case T = C, C ⊂ X a VCC, let d := dν , ν being an arbitrary p-measure on X ; then the condition

(2.3.11) holds as we shall see in Section 4.2.

So, in order to prove (2.3.13), the crucial task is to verify the AEC (2.3.12):

Since Markov’s inequality also holds in the case of outer probabilities and outer expectations, respec-

tively, for verifying the AEC it suffices to show

(2.3.18) lim
δ→0

lim sup
n→∞

E∗( sup
t,t′∈T,d(t,t′)≤δ

|ηn(t)− ηn(t′)|) = 0,

i.e. later on we will have at our disposal the following fact:

2.3.19. REMARK.

The conditions (2.3.10), (2.3.11) and (2.3.18) imply (2.3.13), i.e. ηn
L−→
sep

η0, where η0 has all its

sample paths in U b(T, d) and where η0
L
=
fidi

η0.

2.3.19 (with (2.3.18) instead of the AEC (2.3.12)) leads to essential simplifications in proving FCLT’s

in Section 7 comparable with the role of (2.1.5) in proving ULLN’s.
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3 Random Measures Processes (RMP’s)

3.1 Empirical processes, partial-sum processes and smoothed empir-

ical processes, respectively, considered as special cases of RMP’s

In order to cope in later sections also with processes indexed by classes of functions instead of sets

(cf. Section 4.3 for some motivation) the general context will be now as follows:

Let X = (X,X ) be an arbitrary measurable space (sample space) and F be a class of X -measurable

functions f : X −→ R with X -measurable envelope F : X −→ R+ (i.e. supf∈F |f(x)| ≤ F (x) ∀x ∈
X). Let (wnj)1≤j≤j(n),n∈N be a triangular array of random p-measures on X and (ξnj)1≤j≤j(n),n∈N be

a triangular array of real-valued rv’s.

Random Measure Processes (RMP’s) Sn = (Sn(f))f∈F (of sample size n) (indexed by F) are defined

by

(3.1.1) Sn(f) :=
∑

j≤j(n)

wnj(f) · ξnj, f ∈ F ,

where wnj(f) :=
∫

X fdwnj.

We tacitly assume regularity conditions such as measurability and finiteness of wnj(F ) (which implies

that the sample paths of Sn are contained in the Banach space

l∞(F) := {x : F −→ R : ||x||F := sup
f∈F
|x(f)| <∞},

endowed with the sup-norm || · ||F .

In connection with Uniform Laws of Large Numbers (ULLN) and Functional Central Limit Theorems

(FCLT) in Section 6 and 7, respectively, it will be assumed that j(n) −→∞ as n→∞ and that

for all n ∈ N the sequence of pairs

(wn1, ξn1), ..., (wnj(n), ξnj(n)) is independent.

(Here independence is to be understood in the sense of independence of the rq’s (wnj(f) · ξnj)f∈F , 1 ≤
j ≤ j(n), for each n, which means that (wnj(f) · ξnj)f∈F , 1 ≤ j ≤ j(n), n ∈ N, are considered as

coordinate projections on an appropriately chosen product-p-space (Ω,A,P) (cf. Section 5.1 for the

definition of independence of rq’s and also Section 6.1 below).

However, we do not assume that the above pairs are identically distributed; also dependence within

each pair is allowed.

Processes of the form (3.1.1) with F = {1C : C ∈ C}, C ⊂ X , and non-random p-measures wnj , were

first considered in [Al87] and in its present general form in [Zi94] (see also [Va96], Section 2.12.2 for

closely related examples).

Now, special cases of RMP’s occur when considering
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• the classical multivariate partial-sum process of Section 1.3 and 1.4 where X = Id, d ≥ 1, wnj =

δj/n, ξnj := n−d/2ξj, j ∈ {1, ..., n}d, and F = {1C : C ∈ C} with C = {[0, t] : t ∈ Id};

• empirical processes indexed by F given by νn(f) := j(n)−1
∑

j≤j(n) f(ηnj), f ∈ F , based on re’s

ηnj in (X,X ), where wnj = δηnj and ξnj ≡ j(n)−1;

• smoothed empirical processes:

Here X is assumed to be a linear metric space endowed with its Borel σ-field X . Let ηj, j ∈ N,

be i i d re’s in (X,X ) with law ν on X and νn be the empirical measure based on η1, ..., ηn, i.e.

νn =
∑

j≤n δηj . Now, if ν is “smooth” (one may think of random vectors ηj in X = Rd whose df

has a continuous or even differentiable density w.r.t. Lebesgue measure), it is natural to replace

νn by a smoothed version ν̃n serving as an estimator for an unknown ν.

As in [Yu89] we will consider “smoothing through convolution” as explained in Section 6.4 below.

As we will see there, this leads to ν̃n = (ν̃n(f))f∈F which can be represented as RMP’s with

wnj(B) = µn(B − ηj), B ∈ X , and ξnj ≡ n−1, where (µn)n∈N is a given sequence of p-measures

µn on X with µn −→ δ0 weakly (in the sense of weak convergence of Borel measures as in [Bi68]).

3.2 Further examples

3.2.1 Partial-sum processes with random locations

Let X = (X,X ) be an arbitrary measurable space, C ⊂ X , (ηnj)1≤j≤j(n),n∈N be a triangular array of

re’s in (X,X ) and (ξnj)1≤j≤j(n),n∈N be a triangular array of real-valued rv’s.

PARTIAL-SUM PROCESSES Sn = (Sn(C))C∈C WITH RANDOM LOCATIONS are defined by

(3.2.2) Sn(C) :=
∑

j≤j(n)

1C(ηnj) · ξnj, C ∈ C.

These processes were studied in [Ar92], [Gae94] and [Gae94b], being special RMP’s with F = {1C :

C ∈ C} and wnj = δηnj .

Many examples of natural phenomena like mineral deposits, earthquakes, forest disease, etc. can be modelled by such processes.

3.2.3 The sequential uniform empirical process

(Cf. [Sh86], Chapter 3.5).

Let ηj , j ∈ N, be i i d rv’s with L{ηj} = U [0, 1] (as in 1.1). The SEQUENTIAL UNIFORM EMPIRI-

CAL PROCESS (of sample size n) Kn = (Kn(s, t))(s,t)∈I2 based on η1, ..., ηn is defined by

Kn(s, t) := n−1/2
∑

j≤<ns>

(

1[0,t](ηj)− t
)

, (s, t) ∈ I2.

Choosing X := I2,X := I2 ∩ B2, C := {[0, s] × [0, t] : (s, t) ∈ I2}, ηnj := (j/n, ηj), 1 ≤ j ≤ j(n) := n,
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and Sn(C) := n−1/2
∑

j≤n δηnj (C), C ∈ C, we get for C = [0, s]× [0, t]

Sn(C) = n−1/2
∑

j≤n
1C((j/n, ηj)) = n−1/2

∑

j≤<ns>
1[0,t](ηj)

and E(Sn(C)) = n−1/2
∑

j≤n P(ηnj ∈ C) = n−1/2
∑

j≤n P( jn ≤ s, ηj ∈ [0, t]) = n−1/2
∑

j≤<ns> P(ηj ∈
[0, t]) = n−1/2<ns> ·t, whence Sn(C)−E(Sn(C)) = Kn(s, t), i.e. Kn can be represented as a centered

RMP (with wnj = δηnj and ξnj = n−1/2) indexed by the VCC C.
If one considers instead of Kn the underlying df

Gn(s, t) := n−1
∑

j≤<ns>
1[0,t](ηj), (s, t) ∈ I2,

(in comparison with the edf Fn(t) = n−1
∑

j≤n 1[0,t](ηj), t ∈ I), then, through the additional parameter

s it is possible to visualize the appearance of the data y1, ..., yn (yj = ηj(ω)) successively, (therefore
the notion “sequential” uniform empirical process) as the following picture may illustrate.
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i.e. Gn(1, · ) = Fn( · ).

As to the function-indexed sequential empirical process (based on an i i d sequence of re’s in an arbitrary sample space (X,X ) we
refer to [Va96], Section 2.12.1 and to [Zi97], Section 7.4; as in the uniform case, also this process can be represented as a centered
RMP.
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3.2.4 Nonparametric regression

(Cf. [Stu97]). Let η be a re in an arbitrary measurable space (X,X ) with law L{η} = ν and let

C ⊂ X . Let ξ be a rv (defined on the same p-space (Ω,A,P) as η) such that E(|ξ|) <∞. Consider the

regression function

m(y) := E(ξ|η = y), y ∈ X,

and the corresponding integrated regression function indexed by C:

I(C) :=

∫

C
m(y) ν(dy), C ∈ C.

Since m is usually ν-a.s. uniquely determined by I, statistical inference may be based on I instead of

m as well.

Now, I(C) = E(1C(η)E(ξ|η)) = E(E(1C(η)ξ|η)) = E(1C(η) ·ξ), whose empirical version (of sample size

n) based on i i d pairs (ηj , ξj) of re’s in (X ×R,X⊗B) (where L{ηj} = ν and L{ξj} = L{ξ}) is given

by

In(C) := n−1
∑

j≤n
1C(ηj)ξj , C ∈ C,

where E(In(C)) = I(C) for all C ∈ C. Thus In is a RMP indexed by C (with wnj ≡ δηj and ξnj = n−1ξj).

At this place we may also mention another paper by Stute et al. ([Stu98]) where (in our notation)

processes Rn of the following form are considered:

Rn(C) = n−1/2
∑

j≤n
1C(ηj)(ξj −m(ηj))

based on i i d re’s (ηj , ξj) in (Rd × R,Bd⊗B) with C ∈ C := {(−∞, y] : y ∈ Rd}, whence Rn is also a

RMP indexed by the VCC C.

3.2.5 Estimation of intensity measures for spatial Poisson processes

This example is taken from [Zi97], Section 7.8; cf. also [Li90].

Let Φ be a Poisson point process on an arbitrary state space (X,X ) with finite intensity measure

Λ on X , i.e. (based on an underlying p-space (Ω,A,P)) Φ(ω, · ) is a measure on X with values in

{0, 1, 2, ...} for every fixed ω ∈ Ω, Φ( · , B) is a Poisson rv with parameter Λ(B) for every fixed B ∈ X ,

and for any disloint B1, ..., Bn ∈ X , n ∈ N, the rv’s Φ( · , B1), ...,Φ( · , Bn) are independent.

In estimating an unknown intensity measure Λ on the basis of an i i d sequence (Φj)j∈N of Poisson

point processes Φj (with intensity measure Λ) a natural sequence of estimators Λ̂n, n ∈ N, is Λ̂n :=

n−1
∑

j≤nΦj leading to the corresponding standardized process

Zn(f) := n1/2(Λ̂n(f)− Λ(f)), f ∈ F ,
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in view of a FCLT for Zn = (Zn(f))f∈F , where F is an appropriate class of measurable functions

f : X −→ R with f ∈ L2(X,X ,Λ); note that E(Φ(f)) = Λ(f) for all f .

Now, since Zn(f) = n−1/2
∑

j≤n(Φj(f)−E(Φj(f))) = Sn(f)−E(Sn(f)) with Sn(f) :=
∑

j≤nwnj(f) ·
ξnj, where wnj :≡ Φj/Φj(X) and ξnj := n−1/2Φj(X), Zn can be considered as a RMP indexed by F
to which our result in Section 7.1 will apply.

3.2.6 Lévy’s Multivariate Brownian motion as a set-indexed process and as limiting

process of a sequence of Partial-sum processes with random locations

We will follow here the exposition presented in the paper by Mina Ossiander and Ronald Pyke [Os85]:

Let B = (B(t))t∈R+ be a Brownian motion (indexed by the parameter space T = R+), i.e. a mean-zero

Gaussian process with independent and stationary increments whose covariance function is given by

(1) cov(B(s), B(t)) = s ∧ t, s, t ∈ R+

or equivalently, since s ∧ t = (|t|+ |s| − |t− s|)/2, by

(2) cov(B(s), B(t)) = (|t|+ |s| − |t− s|)/2, s, t ∈ R+.

Now, in view of (2) Lévy’s multivariate Brownian motion ([Lé40], [Lé45]) is defined to be a mean-zero

Gaussian process (random field) Z = (Z(t))t∈Rd with

(3) cov(Z(s), Z(t)) = (|t|+ |s| − |t− s|)/2, s, t ∈ Rd,

where | · | is the Euclidian norm in Rd, d ≥ 1.

The covariance structure (3) can also be characterized by the isotropic mean square condition

(4) E((Z(s)− Z(t))2) = |t− s|, s, t ∈ Rd.

Notice that Z(s) and Z(t) − Z(s) are independent if and only if 0, s and t are colinear, so that the

independent increments property of one-dimensional Brownian motion has apparently not been fully

generalized.

A second generalization of Brownian motion to multi-dimensional time was given by Chentsov

([Che56]); cf. also [Py73]:

Let W = (W (t))t∈Id be a mean-zero Gaussian process with covariance structure

(5) cov(W (s),W (t)) = s ∧ t, s, t ∈ Id,

where s ∧ t :=
∏

i≤d(si ∧ ti) for s = (s1, ..., sd) and t = (t1, ..., td); then, if si ≤ ti ∀1 ≤ i ≤ d, we have

cov(W (s),W (t)−W (s)) = s∧ t− s∧ s = 0, i.e. under the natural partial ordering of Id, the property

of independent increments has been retained.
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The processW is called Brownian sheet (cf. [Py73]). A variant ofW is the so-called tied-down Brownian

sheet U = (U(t))t∈Id , defined by

U(t) := W (t)−W (1) ·
∏

i≤d
ti, t = (t1, ..., td) and 1 = (1, ..., 1)

(i.e. for d = 1 U coincides with the Brownian bridge).

Identifying (as in 1.4) each t ∈ Id with [0, t]d , and denoting with ν the Lebesgue measure on Id, then,

with W ([0, t]) := W (t), t ∈ Id, (5) is equivalent to

(5′) cov(W ([0, s]),W ([0, t])) = ν([0, s] ∩ [0, t]), s, t ∈ Id.

But note however that the restriction of Z onto the parameter space Id is not identical with W , since

for 0, s and t being colinear one has

(|t|+ |s| − |t− s|)/2 = |s| 6= s ∧ t,

in general. Therefore the following question arises:

Is it possible to represent the Lévy-process Z as a set-indexed process Z ′ = (Z ′(C))C∈C with an

appropriately chosen class C = {Ct : t ∈ Rd} such that anagously to (5′) the covariance of Z ′ is given

by

(6) cov(Z ′(Cs), Z
′(Ct)) = µ(Cs ∩ Ct)

with a suitable p-measure µ?

An answer to this question is given in [Os85]:

Let us restrict ourselves to the unit sphere Sd := {t ∈ Rd : |t| ≤ 1}, i.e. consider Lévy’s multivariate

Brownian motion Z = (Z(t))t∈Sd as it is done in [Os85], and, for t ∈ Sd let

Ct := {v ∈ Rd : |v − t/2| ≤ |t/2|},

so that Ct is the closed sphere in Rd having for a diameter the ray from 0 to t.

n = 2 :
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The family {Ct : t ∈ Sd} plays then (as seen below) in the representaion of the Lévy Brownian motion Z as a set-indexed process

the same role as the class of all lower left orthants [0, t] ∩ Id do for the W and U processes with parameter set Id.
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Now, let µ be the p-measure on Sd ∩ Bd with density function fd (w.r.t. Lebesgue measure) given by

fd(v) := (cd · |v|)−1, v ∈ Sd,

where cd := (2π)d/2/Γ(d/2) is the surface area of Sd. Then we get

(7) For any s, t ∈ Sd µ(Cs ∩ Ct) = c−1
d

(

|t|+ |s| − |t− s|
)

/2.

Comparing this with (3) we see: For s, t ∈ Sd it follows that cov(Z(s), Z(t)) = (cd/2) · µ(Cs ∩Ct),
i.e. with Z ′(Ct) := (cd/2)

−1/2Z(t) we get

cov(Z ′(Cs), Z ′(Ct)) = µ(Cs ∩ Ct), i.e. (6).

(Note that scalar multiplication (by (cd/2)
−1/2) does not change the process in any essential way.)

Note also that Z′ has independent “increments” in the sense that Z′(Cs) and Z′(Ct) are independent if Cs ∩Ct = ∅ µ− a.s.

PROOF OF (7) in the case d = 2 (with c2 = 2π).

Let t = (t1, t2) ∈ S2 and a = (a1, a2) ∈ ∂Ct, assuming w.l.o.g. (due to the spherical symmetry of fd) that t1 = 0

and a1 > 0:
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Let ϑa denote the angle between a and the x-axis (w.r.t. t) and let D
a
t be the hatched region in the figure.

Representing v = (v1, v2) by its polar coordinates, we have

v = (|v| cosϑ, |v| sinϑ) ∈ Da
t ⇐⇒ 0 ≤ |v| ≤ |t| cos(ϑ− π

2
) and 0 ≤ ϑ ≤ ϑa.

Thus we get (note that dv = |v|d|v|dϑ):

µ(D
a
t ) = c−1

2

∫

R2

1D
a
t
(v)

1

|v| dv = c−1
2

∫ ϑa

0

∫ |t| cos(ϑ−π
2
)

0

1

|v| |v| d|v| dϑ

= c−1
2

∫ ϑa

0

|t| cos(ϑ− π

2
) dϑ = c−1

2 |t|
(
sin(ϑa −

π

2
) + 1

)

= c−1
2

(

|t| − |t| sin(
π

2
− ϑa)

)

= c−1
2

(

|t| − |t− a|
)

, i.e.

(+) µ(D
a
t ) = c−1

2

(

|t| − |t− a|
)

.
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Considering now Cs ∩ Ct for s ∈ S2 and a ∈ ∂Cs ∩ ∂Ct, then (where a′ (see the figure below) takes over the

role of a before, now with s instead of t)

µ(Cs ∩Ct) = µ(Da′

s ) + µ(D
a
t ),

whence by (+) (noticing that |s− a′| = |s− a|)

µ(Cs ∩Ct) = c−1
2

(

|s| − |s− a′|+ |t| − |t− a|
)

=

c−1
2

[

|t|+ |s| − (|s− a|+ |t− a|)
]

= c−1
2

(
|t|+ |s| − |t− s|

)
,

since t− a and s− a are colinear. 2

-

6

t

0
x-axis (w.r.t. t)

x′-axis (w.r.t. s)

Ct

Cs

D
a

t

Note that D
a′

s has the same area
as the hatched region.

Da
′

s

�
a′

ss u
�

�
�

�
�

�
�

�

@@@
@@
@@ @
@@

@
@

@
@

@
@

@
@

@@

@
@

@@

@
@

@@

@
@

@@

@
@

@@

@
@

@@

@
@

@@

@
@

@@

@
@

@
@

@@
@

@@ @
@@@r r

@
@

@
@

@
@

@
@

@@
a

u

u

(8) It can be shown that (7) is equivalent to

(7′) dµ(Cs, Ct) = 2c−1
d |t− s| ∀s, t ∈ Sd

(where dµ(A,B) := µ(A∆B)). Next (as already remarked in (1.5.4)), the class of all closed Euclidian

balls form a VCC, whence

C := {Ct : t ∈ Sd}

is also a VCC; thus, we can apply the FCLT 2.2.3 with X = Sd,X = Sd ∩Bd and Sn = (Sn(Ct))Ct∈C ,
where

Sn(Ct) := n−1/2
∑

j≤n
1Ct(ηj) · ξj,

the ξj, j ∈ N, being i i d with E(ξj) = 0 and E(ξ2j ) = 1, the ηj , j ∈ N, being i i d with L{ηj} = µ (having

Lebesgue density fd), and where (ηj)j∈N is independent of (ξj)j∈N, to obtain the following result (note
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that both conditions (i) and (ii) in Theorem 2.2.3 are obviously fulfilled here):

(9) Sn
L−→

sep
Z ′

i.e. Z ′ proves to be the limiting process of a sequence of Partial-sum processes with random locations.

In addition, Z ′ = (Z ′(Ct))Ct∈C can be chosen as a process with bounded and uniformly dµ-continuous

sample paths; moreover, (7′) shows the existence of a version of the Lévy process Z = (Z(t))t∈Sd with

continuous sample paths, cf. above:

Z(t) =
(cd

2

)1/2
Z ′(Ct) for t ∈ Sd.
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4 Metric entropy and Vapnik-Chervonenkis classes

4.1 Packing and covering numbers; metric entropy

As we have seen in 1.5, Glivenko-Cantelli convergence, i.e. ||νn − ν||C −→ 0 P− a.s., fails to hold for

all ν if the class C is “too rich”; cf. our Example 1.5.5.

The same is true in view of the validity of FCLT’s:

Consider again 1.5.5 and the corresponding empirical C-process βn = (βn(C))C∈C with βn(C) :=

n1/2
(
νn(C)− ν(C)

)
; then: If (as in Theorem 2.2.1) the assertion

βn
L−→ Gν in (l∞(C), || · ||C)

would hold true, the CMT 2.3.16 would imply that

sup
C∈C
|βn(C)| L−→ sup

C∈C
|Gν(C)|,

where supC∈C |Gν(C,ω)| < ∞ for all ω, whence ||νn − ν||C = n−1/2 supC∈C |βn(C)| P−→ 0 and also

||νn − ν||C −→ 0 P− a.s. according to 2.1.4, in contradiction to 1.5.5.

Thus, in order to obtain Uniform Laws of Large Numbers (ULLN) and Functional Central Limit

Theorems (FCLT) for stochastic processes indexed by general parameter spaces T in Section 6 and 7,

respectively, it is clear that T is not allowed to be “too rich”.

To be “too rich” will be described through the behaviour of the so-called metric entropy of T , assuming

that T = (T, d) is a pseudo-metric space.

So, let T = (T, d) be a pseudo-metric parameter space (e.g. T = C ⊂ X , d = dν , ν p-measure on X ,

dν(C1, C2) = ν(C1∆C2)). Following Dudley ([Du84]) a set {t1, ..., tn} ⊂ T is called a u-net (for any

given u > 0) iff for each t ∈ T there is some ti such that d(t, ti) ≤ u.
This gives raise to define the so-called covering numbers of (T, d):

4.1.1. Definition.

For each u > 0, let

N(u, T, d) := inf{n ∈ N : ∃u− net {t1, ..., tn} ⊂ T},

i.e. N(u, T, d) is the minimal number of points in a u-net. H( · , T, d) := logN( · , T, d) is called the

metric entropy of T = (T, d). (Note that H(u, T, d) is increasing as u −→ 0.)

(If d ≡ 0, that is d(s, t) = 0 ∀s, t ∈ T , we put N(0, T, d) := 1, whence in this case N(u, T, d) ≡ 1 and therefore H(u, T, d) = 0 ∀u ≥ 0.
So we may allow u to range in [0,∞).)

A closely related concept are the so-called packing numbers of (T, d). For this, given any u > 0, let

D(u, T, d) denote the largest m such that for some t1, ..., tm ∈ T d(ti, tj) > u whenever i 6= j. The

points t1, ..., tm may be called u- distinguishable.
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4.1.2. Remark.

If {t1, ..., tn} is a maximal u- distinguishable set, then {t1, ..., tn} is a u-net.

4.1.3. Lemma.

For any u > 0

D(2u, T, d) ≤ N(u, T, d) ≤ D(u, T, d).

(So, in this sense covering numbers and packing numbers are equivalent concepts.)

As we shall see in Section 6 and 7, respectively, in order to obtain a ULLN for RMP’s indexed by F , stochastic boundedness of a
sequence of random covering numbers of F (equipped with appropriate random pseudo-metrics) will be crucial, wheras, for a FCLT
to hold, a uniform integrable L2-entropy condition will be imposed.

4.2 Vapnik-Chervonenkis classes in arbitrary sample spaces X =

(X, X )

Let X = (X,X ) be an arbitrary measurable space and C ⊂ X be a VCC (see (1.5.9), i.e.

∃s ∈ N s.t. mC(s) < 2s, where mC(n) := max{∆C(F ) : F ⊂ X, |F | = n}

for each n ∈ N, and ∆C(F ) := |{F ∩ C : C ∈ C}|.
Given a VCC C, v ≡ V (C) := min{s ∈ N : mC(s) < 2s} is the so-called Vapnik-Chervonenkis Index

of C.
According to the following lemma VCC’s “are of polynomial discrimination”.

4.2.1. Lemma ([Vap71]; cf. [Gae83], Lemma 9, p. 27).

If C is a VCC, then mC(n) ≤ nv for all n ≥ 2.

(Note that for arbitrary C one has mC(n) ≤ 2n ∀n ∈ N.)

Moreover, as shown by Alexander ([Al84], inequality (1.8)),

C VCC =⇒ (4.2.2): mC(n) ≤∑

j≤v−1

(n
j

)
≤

(
ne
v−1

)v−1
∀n ≥ v − 1.

In the following let (X,X , ν) be an arbitrary p-space, and, given a class C ⊂ X , let dν(C1, C2) :=

ν(C1∆C2)), C1, C2 ∈ C. Then (T, d) := (C, dν) is a pseudo-metric parameter space. In this situation

Dudley ([Du78], Lemma 7.13) proved the following fundamental result:

4.2.3. Lemma.

Let C ⊂ X be a VCC; then

N(u, C, dν) ≤ K u−v| log u|v ∀0 < u ≤ 1/2,

where the constant 0 < K <∞ does only depend on v ≡ V (C) but not on the p-measure ν on X .
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As we shall see in 4.3 below, a corresponding inequality will hold in the more general case of Vapnik-Chervonenkis graph classes F
of X -measurable functions, containing 4.2.3 as a special case (with F = {1C : C ∈ C}).

4.2.4. Examples of VCC’s (cf. [Wen81]).

(a) X = Rd, d ≥ 1, C = {(−∞, t] : t ∈ Rd} the class of all “lower-left orthants”; s = d+ 1.

(b) X = Rd, d ≥ 1, C = { ×
i≤d

[si, ti] : −∞ < si ≤ ti <∞}; s = 2d+ 1.

(c) X = Rd, d ≥ 1, C = {B ⊂ Rd : B closed Euclidian ball }; s = d+ 2.

We want to present here an independent nice proof of (c) which I learned from Fleming Topsoe in 1976

(personal communication); the proof is based on the following two auxiliary results (+) and (++):

(+) RADON’S THEOREM (cf. [Val64], Thm. 1.26).

Each F ⊂ Rd, d ≥ 1, with |F | ≥ d+2, can be decomposed into two (disjoint) subsets Fi, i = 1, 2,

such that co(F1) ∩ co(F2) 6= ∅ (where co(Fi) denotes the convex hull of Fi).

For illustration, let d = 2:

������������
PPPPPPPPPPc

x2

c
x4

c x3

c
x1

r
F = {x1, x2, x3, x4}
F1 = {x2, x3}
F2 = {x1, x4}.

(++) SEPARATION PROPERTY.

For any two closed Euclidian balls Bi ⊂ Rd, d ≥ 1, i = 1, 2, one has

co(B1\B2) ∩ co(B2\B1) = ∅ .

For illustration, consider again the case d = 2:

&%
'$

B1

B2b
b

Now, in order to prove (c), we must show:

∀F ⊂ Rd with |F | = s := d+ 2 ∃F ′ ⊂ F s.t. F ′ 6= F ∩B ∀B ∈ C.
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Suppose to the contrary that there exists an F ⊂ Rd with

|F | = d+ 2 s.t. ∀F ′ ⊂ F ∃B ∈ C with F ′ = F ∩B.

This implies that for the Fi’s in (+) (which decompose F ) there exist two closed Euclidian balls

Bi, i = 1, 2, such that Fi = F ∩Bi. Since F1 ∩ F2 = ∅ it follows that F1 ⊂ B1\B2 and F2 ⊂ B2\B1,

whence

co(B1\B2) ∩ co(B2\B1) ⊃ co(F1) ∩ co(F2) 6= ∅

(by (+)) which contradicts (++). 2

Further examples of VCC’s are obtained on the basis of the following Lemma (cf. [Du78], Thm. 7.2, and [Po84], Chap. II, Lemma
1.8):

4.2.5. Lemma.

Let G be an arbitrary m-dimensional vectorspace of real-valued functions g being defined on an arbitrary

set X equipped with the σ-field X = P(X) (whence each g ∈ G is measurable). Then the class

C := {{g ≥ 0} : g ∈ G} is a VCC.

PROOF. W.l.o.g. let |X | ≥ m+ 1 and let A = {x1, ..., xs} ⊂ X be arbitrary with |A| = s := m+ 1; consider

the linear map L : G −→ Rs, defined by L(g) := (g(x1), ..., g(xs)). Since L(G) is a linear subspace of Rs with

dimension ≤ m = s− 1, there exists a v = (v1, ...vs) ∈ Rs, v 6= 0, s.t. v⊥L(G), i.e. one has

(+)
∑

i≤s

vig(xi) = 0 ∀g ∈ G.

Now, let A+ := {xi ∈ A : vi ≥ 0} and A− := {xi ∈ A : vi < 0}, where w.l.o.g. A− 6= ∅ (by replacing v through

−v otherwise). We are going to show

(++) A+ 6= A ∩ {g ≥ 0} ∀g ∈ G,

from which the assertion of 4.2.5 follows.

As to (++), suppose to the contrary that there exists a g ∈ G s.t. A+ = A ∩ {g ≥ 0}; then
∑

i≤s

vig(xi) =
∑

i:xi∈A+

vig(xi) +
∑

i:xi∈A−

vig(xi) > 0

in contradiction to (+). 2

As an immediate consequence of the definition of a VCC it is clear that any subclass of a VCC is also

a VCC.

As a permanence property, we mention here only the following lemma and its corollary:

4.2.6. Lemma ([Du78], Prop. (7.12)).

Let C be a VCC and k ∈ N be arbitrary, but fixed. Given C1, ..., Ck ∈ C, let α(C1, ..., Ck) be the algebra

generated by C1, ..., Ck and

αk(C) :=
⋃

{α(C1, ..., Ck) : C1, ..., Ck ∈ C};

then αk(C) is also a VCC.
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4.2.7. Corollary.

If C is a VCC, then the classes {C∆D : C,D ∈ C} , {C\D : C,D ∈ C} and {C ∩ D : C,D ∈ C},
respectively, form also VCC’s.

As to further examples we refer to Stengle and Yukich [Sten89] and Laskowski [La92]; see also the

references in the following more general context.

4.3 Vapnik-Chervonenkis graph classes of X -measurable
functions f : X −→ R

So far we have mainly considered examples of processes indexed by classes C of sets, where C ⊂
X , (X,X ) being a given measurable space.

To motivate the need for extending the index sets from classes of sets to classes of functions, we present

the following examples A) and B):

A) POLLARD’s k-MEANS CLUSTERING PROCEDURE

(Cf. [Po84], Example 4, p.9 and Example 29, p. 30; [Po82a] and [Po82b]; [Gae87]; [Ro91] and [Ro95].)

Given data x1, ..., xn ∈ X = Rd viewed as realizations of i i d re’s ξj in (Rd,Bd) (on a basic p-space

(Ω,A,P)) (i.e. xj = ξj(ω)), let k ∈ N be arbitrary but fixed (i.e. k is given in advance).

Suppose that the underlying unknown ν := L{ξj} is “k-modal” (e.g. with Lebesgue-density ϕν having

k modes).

Consider d = 2 and k = 2 for illustration (i.e. ϕν bimodal)

�
�

�
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�
�

�
��

bbb b
bb b bbbb

bbbb
b

b b b b bbb bbb
b

b
c = ξj(ω), 1 ≤ j ≤ n.

�
�

�
�

�
�

�
��

6

s

ϕν

s
a∗1 a∗2

a∗1 and a∗2 are the unknown
modes of ν (modes of ϕν).

The question arises how to choose k data-clusters with empirical cluster centers a∗ni = a∗ni(ω) (based

on the data xj = ξj(ω), 1 ≤ j ≤ n), 1 ≤ i ≤ k, such that, as the sample size n tends to infinity, the

a∗ni converge P− a.s. to the unknown modes a∗i of ν, 1 ≤ i ≤ k.
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An answer is provided by the k-means clustering procedure (CP):

(CP): Given the data xj(= ξj(ω)), 1 ≤ j ≤ n, n ∈ N, determine a k-tuple (a∗n1, ..., a
∗
nk) which

minimizes the expression

(4.3.1) n−1
∑

j≤n
min

1≤i≤k
|xj − ai|2

over all (a1, ..., ak) with ai ∈ Rd, and then allocate each xj to its nearest a∗ni.

Let νn be the empirical measure based on ξ1, ..., ξn and let for ai ∈ Rd, 1 ≤ i ≤ k,

(4.3.2) W (a1, ..., ak; νn) :=

∫

Rd
min

1≤i≤k
|x− ai|2 νn(dx);

then

(4.3.3) W (a∗n1, ..., a
∗
nk; νn) = min

(a1,...,ak)
W (a1, ..., ak; νn).

In the following we confine to the case d = 1 and k = 2) (i.e. ν being bimodal), and we shall write

(a∗n, b
∗
n) and (a∗, b∗) instead of (a∗n1, a

∗
n2) and (a∗1, a

∗
2), respectively.

Now, consider (instead of a class C of sets) the following class F of B-measurable functions f : R −→ R:

(4.3.4) F := {fa,b : (a, b) ∈ CM}

where fa,b(x) := |x− a|2 ∧ |x− b|2, x ∈ R, and CM :=
(
[−M,M ]×R

)
∪

(
R× [−M,M ]

)
, where M > 0

is chosen large enough (see [Po84], p.10).

We assume that ∫

R

x2 ν(dx) <∞,

whence W (a, b; ν) :=
∫

R
fa,b(x) ν(dx) <∞ ∀(a, b) ∈ R2.

Then, by the strong law of large numbers we have ∀(a, b) ∈ R2

(4.3.5) W (a, b; νn) = νn(fa,b) = n−1
∑

j≤n
fa,b(ξj) −→ ν(fa,b) = W (a, b; ν) P− a.s.

Now, a further assumption on ν is needed:

∃(a∗, b∗) ∈ R2 being uniquely determined up to permutation(4.3.6)

of its coordinates such that

ν(fa∗,b∗) = min
(a,b)∈R2

ν(fa,b).

The following picture is to visualize (4.3.6) for ν with density ϕν :
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a∗ b∗

fa∗,b∗

ϕν

On the other hand, i.e. on the empirical side, we have by (4.3.3)

(4.3.7) νn(fa∗n,b∗n) = min
(a,b)∈R2

νn(fa,b).

Thus, (4.3.5) - (4.3.7) gives raise to expect

(4.3.8) (a∗n, b
∗
n) −→ (a∗, b∗) P− a.s.

i.e. P− a.s convergence of the empirical cluster centers to the unknown modes of ν.

(4.3.8) can be proved by showing

(4.3.9) sup
(a,b)∈CM

|νn(fa,b)− ν(fa,b)| −→ 0 P− a.s.

As to (4.3.9), sup(a,b)∈CM |νn(fa,b)−ν(fa,b)| = supf∈F |νn(f)−ν(f)| with F as defined by (4.3.4) being

a Vapnik-Chervonenkis graph class (VCGC) (see below for the definition of VCGC’s of functions).

Thus (4.3.9) proves to be a consequence of a result generalizing Theorem 2.1.6 from VCC’s C to

VCGC’s F with ν(F ) <∞, F being an envelope of F ; note that in the present case

sup
(a,b)∈CM

fa,b(x) ≤ F (x) := (x−M)2 + (x+M)2 ∀x ∈ R

and ν(F ) < ∞ since
∫

R
x2 ν(dx) < ∞ by assumption. (Cf. [Po84], Example 29, and Section 6.3

below).

To sketch the proof of (4.3.8) on the basis of (4.3.9) one shows at first

(a): For sufficiently large M > 0 (a∗n, b
∗
n) ∈ CM P− a.s. ∀n ≥ n0.

Then one gets

(b): νn(fa∗n,b∗n) ≤
(4.3.7)

νn(fa∗,b∗) −→ ν(fa∗,b∗) P− a.s. by (4.3.5), where P− a.s.

ν(fa∗,b∗) ≤
(4.3.6)

ν(fa∗n,b∗n) ≈
for large n

by (4.3.9) and (a)

νn(fa∗n,b∗n), which yields

ν(fa∗n,b∗n) −→ ν(fa∗,b∗) P− a.s.
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(c): Finally, since by (4.3.6) (a∗, b∗) is uniquely determined (up to permutation of its coordinates),

(b) implies (4.3.8). 2

A modification of the k-means clustering procedure for k∗-modal ν with k∗ unknown to obtain P-a.s.

convergence of k(n) to k∗ and simultaneously

(4.3.8′) (a∗n1, ..., a
∗
nk(n)) −→ (a∗1, ..., a

∗
k∗) P− a.s.,

where k(n) denotes the number of empirical clusters w.r.t. a modification of the empirical clustering

procedure, is contained in [Gae87], [Ro91] and [Ro95].

B) LOCAL EMPIRICAL PROCESSES, STUTE’s CONDITIONAL EMPIRICAL

PROCESSES AND CONDITIONAL EMPIRICAL DISTRIBUTION FUNCTIONS

(See [Ei97], [Stu86a] and [Stu86b].)

As pointed out in [Ei97], local empirical processes occur implicitely in the work of Kim and Pollard [Ki90] on cube root asymptotics
and of Nolan and Marron [No89] on automatic band width selection; local empirical-type processes arise also in certain interval
censoring and deconvolution problems (see Part II of Groeneboom and Wellner [Gro92]).

Let ξj, j ∈ N, be i i d re’s in (Rd,Bd), d ≥ 1, defined on a p-space (Ω,A,P) with df G.

Let t ∈ Rd and J ∈ Bd be arbitrary, but fixed. Given an invertible bimeasurable transformation

h : Rd −→ Rd, let

(4.3.10) A(h) := t+ hJ (where hJ := {h(x) : x ∈ J}).

To visualize A(h), let d = 2, J = E (the unit ball in R2) and h(x) := 1
2 |x|, x ∈ R2:
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Next, let (hn)n∈N be a sequence of invertible bimeasurable transformations h : Rd −→ Rd and assume

for

An := A(hn) and an := P(ξj ∈ An), n ∈ N,

the following set of conditions

(A.i) an > 0 ∀n ∈ N, (A.ii) nan −→∞ and (A.iii) an −→ 0 as n −→∞.
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(Note that (A.iii) implies that G is continuous at t; otherwise (A.iii) may be replaced by (A.iii’) an −→ a for some 0 ≤ a ≤ 1.)

For each n ∈ N, let νn(t, · ) be defined by

(4.3.11) νn(t, B) := (nan)
−1

∑

j≤n
I(ξj ∈ t+ hn(J ∩B)) , B ∈ Bd

(where I( · ) ≡ 1{ · }).
νn(t, · ) is called local empirical measure at t.

(Note that νn(t, · ) need not be a probability measure; one only has that E(νn(t,Rd)) = 1.)

Now, let F be a class of measurable functions f : Rd −→ R with supports contained in J (i.e.

f(x) = 0 ∀x ∈ Rd\J ∀f ∈ F), and let

(4.3.12) νn(t, f) :=

∫

J
f(x)νn(t, dx) =

(4.3.11)
(nan)

−1
∑

j≤n
f(h−1

n (ξj − t)), f ∈ F ,

where h−1
n denotes the inverse of hn.

◦ Note at this place that for any fixed t ∈ Rd and J ∈ Bd the processes (νn(t, f))f∈F can be considered

as RMP’s (see (3.1.1)) by choosing as random p-measures wnj and as rv’s ξnj, 1 ≤ j ≤ n, n ∈ N,

wnj := δηnj with ηnj := h−1
n (ξj − t), and ξnj := (nan)

−1.

(In fact, for each f ∈ F , ∑

j≤nwnj(f)ξnj = (nan)
−1

∑

j≤n
∫

Rd
f(x)δηnj (dx) = (nan)

−1
∑

j≤n f(ηnj) =

(nan)
−1

∑

j≤n f(h−1
n (ξj − t)) = νn(t, f).)

The standardized process βlocn (t) = (βlocn (t, f))f∈F with βlocn (t, f) := (nan)
1/2

(

νn(t, f) − E(νn(t, f))
)

is called local empirical process at t indexed by F .

This setup allows to consider the following interesting examples (see [Ei97]):

4.3.13. Example.

Let ξj, j ∈ N, be i i d rv’s on a p-space (Ω,A,P) with df G having a continuous density g in a neigh-

borhood of a fixed t ∈ R.

Set J := [−1
2 ,

1
2 ], F := {K} with a so-called kernel function K satisfying K(x) = 0 if |x| > 1

2 .

Let hn(x) := hn · x, x ∈ R, with hn > 0 and hn −→ 0 as n→∞. Then,

νn(t,K) =
(4.3.12)

(nan)
−1

∑

j≤n
K

(ξj − t
hn

)

= hna
−1
n ĝn(t),

where ĝn(t) := (nhn)
−1

∑

j≤nK
(
ξj−t
hn

)

is the so-called kernel density estimator of g(t) with window

size hn.

(Note that h−1
n an = h−1

n P(ξj ∈ t + hnJ) = h−1
n P(ξj ∈ [t− 1

2
hn, t+ 1

2
hn]) = h−1

n

∫ t+ 1
2
hn

t− 1
2
hn

g(x) dx −→ g(t) as n→ ∞.)
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4.3.14. Example.

Let d = 2, ξj = (ζj , ηj), j ∈ N, i i d re’s in (R2,B2) with df G having density gζ,η and marginal

densities gζ and gη, respectively. Choose J := [−1
2 ,

1
2 ] × R, t := (t, 0), t ∈ R, and, for (z, y) ∈ R2 let

hn(z, y) := (hn · z, y) with hn > 0 and hn −→ 0 as n → ∞. Let K be a kernel function as in 4.3.13

and F := {R} with

(+) R(z, y) := y ·K(z) , (z, y) ∈ R2.

Then,

νn(t, R) =
(4.3.12)

(nan)
−1

∑

j≤n
R(h−1

n (ξj − t)) = (nan)
−1

∑

j≤n
ηjK

(ζj − t
hn

)

,

since h−1
n (ξj − t) = h−1

n (ζj − t, ηj) = (
ζj−t
hn

, ηj) and therefore R(h−1
n (ξj − t)) = R

(
ζj−t
hn

, ηj

)

=
(+)

ηjK
(
ζj−t
hn

)

. Thus

νn(t, R) = m̂n(t)hna
−1
n ĝn(t) = m̂n(t)νn(t,K) (cf. 4.3.13),

where ĝn(t) is the kernel density estimator of the marginal density gζ(t) and m̂n(t) is the kernel

regression estimator of m(t) := E(η|ζ = t) defined by

m̂n(t) :=
(nhn)

−1
∑

j≤n ηjK
(
ζj−t
hn

)

ĝn(t)
.

4.3.15. Example.

Keeping up the notation of example 4.3.14, choose now, instead of F = {R}, the class F = {fv : v ∈ R}
of functions fv defined by

fv(z, y) := I(y ≤ v)K(z), (z, y) ∈ R2;

then (again with t = (t, 0), t ∈ R)

νn(t, fv) := (nan)
−1

∑

j≤n
I(ηj ≤ v)K

(ζj − t
hn

)

= Fn(v|t)hna−1
n ĝn(t)

= Fn(v|t)νn(t,K) (cf. 4.3.13)

with

Fn(v|t) :=
(nhn)

−1
∑

j≤n I(ηj ≤ v)K
(
ζj−t
hn

)

ĝn(t)
,

which are the conditional empirical distribution functions (of sample size n) first intensively studied

by Stute [Stu86a],[Stu86b].

As to an empirical process approach to the uniform consistency of kernel-type function estimators we

refer to a very remarkable forthcoming paper by Uwe Einmahl and David Mason [Ei98].
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In the following let again X = (X,X ) be an arbitrary measurable space and F be a class of X -

measurable functions f : X −→ R with X -measurable envelope F : X −→ R+ (i.e. supf∈F |f(x)| ≤
F (x) ∀x ∈ X).

Generalizing the concept of VCC’s C ⊂ X (equivalently {1C : C ∈ C}) to more general classes F of

X -measurable functions f : X −→ R leads to

4.3.16. Definition.

F is called a Vapnik-Chervonenkis graph class (VCGC) if

R := {Gf : f ∈ F}

is a VCC in (X × R,X⊗B), where

Gf := {(x, t) ∈ X × R : 0 ≤ t ≤ f(x) or f(x) ≤ t ≤ 0}.

Gf ⊂ X × R is the so-called graph region associated to f .
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R

X

Gf

f

NOTE: f X -measurable =⇒ Gf ∈ X
⊗B whence the graph region class R is a subclass of

X⊗B.

Given a VCGC F we denote with V (R) the Vapnik-Chervonenkis Index of the graph region class R
(cf. 4.2) corresponding to F .

Clearly, if C ⊂ X is a VCC, then F := {1C : C ∈ C} is a VCGC with V (R) = V (C).
Examples of VCGC’s as well as permanence properties which allow to construct new VCGC’s from known ones are contained in
[Po84] (there called “classes of polynomial discrimination”) and [Va96], Section 2.6.5.

The present graph regions Gf are called “between graphs” in [Va96]; compared with the open subgraphs of f , defined by {(x, t) :
t < f(x)}, which led to the concept of Vapnik-Chervonenkis subgraph classes (VCSGC) of functions in [Va96], Section 2.6.2, it
turns out that F is a VCGC if and only if it is a VCSGC; see [Va96], Problem 11, p. 152. Thus both concepts are equivalent.

The following fundamental lemma is mentioned in [Al84]. It generalizes lemma 4.2.3 above; but notice

that in addition the assumption of ν being a p-measure on X can be dispensed with. The proof, as

carried out by Klaus Ziegler [Zi94], Lemma A4, combines the methods in proving lemma 2.7 in [Al84]

and lemma 25 in Section II.5 of [Po84].
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4.3.17. Lemma.

Let F be a VCGC with envelope F and graph region class R. Then there exists a constant 0 < K(v) <

∞ depending only on v ≡ V (R) such that for all measures ν on X with ν(F ) :=
∫

X F dν <∞

N(εν(F ),F , d(1)
ν ) ≤ K(v)ε−(v−1)| log ε|v−1 ∀0 < ε ≤ 1

2
.

Here, as in 4.2.3, log ε = loge ε ≡ ln ε, and d
(1)
ν is defined by d

(1)
ν (f, g) := ν(|f − g|), f, g ∈ F .

NOTE: limε→0 | log ε|α εβ = 0 ∀α, β > 0, so | log ε|v−1 ≤ ε−(v−1) for small ε, whence

N(εν(F ),F , d(1)
ν ) ≤ K(v)ε−2(v−1) ∀0 < ε ≤ 1

2
.

Also, in the special case F := {1C : C ∈ C}, C VCC, F ≡ 1, d
(1)
ν = dν , ν an arbitrary p-measure on X ,

4.3.17 yields a sharpened version of 4.2.3.

PROOF. W.l.o.g. assume v ≥ 2; let 0 < ε ≤ 1
2 be arbitrary, but fixed, and choose f1, ..., fm ∈ F

(w.l.o.g. m ≥ 2) s.t.

(1) d
(1)
ν (fi, fj) := ν(|fi − fj|) > εν(F ) for i 6= j.

Let n be the smallest natural number s.t.

(2) 1
2 exp(2 logm− nε/2) < 1.

Then, by elementary calculations, one gets

(3) n ≤ (1 + 4 logm)/ε ≤ 15Lm/eε

where La := max(1, log a).

Now, a stochastic argument comes into play (cf. Dudley’s ingenious proof of lemma 4.2.3):

Let µ be the p-measure on X defined by

µ(A) := ν(F )−1

∫

A
F dν, A ∈ X ,

and let K : X × B −→ [0, 1] be the stochastic kernel defined by

K(x,B) := U [−F (x), F (x)](B), x ∈ X,B ∈ B,

where U [a, b] denotes the uniform distribution on [a, b]. Let ξ1, ..., ξn (with n chosen as above, cf. (2))

be i i d re’s in (X ×R,X⊗B), defined on a basic p-space (Ω,A,P), with L{ξj} = µ×K, where µ×K
is the p-measure on X⊗B defined by

µ×K(C) :=

∫

X
U [−F (x), F (x)]

(
{t ∈ R : (x, t) ∈ C}

)
µ(dx), C ∈ X⊗B.

(To see that K is indeed a stochastic kernel, use the fact that X -measurability of K( · , B) has only to be checked for sets B of the
form (−∞, t], t ∈ R. So, fix t ∈ R and distinguish between the three cases t > 0, t = 0, and t < 0. Then, e.g. in the case t > 0 we
obtain

K( · , (−∞, t]) = 1{F≤t} + ((t + F )/2F ) 1{F≥t}
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which is X -measurable by the assumed measurability of F .)

Now, let Gi := Gfi be the graph regions of fi, 1 ≤ i ≤ m; then (with the convention that in the case

F (x) = 0 we set 0
0 := 0)

(4) U [−F (x), F (x)]
(
{t ∈ R : (x, t) ∈ Gi∆Gj}

)
= (2F (x))−1|fi(x)− fj(x)| ∀x ∈ X,

as the following picture shows (with Gi∆Gj being the hatched region).

6

?

X

2F (x)

|fi(x)− fj(x)|

fj

fi

F

−F

x
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Furthermore, we have

(5) ∀ξk(ω), ω ∈ Ω, 1 ≤ k ≤ n, and ∀1 ≤ i, j ≤ m, i 6= j

S′(ω) ∩Gi = S′(ω) ∩Gj ⇐⇒ ξk(ω) /∈ Gi∆Gj ∀1 ≤ k ≤ n,

where S′(ω) := {ξ1(ω), ..., ξn(ω)}.

(Note that S′(ω) ∩ Gi 6= S′(ω) ∩ Gj ⇐⇒ ∃1 ≤ k0 ≤ n s.t. ξk0(ω) ∈ Gi∆Gj ; note also that

|S′(ω)| ≤ n.)

Next, we are going to show that

m ≤ mR(n) := max
{

|{S ∩Gf : f ∈ F}| : S ⊂ X × R, |S| = n
}

:

For this, consider first any fixed 1 ≤ i, j ≤ m, i 6= j; then

P(ξk /∈ Gi∆Gj ∀1 ≤ k ≤ n) =
(ξk i i d )

[1− P(ξ1 ∈ Gi∆Gj]n = [1− (µ×K)(Gi∆Gj ]
n

= [1−
∫

X
U [−F (x), F (x)]

(
{t ∈ R : (x, t) ∈ Gi∆Gj}

)
µ(dx)]n

=
(4)

[1−
∫

X
(2F (x))−1|fi(x)− fj(x)|µ(dx)]n

= [1− ν(|fi − fj|)(2ν(F ))−1]n <
(1)

(1− ε/2)n ≤ exp(−nε/2).
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Therefore, according to (5) we get

P({ω ∈ Ω : ∃i 6= j s.t. S′(ω) ∩Gi = S′(ω) ∩Gj}) <

(
m

2

)

exp(−nε/2)

≤ 1

2
m2 exp(−nε/2) =

1

2
exp(2 logm− nε/2) <

(2)
1,

whence

P({ω ∈ Ω : S′(ω) ∩Gi 6= S′(ω) ∩Gj ∀1 ≤ i, j ≤ m, i 6= j}) > 0.

Therefore there exist ≤ n points in X × R from which R picks out m distinct subsets of S′(ω0) for

some ω0 ∈ Ω. Since S′(ω0) ⊂ X × R and |S′(ω0)| ≤ n, it follows (by definition of mR(n) and the fact

that mR(n) is increasing in n) that m ≤ mR(n), whence by (3)

m ≤ mR(15Lm/eε).

Now, if 15Lm/eε ≥ v− 1, it follows by (4.2.2) (according to which mR(n) ≤
(
ne
v − 1

)v−1
∀n ≥ v− 1)

that m ≤ mR(15Lm/eε) ≤ (15Lm/(v − 1)ε)v−1, which implies

(6) m ≤ (30ε−1 log(15ε−1))v−1.

(In fact, since Lm/(v − 1) ≤ L(m1/(v−1)) ≤ m1/2(v−1), we have m ≤ 15v−1m1/2ε−(v−1) and thus m ≤ (15ε−1)2(v−1). Hence

m ≤ (15L((15ε−1)2(v−1))/(v − 1)ε)v−1 = (30ε−1 log(15ε−1))v−1.)

On the other hand, if 15Lm/eε < v − 1, it follows that logm ≤ Lm < eε(v − 1)/15 < ε(v − 1) ≤
(v − 1) log(30ε−1) = log[(30ε−1)v−1], whence m ≤ (30ε−1)v−1 ≤

(ε≤1/2)
(30ε−1 log(15ε−1))v−1; i.e. (6)

holds also true in this case.

But (6) implies (recall ε ≤ 1/2)

(7) m ≤ K(v)ε−(v−1)| log ε|v−1 with

K(v) := (30(log 15 + log 2)/ log 2)v−1.

Finally, taking now m = m(ε) maximal s.t. (1) is fulfilled (note that m(ε) <∞ by (6)), we obtain by

(7) for the packing numbers D(εν(F ),F , d(1)
ν ) that

D(εν(F ),F , d(1)
ν ) ≤ K(v)ε−(v−1)| log ε|v−1,

which implies the assertion of 4.3.17 according to the second inequality in 4.1.3. 2

REMARK.

The above method of proof is very interesting in its own right:

In order to verify that a certain situation holds true, an appropriate stochastic model is constructed

within which it is shown that a proper event occurs with positive probability, from which one then

infers the existence of the situation one was interested in.

65



As discovered by Alexander [Al87], there is an elegant way to pass from the upper bound in 4.3.17

w.r.t. L1-entropy (i.e. concerning d
(1)
ν ) to an analogous result for L2-entropy, i.e. concerning d

(2)
ν

instead of d
(1)
ν , where

d(2)
ν (f, g) :=

(

ν(|f − g|2
)1/2

, f, g ∈ F .

This is done by using the elementary inequality

(4.3.18) (a− b)2 ≤ 2|a2 sign(a)− b2 sign(b)| ∀a, b ∈ R,

where

sign(a) :=







1 , if a > 0

0 , if a = 0

−1 , if a < 0

, a ∈ R.

4.3.19. Corollary([Zi94], Cor. A5; see also Lemma 36 in Section II.6 of [Po84] for a different

method of proof).

Let F be a VCGC with envelope F and graph region class R. Then there exists a constant 0 < K ′(v) <
∞ depending only on v ≡ V (R) such that for all measures ν on X with ν(F 2) <∞

N(ε[ν(F 2)]1/2,F , d(2)
ν ) ≤ K ′(v)ε−4(v−1) ∀ 0 < ε ≤ 1.

PROOF. Let F ′ := {f2 sign(f) : f ∈ F}; then ∀f, g ∈ F

d(2)
ν (f, g)2 = ν(|f − g|2) =

∫

X
(f(x)− g(x))2 ν(dx)

≤
(4.3.18)

2

∫

X
|f2(x) sign(f(x)) − g2(x) sign(g(x))| ν(dx)

= 2d(1)
ν

(

f2 sign(f), g2 sign(g)
)

, i.e.

∀f, g ∈ F d
(2)
ν (f, g)2 ≤ 2d

(1)
ν (f ′, g′)

with f ′ := f2 sign(f) and g′ := g2 sign(g), whence, by the definition of covering numbers, one gets

(a) N(ε[ν(F 2)]1/2,F , d(2)
ν ) ≤ N(ε

2

2 ν(F
2),F ′, d(1)

ν ).

Now, also F ′ is a VCGC with envelope F 2 and V (R′) = V (R) ≡ v, where R′ := {Gf ′ : f ′ ∈ F ′}:
To see this, let M ′ := {(xi, ti), 1 ≤ i ≤ v} be an arbitrary subset of X × R with |M ′| = v. Set

M := {(xi, |ti|1/2 sign(ti)), 1 ≤ i ≤ v} then M ⊂ X × R and |M | = v. Since F is a VCGC with

V (R) = v, there exists an N ⊂M , N = {(xi, |ti|1/2 sign(ti)), i ∈ J ⊂ {1, ..., v}} such that

(b) N 6= M ∩Gf ∀f ∈ F .
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But (b) implies that N ′ 6= M ′ ∩Gf ′ ∀f ′ ∈ F , where N ′ := {(xi, ti) : i ∈ J}:
For, suppose to the contrary, that N ′ = M ′∩Gf ′ for some f ′ ∈ F ′, f ′ = f2 sign(f), i.e. {(xi, ti) : i ∈ J}
= {(xi, ti) : 1 ≤ i ≤ v} ∩Gf ′ ; then, since

(xi, ti) ∈ Gf ′ ⇐⇒ (xi, |ti|1/2 sign(ti)) ∈ Gf ,

we get {(xi, |ti|1/2 sign(ti)), i ∈ J} = {(xi, |ti|1/2 sign(ti)), 1 ≤ i ≤ v} ∩Gf , which contradicts (b).

Since M ′ was arbitrary with |M ′| = v, F ′ is a VCGC with V (R′) ≤ v. In the same way one shows

that V (R′) < v would contradict the minimality of v and therefore V (R′) = V (R).

Thus, by the NOTE following lemma 4.3.17 with ε′ := ε2/2 and k := 2(v − 1) we get

N(ε′ν(F 2),F ′, d(1)
ν ) ≤ K(v)(ε′)−k ∀ 0 < ε′ ≤ 1

2
,

i.e. N(ε
2

2 ν(F
2),F ′, d(1)

ν ) ≤ 2kK(v)ε−2k ∀ 0 < ε ≤ 1, whence by (a)

N(ε[ν(F 2)]1/2,F , d(2)
ν ) ≤ 2kK(v)ε−4(v−1) ∀ 0 < ε ≤ 1. 2

4.3.19 suggests the following definition (cf. [Al87] and [Va96], Condition (2.5.1), p.127):

4.3.20. Definition.

Let (X,X ) be a measurable space, F a class of X -measurable real-valued functions, and let M(X,F )

be the set of all measures ν on X with ν(F 2) < ∞, where F is an envelope of F . Then F is said to

have uniformly intrgrable L2-entropy, if

∫ ∞

0
(logN(τ,F))1/2 dτ <∞,

where N(τ,F) := supν∈M(X,F )N(τ [ν(F 2)]1/2,F , d(2)
ν ).

4.3.21. Remark.

If F has uniformly intrgrable L2-entropy, then (F , d(2)
ν ) is totally bounded for each ν ∈M(X,F ).

(In fact, if
∫ ∞
0

(logN(τ,F))1/2 dτ <∞, then for each ν ∈ M(X,F ) one has

(+) N(τ [ν(F 2)]1/2,F , d(2)ν ) <∞ for λ− a.a. τ ∈ [0,∞) (λ ≡ Lebesgue measure);

but, since N(ε,F , d(2)ν ) is increasing as ε→ 0, (+) must hold for all τ ∈ [0,∞))

Finally, it follows from 4.3.19 that each VCGC F has uniformly intrgrable L2-entropy.
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5 Some fundamental inequalities

5.1 Symmetrization inequality

Before stating some of the inequalities needed later, the following definition concerning the concept of independence in case of
non-measurable maps, i.e. of random quantities (rq’s) is in order.
Guided by [Du83] and [Du84] (cf. also [Ho85]) we define as in [Zi94], Def. 1.2.1:

5.1.1. Definition.

Let (Ω,A,P) := ( ×
j∈N

Ωj,
⊗

j∈N

Aj, ×
j∈N

Pj) be the countable product of p-spaces (Ωj ,Aj,Pj), let V be an

arbitrary set and ηj : Ω −→ V be rq’s of the form ηj(ω) = hj(ωj) for ω = (ω1, ω2, ...) ∈ Ω, j ∈ N, with

arbitrary rq’s hj : Ωj −→ V .

Then the sequence (ηj)j∈N is called independent (or, ηj , j ∈ N, are said to be independent rq’s).

The ηj ’s are said to be independent and identically distributed (i i d ), if in addition the p-spaces

(Ωj,Aj ,Pj) as well as the rq’s hj defined on them are identical.

In the case hj = idΩj , j ∈ N, the sequence (ηj)j∈N is said to be canonically formed.

NOTE: If the hj ’s (and so the ηj ’s) are re’s in V = (V,V) (with an appropriate σ-field V) then

independence in the sense of 5.1.1 is equivalent with the usual concept of independence of re’s.

In the context of Definition 5.1.1 the rq.’s ηj, j ∈ N, are also called to be “independently defined”;

cf. [Ho02], pointing out that this implies an unpleasant restriction to the underlying probability

space (Ω,A,P) which causes an unnecessary restriction for the validity of the inequalities. Instead

Hoffmann-Jørgensen introduced in [Ho02] a series of concepts of independence which applies to arbi-

trary probability spaces, and he studied there the exact form of “independence” for non-measurable

functions under which the classical inequalities (Lévy’s inequality, Ottaviani’s inequality, Jensen’s

inequality, the symmetrization inequalities, the exponential inequality, the subgaussian inequalities,

etc.) hold.

In the following, when dealing with stochastic processes ηj = (ηj(t))t∈T (with common parameter

space T ), these processes will be considered as rq’s with values in V = RT or V = l∞(T ), respectively,

and independence of stochastic processes is to be understood in the sense of 5.1.1.

To avoid measurability questions we will (if not stated otherwise) tacitely assume that the parameter

spaces T are countable. (If not, one has to work with the “E∗, P∗-calculus”; see e.g. [Zi94] and [Va96].)

Note that, for countable T , the ||ηj || ≡ ||ηj ||T := supt∈T |ηj(t)| are re’s in (R̄+, B̄+) (R̄+ := R+ ∪ {∞}
endowed with its Borel σ-field B̄+), whence also ||Sn||T , n ∈ N, are re’s in (R̄+, B̄+), where Sn :=
∑

j≤n ηj .

To formulate the Symmetrization inequality for independent stochastic processes η1, ..., ηn, n ∈ N,

indexed by a common parameter space T , we need the concept of a so-called Rademacher sequence

(εj)j≤n, which means that the εj ’s are i i d rv’s taking only the values +1 or −1 with equal probability,

i.e. L{εj} = 1
2δ−1 + 1

2δ1 (δx ≡ Dirac measure at x).
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Then, given (as in 5.1.1) (Ω′,A′,P′) := ( ×
j≤n

Ω′
j,

⊗

j≤n
A′
j, ×
j≤n

P′
j) and stochastic processes ηj : Ω′ −→ RT

with ηj(ω
′) = hj(ω

′
j) for ω′ = (ω′

1, ..., ω
′
n) ∈ Ω′, 1 ≤ j ≤ n, where hj : Ω′

j −→ RT are stochastic

processes (indexed by T ), let (Ω′′,A′′,P′′) := ({−1, 1}n, ⊗

j≤n
P({−1, 1}), ×

j≤n
L{εj}) and (Ω,A,P) :=

(Ω′ × Ω′′,A′⊗A′′,P′ × P′′) (i.e. (εj)j≤n is thought to be canonically formed and independent of

(ηj)j≤n, where η1, ..., ηn are independent processes). Denoting with Eω′ ,Eω′′ and E ≡ Eω′,ω′′ expec-

tation of rv’s defined on (Ω′,A′,P′), (Ω′′,A′′,P′′) and (Ω,A,P), respectively, then in this setting the

following result holds true (cf. [Va96], Lemma 2.3.6 and [Zi94], Lemma 1.3.2):

5.1.2. Symmetrization inequality for independent processes η1, ..., ηn, n ∈ N.

Suppose that Eω′(|ηj(t)|) < ∞ for all t ∈ T and 1 ≤ j ≤ n; then, for any convex and nondecreasing

function ψ : R+ −→ R+ (put, as usual ψ(∞) := lima→∞ ψ(a))

Eω′

(

ψ
(
sup
t∈T
|
∑

j≤n
(ηj(t)− Eω′(ηj(t)))|

))

≤ E

(

ψ(2 sup
t∈T
|
∑

j≤n
εjηj(t)|)

)

.

PROOF. Let (δ1, ..., δn) ∈ {−1, 1}n be arbitrary but fixed; consider the decomposition

(+)
∑

j≤n
(ηj(t)−Eω′(ηj(t))) =

( ∑

δj=1

δjηj(t)+
∑

δj=−1

δjEω′(ηj(t))
)

−
( ∑

δj=−1

δjηj(t)+
∑

δj=1

δjEω′(ηj(t))
)

.

Since for any M ⊂ {1, ..., n} (with EM and E{M denoting expectation of rv’s indexed by M and {M ,

respectively)

Eω′

(

ψ
(
2 sup
t∈T
|
∑

j∈M
δjηj(t) +

∑

j∈{M

δjEω′(ηj(t))|
))

= EM

(

ψ
(
2 sup
t∈T
|E{M

( ∑

j∈M
δjηj(t) +

∑

j∈{M

δjηj(t))|
))

≤
(ψ monotone
nondecreasing)

EM

(

ψ
(
E{M (2 sup

t∈T
|
∑

j≤n
δjηj(t)|)

))

≤
(Jensen’s
inequality)

EME{M

(

ψ(2 sup
t∈T
|
∑

j≤n
δjηj(t)|)

)

=
(Fubini)

Eω′

(

ψ(2 sup
t∈T
|
∑

j≤n
δjηj(t)|)

)

,

we obtain with M = M1 := {j ≤ n : δj = 1} and M = M2 := {j ≤ n : δj = −1}, respectively, by the

ineqality

ψ(a+ b) ≤ 1

2
ψ(2a) +

1

2
ψ(2b) ∀ a, b ∈ R̄+
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(valid since ψ is convex), that

Eω′

(

ψ
(
sup
t∈T
|
∑

j≤n
(ηj(t)− Eω′(ηj(t)))|

))

≤
(+)

Eω′

(

ψ
(

sup
t∈T
|

∑

j∈M1

δjηj(t) +
∑

j∈{M1

δjEω′(ηj(t))| + sup
t∈T
|

∑

j∈M2

δjηj(t) +
∑

j∈{M2

δjEω′(ηj(t))|
))

≤

1

2
Eω′

(

ψ
(
2 sup
t∈T
|

∑

j∈M1

δjηj(t) +
∑

j∈{M1

δjEω′(ηj(t))|
))

+
1

2
Eω′

(

ψ
(
2 sup
t∈T
|

∑

j∈M2

δjηj(t) +
∑

j∈{M2

δjEω′(ηj(t))|
))

≤

Eω′

(

ψ(2 sup
t∈T
|
∑

j≤n
δjηj(t)|)

)

.

Since (δ1, ..., δn) was arbitrary, we get

Eω′

(

ψ
(
sup
t∈T
|
∑

j≤n
(ηj(t)− Eω′(ηj(t)))|

))

≤

Eω′′Eω′

(

ψ(2 sup
t∈T
|
∑

j≤n
εjηj(t)|)

)

=
(Fubini)

E(
(

ψ(2 sup
t∈T
|
∑

j≤n
εjηj(t))

)

.
2

5.2 Maximal inequality for Rademacher averages

The maximal inequality for Rademacher Averages (see 5.2.3 below) is based on ideas exposited by Pisier [Pi83]. The present proofs
are mainly due to Klaus Ziegler [Zi94]. The following lemma is a special case of (3.2) in combination with (3.1) in [Po90]:

5.2.1. Lemma.

Given a Rademacher sequence ε1, ..., εN and given a finite and non empty subset M of RN , there exists

for each 1 ≤ p <∞ a universal constant 0 < Kp <∞ such that

E
1
p

(

max
x∈M
|
∑

j≤N
εjxj|p

)

≤ Kp(1 + log |M |) 1
2 ·max

x∈M

( ∑

j≤N
x2
j

) 1
2
,

where |M | denotes the cardinality of M and x = (x1, ..., xN ).

Note that for |M | = 1 this is just one of Khintchine’s inequalities; see Ledoux and Talagrand [Le91],

Lemma 4.1, p.91.

For the proof of 5.2.1 the following proposition is used which is but a reformulation of Lemma 1.6 in

[Pi83] for the present purposes.

5.2.2. Proposition.

Let ξ1, ..., ξn be arbitrary nonnegative rv’s and Φ be a strictly increasing, nonnegative, convex function
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defined on [0,∞) such that there are constants 0 < ci < ∞, 1 ≤ i ≤ n, and 0 < c < ∞ with

E(Φ(c−1
i ξi)) ≤ c for all 1 ≤ i ≤ n. Then

E( max
1≤i≤n

ξi) ≤ Φ−1(cn) · max
1≤i≤n

ci

(Φ−1 being the inverse function of Φ).

PROOF.

Φ
(

E( max
1≤i≤n

ξi/max1≤i≤nci)
)

≤ Φ
(

E( max
1≤i≤n

(ξi/ci))
)

≤
(Jensen’s
inequality)

E

(

Φ( max
1≤i≤n

(ξi/ci))
)

= E( max
1≤i≤n

Φ(ξi/ci)) ≤

E

(∑

i≤n
Φ(ξi/ci)

)

=
∑

i≤n
E(Φ(ξi/ci)) ≤ c n.

Applying Φ−1 to both sides yields the assertion. 2

PROOF of 5.2.1. We show at first that the Rademacher average on the l.h.s of the stated inequality

in 5.2.1 can be dominated by a so-called Gaussian average, to which 5.2.2 will be applied.

For this, let g1, ..., gN be i i d rv’s with L{gi} = N (0, 1) being independent of ε1, ..., εN . Note that

(+) L{(ε1|g1|, ..., εN |gN |)} = L{(g1, ..., gN )}.

Let µ := E(|g1|); then

E

(

max
x∈M
|
∑

j≤N
εjxj|p

)

=

µ−pE
(

max
x∈M
|
∑

j≤N
εjE(|gj |)xj |p

)

= µ−pE
(

max
x∈M
|
∑

j≤N
εjE

(

|gj |
∣
∣
∣ε1, ..., εN

)

xj |p
)

=

µ−pE
(

max
x∈M
|E

( ∑

j≤N
εj |gj |xj

∣
∣
∣ε1, ..., εN

)

|p
)

≤
(Jensen’s
inequality)

µ−pE
(

max
x∈M

E

(

|
∑

j≤N
εj |gj |xj |p

∣
∣
∣ε1, ..., εN

))

≤

µ−pE
(

E
(

max
x∈M
|
∑

j≤N
εj |gj |xj |p

∣
∣
∣ε1, ..., εN

))

=

µ−pE
(

max
x∈M
|
∑

j≤N
εj |gj |xj|p

)

=
(+)

µ−pE(max
x∈M
|
∑

j≤N
gjxj |p).

Now, let Φ′(u) := exp(u2/p) for u ∈ [0,∞) and

Φ(u) :=







1 +
Φ′(up)−1

up
, for 0 ≤ u ≤ up

Φ′(u) , for u > up

,

where up :=
(
p
2

)p/2
; then
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(?) Φ : R+ −→ R+ is a strictly increasing, nonnegative, convex function with Φ ≤ Φ′, and

(??) ∀v ∈ R+ Φ−1(v) ≤ up + (log v)p/2.

On the other hand, assigning to each x = (x1, ..., xN ) ∈M the rv ξx :=
∑

j≤N gjxj, we have for each

x ∈M that L{ξx} = N (0, c2x) with c2x := (
∑

j≤N x
2
j), and

E

(

Φ(|ξx|p/2pcpx)
)

≤
(Φ≤Φ′)

E

(

Φ′(|ξx|p/2pcpx)
)

=
(by def. of Φ′)

E

(

exp(ξ2x/4c
2
x)

)

=
(L{ξx/cx}=N (0,1))

(2π)−1/2

∫

R

eu
2/4 e−u

2/2 du = (2π)−1/2

∫

R

e−u
2/4 du =

(u:=
√

2v)

√
2 (2π)−1/2

∫

R

e−v
2/2 dv =

√
2.

Thus 5.2.2 can be applied (cf. (?)) with |ξx|p, x ∈ M , instead of ξi, 1 ≤ i ≤ n, and with 2pcpx, x ∈ M ,

instead of ci, 1 ≤ i ≤ n, where n = |M | and c :=
√

2.

Hence by 5.2.2 it follows that

E

(

max
x∈M
|
∑

j≤N
gjxj |p

)

=

E

(

max
x∈M
|ξx|p

)

≤ Φ−1(
√

2|M |)max
x∈M

(2pcpx) ≤
(??)

(

up + (log(
√

2|M |))p/2
)

·max
x∈M

(2pcpx) =
(by def. of cx)

2pup max
x∈M

(
∑

j≤N
x2
j )
p/2 + 2p

(

log
√

2 + log |M |
)p/2

max
x∈M

(
∑

j≤N
x2
j)
p/2 ≤

(

2pup + 2p(1 + log |M |)p/2
)

·max
x∈M

(
∑

j≤N
x2
j)
p/2 ≤

K̄p
p (1 + log |M |)p/2 ·max

x∈M
(
∑

j≤N
x2
j)
p/2 with K̄p

p := 2p(up + 1).

Since E1/p
(

maxx∈M |
∑

j≤N εjxj |p
)

≤ µ−1E1/p
(

maxx∈M |
∑

j≤N gjxj |p
)

, as shown above, the asser-

tion of 5.2.1 holds true with Kp := µ−1K̄p. 2

The following maximal inequality will be an essential tool for proving a ULLN for RMP’s in Section

6.1 below. As we shall see, it is an easily to be shown consequence of 5.2.1:

5.2.3. Maximal Inequality for Rademacher Averages.

Given any xj ∈ RT , 1 ≤ j ≤ N,N ∈ N, let

d1(s, t) :=
∑

j≤N
|xj(s)− xj(t)|, s, t ∈ T.
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Then, for each 1 ≤ p <∞, there exists a universal constant 0 < Kp <∞ such that for any Rademacher

sequence ε1, ..., εN and for all γ > 0

E1/p
(

sup
t∈T
|
∑

j≤N
εjxj(t)|p

)

≤

γ +Kp(1 +H(γ, T, d1))
1/2 · sup

t∈T

( ∑

j≤N
x2
j (t)

)1/2

(where H( · , T, d1) denotes the metric entropy of T = (T, d1) as defined in 4.1.1).

PROOF. Given any γ > 0, assume w.l.o.g. that N(γ, T, d1) < ∞; then (cf. the definition of

N( · , T, d1) in 4.1.1) there exists a subset T ′ of T with |T ′| = N(γ, T, d1) such that for each t ∈ T

there exists a u(t) ∈ T ′ with d1(t, u(t)) ≤ γ.
Then we get

E1/p
(

sup
t∈T
|
∑

j≤N
εjxj(t)|p

)

≤
(Minkowski’s Ineq.)

E1/p
(

sup
t∈T
|
∑

j≤N
εj(xj(t)− xj(u(t)))|p

)

+ E1/p
(

sup
t∈T ′
|
∑

j≤N
εjxj(t)|p

)

≤
5.2.1

sup
t∈T
|
∑

j≤N
|xj(t)− xj(u(t))| + Kp(1 + log |T ′|)1/2 sup

t∈T

( ∑

j≤N
x2
j(t)

)1/2
≤

γ +Kp(1 +H(γ, T, d1))
1/2 · sup

t∈T

( ∑

j≤N
x2
j(t)

)1/2
.

2

5.3 Hoffmann-Jørgensen Inequality

To our knowledge, the Hoffmann-Jørgensen Inequality was originally proved implicitely in [Ho74], Theorem 3.1, for sums of inde-
pendent and symmetric Banachspace-valued re’s (cf. [Le91], Section 6.2).

Here we will consider as before independent (in the sense of 5.1.1) stochastic processes ηj = (ηj(t))t∈T ,

j ∈ N, indexed by an arbitrary parameter space T (supposed to be countable for simplicity to avoid

measurability considerations). The ηj ’s will be viewed as rq’s with values in RT or l∞(T ), respectively,

and ||η|| or ||∑j≤n εjηj|| denotes the supt∈T |η(t)| or supt∈T |
∑

j≤n εjηj |, respectively.

5.3.1. Hoffmann-Jørgensen Inequality

(Cf. [Va96], A.1.5 and [Zi94], Corollary 2.1.3).

Let ηj = (ηj(t))t∈T , j ∈ N, be a sequence of independent stochastic processes with common parameter

space T and (εj)j∈N be a canonically formed Rademacher sequence which is independent of (ηj)j∈N
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(cf. Section 5.1). Let Ψ : R+ −→ R+ be a nondecreasing function which is absolutely continuous on

each interval [0, a], a > 0, and which satisfies the so-called Orlicz condition

Ψ(2x) ≤ CΨ(x) for all x ∈ R+ and some 1 ≤ C <∞

(think e.g. of Ψ(x) = xp); then for each n ∈ N (as before, we put Ψ(∞) := lima→∞ Ψ(a))

E

(

Ψ(||
∑

j≤n
εjηj ||)

)

≤ 2C2E

(

max
j≤n

Ψ(||ηj ||)
)

+ 2C2Ψ(sn)

with sn := inf{s > 0 : P(||∑j≤n εjηj || > s) ≤ (4C2)−1}.

NOTE: This inequality will be an essential tool in proving a uniform law of large numbers (ULLN)

for Random Measure Processes in the following Section 6.1. It will be applied there with Ψ(x) :=

xp, 1 ≤ p < ∞. In such a case one can infer Lp-convergence of
∑

j≤n εjηnj to zero from its P-

stochastic convergence to zero, provided that the ηnj ’s are asymptotically negligible in the sense that

limn→∞ E(maxj≤n ||ηnj ||p) = 0, where the latter is e.g. fulfilled, if the ||ηnj ||’s are bounded by some δn
with limn→∞ δn = 0.

5.4 Further Symmetrization inequalities

(cf. [Va96], Section 2.3 and [Due00], Section 4)

We will consider again stochastic processes S = (S(t))t∈T , indexed by T , assuming for simplicity that

the parameter space T is countable, whence

||S|| ≡ ||S||T := sup
t∈T
|S(t)|

will be measurable.

If S is defined on a basic p-space (Ω,A,P), S : Ω −→ RT , one can enlarge the basic p-space to the

product space (Ω×Ω,A⊗A,P×P) to obtain an independent copy S′ of S by defining S′(t)(ω1, ω2) :=

S(t)(ω2), where now also S is considered as defined on the product space, i.e. S(t)(ω1, ω2) := S(t)(ω1).

5.4.1. Lemma.

Let S and S′ be independent stochastic processes with common parameter space T both defined on a

p-space (Ω,A,P) (where S′ need not necessarily be an independent copy of S);

i) Assume that there exist constants δ, β > 0 such that for all t ∈ T

P(|S′(t)| ≤ δ) ≥ β,

then for arbitrary η > 0

P(||S|| > η) ≤ β−1 P(||S − S′|| > η − δ).
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ii) Assume E(S′) ≡
(

E(S′(t))
)

t∈T
= 0 ∈ RT . Then

E(ψ(||S||)) ≤ E

(

ψ(||S − S′||)
)

for any convex and monotone increasing function ψ : R+ −→ R̄+ (:= [0,∞]) (with ψ(∞) :=

lim
a→∞

ψ(a)).

PROOF. As to i): W.l.o.g. we may and do assume that T ⊂ N; let

τ ≡ τ(S) :=

{

min{t ∈ T : |S(t)| > η}, if ||S|| > η

min{T} otherwise
.

Then τ is a rv such that

||S|| > η ⇐⇒ |S(τ)| > η

(where S(τ)(ω) := S(τ(ω))(ω) ∀ω ∈ Ω).

Now,

P(||S − S′|| > η − δ) ≥ P(|S(τ) − S′(τ)| > η − δ) ≥ P

(

|S(τ)| > η and |S′(τ)| ≤ δ
)

(note that |S(τ)| > η together with |S′(τ)| ≤ δ implies |S(τ)− S′(τ)| > η − δ).
Now,

P

(

|S(τ)| > η and |S′(τ)| ≤ δ
)

=P

( ⋃

t∈T
{τ = t} ∩ {|S(τ)| > η} ∩ {|S′(τ)| ≤ δ}

)

=
∑

t∈T
P

(

{τ = t} ∩ {|S(τ)| > η} ∩ {|S′(t)| ≤ δ}
)

=
∑

t∈T
P

(

{τ = t} ∩ {|S(τ)| > η}
)

· P(|S′(t)| ≤ δ})

≥ P(|S(τ)| > η) · β = P(||S|| > η) · β

which proves i).

As to ii): Extending ψ from R+ to R by defining ψ(−r) := ψ(r), we can handle ψ as an even convex

function ψ : R −→ R̄+, whence

E(ψ(||S||)) = E(ψ(sup
t∈T
|S(t)|)) =

ψ:R−→R̄+ mon. increasing
E(sup

t∈T
ψ(|S(t)|))

= E

(

sup
t∈T

ψ(S(t))
)

= E

(

sup
t∈T

ψ( E(S(t)− S′(t)|S)
︸ ︷︷ ︸

=E(S(t)|S)
︸ ︷︷ ︸

=S(t)

−E(S′(t)|S)
︸ ︷︷ ︸

=E(S′(t))=0

)
)

≤
Jensen’s inequality for conditional
expectations; cf. [Gae77], 5.4.7

E

(

sup
t∈T

E(ψ(S(t) − S′(t))|S)
)
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≤ E

(

E

(

sup
t∈T

ψ(S(t)− S′(t))|S
))

= E

(

sup
t∈T

ψ(S(t)− S′(t))
)

=
cf. above

E

(

sup
t∈T

ψ(|S(t)− S′(t)|)
)

=
ψ:R−→R̄+ mon. increasing

E

(

ψ(sup
t∈T
|S(t)− S′(t)|)

)

= E

(

ψ(||S − S′||)
)

. 2

In view of RMP’s with index set T = F we may consider the even more general model of processes

Sn = (Sn(t))t∈T indexed by an arbitrary parameter space T (again supposed to be countable to avoid

measurability considerations) given by

Sn(t) :=
∑

j≤j(n)

ηnj(t),

where ηnj = (ηnj(t))t∈T , 1 ≤ j ≤ j(n), n ∈ N, is a triangular array of rowwise independent stochastic

processes (indexed by T ).

Now, given in addition a Rademacher sequence (εj)j∈N, assume that for each n ∈ N

ηn1, ..., ηnj(n), η
′
n1, ..., η

′
nj(n), ε1, ..., εj(n)

are independent and such that

L{η′nj} = L{ηnj}, 1 ≤ j ≤ j(n), n ∈ N,

(i.e. the η′nj = (η′nj(t))t∈T being independent versions of the processes ηnj).

Then, Lemma 5.4.1, applied to S = Sn (or S = Sn − E(Sn)) and S′ = S′
n :=

∑

j≤j(n)

η′nj (or S′ =

S′
n − E(S′

n) = S′
n − E(Sn)) leads to consider the process

Sn − S′
n =

∑

j≤j(n)

(ηnj − η′nj).

Now, by the assumed independence of ηn1, ..., ηnj(n), η
′
n1, ..., η

′
nj(n), n ∈ N, and since L{η′nj} = L{ηnj},

1 ≤ j ≤ j(n), n ∈ N, we get (where ξ
L
= ξ̃ means that L{ξ} = L{ξ̃}) that

ηnj − η′nj
L
= εj(ηnj − η′nj)

for each 1 ≤ j ≤ j(n), n ∈ N. Therefore

Sn − S′
n

L
=

∑

j≤j(n)

εj(ηnj − η′nj) = S0
n − S̃0

n,
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where S0
n :=

∑

j≤j(n)

εjηnj and S̃0
n :=

∑

j≤j(n)

εjη
′
nj .

Note that the processes S0
n and S̃0

n are not independent; they are identically distributed.

We thus obtain the following symmetrization inequalities in continuation of Lemma 5.4.1:

5.4.2. Lemma.

i) For arbitrary η > 0

P(||Sn − S′
n|| > η) ≤ 2 P

(

||S0
n|| >

η

2

)

ii) For any convex and monotone increasing function ψ : R −→ R̄+ (with ψ(∞) := lim
a→∞

ψ(a))

E

(

ψ(||Sn − S′
n||)

)

≤ E(ψ(2||S0
n||)).

PROOF. As to i): Since

||S − S′|| L= ||S0
n − S̃0

n|| ≤ ||S0
n||+ ||S̃0

n||,
we get for arbitrary η > 0 that

P(||Sn − S′
n|| > η) ≤ P

(

||S0
n|| >

η

2

)

+ P

(

||S̃0
n|| >

η

2

)

≤
L{S0

n}=L{S̃0
n}

2 P

(

||S0
n|| >

η

2

)

.

As to ii):

E
(

ψ(||Sn − S′
n||)

)

= E
(

ψ(||S0
n − S̃0

n||)
)

≤
ψ mon. increasing

E

(

ψ
(1

2
(2||S0

n||+ 2||S̃0
n||)

))

≤
ψ convex

1

2
E(ψ(2||S0

n||)) +
1

2
E(ψ(2||S̃0

n||))

= E(ψ(2||S0
n||)). 2

IMPORTANT NOTE:

According to 5.4.1 ii) and 5.4.2 ii), to obtain a tractable upper bound for E(ψ(||Sn||) one can seek for

an upper bound for

E(ψ(2||S0
n||)) = E

(

E(ψ(2 ||
∑

j≤j(n)

εjηnj||)|(ηnj))
)

,

which entails (by the assumed independence on (εj) and (ηnj)) to seek for an upper bound for

(5.4.3) E

(

ψ(2 ||
∑

j≤j(n)

εjηnj||)
)

with fixed ηnj = (ηnj)t∈T ∈ RT ; (cf. with 5.2.3).

If, in addition, the processes ηn1, ..., ηnj(n) are identically distributed for each n ∈ N (whence also

η′n1, ..., η
′
nj(n) are identically distributed for each n ∈ N) one gets the following result:
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5.4.4. Lemma.

Assume that for each n ∈ N the processes ηn1, ..., ηnj(n) are identically distributed and that with

Sn :=
∑

j≤j(n)

ηnj E(ηn1) = j(n)−1E(Sn) exists in RT .

Then, for any convex and monotone increasing function ψ : R+ −→ R̄+ (with ψ(∞) := lim
a→∞

ψ(a))

and any 0 < λ < 1

E

(

ψ(
1

2
||Sn − E(Sn)||)

)

≤ E(ψ(||S0
n||))

≤ λE

(

ψ(
2

λ
||Sn − E(Sn)||)

)

+ (1− λ) E

(

ψ
( 1

1− λ j(n)−1
∣
∣
∣

∑

j≤j(n)

εj

∣
∣
∣ · ||E(Sn)||

))

.

PROOF. The first inequality follows from 5.4.1 ii) together with 5.4.2 ii): In fact,

E

(

ψ(||Sn − E(Sn)||)
)

≤
5.4.1 ii) with S = Sn −
E(Sn)
and S′ = S′

n − E(S′
n)

E

(

ψ(||Sn − E(Sn)− (S′
n − E(S′

n)
︸ ︷︷ ︸

=E(Sn)

)||)
)

= E

(

ψ(||Sn − S′
n)||)

)

≤
5.4.2ii)

E(ψ(2 ||S0
n||))

which yields the first inequality (replacing ψ by ψ̃ with ψ̃(x) := ψ(1
2x)), being also valid if the ηnj ’s

are independent but not necessarily identically distributed. To prove the second inequality, remember

that for convex ψ and any λi > 0 with
∑
λi = 1

(*) ψ(
∑

λixi) ≤
∑

λiψ(xi).

Now, let J1 := {j ≤ j(n) : εj = 1} and J2 := {j ≤ j(n) : εj = −1} = {1, ..., j(n)}\J1 , where n ∈ N is

arbitrary, but fixed. Then

S0
n =

∑

j≤j(n)

εj(ηnj − E(ηn1)) +
∑

j≤j(n)

εj · E(ηn1)
︸ ︷︷ ︸

=j(n)−1E(Sn), since the ηnj ′s are id

=
∑

j∈J1

(ηnj − E(ηn1))−
∑

j∈J2

(ηnj − E(ηn1)) + En · E(Sn)

where En := j(n)−1
∑

j≤j(n)

εj , i.e. S0
n = S(J1) − S(J2) + En · E(Sn), where

S(M) :=
∑

j∈M
(ηnj − E(ηn1)) for M ⊂ {1, ..., j(n)}.

Since Sn − E(Sn) = S(J1) + S(J2) with S(J1) and S(J2) being independent and centered, given J1, we

can apply Lemma 5.4.1 ii) w.r.t. the conditional distribution of (S, S′) := (S(J1),−S(J2)) and
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(S, S′) := (S(J2),−S(J1)) respectively, given J1, to obtain that

E(ψ(||S0
n||)) = E(ψ(||S(J1) − S(J2) + En · E(Sn)||))

≤ E(ψ(||S(J1)||+ ||S(J2)||+ |En| ||E(Sn)||))

= E(ψ(
λ

2

2

λ
||S(J1)||+

λ

2

2

λ
||S(J2)||+ (1− λ)

|En|
1− λ ||E(Sn)||))

≤
(∗)

λ

2
E(ψ(

2

λ
||S(J1)||)) +

λ

2
E(ψ(

2

λ
||S(J2)||)) + (1− λ)E(ψ(

|En|
1− λ ||E(Sn)||))

≤
5.4.1ii)

λ

2
E(ψ(

2

λ
||S(J1) + S(J2)||)) +

λ

2
E(ψ(

2

λ
||S(J2) + S(J1)||)) + (1− λ)E(ψ(

|En|
1 − λ ||E(Sn)||))

= λE(ψ(
2

λ
||Sn − E(Sn)||)) + (1− λ)E(ψ(

|En|
1 − λ ||E(Sn)||)) 2

Applying 5.4.4 with ψ = idR+ yields

5.4.5. Corollary.

Under the assumptions of Lemma 5.4.4 one has

E

(1

2
||Sn − E(Sn)||

)

≤ E(||S0
n||)

≤ 2E(||Sn − E(Sn)||) + E

(∣
∣j(n)−1

∑

j≤j(n)

εj
∣
∣ ||E(Sn)||

)

≤ 2E(||Sn − E(Sn)||) + (j(n)−1/2||E(Sn)||.

Thus, if ||E(Sn)|| = o(
√

j(n)), then

E(||Sn − E(Sn)||) = o(1) ⇐⇒ E(||S0
n||) = o(1).

Shorack and Wellner claimed (cf. [Sh86]) that good inequalities are the key to strong theorems.

So, let us conclude this section presenting some Exponential Inequalities; cf. [Va96], Sections 2.2.1

and 2.2.2, [Po84], Appendix B, and [Due00], Section 6.

5.5 Exponential inequalities

We want to follow mainly [Po84], pp. 191:

Let ξ be a rv defined on a p-space (Ω,A,P) with L{ξ} = N (0, 1); then it is known that for all x > 0

( 1

x
− 1

x3

)exp(−1
2x

2)√
2π

≤ P(ξ ≥ x) ≤ 1

x

exp(−1
2x

2)√
2π

,

i.e. the tail probabilities P(ξ ≥ x), x > 0, are governed by the factor exp(−1
2x

2).

Now, in view of the classical CLT a similar upper bound for the tail probabilities of a sum of i i d rv’s
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ξi with zero mean and variance 1 should be in order:

Set S := ξ1 + ...+ ξn; then for x > 0 and each t > 0

P(S ≥ x) = P(S − x ≥ 0) = P(tS − tx ≥ 0) = P(exp(tS − tx) ≥ 1)(5.5.1)

≤
(Markov’s ineq.)

E(exp(tS − tx)) = exp(−xt)E(exp(tS))

=
(ξi indep.)

exp(−xt)
n∏

i=1

E(exp(tξi))

The trick will be to find a t > 0 that makes the last product small. For ξ
L
= N (0, 1) it is easy to find

the best t directly:

For all t > 0 one has ∀x > 0 (as before)

P(ξ ≥ x) ≤ E(exp(tξ − tx)) = exp(−xt)E(exp(tξ)) = exp(−xt) exp(t2/2), i.e.

P(ξ ≥ 0) ≤ inf
t>0

[exp(−xt) exp(t2/2)] = exp(−1

2
x2) ∀x > 0.

For other than standard normal distributions one has to work harder. One must maneuver (according

to (5.5.1) the moment generating function E(exp(tξi)), t > 0, of ξi into a tractable form that gives

us some clue about which value of t to choose.

5.5.2. Hoeffding’s Inequality.

(cf. [Hoe63])

Let ξ1, ..., ξn be independent rv’s (defined on (Ω,A,P)) with zero means and bounded ranges: ai ≤ ξi ≤
bi with constants ai < 0 < bi. Then, for each x > 0

P(

n∑

i=1

ξi ≥ x) ≤ exp(−2x2/

n∑

i=1

(bi − ai)2).

PROOF. According to (5.5.1) we have to bound the moment generating function of ξi. Drop the

subscript i temporarily. For this, note that with a ≤ ξ ≤ b

exp(tξ) = exp
( b− ξ
b− ata+

ξ − a
b− a tb

)
≤

(exp(·) convex)

b− ξ
b− a exp(ta) +

ξ − a
b− a exp(tb),

whence

E(exp(tξ)) ≤
(E(ξ)=0)

b

b− a exp(ta)− a

b− a exp(tb)
(!)
= e−uλ

(
(1− λ) + λeu

)
,

where λ := −a
b−a ∈ (0, 1) and u := t(b− a) > 0.

(As to (!): uλ = t(b−a)
b−a ·(−a) = −at, 1−λ = 1+ a

b−a = b
b−a and λeu = − a

b−ae
t(b−a) = − a

b−a(e
tb ·e−at),

whence

b

b− ae
ta − a

b− ae
tb = (1− λ)eta + λeueta

= eta
(
(1− λ) + λeu

)
= e−uλ

(
(1− λ) + λeu

)
. )
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Therefore

(+) log E(exp(tξ)) ≤ −λu+ log((1− λ) + λeu) =: L(u)

Differentiate twice to obtain

L′(u) = −λ+
λeu

(1− λ) + λeu
= −λ+

λ

(1− λ)e−u + λ

and

L′′(u) =
−λ(1− λ)e−u · (−1)

((1 − λ)e−u + λ)2
=

λ

(1− λ)e−u + λ
· (1− λ)e−u

(1− λ)e−u + λ

=
λ

(1− λ)e−u + λ

(

1− λ

(1− λ)e−u + λ

)

≤ 1

4
,

since x(1− x) ≤ 1
4 ∀x ∈ R.

Expanding by Taylor’s theorem we obtain with an appropriate u∗ ∈ (0, u)

L(u) = L(0)
︸︷︷︸

=0

+u L′(0)
︸ ︷︷ ︸

=0

+
1

2
u2 L′′(u∗)

︸ ︷︷ ︸

≤ 1
4

≤ 1

8
u2.

Applying the last inequality to (+) for each ξ = ξi and each u = t(bi − ai), 1 ≤ i ≤ n, we get

E(exp(tξi)) ≤ exp(1
8t

2(bi − ai)2), and thus by (5.5.1) we arrive at

P(
n∑

i=1

ξi ≥ x) ≤ exp(−xt+
1

8
t2

n∑

i=1

(bi − ai)2).

Finally, set t := 4x/
n∑

i=1
(bi−ai)2 to minimize the quadratic form on the rhs of the last inequality which

yields the result. 2

(In fact, with Cn :=
n∑

i=1
(bi − ai)2, −xt+ 1

8
t2Cn =

(t=4x/Cn)
− 4x2

Cn
+ 1

8
16x2

Cn
= − 2x2

Cn
.)

5.5.3. Corollary.

Applying the same arguments to −ξi, 1 ≤ i ≤ n, and combining with the inequality for ξi one gets a

two-sided bound under the same conditions, namely for each x > 0

P(|
n∑

i=1

ξi| ≥ x) ≤ 2 exp(−2x2/
n∑

i=1

(bi − ai)2).

5.5.4. Corollary.

Let (εi)i∈N be a Rademacher sequence (defined on (Ω,A,P)) and (ci)i∈N be an arbitrary sequence of

real numbers. Then for each n ∈ N and each x > 0

P(|
n∑

i=1

εici| ≥ x) ≤ 2 exp(−x2/2

n∑

i=1

c2i ).
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PROOF. Follows from 5.5.3 applied to ξi := εici, bi := −ai := |ci|. Note that
n∑

i=1
c2i = V ar(

n∑

i=1
εici).

2

It is this last inequality which is applied in [Po84], pp. 16,26,31,150,164, and [Gee00], Section 3.6.:

Uniform laws of large numbers under random entropy conditions, pp. 34 - .

5.5.5. Bennet’s Inequality.

(cf. [Ben62])

Let ξ1, ..., ξn be independent rv’s (defined on (Ω,A,P)) with zero means and bounded ranges: |ξi| ≤
M <∞. Write σ2

i for the variance of ξi and suppose that
n∑

i=1
σ2
i ≤ V <∞. Then for each x > 0

P(|
n∑

i=1

ξi| ≥ x) ≤ 2 exp(−1

2
x2V −1B(MxV −1)).

where B(λ) := (1+λ) log(1+λ)−λ
λ2/2

for λ > 0.

PROOF. It suffices to establish the corresponding one-sided inequality. The two-sided inequality

will follow by combining it with the companion inequality for −ξi, 1 ≤ i ≤ n.

In deriving an upper bound for the moment generating function E(exp(tξi)) we will, as in the proof

of Hoeffding’s Inequality, drop the subscript i temporarily. So, noticing that |ξ| ≤M

E(exp(tξ)) = 1 + E(ξ)
︸︷︷︸

=0

+
∑

k≥2

tk

k!
E(ξ2ξk−2)
︸ ︷︷ ︸

exists, since E(|ξk|)≤Mk<∞

≤ 1 +
∑

k≥2

tk

k!
σ2 ·Mk−2

= 1 + σ2 · g(t) ≤ exp(σ2 · g(t)),

where g(t) := (etM − 1 − tM)/M2. Applying this inequality for each ξ = ξi and σ2 = σ2
i , 1 ≤ i ≤ n,

yields

E(exp(tξi)) ≤ exp(σ2
i · g(t)),

and thus by (5.5.1) we arrive at

P(

n∑

i=1

ξi ≥ x) ≤ exp(−xt+ g(t) ·
n∑

i=1

σ2
i ) ≤ exp(V · g(t)− xt).

Differentiate to find the minimum value

t = M−1 log(1 +MxV −1)

which is positive. It remains to check that with this t and the definition of g(t) the rhs of the last

inequality yields the result as stated in 5.5.5. 2
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5.5.6. Remark.

For the proof of 5.5.5 the condition |ξi| ≤ M < ∞ was essential. In [Due00], pp 27 - it is shown

that the one-sided inequality, i.e.

P(
n∑

i=1

ξi ≥ x) ≤ exp(−1

2
x2V −1B(MxV −1))

holds for each x > 0 even under the assumption that ξi ≤M <∞, 1 ≤ i ≤ n.

5.5.7. Remark.

The function B(·) is well behaved:

B(λ) is continuous and monotone decreasing in λ > 0;

λB(λ) is continuous and monotone increasing in λ > 0;

B(0+) := lim
λ↘0

B(λ) = 1;

B(λ) = (2 + o(1)) log(λ)/λ if λ→∞;

For each λ > 0 B(λ) > 1
1+λ/3 .

If we replace this lower bound in 5.5.5 we obtain under the same conditions for each x > 0

(5.5.8) P(|
n∑

i=1

ξi| ≥ x) ≤ 2 exp(−1

2
x2/(V +

1

3
Mx))

which is known as Bernstein’s Inequality (cf. [Ber24]).
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6 Uniform Laws of Large Numbers (ULLN)

6.1 A ULLN for RMP’s

Let again X = (X,X ) be an arbitrary measurable space and denote with M(X) the space of all

p-measures w on X , equipped with the smallest σ-fieldM such that all the maps w 7−→ w(B), B ∈ X ,

are measurable.

Let F be a class of X -measurable functions f : X −→ R with X -measurable envelope F : X −→ R

(supposed to be countable for simplicity to avoid measurability considerations). Let, as in Section 3,

(wnj)1≤j≤j(n),n∈N be a triangular array of random p-measures on X , considered as re’s in (M(X),M),

and let (ξnj)1≤j≤j(n),n∈N be a triangular array of real-valued rv’s (i.e. re’s in (R,B)), where j(n) −→∞
as n→∞.

We are going to present a ULLN for RMP’s Sn = (Sn(f))f∈F with

(6.1.1) Sn(f) :=
∑

j≤j(n)

wnj(f) · ξnj, f ∈ F ,

as introduced in Section 3.1, where, as already remarked there, we do assume (cf. 5.1.1) that the

processes (wnj(f) · ξnj)f∈F are defined via coordinate projections on the product p-space

(Ω,A,P) :=
(

×
N

( ×
j≤j(n)

(M(X) × R)) ,
⊗

N

(
⊗

j≤j(n)

(M⊗B)) , ×
N
( ×
j≤j(n)

L{(wnj , ξnj)})
)

,

whence for all n ∈ N the sequence

(wn1, ξn1), ..., (wnj(n), ξnj(n))

is a sequence of independent but not necessarily identically distributed pairs of re’s in (M(X) ×
R,M⊗B), i.e. the laws L{(wnj , ξnj)} need not be identical; also dependence within each pair is

allowed.

(Note that in the notation of definition 5.1.1 we have now that

Ω 3 ω 7−→ ηnj (ω) = hnj(ωnj ) := hnj((wnj , ξnj)) := (wnj(f) · ξnj)f∈F ∈ V := RF .)

In order to formulate our ULLN we need some more notation:

Given Sn = (Sn(f))f∈F with Sn(f) as in (6.1.1), let for any δ > 0

µnδ :=
∑

j≤j(n)

wnj · |ξnj | · I(wnj(F )|ξnj | ≤ δ),

and let d̄
(1)
µnδ be the random L1-pseudometric on F defined by

d̄(1)
µnδ

(f, g) :=
∑

j≤j(n)

|wnj(f)− wnj(g)| · |ξnj| · I(wnj(F )|ξnj | ≤ δ)

for f, g ∈ F . Finally, for any τ > 0, let N(τ,F , d̄(1)
µnδ ) be the random covering number of (F , d̄(1)

µnδ )

(see the definition 4.1.1).

Then we have the following result (cf. [Gae98], Theorem 2.1):
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6.1.2. THEOREM (ULLN for RMP’s).

Assume that (6.1.3) – (6.1.5) hold, where (for 1 ≤ p <∞)

lim
n→∞

∑

j≤j(n)

E
1
p

(

wnj(F )p · |ξnj|p · I(wnj(F )|ξnj | > δ)
)

= 0 for all δ > 0(6.1.3)

sup
n∈N

∑

j≤j(n)

E

(

wnj(F ) · |ξnj | · I(wnj(F )|ξnj | ≤ δ1)
)

<∞ for some δ1 > 0(6.1.4)

For all τ > 0 there exists δ ≡ δ(τ) > 0 such that
(
N(τ · µnδ(F ),F , d̄(1)

µnδ )
)

n∈N
is stochastically bounded.

(6.1.5)

Then

(6.1.6) sup
f∈F
|Sn(f)− E(Sn(f))| Lp−→ 0 ,

where
Lp−→ denotes convergence w.r.t. the Lp-metric.

(
(
N(τ · µnδ(F ),F , d̄(1)

µnδ )
)

n∈N
stochastically bounded means that for all ρ > 0 there exists an M ≡

M(τ, ρ) <∞ such that

lim sup
n→∞

P∗
(

N(τ · µnδ(F ),F , d̄(1)
µnδ

) > M
)

< ρ. )

PROOF. Concerning (6.1.6) we remark that by (6.1.3) we also have (since || · ||1 ≤ || · ||p)

lim
n→∞

∑

j≤j(n)

E

(

wnj(F ) · |ξnj| · I(wnj(F )|ξnj | > δ)
)

= 0 ∀δ > 0,

whence by (6.1.4)

sup
n∈N

∑

j≤j(n)

E

(

wnj(F ) · |ξnj |
)

<∞,

and therefore E(|Sn(f)|) <∞ ∀n ∈ N and ∀f ∈ F .

Now, by the Symmetrization Inequality 5.1.2 (applied with Ψ(x) := xp, x ∈ R+), it suffices to show

that

lim
n→∞

E

(

sup
f∈F
|

∑

j≤j(n)

εjwnj(f)ξnj|p
)

= 0

where (εj)j∈N is a canonically formed Rademacher sequence which is independent of both arrays (wnj)

and (ξnj).

Next, by (6.1.3) there exists a sequence (δn)n∈N of positive real numbers with δn → 0 and

lim
n→∞

∑

j≤j(n)

E
1
p

(

µnj(F )p · I(µnj(F ) > δn)
)

= 0,

85



where we put µnj := wnj · |ξnj| for short. Hence it suffices to show that

lim
n→∞

E
(

sup
f∈F
|Snδn (f)|p

)
= 0,

where Snδn (f) :=
∑

j≤j(n) εjwnj(f)ξnj · I(µnj(F ) ≤ δn) .

But, since the summands of Snδn (f) are bounded by δn (with δn −→ 0 as n → ∞), it follows by

application of Hoffmann-Jørgensen’s Inequality 5.3.1 (with Ψ(x) := xp, x ∈ R+) that it suffices to

verify

(a) sup
f∈F
|Snδn (f)| P−→ 0.

To prove (a), let β > 0 and ε > 0 be arbitrary but fixed. Let (cf. (6.1.4))

C := sup
n∈N

∑

j≤j(n)

E
(
µnj(F ) · I(µnj(F ) ≤ δ1)

)
.

Choose τ := εβ/2C and take δ = δ(τ) according to (6.1.5).

Now, for ρ := ε/2, let M = M(τ, ρ) > 0 be such that for An := {N(τµnδ (F ),F , d̄(1)
µnδ )∗ > M} we have

by (6.1.5) that lim supn→∞ P(An) < ρ where the star (?) denotes the measurable cover function

(cf. (2.3.17)). Then, by Markov’s Inequality and Fubini’s theorem it follows that

(b) P(sup
f∈F
|Snδn (f)| > β) ≤ P(An) + β−1E(1{AnEε(sup

f∈F
|Snδn (f)|)),

where Eε denotes integration w.r.t. the Rademacher sequence.

Now, for n large enough such that δn ≤ δ and δn ≤ δ1 (δ1 as in (6.1.4)) we obtain by the Maximal

Inequality for Rademacher Averages with a universal constant 0 < K1 <∞ that

Eε(sup
f∈F
|Snδn (f)|)

≤ τµnδ (F )+

K1(1 +N(τµnδ (F ),F , d̄(1)
µnδ

))
1
2 · sup

f∈F
|

∑

j≤j(n)

w2
nj(f) · ξ2nj · I(µnj(F ) ≤ δn)|

1
2

≤ τµnδ (F )+

δ
1
2
nK1(1 +N(τµnδ (F ),F , d̄(1)

µnδ
))

1
2
( ∑

j≤j(n)

µnj(F ) · I(µnj(F ) ≤ δ1)
) 1

2 .

(Actually the Maximal Inequality even holds with logN(τµnδ (F ),F , d̄(1)µnδ
) instead of N(τµnδ (F ),F , d̄(1)µnδ

).)

So by definition of An it follows that for large enough n

(c)
E(1{AnEε(supf∈F |Snδn (f)|)) ≤
τE(µnδ (F )) + δ

1
2
nK1(1 +M)

1
2 E

1
2

( ∑

j≤j(n) µnj(F ) · I(µnj(F ) ≤ δ1)).
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Now, observe that µnδ ≤
∑

j≤j(n) µnj · I(µnj(F ) ≤ δ1) +
∑

j≤j(n) µnj · I(µnj(F ) > δ1) whence by

(6.1.3) we have

(d) lim sup
n→∞

E(µnδ (F )) ≤ C + lim sup
n→∞

∑

j≤j(n)

E
1
p
(
µnj(F )p · I(µnj(F ) > δ1)) = C.

Hence we obtain by (b) – (d) that

lim sup
n→∞

P(sup
f∈F
|Snδn (f)| > β) ≤ ρ+ β−1τC = ε

by the choice of ρ and τ . Since ε and β were arbitrary, this implies (a). 2

NOTE: Condition (6.1.5) in the theorem can be replaced by (6.1.5)′

(6.1.5)′
For all τ > 0 there exists δ ≡ δ(τ) > 0 such that

(
N(τ,F , d̄(1)

µnδ )
)

n∈N
is stochastically bounded.

Indeed, following the proof of theorem 6.1.2 up to (b) now with τ := εβ/2 and An := {N(τ,F , d̄(1)
µnδ )∗ >

M}, the Maximal Inequality for Rademacher Averages now gives

Eε(sup
f∈F
|Snδn (f)|) ≤

τ + K1(1 +N(τ,F , d̄(1)
µnδ

))
1
2 · sup

f∈F
|

∑

j≤j(n)

w2
nj(f) · ξ2nj · I(µnj(F ) ≤ δn)|

1
2 .

The result then follows as above.

6.1.7. Remark.

Since for RMP’s we did tacitily assume (cf. Section 3.1) measurability and finiteness of wnj(F ) for

all 1 ≤ j ≤ j(n) and n ∈ N, the same is true for the random measures µnδ, whence µnδ(F ) < ∞ for

all n ∈ N and δ > 0. Therefore, it follows from 4.3.17 that in case of VCGC’s F , for each τ > 0 there

exists a constant C = C(τ), 0 < C <∞, such that (note that d̄
(1)
µnδ (f, g) ≤ d

(1)
µnδ := µnδ(|f − g|))

sup
n∈N

N(τ · µnδ(F ),F , d̄(1)
µnδ

) ≤ C,

whence the condition (6.1.5) is automatically fulfilled for VCGC’s F with envelope F .

Thus, from Theorem 6.1.2 we get

6.1.8. Corollary.

Let F be a countable VCGC with envelpoe F . Assume (6.1.3) and (6.1.4), i.e. (for 1 ≤ p <∞)

lim
n→∞

∑

j≤j(n)

E
1
p

(

wnj(F )p · |ξnj|p · I(wnj(F )|ξnj | > δ)
)

= 0 for all δ > 0, and

sup
n∈N

∑

j≤j(n)

E

(

wnj(F ) · |ξnj| · I(wnj(F )|ξnj | ≤ δ1)
)

<∞ for some δ1 > 0.
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Then

sup
f∈F
|Sn(f)− E(Sn(f))| Lp−→ 0,

where Sn(f) :=
∑

j≤j(n)wnj(f) · ξnj, f ∈ F , and where the processes (wnj(f) · ξnj)f∈F are defined

as coordinate projections on the product space (Ω,A,P) as introduced above.

6.2 ULLN’s for partial-sum processes with either fixed or random

locations

Let X = (X,X ) be an arbitrary measurable space, C ⊂ X a countable VCC, (ηnj)1≤j≤j(n),n∈N be a

triangular array of re’s in (X,X ) and (ξnj)1≤j≤j(n),n∈N a triangular array of rv’s with j(n) −→ ∞ as

n→∞, such that for each n ∈ N the sequence of pairs (wn1, ξn1), ..., (wnj(n), ξnj(n)) is independent but

not necessarily identically distributed; also the components within each pair need not be independent.

Then, by taking wnj := δηnj (δηnj = Dirac measure at ηnj) we obtain from 6.1.8 immediately the

following result for partial-sum processes with random locations as introduced in Section 3.2.1:

6.2.1. THEOREM (cf. [Gae94b], Theorem 3.1).

Assume that the following two conditions are fulfilled:

lim
n→∞

∑

j≤j(n)

E

(

|ξnj| · I(|ξnj | > δ)
)

= 0 for all δ > 0(6.2.2)

sup
n∈N

∑

j≤j(n)

E

(

|ξnj| · I(|ξnj | ≤ δ1)
)

<∞ for some δ1 > 0.(6.2.3)

Then, for the partial-sum processes Sn = (Sn(C))C∈C defined by

Sn(C) :=
∑

j≤j(n)

1C(ηnj) · ξnj, C ∈ C,

one has

(6.2.4) lim
n→∞

E

(

sup
C∈C
|Sn(C)− E(Sn(C))|

)

= 0 .

6.2.5. Remark.

Note that (6.2.2) and (6.2.3) together imply that supn∈N

∑

j≤j(n) E(|ξnj |) < ∞, and thus E(Sn(C))

exists for all n ∈ N and C ∈ C.
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In the identically distributed (id) - case, that is, when ξnj = j(n)−1ξj, 1 ≤ j ≤ j(n), n ∈ N, with

j(n) −→∞ as n→∞, for some sequence (ξj)j∈N of identically distributed ξj, we have for each δ > 0
∑

j≤j(n)

E

(

|ξnj | · I(|ξnj| > δ)
)

= E

(

|ξ1| · I(|ξ1| > δj(n))
)

and

sup
n∈N

∑

j≤j(n)

E

(

|ξnj | · I(wnj(F )|ξnj | ≤ δ)
)

≤ sup
n∈N

∑

j≤j(n)

E(|ξnj |) = E(|ξ1|),

whence in the id-case both conditions (6.2.2) and (6.2.3) are fulfilled under the only assumption

E(|ξ1|) <∞.

From Theorem 6.2.1 together with Remark 6.2.5 we obtain

6.2.6. Corollary.

Let Sn(C) := j(n)−1
∑

j≤j(n) 1C(ηnj) · ξj, C ∈ C, C ⊂ X being a countable VCC, (wnj)1≤j≤j(n),n∈N

be a triangular array of re’s in (X,X ) with j(n) −→ ∞ as n → ∞, and let (ξj)j∈N be a sequence of

identically distributed rv’s ξj with E(|ξ1|) < ∞ such that for all n ∈ N (wn1, ξ1), ..., (wnj(n), ξn) is

a sequence of independent but not necessarily identically distributed pairs of re’s in (X × R,X⊗B).

Then

lim
n→∞

E

(

sup
C∈C
|Sn(C)− E(Sn(C))|

)

= 0.

Concerning partial-sum processes with fixed locations in X = Id ≡ [0, 1]d, d ≥ 1, Theorem 6.2.1

together with Remark 6.2.5 implies the following result (cf. Section 1.3 and 1.4):

6.2.7. Corollary.

Let Sn(C) := n−d
∑

j∈Jn 1C(j/n) · ξj, C ∈ C, where ξj, j ∈ Nd, are i i d rv’s with E(|ξ1|) < ∞, and

where C ⊂ Id ∩ Bd is a countable VCC; then

lim
n→∞

E

(

sup
C∈C
|Sn(C)− n−d|Jn ∩ (nC)| · E(|ξ1|)|

)

= 0,

where Jn := {1, ..., n}d (and nC := {nc : c ∈ C}).
6.2.8. Remark.

Considering, more generally, function-indexed partial-sum processes Sn = (Sn(f))f∈F , defined by

Sn(f) := j(n)−1
∑

j≤j(n)

f(ηnj) · ξj , f ∈ F ,

with F being a countable and uniformly bounded VCGC (i.e. with envelope F ≡ M < ∞), and where

(ηnj)1≤j≤j(n),n∈N is a triangular array of re’s in (X,X ) with j(n) −→ ∞ as n → ∞, and ξj, j ∈ N,

are identically distributed rv’s with E(|ξ1|) <∞ such that for all n ∈ N (ηn1, ξ1), ..., (ηnj(n), ξj(n)) is a

sequence of independent but not necessarily identically distributed pairs of re’s in (X×R,X⊗B), then

in the same way as in the set-indexed case above, Theorem 6.2.1 together with Remark 6.2.5 yields

lim
n→∞

E

(

sup
f∈F
|Sn(f)− E(Sn(f))|

)

= 0.
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6.3 ULLN’s for empirical processes

Given an arbitrary measurable space X = (X,X ), let us consider at first the set-indexed case, i.e. with

a countable VCC C ⊂ X as parameter space for the empirical measures νn = (νn(C))C∈C defined by

νn(C) := j(n)−1
∑

j≤j(n)

1C(ηnj), C ∈ C,

where (ηnj)1≤j≤j(n),n∈N is a triangular array of rowwise independent but not necessarily identically

distributed re’s in (X,X ) with j(n) −→ ∞ as n → ∞. Then it follows from Corollary 6.2.6 (with

ξj ≡ 1) that

(6.3.1) lim
n→∞

E

(

sup
C∈C
|νn(C)− ν̄n(C)|

)

= 0,

where ν̄n(C) := j(n)−1
∑

j≤j(n) P(ηnj ∈ C), C ∈ C.
Especially, if for each n ∈ N ηnj = ηj , 1 ≤ j ≤ j(n), with ηj , j ∈ N, being i i d re’s in (X,X ) with law

ν on X , then for

νn(C) := j(n)−1
∑

j≤j(n)

1C(ηj), C ∈ C,

it follows together with (2.1.5) that (cf. Theorem 2.1.6)

(6.3.2) ||νn − ν||C := sup
C∈C
|νn(C)− ν(C)| −→ 0 P− a.s.

As to the function-indexed case we get from Corollary 6.1.8 (with p = 1, wnj := δηj and ξnj :=

j(n)−1, 1 ≤ j ≤ j(n), n ∈ N) the following more general result mentioned already in connection with

(4.3.9):

6.3.3. THEOREM.

Let X = (X,X ) be an arbitrary measurable space, ηj, j ∈ N, be i i d re’s in (X,X ) with law ν on X
(defined as coordinate projections on the p-space (Ω,A,P) := (XN,XN, νN)), and let F be a countable

VCGC of X -measurable functions f : X −→ R with X -measurable envelope F : X −→ R such that

ν(F ) :=
∫

X F dν <∞. Then, for νn(f) := j(n)−1
∑

j≤j(n) f(ηj), f ∈ F , one has (with j(n) −→∞ as

n→∞)

(6.3.4) lim
n→∞

E

(

sup
f∈F
|νn(f)− ν(f)|

)

= 0.

Moreover, by the same reversed martingale argument which led to (2.1.5) one obtains also

(6.3.5) sup
f∈F
|νn(f)− ν(f)| −→ 0 P− a.s.

PROOF. According to 6.1.8 we have to verify (6.1.3) (with p = 1) and (6.1.4), where now wnj(F ) =

δηj (F ) = F (ηj) and ξnj = j(n)−1, i.e.
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(+) lim
n→∞

∑

j≤j(n)

E

(

F (ηj) · j(n)−1 · I(F (ηj) j(n)−1 > δ)
)

= 0 ∀δ > 0, and

(++) sup
n∈N

∑

j≤j(n)

E

(

F (ηj) · j(n)−1 · I(F (ηj) j(n)−1 ≤ δ1)
)

<∞ for some δ1 > 0.

As to (+),
∑

j≤j(n) E

(

F (ηj) · j(n)−1 · I(F (ηj) j(n)−1 > δ)
)

= E

(

F (η1) · I(F (η1) > δj(n))
)

−→ 0 as

n→∞, since E(F (η1)) = ν(F ) <∞ by assumption.

As to (++), supn∈N

∑

j≤j(n) E

(

F (ηj) · j(n)−1 · I(F (ηj) j(n)−1 ≤ δ1)
)

= supn∈N E

(

F (η1) · I(F (η1) ≤
δ1j(n))

)

≤ E(F (η1)) <∞. 2

6.3.6. THEOREM(A ULLN via Bracketing).

Let X = (X,X ) be an arbitrary measurable space, ηj, j ∈ N, be i i d re’s in (X,X ) with law ν on X
(defined as coordinate projections on the p-space (Ω,A,P) := (XN,XN, νN)), and let F be a countable

VCGC of X -measurable functions f : X −→ R s.t. for any ε > 0 there exist m ∈ N and functions

g1, h1, ..., gm, hm in L1(X,X , ν) such that ∀ j ≤ m gj ≤ hj and ν(hj − gj) ≤ ε, and that ∀ f ∈
F ∃ j ≤ m with gj ≤ f ≤ hj . Then

lim
n→∞

E

(

sup
f∈F
|νn(f)− ν(f)|

)

= 0.

(As the proof will show, that for not necessarily countable F supf∈F |νn(f)− ν(f)| ≤ ζn with rv’s ζn satisfying

E(ζn) −→ 0.)

PROOF. Let f ∈ F be arbitrary and gj ≤ hj be such that gj ≤ f ≤ hj and ν(hj − gj) ≤ ε; then

(νn − ν)(f) ≤ νn(hj)− ν(gj)
= (νn − ν)(hj) + ν(hj − gj)
≤ (νn − ν)(hj) + ε,

and

(νn − ν)(f) ≥ νn(gj)− ν(hj)
= (νn − ν)(gj)− ν(hj − gj)
≥ (νn − ν)(gj)− ε,

whence

|(νn − ν)(f)| ≤ |(νn − ν)(hj)|+ ε+ |(νn − ν)(gj)|,
and therefore

E

(

sup
f∈F
|νn(f)− ν(f)|

)

≤
∑

j≤m
E(|(νn − ν)(gj)|) +

∑

j≤m
E(|(νn − ν)(hj)|) + ε

−→ ε as n→∞,
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since for any a ∈ L1(X,X , ν)

(*) lim
n→∞

E
(

|(νn − ν)(a)|
)

= 0.

As ε > 0 was arbitrary, Theorem 6.3.6 is proved. 2

As to (*): Note that for any a ∈ L1(X,X , ν)

(νn − ν)(a) =
1

n

∑

j≤n
(a(ηj)− E(a(ηj)))

with ξi := a(ηj) − E(a(ηj)) being i i d and E(|ξ1|) < ∞. Thus {Sn := 1
n

∑

j≤n
ξj : n ∈ N} is uniformly

integrable, whence by the weak law of large numbers (according to which Sn
P−→ 0 together with

[Gae77], 1.14.9 assertion (*) follows.

6.4 ULLN’s for smoothed empirical processes

Throughout this section X is supposed to be an arbitrary linear metric space endowed with its Borel

σ-field X .

Let ηj, j ∈ N, be i i d re’s in (X,X ) with law ν on X (defined as coordinate projections on the p-space

(Ω,A,P) := (XN,XN, νN)).

Let νn := n−1
∑

j≤n δηj be the empirical measure based on η1, ..., ηn, n ∈ N, viewed as nonparametric

estimator (of sample size n) for ν.

If the underlying ν is “smooth” it is natural to use a “smoothed” version ν̃n of νn as an estimator for

ν, rather than the empirical measure itself.

Following Yukich [Yu89] we consider smoothing through convolution as follows:

Given a sequence (µn)n∈N, of p-measures µn on X let

ν̃n := νn ? µn

be the so-called smoothed empirical measure based on η1, ..., ηn, i.e.

(6.4.1) ν̃n(B) :=

∫

X

∫

X

1B(x+ y)νn(dx)µn(dy), B ∈ X .

Note that ν̃n ≡ νn if µn ≡ δ0 (Dirac measure at 0).

Taking X = R, the following picture shows that by convolution we can turn the discrete empirical

measure νn into a continuous one. This is not surprising since νn ? µn has a Lebesgue density if µn
has one.

For illustration we take n = 4, µn the uniform distribution on [−1, 1] and x1, ..., xn a sample from the
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rv’s η1, ..., ηn. The picture shows the distribution functions which are also denoted by νn, µn and ν̃n,

respectively.
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(6.4.1) also includes kernel smoothing in density estimation. For this, let us take X = R for simplicity,

and let for each u ∈ R µn((−∞, u]) := H( u
hn

), hn > 0, where

H(s) :=

∫ s

−∞
K(v)dv, K ≥ 0,

∫

R

K(v) dv = 1;

(note that in this case µn −→ δ0 weakly if hn −→ 0 as n→∞).

Then, for each u ∈ R

ν̃n((−∞, u]) =
(6.4.1)

∫

R

[

n−1
∑

j≤n
1(−∞,u](ηj + y)

]

µn(dy)

= n−1
∑

j≤n
µn((−∞, u− ηj ]) = n−1

∑

j≤n
H(

u− ηj
hn

)

= n−1
∑

j≤n
h−1
n

∫ u

−∞
K(

v − ηj
hn

) dv, i.e.

ν̃n((−∞, u]) =

∫ u

−∞
ĝn(t) dt ∀u ∈ R with
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ĝn(t) := (nhn)
−1

∑

j≤nK(
t−ηj
hn

) being the kernel density estimator for the underlying density g(t) of

the L{ηj}’s.
Returning to an arbitrary linear metric spaceX, let F be a class of X -measurable functions f : X −→ R

with X -measurable envelope F : X −→ R. For each f ∈ F , put

(6.4.2) ν̃n(f) :=

∫

X
f dν̃n ,

tacitly assuming that the integrals of functions f ∈ F do exist.

For ν̃n(f) this is the case if
∫

X |f(x+ y)|µn(dy) <∞ ∀x ∈ X.

Note that (cf. (6.4.1))

ν̃n(f) =

∫

X

∫

X
f(x+ y)νn(dx)µn(dy) = n−1

∑

j≤n

∫

X
f(ηj + y)µn(dy), and(6.4.3)

E(ν̃n(f)) = ν ? µn(f) ∀f ∈ F and n ∈ N.(6.4.4)

(In fact, as to (6.4.4), E(ν̃n(f)) =
∫

X E

( ∫

X f(x+ y) νn(dx)
)

µn(dy) =
∫

X E

(

n−1
∑

j≤n f(ηj + y)
)

µn(dy) =
∫

X

∫

X f(x+ y)ν(dx)µn(dy) = ν ? µn(f).)

It will be also tacitly assumed that suprema over f ∈ F , like supf∈F |ν̃n(f) − ν(f)|, are measurable

(being the case by assuming, as in the former sections, that F is countable, for simplicity).

Now, our aim is to present ULLN’s, i.e. sufficient conditions on F and the smoothing measures µn, n ∈
N, under which (for 1 ≤ p <∞)

(6.4.5) sup
f∈F
|ν̃n(f)− ν(f)| Lp−→ 0.

Concerning (ν̃n)n∈N as an estimator sequence for an unknown ν, from (6.4.5) one can of course only

deduce weak consistency, but, as Pfanzagl [Pf94], p. 188, remarks strong consistency, i.e. almost sure

convergence of an estimator sequence, adds nothing to weak consistency, i.e. convergence in probability,

which could be of use on the way to the asymptotic distributions of estimator sequences. Thus, it is

reasonable to seek for sufficient conditions under which (6.4.5) holds true.

Concerning once more the above example of kernel smoothing, (6.4.5) yields supu∈R |Ĝn(u) −G(u)|
Lp−→ 0, where Ĝn(u) := ν̃n((−∞, u]), u ∈ R, and where G is the df of the ηj ’s.

Fernholz [Fe91] remarks on the estimator Ĝn:

Estimators Ĝn derived by integrating density estimators have required less attention. Although esti-

mating a density g by using ĝn or its distribution function G by using Ĝn are equivalent problems,

the error of the corresponding estimator is usually measured in different ways. For density estimation

the “L1 view” (see Devroye and Gyorfi [Dev85]) based on the L1 error ||ĝn − g||1 has been gaining

popularity over the more traditional L2 approach using ||ĝn − g||2.
In kernel distribution function estimation the discrepancy error between Ĝn and G should be measured

in terms of some distance in the space of distribution functions. Metrics such as the supremum norm,
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the Prohorov distance, or the Levy distance, provide a useful framework to study the properties of Ĝn.

Indeed, from Winter [Win73] and Yamato [Ya73] we have a.s. uniform convergence of Ĝn to G, see

also Mack [Ma84] and Prakasa Rao [Pra81].

A more general setting for studying estimators (as already considered in [Win73] and [Ya73]) for a

distribution function G is obtained if Ĝn is defined by

Ĝn(u) := n−1
∑

j≤n
µn((−∞, u− ηj) , u ∈ R,

with p-measures µn on B (not necessarily having a density). Ĝn is then called smoothed (or perturbed)

empirical distribution function with the above mentioned kernel smoothing as a special case. Note that

in general, i.e. for arbitrary linear metric spaces X, smoothing by convolution is its natural extension,

since (cf. (6.4.1))

(6.4.6) ν̃n(B) = n−1
∑

j≤n

∫

X
1B(ηj + y)µn(dy) = n−1

∑

j≤n
µn(B − ηj), B ∈ X .

Now, we are going to mention at first the traditional approach towards ULLN’s for smoothed empirical

measures. We will formulate it for an arbitrary metric space X and for classes F of X -measurable

functions f : X −→ R being uniformly bounded, i.e. with supf∈F supx∈X |f(x)| ≤ M < ∞. We do

not loose anything if we assume here and in the following that M = 1 (which means that the constant

function M serves as an envelope of F). Let F̃ be the class of all translates of elements of F , i.e.

F̃ := {fx : x ∈ X, f ∈ F},

where fx : X −→ R is defined by fx(y) := f(x+ y), y ∈ X. Now consider the decomposition

(6.4.7) ν̃n − ν = ν̃n − ν ? µn + ν ? µn − ν,

where (cf. (6.4.4)) E(ν̃n(f)) = ν ? µn(f) ∀f ∈ F , thus ν ? µn(f)− ν(f) being the non-stochastic bias

of ν̃n(f), f ∈ F .

The decomposition (6.4.7) together with the assumption F = F̃ (saying that F is closed under

translation) is essential for the following lemma:

6.4.8. Lemma.

Let X be a linear metric space and suppose that F = F̃ . Assume further that

sup
f∈F
|νn(f)− ν(f)| Lp−→ 0 and sup

f∈F
|ν ? µn(f)− ν(f)| −→ 0.

Then

sup
f∈F
|ν̃n(f)− ν(f)| Lp−→ 0 .
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PROOF. According to (6.4.7) it suffices to show that

sup
f∈F
|ν̃n(f)− ν ? µn(f)| ≤ sup

f∈F
|νn(f)− ν(f)|.

For this, let g ∈ F be arbitrary; then

|ν̃n(g) − ν ? µn(g)| = |νn ? µn(g)− ν ? µn(g)|

=
∣
∣

∫

X

∫

X
g(x+ y)νn(dx)µn(dy)−

∫

X

∫

X
g(x + y)ν(dx)µn(dy)

∣
∣

=
∣
∣

∫

X

∫

X
gy(x)νn(x)µn(dy)−

∫

X

∫

X
gy(x)ν(dx)µn(dy)

∣
∣

=
∣
∣

∫

X
(νn(gy)− ν(gy))µn(dy)

∣
∣

≤
∫

X
sup
f∈F

∣
∣νn(f)− ν(f)

∣
∣µn(dy)

= sup
f∈F

∣
∣νn(f)− ν(f)

∣
∣.

2

Concerning the bias-term ν ?µn− ν = ν ?µn− ν ? δ0 (δ0 = Dirac measure at 0) one shows in the same

way that in the case F = F̃

(6.4.9) sup
f∈F
|ν ? µn(f)− ν ? δ0(f)| ≤ sup

f∈F
|µn(f)− δ0(f)|,

where, e.g. for separable X and uniformly bounded equicontinuous classes F supf∈F |µn(f)− δ0(f)|
−→ 0 if µn −→ δ0 weakly (in the sense of weak convergence of Borel p-measures in metric spaces); cf.

Theorem 1.12.1 in [Va96].

The conditions of Lemma 6.4.8 are fulfilled e.g. if X = R,F = {1(−∞,t], t ∈ R}, µn −→ δ0 weakly

and ν being a continuous p-measure on B in R. The result in this special case goes back to Winter

[Win73] and Yamato [Ya73].

The disadvantage of Lemma 6.4.8 (and (6.4.9)) is that it only holds under the rather restrictive

assumption F = F̃ , a condition which cannot be dispensed with in general; see Example 2.2. in

[Gae99].

Note also that assuming the existence of a real-valued envelope F of F , the condition F = F̃ implies

that F is uniformly bounded (i.e. supx∈X supf∈F |f(x)| <∞).

For X = Rd, d ≤ 1, Lemma 6.4.8 can be found in [Yu89] with a.s. convergence replacing convergence

in the Lp-norm. Also from Yukich [Yu89] we know the following result in the case X = Rd, d ≥ 1:

6.4.10. THEOREM (Yukich).

Let X = Rd, d ≥ 1, and assume µn −→ δ0 weakly and that

F is uniformly bounded
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and

N [ ](τ,F , ν) <∞ for all τ > 0(6.4.11)

where N [ ](τ,F , ν) := min{m ∈ N : ∃f1, ..., fm : X −→ R, fi continuous , ν-integrable such that for all

f ∈ F there exist fi, fj with fi ≤ f ≤ fjand ν(fj − fi) < τ}.
Then

sup
f∈F
|ν̃n(f)− ν(f)| Lp−→ 0 .

Here one gets rid of the assumption F = F̃ , but the condition (6.4.11) on the so-called covering

number with bracketing is rather strong: Taking F uniformly bounded and µn ≡ δ0, Theorem 6.4.10

leaves (6.4.11) as a sufficient condition for a ULLN in the case of non-smoothed empirical measures,

a sufficient condition which is far away from being necessary (Talagrand [Ta96]), especially in view

of the continuity assumption on the fi’s which normally is not involved in the definition of covering

numbers with bracketing. As we shall see below, Theorem 6.4.10 will follow from our ULLN 6.4.17

(cf. Lemma 6.4.22).

Next, also not imposing the assumtion F = F̃ , there is a completely different way to obtain ULLN’s

for smoothed empirical measures via the Random Measure Process Aprroach, being based on our

Theorem 6.1.2:

For this, note that ν̃n(f) can be represented as (cf (6.4.3))

ν̃n(f) =
∑

j≤j(n)

wnj(f) · ξnj

by taking j(n) := n,wnj(f) :=
∫

X f(ηj+y)µn(dy), and ξnj := n−1. Thus, in view of the decomposition

(6.4.7) together with (6.4.4) Theorem 6.1.2 yields the following ULLN. (Note that the ηj ’s on which

the wnj ’s are based are i i d .)

6.4.12. THEOREM.

Let X be a linear metric space and assume that (6.4.13) – (6.4.16) hold, where (for 1 ≤ p <∞)

lim
n→∞

E

(

wn1(F )p · I(n−1wn1(F ) > δ)
)

= 0 for all δ > 0(6.4.13)

sup
n∈N

E

(

wn1(F ) · I(n−1wn1(F ) ≤ δ1)
)
<∞ for some δ1 > 0(6.4.14)

For all τ > 0 there exists δ ≡ δ(τ) > 0 such that
(
N(τ · µnδ(F ),F , d̄(1)

µnδ )
)

n∈N
is stochastically bounded.

(6.4.15)

sup
f∈F
|ν ? µn(f)− ν(f)| −→ 0 .(6.4.16)
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Then

sup
f∈F
|ν̃n(f)− ν(f)| Lp−→ 0 .

Now again (cf. the Note before 6.1.7) the condition (6.4.15) can be replaced by

(6.4.15)′
For all τ > 0 there exists δ ≡ δ(τ) > 0 such that
(
N(τ,F , d̄(1)

µnδ )
)

n∈N
is stochastically bounded.

and, since

d̄(1)
µnδ

(f, g) ≤ d̄(1)
ν̃n

(f, g) ∀f, g ∈ F

even by

(6.4.15)′′
(
N(τ,F , d̄(1)

ν̃n
)
)

n∈N
is stochastically bounded for all τ > 0

where d̄
(1)
ν̃n

is defined by

d̄
(1)
ν̃n

(f, g) :=

∫

X

∣
∣
∣

∫

X
(f(x+ y)− g(x+ y))µn(dy)

∣
∣
∣νn(dx)

for f, g ∈ F .

Next, take a closer look at the case when F is uniformly bounded. Then {n−1wnj(F ) > δ} = ∅ and

{n−1wnj(F ) ≤ δ} = Ω for each δ > 0 and large enough n. Thus (6.4.13) and (6.4.14) are fulfilled in

this case. Furthermore, for every δ > 0 we have d̄
(1)
µnδ = d̄

(1)
ν̃n

for large enough n. So Theorem 6.4.12

yields

6.4.17. THEOREM.

Let X be a linear metric space and suppose that F is uniformly bounded. Assume that (6.4.16) and

(6.4.18) hold, where

(6.4.18) For all τ > 0
(
N(τ,F , d̄(1)

ν̃n
)
)

n∈N
is stochastically bounded.

Then (for each 1 ≤ p <∞)

sup
f∈F
|ν̃n(f)− ν(f)| Lp−→ 0 .

Since, for uniformly bounded F (with F ≡ 1 w.l.o.g.),

N(τ,F , d̄(1)
ν̃n

) = N(τ · µnδ(F ),F , d̄(1)
µnδ

)

for large enough n, we get from Theorem 6.4.17 together with 6.1.7 the following result in case of

uniformly bounded VCGC’s F :
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6.4.19. THEOREM.

Let X be a linear metric space and let F be a uniformly bounded VCGC. Assume uniform convergence

to zero of the bias-term, i.e. supf∈F |ν ? µn(f)− ν(f)| −→ 0.

Then (for each 1 ≤ p <∞)

sup
f∈F
|ν̃n(f)− ν(f)| Lp−→ 0 .

In the context of smoothed empirical measures or processes, respectively, one usually assumes µn −→ δ0 weakly. Note however
that in our theorems we did not assume weak convergence of (µn)n∈N in advance. This does does not follow from (6.4.16) nor does
µn −→ δ0 weakly imply (6.4.16) as can be seen by the following example:

6.4.20. Example.

Let X := R,F := {1(−∞,t] : t ∈ Q}, ν = δ0 and µn := δ 1
n
, n ∈ N. Then µn −→ δ0 weakly, but (6.4.16)

does not hold; in fact, supf∈F |ν ? µn(f)− ν(f)| ≡ 1.

On the other hand, since (6.4.13) – (6.4.15) are fulfilled, this example also shows that (6.4.16) cannot

be dispensed with, in general, for our theorems 6.4.12, 6.4.17 and 6.4.19 to hold true, since in the

present case E(supf∈F |ν̃n(f)− ν(f)|) ≡ 1.

However, if F is “smooth” we can deduce (6.4.16) from µn −→ δ0 weakly (without assuming

F = F̃ ; cf. (6.4.9) and the remarks made there).

Assuming X to be separable, we obtain the following result:

6.4.21. THEOREM.

Let X be a separable linear metric space and let F be a uniformly bounded equicontinuous VCGC.

Suppose that µn −→ δ0 weakly. Then (for each 1 ≤ p <∞)

sup
f∈F
|ν̃n(f)− ν(f)| Lp−→ 0 .

PROOF. According to Theorem 6.4.19 it suffices to verify (6.4.16), i.e. supf∈F |ν?µn(f)−ν(f)| −→ 0:

For each bounded and continuous f : X −→ R we have by dominated convergence that

ν ? µn(f) =

∫

X

∫

X
f(x+ y)µn(dy)ν(dx)

=

∫

X

∫

X
fx(y)µn(dy)ν(dx) −→

∫

X
fx(0)ν(dx),

since µn −→ δ0 weakly and fx : X −→ R is also bounded and continuous for all x ∈ X, where
∫

X
fx(0)ν(dx) = ν(f),

whence ν ? µn −→ ν weakly.

Applying now Theorem 1.12.1 in [Va96] yields (6.4.16). 2
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6.4.22. Lemma.

Let X be a separable linear metric space and let F be uniformly bounded satisfying the condition

(6.4.11) in Yukich’s theorem, i.e. N [ ](τ,F , ν) < ∞ for all τ > 0. Suppose that µn −→ δ0 weakly.

Then (6.4.18) and (6.4.16) hold true, whence Yukich’s theorem comes up as a special case of Theorem

6.4.17.

PROOF. Given any τ > 0 let f1, ..., fm be continuous, ν-integrable and bounded (note that F is

assumed to be uniformly bounded) such that for all f ∈ F there exist fi, fj with fi ≤ f ≤ fj and

ν(fj − fi) < τ (note that N [ ](τ,F , ν) <∞).

Now, for all fi, fj with

[fi, fj ] := {f ∈ F : fi ≤ f ≤ fj} 6= ∅

choose gij ∈ [fi, fj ]. Then, given f ∈ F and fi, fj with f ∈ [fi, fj ] and ν(fj − fi) < τ , we have

ν̃n(|f − gij |) ≤ ν̃n(fj − fi) = νn ? µn(fj − fi) −→ ν ? δ0(fj − fi) a.s.,

since µn −→ δ0 weakly and (cf. e.g. [Gae79], Section 1.5) νn −→ ν weakly a.s.; note that fj − fi is

bounded and continuous.

Since ν ? δ0(fj − fi) = ν(fj − fi) < τ , it follows that

lim sup
n→∞

N(τ,F , d(1)
ν̃n

) ≤ m2 a.s.,

whence
(

N(τ,F , d(1)
ν̃n

)
)

n∈N
is stochastically bounded and therefore also

(

N(τ,F , d̄(1)
ν̃n

)
)

n∈N
, since

d̄
(1)
ν̃n

(f, g) ≤ d(1)
ν̃n

(f, g) := ν̃n(|f − g|) for f, g ∈ F .

So we conclude that (6.4.18) holds.

Next, from f ∈ [fi, fj] and ν(fj − fi) < τ we can also conclude that

|ν ? µn(f)− ν(f)| ≤ max{|ν ? µn(fj)− ν(fj)|+ |ν(fj)− ν(f)|,
|ν ? µn(fi)− ν(fi)|+ |ν(fi)− ν(f)|},

thus

sup
f∈F
|ν ? µn(f)− ν(f)| ≤ max{|ν ? µn(fj)− ν(fj)| : 1 ≤ j ≤ m}+ τ.

But ν ? µn(fj)− ν(fj) −→ 0 for all j = 1, ...,m, since ν ? µn −→ ν weakly and the fj’s are bounded

and continuous. So we get

lim sup
n→∞

sup
f∈F
|ν ? µn(f)− ν(f)| ≤ τ.

Since τ > 0 was arbitrary, this gives (6.4.16). 2
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Finally, in the non-smoothed case (i.e. with µn ≡ δ0) one has the following deep result on empirical

measures νn which we deduce from Talagrand [Ta96]; here X is not required to be a linear metric

space.

6.4.23. THEOREM (Talagrand).

Let (X,X , ν) be a complete p-space and F be a uniformly bounded class of X -measurable functions

f : X −→ R. Then the condition

(6.4.24)
(
N(τ,F , d(1)

νn )
)

n∈N
is stochastically bounded for all τ > 0

(with d
(1)
νn (f, g) := νn(|f − g|) , f, g ∈ F) is necessary and sufficient for

sup
f∈F
|νn(f)− ν(f)| L1−→ 0.

In view of this result it is tempting to see what comes up in the smoothed case. The following result

is contained in [Gae00]:

6.4.25. THEOREM.

Let X be a linear metric space endowed with its Borel σ-field X such that (X,X , ν) is complete, and

let F be a uniformly bounded class of X -measurable functions f : X −→ R which is closed under

translations, i.e. F̃ = F . Suppose that supf∈F |µn(f) − f(0)| −→ 0. Then the following statements

are equivalent:

a)
(
N(τ,F , d(1)

νn )
)

n∈N
is stochastically bounded for all τ > 0

b)
(
N(τ,F , d̄(1)

ν̃n
)
)

n∈N
is stochastically bounded for all τ > 0

c) supf∈F |ν̃n(f)− ν(f)| L1−→ 0

d) supf∈F |νn(f)− ν(f)| L1−→ 0.

6.5 A more general ULLN

As in Section 5.4, let us consider the general model of stochastic processes

Sn = (Sn(t))t∈T , n ∈ N,

indexed by an arbitrary parameter space T (again supposed to be countable to avoid measurability

considerations) given by

Sn(t) :=
∑

j≤j(n)

ηnj(t), t ∈ T,

where ηnj = (ηnj(t))t∈T , 1 ≤ j ≤ j(n), n ∈ N, is a triangular array of rowwise independent stochastic

processes (indexed by T ) and with j(n)→∞ as n→∞.

We are going to present conditions under which (cf. (2.1.5))

(6.5.1) lim
n→∞

E(||Sn − E(Sn)||) = 0,
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where again ||Sn − E(Sn)|| = ||Sn − E(Sn)||T := sup
t∈T
|Sn(t)− E(Sn(t))|.

According to the first inequality in 5.4.4, being valid also for not necessarily identically distributed

but still independent ηnj (cf. its proof based on the two Symmetrization Lemmata 5.4.1 ii) and 5.4.2

ii) ) (6.5.1) is shown by verifying

(6.5.2) lim
n→∞

E(||S0
n||) = 0,

where S0
n :=

∑

j≤j(n)

εjηnj with a Rademacher sequence (εj)j∈N being independent of (ηnj).

To verify (6.5.2) the rv ||S0
n|| ≡ ||S0

n||T := sup
t∈T
|S0
n(t)| will be approximated by ||S0

n||T̂n , where T̂n will

be a (usually finite) subset of T . Then, with the random pseudo-metric

(6.5.3) ρ̂n(s, t) ≡ ρ̂n(s, t, ηn1, ..., ηnj(n)) :=
∑

j≤j(n)

|ηnj(s)− ηnj(t)|, s, t ∈ T,

we get

||S0
n|| ≤ sup

t∈T
inf
s∈T̂n

(
|S0
n(s)|+ |S0

n(t)− S0
n(s)|

)
(6.5.4)

≤ ||S0
n||T̂n + sup

t∈T
inf
s∈T̂n
|S0
n(t)− S0

n(s)|

≤ ||S0
n||T̂n + sup

t∈T
ρ̂n(t, T̂n),

where ρ̂n(t, T̂n) := inf
s∈T̂n

ρ̂n(t, s).

Remember below the Definition 4.1.1 of covering numbers N(u, T, ρ̂n) being the minimal number of

closed ρ̂n - balls with radius u which cover T .

6.5.5. THEOREM.

Assume the following conditions (6.5.6) and (6.5.7), where (δn)n∈N is some sequence of positive real

numbers with δn → 0:

E

( ∑

j≤j(n)

||ηnj ||
)

= O(1) and E

( ∑

j≤j(n)

||ηnj || · I(||ηnj || > δn)
)

= o(1)(6.5.6)

logN(u, T, ρ̂n)
∗ = oP(δ−1

n ) ∀u > 0.(6.5.7)

Then (6.5.1), i.e. lim
n→∞

E(||Sn − E(Sn)||) = 0 holds true.

The following two special cases are included:

Assume (with Kn := nδn , δn → 0)

(6.5.6’) E

( ∑

j≤j(n)

||ηnj||
)

= O(1) and lim
n∧Kn→∞

E

( ∑

j≤j(n)

||ηnj || · I(||ηnj || >
Kn

n
)
)

= 0
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and

(6.5.7’) logN(u, T, ρ̂n)
∗ = oP(

√
n) ∀u > 0.

Then (6.5.1) holds true.

Assume on the other hand

(6.5.6”) E
( ∑

j≤j(n)

||ηnj ||
)

= O(1) and E
( ∑

j≤j(n)

||ηnj || · I(||ηnj || > u)
)

= o(1) ∀u > 0

and that logN(u, T, ρ̂n) is stochastically bounded, i.e.

(6.5.7”) logN(u, T, ρ̂n)
∗ = OP(1) ∀u > 0.

Then (6.5.1) holds true.

PROOF of Theorem 6.5.5. Let η̃nj := ηnj · I(||ηnj || ≤ δn) and S̃n :=
∑

j≤j(n)

η̃nj. Then

E(||Sn − E(Sn)− (S̃n − E(S̃n)||
︸ ︷︷ ︸

≤||Sn−S̃n||+||E(S̃n) − E(Sn)||
︸ ︷︷ ︸

≤E(||Sn−S̃n||)

) ≤ 2 E(||Sn − S̃n||)

= 2 E

(

||
∑

j≤j(n)

ηnj · I(||ηnj || > δn)||
)

≤ 2
∑

j≤j(n)

E(||ηnj || · I(||ηnj || > δn)) =
(6.5.6)

o(1).

In addition, ∀n ∈ N and ∀ s, t ∈ T

ρ̂ñ(s, t) := ρ̂n(s, t, η̃n1, ..., η̃nj(n)) ≤ ρ̂n(s, t, ηn1, ..., ηnj(n)) = ρ̂n(s, t),

whence (cf. Def. 4.1.1)

N(u, T, ρ̂ñ) ≤ N(u, T, ρ̂n) ∀u > 0.

Thus, in view of (6.5.7), we may and do assume w.l.o.g. that ∀n ∈ N and 1 ≤ j ≤ j(n)

(*) ||ηnj || ≤ δn.
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Now, as already remarked above, (6.5.1) will be shown by verifying (6.5.2). For this,

E(||S0
n||2) ≤ E

( j(n)
∑

j,j′=1

||ηnj || · ||ηnj′ ||
)

=
∑

j≤j(n)

E(||ηnj ||2) +

j(n)
∑

j,j′=1

I(j 6= j′) E(||ηnj || · ||ηnj′ ||)
︸ ︷︷ ︸

=E(||ηnj ||)·E(||ηnj′ )||

≤
(∗)
δn · E

( ∑

j≤j(n)

||ηnj ||
)

+
(

E(
∑

j≤j(n)

||ηnj ||)
)2

=
(6.5.6)

O(1).

Thus, for arbitrary ε > 0,

E(||S0
n||) ≤ ε+ E(||S0

n|| · I(||S0
n|| > ε))

≤
Cauchy-Schwarz

ε+
√

E(||S0
n||2) · P(||S0

n|| > ε)

= ε+O(
√

P(||S0
n|| > ε).

Therefore, to verify (6.5.2) it suffices to show that

(**) lim
n→∞

P(||S0
n|| > ε) = 0 ∀ ε > 0.

For this, given an arbitrary ε > 0, let T̂n ≡ T̂n(ηn1, ..., ηnj(n)) be a random subset of T such that

|T̂n| = N( ε2 , T, ρ̂n) and sup
t∈T

ρ̂n(t, T̂n) ≤ ε
2 .

Then, by (6.5.4)

||S0
n|| ≤

ε

2
+ ||S0

n||T̂n .

Now,

P(||S0
n|| ≥ ε) = E(I(||S0

n|| ≥ ε)) = E(E(I(||S0
n|| ≥ ε)|ηn1, ..., ηnj(n))

︸ ︷︷ ︸

=:ζn≤1P−a.s.

),

and so, by Lebesgue’s dominated convergence theorem, (**) will be proved by showing

(***) ζn
P−→ 0.
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For this, using Corollary 5.5.4, we get ∀ ε > 0

ζn = P

(

{||S0
n|| ≥ ε}|ηn1, ..., ηnj(n)

)

≤ P
(

{||S0
n||T̂n ≥

ε

2
} | ηn1, ..., ηnj(n)

)

≤
∑

t∈T̂n

P({|S0
n(t)| ≥

ε

2
} | ηn1, ..., ηnj(n))

≤
(|T̂n|=N( ε

2
,T,ρ̂n))

N(
ε

2
, T, ρ̂n) · sup

t∈T
P({|S0

n(t)| ≥
ε

2
} | ηn1, ..., ηnj(n))

(!)

≤ 2N(
ε

2
, T, ρ̂n) sup

t∈T
exp

(

− ε2

8
∑

j≤j(n)

η2
nj(t)

)

≤
(∗)

2N(
ε

2
, T, ρ̂n) exp

(

− ε2

8δn
∑

j≤j(n)

||ηnj ||
)

= 2 exp
[

− 1

δn
︸︷︷︸

→−∞

(

ε2 ( 8
∑

j≤j(n)

||ηnj ||

︸ ︷︷ ︸

=OP(1) by (6.5.6)

)−1 − δn logN(
ε

2
, T, ρ̂n)

︸ ︷︷ ︸

=oP(1) by (6.5.7)

)]

P−→ 0. 2

As to (!): (εj), (ηnj) are independent, so [Gae77], 5.3.22 can be applied:

P

(

{|S0
n(t)| ≥

ε

2
} | ηn1, ..., ηnj(n)

)

= P

(

{|
∑

j≤j(n)

εjηnj(t)| ≥
ε

2
} | ηn1, ..., ηnj(n)

)

= Pε

(

{|
∑

j≤j(n)

εjηnj(t, ω)| ≥ ε

2
}
)

for P− a.a. ω

≤
(5.5.4 with x= ε

2
)
2 exp

( ε2

8
∑

j≤j(n)

η2
nj(t, ω)

)

for P− a.a. ω.

Strengthening the condition (6.5.7) will lead to a refinement of Theorem 6.5.5 with an application to

density estimation as carried out in [Due00] Sections 8.4 and 8.5.

For this one needs the following lemma, where the basic idea of its proof will be Le Cam’s “square

root trick” via Giné and Zinn (cf. [Cam83], [Gi84]).

6.5.8. Lemma.

Assume ||ηnj || ≤ δn ∀ 1 ≤ j ≤ j(n) with n ∈ N being arbitrary but fixed. Let

Vn := sup
t∈T

E

( ∑

j≤j(n)

η2
nj

)

.

Then P

(

sup
t∈T

∑

j≤j(n)

η2
nj ≥ 8τ

)

≤ 2

1− Vn/τ
E

(

exp[logN(
τ

32δn
, T, ρ̂n)−

τ

8δ2n
] ∧ 1

)

∀ τ > Vn.
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PROOF: Let (εj)j∈N be a Rademacher sequence, independent of (ηnj), and ∀n ∈ N

J1 := {j ≤ j(n) : εj = 1} and J2 := {j ≤ j(n) : εj = −1} = {1, ..., j(n)}\J1 ,

SK :=
∑

j∈K
η2
nj for K ⊂ {1, ..., j(n)},

and S := S{1,...,j(n)} =
∑

j≤j(n)

η2
nj. Since L{SJ1} = L{SJ2} we have

P

(

sup
t∈T

∑

j≤j(n)

η2
nj(t) ≥ 8τ

)

= P(||S|| ≥ 8τ)

≤ 2 P(||SJ1 || ≥ 4τ) = 2 P(||
√

SJ1|| ≥ 2
√
τ).

Now, for any t ∈ T ,

P({
√

SJ1(t) ≥
√
τ} | ε1, ..., εj(n)) ≤

(Markov’s inequality)

E(SJ1(t) | ε1, ..., εj(n))

τ
(*)

≤ E(S(t))

τ
≤ Vn

τ
,

since

E(SJ1(t) | ε1, ..., εj(n)) = E

( ∑

j∈J1

η2
nj(t) | ε1, ..., εj(n)

)

=
∑

j∈J1

E(η2
nj(t) | ε1, ..., εj(n))

=
∑

j∈J1

E(η2
nj(t)) ≤

∑

j≤j(n)

E(η2
nj(t))

= E

( ∑

j≤j(n)

η2
nj(t)

)

︸ ︷︷ ︸

=E(S(t))

≤
(by def. of Vn)

Vn.

Next, since
√
SJ1 and

√
SJ2 are independent, given ε1, ..., εj(n), we can apply Lemma 5.4.1 i) w.r.t.

the conditional distribution on the lhs. of (*) to obtain

(**) P(||
√

SJ1|| ≥ 2
√
τ) ≤ 1

1− Vn/τ
P(||

√

SJ1 −
√

SJ2|| ≥
√
τ).
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Now, ∀ s, t ∈ T
∣
∣
∣

(√

SJ1(s)−
√

SJ2(s)
)

−
(√

SJ1(t)−
√

SJ2(t)
)∣
∣
∣ ≤

∣
∣
∣

√

SJ1(s)−
√

SJ1(t)
∣
∣
∣ +

∣
∣
∣

√

SJ2(s)−
√

SJ2(t)
∣
∣
∣

≤
( ∑

j∈J1

(ηnj(s)− ηnj(t))2
)1/2

+
( ∑

j∈J2

(ηnj(s)− ηnj(t))2
)1/2

≤
(

4
∑

j≤j(n)

(ηnj(s)− ηnj(t))2
)1/2

≤
(||ηnj ||≤δn)

(

8 δn
∑

j≤j(n)

|ηnj(s)− ηnj(t)|
︸ ︷︷ ︸

=ρ̂n(t,s) (by def. of ρ̂n in (6.5.3))

)1/2
.

Therefore, ∀ s, t ∈ T
∣
∣
∣

(√

SJ1(s)−
√

SJ2(s)
)

−
(√

SJ1(t)−
√

SJ2(t)
)∣
∣
∣ ≤

√

8δnρ̂n(t, s).

So, choosing T̂n = T̂n(ηn1, ..., ηnj(n)) ⊂ T such that |T̂n| = N( τ
32δn

, T, ρ̂n) and sup
t∈T

ρ̂n(t, T̂n) ≤ τ
32δn

,

then, in the same way as in (6.5.4) one gets

||
√

SJ1 −
√

SJ2|| ≤ ||
√

SJ1 −
√

SJ2||T̂n + sup
t∈T

√

8δnρ̂n(t, T̂n)
︸ ︷︷ ︸

≤
√

τ
4
=

√
τ

2

.

Therefore, we can proceed as in the proof of Theorem 6.5.5 using Corollary 5.5.4 to obtain

P({||
√

SJ1 −
√

SJ2|| ≥
√
τ} | ηn1, ..., ηnj(n)) ≤ P({||

√

SJ1 −
√

SJ2||T̂n ≥
√
τ

2
} | ηn1, ..., ηnj(n))

≤
∑

t∈T̂n

P({|
√

SJ1(t)−
√

SJ2(t)| ≥
√
τ

2
} | ηn1, ..., ηnj(n))

≤
∑

t∈T̂n

P({|SJ1(t)− SJ2(t)| ≥
√
τ

2

(√

SJ1(t) +
√

SJ2(t)}
)

| ηn1, ..., ηnj(n))

≤
∑

t∈T̂n

P({|SJ1(t)− SJ2(t)| ≥
√
τ

2

√

S(t) | ηn1, ..., ηnj(n))

=
∑

t∈T̂n

P({
∣
∣

∑

j≤j(n)

εjη
2
nj(t)

∣
∣ ≥
√
τ

2

√

S(t) | ηn1, ..., ηnj(n))

≤
Corollary 5.5.4

2
∑

t∈T̂n

exp
(

− S(t)τ

8
∑

j≤j(n)

η4
nj(t)

)

≤
(||ηnj ||≤δn)

2 |T̂n| exp
(

− τ

8δ2n

)
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from which the result follows after integration w.r.t. (ηnj). 2

6.5.9. Theorem.

Under the assumptions of Lemma 6.5.8 one has for Sn :=
∑

j≤j(n)

ηnj that

P(||Sn − E(Sn)|| ≥ 3η) ≤ 16 E

(

exp[logN(
τ

32δn
, T, ρ̂n)−

τ

8δ2n
] ∧ 1

)

+ 8 E

(

exp[logN(
η

2
, T, ρ̂n)−

η2

64τ
] ∧ 1

)

for all η ≥
√

2Vn and all τ > 2Vn.

PROOF: Since ∀ t ∈ T

V ar(Sn(t)) =
∑

j≤j(n)

V ar(ηnj(t)) ≤
∑

j≤j(n)

E(η2
nj(t)) ≤ Vn := sup

t∈T
E

( ∑

j≤j(n)

η2
nj(t)

)

,

we have ∀ t ∈ T and S′
n(t) :=

∑

j≤j(n)

η′nj(t), (η′nj = (η′nj(t))t∈T being independent versions of the

processes ηnj as in Lemma 5.4.2)

P(|S′
n(t)− E(S′

n(t))| > η) ≤
(Tschebyscheff-Ineq.)

V ar(S′
n(t))

η2
=
V ar(Sn(t))

η2
≤ Vn
η2
,

whence

P(|S′
n(t)− E(S′

n(t))| ≤ η) ≥ 1− Vn
η2
.

Thus an application of Lemma 5.4.1 i) (with Sn − E(Sn) and S′
n − E(S′

n) = S′
n − E(Sn) instead of S

and S′, respectively), together with Lemma 5.4.2 i) yields

P(||Sn − E(Sn)|| ≥ 3η) ≤ 1

1− Vn/η2
P(||Sn − S′

n|| ≥ 2η)

≤ 2

1− Vn/η2
P(||S0

n|| ≥ η).

Now, as in the proof of Theorem 6.5.5 one gets

(*) P({||S0
n|| ≥ η} | ηn1, ..., ηnj(n)) ≤ 2N(

η

2
, T, ρ̂n) exp

(

− η2

8Xn

)

,

where Xn := sup
t∈T

∑

j≤j(n)

η2
nj(t). Therefore

P(||S0
n|| ≥ η) = E(1{||S0

n||≥η})

= E(1{||S0
n||≥η} · 1{Xn≥8τ}) + E(1{||S0

n||≥η} · 1{Xn<8τ})

≤ P(Xn ≥ 8τ) + E(1{||S0
n||≥η} · 1{Xn<8τ}),
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where

P(Xn ≥ 8τ) ≤ 2

1− Vn/τ
E

(

exp[logN(
τ

32δn
, T, ρ̂n)−

τ

8δ2n
] ∧ 1

)

according to Lemma 6.5.8 and

E(1{||S0
n||≥η} · 1{Xn<8τ}) = E

(

E(1{||S0
n||≥η} · 1{Xn<8τ} | ηn1, ..., ηnj(n))

︸ ︷︷ ︸

=1{Xn<8τ}·E(1{||S0
n||≥η}|ηn1,...,ηnj(n))∧1

)

≤ 2 E

(

exp[logN(
η

2
, T, ρ̂n)−

η2

64τ
] ∧ 1

)

.

Note that

E(1{||S0
n||≥η}|ηn1, ..., ηnj(n)) ∧ 1 = P({||S0

n|| ≥ η}|ηn1, ..., ηnj(n)) ∧ 1

≤
(∗)

[2N(
η

2
, T, ρ̂n) exp(− η2

8Xn
)] ∧ 1 = 2 exp[logN(

η

2
, T, ρ̂n) exp(− η2

8Xn
)] ∧ 1

≤
on {Xn<8τ}

2 exp[logN(
η

2
, T, ρ̂n)−

η2

64τ
] ∧ 1.

It follows that

2

1− Vn/η2
P(||S0

n|| ≥ η) ≤
2

1− Vn/η2

2

1− Vn/τ
E

(

exp[logN(
τ

32δn
, T, ρ̂n)−

τ

8δ2n
] ∧ 1

)

+
2

1− Vn/η2
2 E

(

exp[logN(
η

2
, T, ρ̂n)−

η2

64τ
] ∧ 1

)

,

where for all η, τ with η2 ∧ τ ≥ 2Vn as assumed, 2
1−Vn/η2

2
1−Vn/τ ≤ 16, and 4

1−Vn/η2 ≤ 8, which proves

Theorem 6.5.9. 2

6.5.10. Corollary.

Let the assumptions of Lemma 6.5.8 be fulfilled with δn := 1
n , n ∈ N, and assume that for certain

constants 0 < A <∞, 0 < B <∞, and ∀n ∈ N

(6.5.11) N(ε, T, ρ̂n) ≤ A · ε−B P− a.s. ∀ 0 < ε ≤ 1.

Then, for sufficiently large K > 0

∑

n≥1

P
(

{||Sn − E(Sn)|| ≥ K(
√

log(n)Vn ∨
log n

n
)}

)

<∞.

PROOF: The assertion will follow from Theorem 6.5.9 by taking

τ = τn := γτ · (Vn ∨
log n

n2
),

η = ηn :=
√

γη log(n) · τn =
√
γτ γη

√

log(n)Vn ∨
log n

n
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with sufficiently large constants γτ γη > 0; then the assumption η2
n ∧ τn ≥ 2Vn in Theorem 6.5.9 will

be fulfilled for all n ≥ 2 (by choosing γτ > 2 and γη > 2/ log 2), whence an application of Theorem

6.5.9 yields the result since according to (6.5.11) P-a.s. ∀n ∈ N and sufficiently large γτ , γη

logN(
nτn
32

, T, ρ̂n)−
n2τn

8
≤ const.−B log(

log n

n
)− γτ log n

8
≤ const.+ (B − γτ

8
) log n,

and

logN(
ηn
2
, T, ρ̂n)−

η2
n

64τn
≤ const.+ (B − γη

64
) log n,

where for sufficiently large γτ and γη B − γτ
8 < −1 and B − γη

64 < −1 whence for sufficiently large n

and appropriate a > 1 P-a.s.

exp[logN(
nτn
32

, T, ρ̂n)−
n2τn

8
] ∧ 1 ≤ n−a

as well as

exp[logN(
ηn
2
, T, ρ̂n)−

η2
n

64τn
] ∧ 1 ≤ n−a

proving Corollary 6.5.10. 2

6.6 Application in density estimation

Let us reconsider the Example 0.17, i.e. the kernel density estimator ĝn for g based on i i d re’s ηj in

(Rd,Bd), d ≥ 1, with unknown Lebesgue density g, defined by

ĝn(t) := h−dn
1

n

∑

j≤n
K(

t− ηj
hn

) = h−dn

∫

Rd

K(
t− y
hn

) νn(dy) , t ∈ Rd.

where νn is the empirical measure based on η1, ..., ηn. Remember the decomposition mentioned in

Example 0.17, i.e.

ĝn(t)− g(t) = ĝn(t)− E(ĝn(t))
︸ ︷︷ ︸

random part

“fluctuation at t”

+ E(ĝn(t))− g(t)
︸ ︷︷ ︸

Bias (at t)

and consider now as index set the set

F := {K
( t− ·
hn

)

: t ∈ Rd}.

which turns out to be a VCGC (cf. (0.19)), whence by the fundamental Lemma 4.3.17 the condition

(6.5.11) in Corollary 6.5.10 is fulfilled with T = F :

In fact, in the present situation we have ∀n ∈ N with ft(·) := K
(
t−·
hn

)

∈ F , t ∈ Rd, and for ν = νn
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(for which ν(F ) = 1 for the envelope F ≡ 1 which can be taken as envelope for F provided that (cf.

our assumptions (6.6.3) below) ||K|| = sup
z∈Rd

|K(z)| ≤ 1):

d(1)
ν (ft, fs) = νn(|ft − fs|)

=
1

n

∑

j≤n

∣
∣
∣K(

t− ηj
hn

)−K(
s− ηj
hn

)
∣
∣
∣

= ρ̂n(ft, fs) :=
(cf. (6.5.3))

∑

j≤n

∣
∣
∣ηnj(ft)− ηnj(fs)

∣
∣
∣

with ηnj(ft) := 1
nK(

t−ηj
hn

) ∀ s, t ∈ Rd, whence the condition (6.5.11) in Corollary 6.5.10 is fulfilled.

Reconsider now ∀ t ∈ Rd

ĝn(t) = h−dn Sn(ft) := h−dn
∑

j≤n
ηnj(ft).

Since (cf. (6.6.3) below) ||K|| ≤ 1 will be assumed, we have

||ηnj || ≡ ||ηnj ||F = sup
ft∈F
|ηnj(ft)| =

1

n
sup
t∈Rd
|K(

t− ηj
hn

)| ≤ 1

n
,

whence the assumptions of Lemma 6.5.8 are fulfilled with δn = 1
n ; furthermore, in the present situation,

E

(∑

j≤n
η2
nj(ft)

)

=
1

n
E

(

K2(
t− ηj
hn

)
)

=
1

n

∫

Rd

K2(
t− ηj
hn

)g(y) dy

≤
(||K||≤1)

1

n
hdn ||g||

∫

Rd

|K(z)| dz = O(
hdn
n

),

whence in view of Lemma 6.5.8

Vn = sup
ft∈F

E

(∑

j≤n
η2
nj(ft)

)

≤ O(
hdn
n

).

Before, we have used finiteness of ||g|| := sup
t∈Rd
|g(t)|; this is guaranteed by assuming e.g. Lipschitz-

continuity of g, i.e.

(6.6.1) |g(x) − g(y)| ≤ L|x− y| for some constant 0 < L <∞ and ∀x, y ∈ Rd.

Thus, Corollary 6.5.10 together with the Borel-Cantelli-Lemma ([Gae77] 1.16.7 (i)) yields

(6.6.2) ||ĝn − E(ĝn)|| = h−dn ||Sn − E(Sn)|| = h−dn O
(
√

hdn
log n

n
∨ log n

n

)

P− a.s.
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(In fact, according to Corollary 6.5.10, for sufficiently large K > 0

∑

n∈N

P

(

{||Sn − E(Sn)|| ≥ K(
√

Vn log(n) ∨ logn

n
)}

︸ ︷︷ ︸

=:An

)

<∞

whence by Borel-Cantelli P(lim supAn) = 0, i.e. P(
⋃

m

⋂

n≥m

{An) = 1, where

{An = {||Sn − E(Sn)|| < K(
√

Vn log(n) ∨ logn

n
)} and Vn = O(

hd
n

n
),

from which (6.6.2) follows.)

Concerning the Bias, i.e. ||E(ĝn) − g|| (with E(ĝn)(t) := E(ĝn(t)) ), one gets under the assumptions

(6.6.1) and

(6.6.3) ||K|| ≤ 1,

∫

Rd

K(z) dz = 1 and

∫

Rd

|z| |K(z)| dz <∞

that

(6.6.4) ||E(ĝn)− g|| ≤ Lhn
∫

Rd

|z| |K(z)| dz = O(hn).

(In fact, ∀ t ∈ Rd

E(ĝn(t))− g(t) = h−d
n

∫

Rd

K(
t− y
hn

)(g(y)− g(t)) dy

=

∫

Rd

K(z)(g(t− hnz)− g(t)) dz

≤ Lhn

∫

Rd

|z| |K(z)| dz. )

As one can see from (6.6.2) and (6.6.4), the Bias is decreasing with hn ↘ 0, but at the same time

the fluctuation, i.e. ||ĝn−E(ĝn)||, is increasing. So, to obtain a balance between both effects one may

consider the equation

hn = h−dn

√

hdn
log n

n

which yields

hn =
( log n

n

)1/(d+2)
.

Thus (!)

||ĝn − g|| = O
(( log n

n

)1/(d+2))

P− a.s.,

if hn/
(

logn
n

)1/(d+2)
−→ c for some 0 < c <∞.
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7 Functional Central Limit Theorems (FCLT)

7.1 A FCLT for RMP’s

Our starting point in this section is the same as in 6.1 with the aim to present a Functional Central Limit Theorem (FCLT) for
Random Measure Processes (RMP’s) Sn = (Sn(f))f∈F , where

Sn(f) :=
∑

j≤j(n)

wnj(f) · ξnj , f ∈ F , with j(n) −→ ∞ as n → ∞,

assuming again that the processes (wnj(f) ·ξnj)f∈F are given via coordinate projections on the product p-space (Ω,A, P) as defined
in 6.1.

We tacitly assume regularity conditions such as measurability and finiteness of wnj(F ) and now even the same of wnj(F
2) (with

F : X −→ R being an X -measurable envelope of F)
As already remarked in 3.1, this implies that the sample paths os Sn are contained in the Banachspace

l∞(F) := {x : F −→ R : ||x||F := sup
f∈F

|x(f)| < ∞}

endowed with the sup-norm || · ||F , and it also implies in view of the condition (7.1.4) imposed in our FCLT 7.1.3 below that also
supf∈F E(|Sn(f)|) <∞ for sufficiently large n.

Thus, for sufficiently large n, the processes Sn− E(Sn) can be viewed as rq’s in S := (l∞(F), || · ||F ),

and to obtain a FCLT for Sn − E(Sn) amounts to present further sufficient conditions on F and on

both triangular arrays (wnj) and (ξnj) under which

Sn − E(Sn)
L−→ G in S = l∞(F)

in the sense of (2.3.2) with a limiting re G = (G(f))f∈F in (S,B(S)) being a mean-zero Gaussian

process.

If, in addition, G is separable, we write as in 2.3
L−→

sep
instead of

L−→. We will focus here on

(7.1.1) Sn − E(Sn)
L−→

sep
G in l∞(F)

with G having all its sample paths in the subspace U b(F , d) of S, where

U b(F , d) := {x ∈ l∞(F) : x uniformly d-continuous},

in order to apply our Characterization Theorem of L-Convergence 2.3.9 with d being a pseudo-metric

on F such that (F , d) is totally bounded.

Remember that U b(F , d) is a separable subspace of S if and only if (F , d) is totally bounded ([Gae90],

Corollary 2).

Before focussing on (7.1.1), some general comments are in order in comparing our
L−→

sep
-convergence

with related concepts found in the literature (see e.g. [Va96]):
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For this, let ηn : Ω −→ l∞(F), n ≥ 1, be arbitrary rq’s with ηn
L−→

sep
G, where G has all its sample paths

in some separable subspace S0 of l∞(F). Then the law L{G} of G is a Radon measure on B(l∞(F)),

i.e. for each B ∈ B(l∞(F))

L{G}(B) = sup{L{G}(K) : K ⊂ B,K compact}.

To see this, note that according to [Bi68], p. 9,

L{G} Radon measure ⇐⇒ L{G} tight

(i.e. ∀ε > 0∃K = Kε ⊂ l∞(F),K compact, s.t. L{G}(K) ≥ 1 − ε). So it remains to show that

S := L{G} is tight:

For this, let D be a countable and dense subset of S0; let j ∈ N and ε > 0 be arbitrary. Then the open

balls B(x, 1
j ) ⊂ l∞(F), x ∈ D, (with center x and radius 1

j ) form a cover of S0 and therefore (due to

the σ-continuity of S) there exist x1, ..., xnj ∈ D such that

S(

nj⋃

i=1

B(xi,
1

j
)) ≥ 1− ε/2j .

Put Gj :=
⋃nj
i=1B(xi,

1
j ); then

⋂

j∈NGj is totally bounded and S(
⋂

j∈NGj) = 1 − S(
⋃

j∈N {Gj) ≥
1 −∑

j∈N S({Gj) ≥ 1 − ε. Since also K := (
⋂

j∈NGj)
c is totally bounded and complete (as a closed

subset of the complete space l∞(F), K is compact with S(K) ≥ 1 − ε, which proves tightness since

ε > 0 was chosen arbitrary.

On the other hand, if L{G} is a Radon measure, whence tight, and if ηn
L−→ G in the sense of

(2.3.2) (with S = l∞(F)), it follows that there exists a stochastic process Ḡ = (Ḡ(f))f∈F defined on

an appropriate p-space (Ω̄, Ā, P̄) with sample paths in a separable subspace S0 of l∞(F) such that

ηn
L−→

sep
Ḡ, where Ḡ

L
=
fidi

G:

In fact, L{G} tight =⇒ S0 := suppL{G} σ-compact and therefore separable; then, taking

(Ω̄, Ā, P̄) := (S0,B(S0),L{G}) and Ḡ(f)(x) := πf (x) := x(f) for x ∈ S0 the assertion follows (see

[Gae77], Lemma 7.2.31).

Finally, let us mention also (without proof) the following result (see [Va96], Section 1.12, and [Gi97],

Corollary 1.5):

Let ηn : Ω −→ l∞(F), n ≥ 1, be arbitrary rq’s, η0 : Ω −→ l∞(F) be A,B(l∞(F))-measurable with

L(η0} being tight; then

(7.1.2) ηn
L−→ η0 in the sense of (2.3.2) (with S = l∞(F)) ⇐⇒ dBL(ηn, η0) −→ 0,

where dBL(ηn, η0) := sup{|E∗(H(ηn))− E(H(η0))| : H ∈ BL1(l
∞(F))} with

BL1(l
∞(F)) :=

{

H : l∞(F) −→ R : sup
x∈l∞(F)

|H(x)| ≤ 1, sup
x,y∈l∞(F),x 6=y

|H(x) −H(y)|
||x− y||F

≤ 1
}

.

Now, the Functional Central Limit Theorem (FCLT) for Random Measure Processes (RMP’s) reads

as follows (cf. [Zi97], Theorem 6.1 together with Remark 6.2):
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7.1.3. THEOREM (FCLT for RMP’s).

Let X = (X,X ) be an arbitrary measurable space and F be a class of X -measurable functions

f : X −→ R with X -measurable envelope F : X −→ R (supposed to be countable to avoid mea-

surability considerations). Assume that F has uniformly integrable L2-entropy (cf. 4.3.20) and that

there is some pseudometric d on F such that (F , d) is totally bounded. Assume further that the

following conditions (7.1.4) – (7.1.6) are fulfilled:

For each ρ > 0 there exists δn = δn(ρ) > 0, n ∈ N, with δn −→ 0 such that

lim sup
n→∞

∑

j≤j(n)

E

(

wnj(F )|ξnj | · I(wnj(F )|ξnj | > δn)
)

≤ ρ(7.1.4)

lim
α→0

lim sup
n→∞

sup
d(f,g)≤α

∑

j≤j(n)

E

(

(wnj(f)− wnj(g))2ξ2nj · I(wnj(F )|ξnj | ≤ δn)
)

= 0(7.1.5)

sup
n∈N

∑

j≤j(n)

E

(

wnj(F
2)ξ2nj · I(wnj(F )|ξnj | ≤ δn)

)

<∞ .(7.1.6)

Assume in addition, that there exists a mean-zero Gaussian process Ḡ = (Ḡ(f))f∈F such that Sn −
E(Sn)

P−→
fidi

Ḡ.

Then there exists a mean zero Gaussian process G = (G(f))f∈F with sample paths in U b(F , d) (being

a separable subspace of (l∞(F), || · ||F ) such that

(7.1.7) Sn − E(Sn)
L−→
sep

G in l∞(F) and Ḡ
L
=
fidi

G.

PROOF. Concerning (7.1.7) we remark (as already mentioned above) that by (7.1.4) for sufficiently

large n

sup
f∈F

E(|Sn(f)|) ≤
∑

j≤j(n)

E(wnj(F )|ξnj |) ≤

∑

j≤j(n)

E

(

wnj(F )|ξnj | · I(wnj(F )|ξnj | > δn)
)

+ j(n)δn <∞.

Now, since (F , d) is assumed to be totally bounded and since Sn − E(Sn)
P−→

fidi
Ḡ by assumption, it

follows in view of our CTL-C 2.3.9 together with Remark 2.3.19 that it remains to show

(a) limα→0 lim supn→∞ E

(

supd(f,g)≤α
∣
∣Sn(f)− Sn(g) − (E(Sn(f))− E(Sn(g)))

∣
∣

)

= 0 .

For this, according to the Symmetrization Inequality 5.1.2 it suffices to show

(b) limα→0 lim supn→∞ E

(

supd(f,g)≤α |
∑

j≤j(n) εjξnj · (wnj(f)− wnj(g))|
)

= 0,

where (εj)j∈N is a canonically formed Rademacher sequence being independent of both arrays (wnj)

and (ξnj).
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Let ρ > 0 be arbitrary and δn = δn(ρ) > 0, n ∈ N, with δn −→ 0, fulfilling (7.1.4) – (7.1.6). Then

E

(

sup
d(f,g)≤α

∣
∣

∑

j≤j(n)

εj ξnj · (wnj(f)−wnj(g))
∣
∣

)

≤ E

(

sup
d(f,g)≤α

∣
∣

∑

j≤j(n)

εj ξnj · (wnj(f)− wnj(g)) · I(wnj(F )|ξnj | ≤ δn)
∣
∣

)

+ 2
∑

j≤j(n)

E

(

wnj(F )|ξnj | · I(wnj(F )|ξnj | > δn)
)

,

and so, because of (7.1.4), it remains to show

(c) limα→0 lim supn→∞ E

(

supd(f,g)≤α
∣
∣
∑

j≤j(n) εj ξnj(wnj(f)−wnj(g)) ·I(wnj(F )|ξnj | ≤ δn)
∣
∣

)

= 0.

For this, let, for f, g ∈ F ,

σ2
nδn(f, g) :=

∑

j≤j(n)

E

(

(wnj(f)− wnj(g))2ξ2nj · I(wnj(F )|ξnj | ≤ δn)
)

.

With this definition of σnδn condition (7.1.5) reads as follows:

(d) limβ→0 lim supn→∞ supd(f,g)≤β σ
2
nδn

(f, g) = 0.

But (d) allows us to switch in (c) from the pseudo-metric d to σnδn , i.e. in doing so we have to show

(e) lim
α→0

lim supn→∞ E

(

supσnδn (f,g)≤α
∣
∣
∑

j≤j(n) εj ξnj(wnj(f)−wnj(g)) · I(wnj(F )|ξnj | ≤ δn)
∣
∣

)

= 0.

Now

ρ2
nδn(f, g) :=

∑

j≤j(n)

(wnj(f)− wnj(g))2ξ2nj · I(wnj(F )|ξnj | ≤ δn)

≤
∑

j≤j(n)

wnj((f − g)2) ξ2nj · I(wnj(F )|ξnj | ≤ δn) = µ̃nδn((f − g)2)

for all f, g ∈ F with

µ̃nδn(f) :=
∑

j≤j(n)

wnj(f) ξ2nj · I(wnj(F )|ξnj | ≤ δn),

where

σ2
nδn(f, g) = E(ρ2

nδn(f, g)) for all f, g ∈ F .
By this, we arrived at a situation which allows us to apply Ziegler’s Maximal Inequality ([Zi97],

Theorem 3.1, applied here with Φnj(f) := wnj(f) ξ2nj · I(wnj(F )|ξnj | ≤ δn) ) according to which there

exist universal constants 0 < Ki <∞, i = 1, 2, such that for all α > 0

(f) E
(
supσnδn (f,g)≤α

∣
∣
∑

j≤j(n) εj ξnj · (wnj(f)−wnj(g)) · I(wnj(F )|ξnj | ≤ δn)
∣
∣
)

≤ K1 · A(n, α) · B(n) + K2 · C(n, α)
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with

A(n, α) := α−1E∗ 1
2

(

max
j≤j(n)

sup
f,g∈F

|ξnj(wnj(f)− wnj(g))| · I(wnj(F )|ξnj | ≤ δn) · [µ̃nδn(F 2)]1/2 · ln(1)
)

B(n) := E∗ 1
2

(

µ̃nδn(F
2) (ln(1))

2
)

and C(n, α) := E∗
(

max{1, [µ̃nδn(F 2)]1/2} · ln(α)
)

,

where ln(α) is the random integral, defined by

ln(α) :=

∫ α

0

(

logN
(
τ (µ̃nδn(F

2))1/2,F , d(2)
µ̃nδn

)
)1/2

dτ.

Here, we have according to (7.1.6) that

(g) supn∈N E(µ̃nδn(F
2)) =

∑

j≤j(n) E

(

wnj(F
2)ξ2nj · I(wnj(F ) |ξnj | ≤ δn)

)

<∞,

whence µ̃nδn ∈M(X,F ) for all n ∈ N a.s., and thus a.s.

(h) ln(1) ≤
∫ ∞
0

(

log
[
supν∈M(X,F )N

(
τ (ν(F 2))1/2,F , d(2)

ν

)])1/2
dτ <∞,

since F has uniformly integrable L2-entropy.

The latter also implies that a.s

(i) ln(α) ≤
∫ α
0

(

log
[
supν∈M(X,F )N

(
τ (ν(F 2))1/2,F , d(2)

ν

)])1/2
dτ −→ 0 as α −→ 0.

Now, concerning A(n, α), note that

max
j≤j(n)

sup
f,g∈F

|ξnj(wnj(f)− wnj(g))| · I(wnj(F )|ξnj | ≤ δn) ≤ 2 · δn,

which implies by (g) and (h) that for all α > 0

lim sup
n→∞

A(n, α) ·B(n) = 0.

Finally, by (g) and (i) we get

lim
α→0

lim sup
n→∞

C(n, α) = 0,

which completes the proof of (e) according to (f). 2

It is easily seen that the conditions (7.1.4) – (7.1.6) become much simpler in case of a uniformly

bounded index set F (with envelope F ≡ 1 w.l.o.g.) In this case we obtain immediately from Theorem

7.1.3:
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7.1.8. Corollary (cf. [Zi97], Corollary 6.3).

Assume that F is uniformly bounded and has uniformly integrable L2-entropy, and that there is some

pseudo-metric d on F such that (F , d) is totally bounded. Assume further that the following conditions

(7.1.4)′ – (7.1.6)′ are fulfilled:

(7.1.4)′ lim
n→∞

∑

j≤j(n)

E

(

|ξnj | · I(|ξnj| > δ)
)

= 0 for all δ > 0

(Noticing that (7.1.4)′ implies the existence of a sequence (δn)n∈N of positive real numbers δn such that δn −→ 0

and limn→∞
∑

j≤j(n) E

(

|ξnj | · I(|ξnj | > δn)
)

= 0.)

lim
α→0

lim sup
n→∞

sup
d(f,g)≤α

∑

j≤j(n)

E

(

(wnj(f)− wnj(g))2ξ2nj · I(|ξnj | ≤ δ1)
)

= 0 for some δ1 > 0(7.1.5)′

sup
n∈N

∑

j≤j(n)

E
(

ξ2nj · I(|ξnj | ≤ δ2)
)

<∞ for some δ2 > 0(7.1.6)′

There exists a mean-zero Gaussian process Ḡ = (Ḡ(f))f∈F such that

Sn − E(Sn)
P−→

fidi
Ḡ.

Then there exists a mean-zero Gaussian process G = (G(f))f∈F with sample paths in U b(F , d) (being

a separable subspace of (l∞(F), || · ||F ) such that

(7.1.7) Sn − E(Sn)
L−→
sep

G in l∞(F) and Ḡ
L
=
fidi

G.

where again

Sn(f) :=
∑

j≤j(n)

wnj(f) · ξnj, f ∈ F .

Let us consider next the special case where wnj = δηnj , (ηnj)1≤j≤j(n),n∈N being a triangular array of

re’s in (X,X ) in order to present tractable conditions under which (7.1.8) holds true.

7.1.6. Corollary (cf. [Zi97], Corollary 6.4).

Let F be as in Corollary 7.1.8. Let wnj = δηnj where (ηnj)1≤j≤j(n),n∈N is a triangular array of re’s

in (X,X ) with laws νnj := L{ηnj} on X , and suppose now, in addition to the basic independence

assumption for the pairs (ηn1, ξn1), ..., (ηnj(n), ξnj(n)), that for each n ∈ N and 1 ≤ j ≤ j(n) also

ηnj and ξnj are independent. Assume further that there is some p-measure ν on X and constants
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0 < ci <∞ such that the following four conditions are fulfilled:

lim
n→∞

∑

j≤j(n)

E

(

|ξnj | · I(|ξnj| > δ)
)

= 0 for all δ > 0(7.1.4)′

lim
α→0

lim sup
n→∞

sup
d
(2)
ν (f,g)≤α

∑

j≤j(n)

νnj((f − g)2) · E(ξ2nj · I(|ξnj | ≤ δ1)) = 0 for some δ1 > 0(7.1.7)

lim
n→∞

∑

j≤j(n)

νnj(f · g) · E(ξ2nj · I(|ξnj | ≤ δ2)) = c1ν(f · g) for all f, g ∈ F and some δ2 > 0(7.1.8)

lim
n→∞

∑

j≤j(n)

νnj(f) · νnj(g)
(

E(ξnj · I(|ξnj | ≤ δ3))
)2

= c2ν(f) · ν(g) for all f, g ∈ F and some δ3 > 0.

(7.1.9)

Then, with Sn(f) :=
∑

j≤j(n) f(ηnj) · ξnj , f ∈ F ,

Sn − E(Sn)
L−→
sep

Gν in l∞(F),

where Gν = (Gν(f))f∈F is a mean zero Gaussian process with sample paths in U b(F , d(2)
ν ) and

cov(Gν(f), Gν(g)) = c1ν(f · g) − c2ν(f) · ν(g) for f, g ∈ F .

PROOF. Note first that (7.1.5)′ coincides with (7.1.7) in the present case since E

(

(wnj(f) −
wnj(g))

2ξ2nj · I(|ξnj | ≤ δ1)
)

= E((wnj(f) − wnj(g))2) · E(ξ2nj · I(|ξnj | ≤ δ1)) =
(wnj=δηnj )

νnj((f − g)2) ·

E(ξ2nj · I(|ξnj | ≤ δ1)) for each n and 1 ≤ j ≤ j(n). Secondly, assuming w.l.o.g. F ≡ 1 ∈ F , (7.1.8)

(with f = g = F ≡ 1) implies (7.1.6)′. Therefore, the assertion follows from Corollary 7.1.8, since

under the present conditions one can verify (7.1.8) in the same way as it was done (in the set-indexed

case) within the proof of Theorem 2.2 in [Gae94], part (a). 2

7.2 FCLT’s for partial-sum processes with either fixed or random

locations

Let X = (X,X ) be an arbitrary measurable space, C ⊂ X a countable VCC being w.l.o.g. closed

under the formation of symmetric differences (cf. 4.2.7). Note that F := {1C : C ∈ C} has uniformly

integrable L2-entropy according to 4.3.21.

Let wnj = δηnj , (ηnj)1≤j≤j(n),n∈N being a triangular array of re’s in (X,X ) (with j(n) −→ ∞ as

n → ∞) and (ξnj)1≤j≤j(n),n∈N a triangular array of rv’s such that for each n ∈ N the sequence of

pairs (ηn1, ξn1), ..., (ηnj(n), ξnj(n)) is independent but not necessarily identically distributed (and where
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the components within each pair need not be independent). Let d := dν for some p-measure ν on

X (where dν(C,D) := ν(C∆D) = d
(2)
ν (1C , 1D) for C,D ∈ C); note that (C, dν) is totally bounded

(cf. 4.2.3). Then, specializing Corollary 7.1.8 to the present case, we obtain the following result for

partial-sum processes Sn = (Sn(C))C∈C with random locations as introduced in Section 3.2.1, i.e. with

Sn(C) :=
∑

j≤j(n)

1C(ηnj) · ξnj , C ∈ C :

7.2.1. THEOREM (cf. [Gae94], Theorem 2.11).

Assume that the following conditions are fulfilled:

lim
n→∞

∑

j≤j(n)

E

(

|ξnj| · I(|ξnj | > δ)
)

= 0 for all δ > 0(7.1.4)′

lim
α→0

lim sup
n→∞

sup
C∈C:ν(C)≤α

∑

j≤j(n)

E

(

1C(ηnj)ξ
2
nj · I(|ξnj | ≤ δ1)

)

= 0 for some δ1 > 0(7.2.2)

sup
n∈N

∑

j≤j(n)

E

(

ξ2nj · I(|ξnj | ≤ δ2)
)

<∞ for some δ2 > 0(7.1.6)′

There exists a mean-zero Gaussian process Ḡ = (Ḡ(C))C∈C such that

Sn − E(Sn)
P−→

fidi
Ḡ.

(7.1.8)′

Then there exists a mean-zero Gaussian process G = (G(C))C∈C with sample paths in U b(C, dν) (being

a separable subspace of (l∞(C), || · ||C)) such that

Sn − E(Sn)
L−→
sep

G in l∞(C) and Ḡ
L
=
fidi

G.

Specializing Corollary 7.1.6 in the same way as just done with Corollary 7.1.8 to the set-indexed case

yields the following result for Sn = (Sn(C))C∈C with

Sn(C) :=
∑

j≤j(n)

1C(ηnj) · ξnj , C ∈ C,

under the additional assumption that for each n ∈ N and 1 ≤ j ≤ j(n) also ηnj and ξnj are independent.

7.2.3. THEOREM (cf. [Gae94], Theorem 2.2).

Suppose that there is some p-measure ν on X and constants 0 < ci < ∞ such that the following four
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conditions are fulfilled:

lim
n→∞

∑

j≤j(n)

E

(

|ξnj| · I(|ξnj | > δ)
)

= 0 for all δ > 0(7.1.4)′

lim
α→0

lim sup
n→∞

sup
C∈C:ν(C)≤α

∑

j≤j(n)

νnj(C) · E(ξ2nj · I(|ξnj | ≤ δ1)) = 0 for some δ1 > 0(7.2.4)

lim
n→∞

∑

j≤j(n)

νnj(C ∩D) · E(ξ2nj · I(|ξnj| ≤ δ2)) = c1ν(C ∩D) for all C,D ∈ C and some δ2 > 0

(7.2.5)

lim
n→∞

∑

j≤j(n)

νnj(C) · νnj(D)
(

E(ξnj · I(|ξnj | ≤ δ3))
)2

= c2ν(C) · ν(D) for all C,D ∈ C and some δ3 > 0.

(7.2.6)

Then

Sn − E(Sn)
L−→
sep

Gν in l∞(F),

where G = (G(C))C∈C is a mean-zero Gaussian process with sample paths in U b(C, dν) and

cov(Gν(C), Gν(D)) = c1ν(C ∩D)− c2 ν(C) · ν(D) for C,D ∈ C.

From Theorem 7.2.3 we get the following result which was already mentioned in Section 2 (see Theorem

2.2.3) and used at the end of Section 2.3.6.

7.2.7. Corollary (cf. [Gae94], Theorem 2.15).

Let ξnj = j(n)−1ξj for each 1 ≤ j ≤ j(n) and n ∈ N (with j(n) −→ ∞ as n → ∞), the ξj ’s

being i i d rv’s with E(ξ1) = 0 and E(ξ21) = 1. Let (ηnj)1≤j≤j(n),n∈N being a triangular array of

rowwise independent but not necessarily identically distributed re’s in (X,X ) which is independent

of the sequence (ξj)j∈N. Suppose that there is some p-measure ν on X such that the following two

conditions are fulfilled (with νnj := L{ηnj}):
(i) limn→∞ j(n)−1

∑

j≤j(n) νnj(C ∩D) = ν(C ∩D) for all C,D ∈ C

(ii) limα→0 lim supn→∞ supC∈C:ν(C)≤α j(n)−1
∑

j≤j(n) νnj(C) = 0.

Then (

j(n)−1/2
∑

j≤j(n)

1C(ηnj) · ξj
)

C∈C
L−→
sep

Gν,

where Gν = (Gν(C))C∈C is a mean-zero Gaussian process with sample paths in U b(C, dν) and

cov(Gν(C), Gν(D)) = ν(C ∩D) for C,D ∈ C.

PROOF. According to Theorem 7.2.3 we have to verify the conditions (7.1.4)′, (7.2.4), (7.2.5) with

c1 = 1 and (7.2.6) with c2 = 0 to get the assertion of 7.2.7.
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As to (7.1.4)′: For each δ > 0 we have
∑

j≤j(n) E(|ξnj | · I(|ξnj | > δ)) ≤ δ−1
∑

j≤j(n) E(ξ2nj · I(|ξnj| >
δ)) = δ−1E(ξ21 · I(|ξ1| > δj(n)1/2)) −→ 0, since E(ξ21) <∞.

As to (7.2.5):
∑

j≤j(n) νnj(C∩D) ·E(ξ2nj ·I(|ξnj | ≤ δ2)) = [j(n)−1
∑

j≤j(n) νnj(C∩D)] ·E(ξ21 ·I(|ξ1| ≤
δ2j(n)1/2)), where by (i) limn→∞ j(n)−1

∑

j≤j(n) νnj(C ∩D) = ν(C ∩D) and limn→∞ E(ξ21 · I(|ξ1| ≤
δ2j(n)1/2)) = E(ξ21) = 1. This proves (7.2.5) with c1 = 1.

As to (7.2.6): Since lim supn→∞
∑

j≤j(n) νnj(C)·νnj(D)·
(

E(ξnj·I(|ξnj | ≤ δ3))
)2
≤ lim supn→∞

∑

j≤j(n)
(

E(ξnj · I(|ξnj | ≤ δ3))
)2

= limn→∞
(

E(ξ1 · I(|ξ1| ≤ δ3j(n)1/2))
)2

=
(

E(ξ1)
)2

= 0, we get (7.2.6) with

c2 = 0.

As to (7.2.4): Since
∑

j≤j(n) νnj(C) ·E(ξ2nj · I(|ξnj | ≤ δ1)) = [j(n)−1
∑

j≤j(n) νnj(C)] ·E(ξ21 · I(|ξ1| ≤
δ1j(n)1/2)), it follows that

sup
C∈C:ν(C)≤α

∑

j≤j(n)

νnj(C)·E(ξ2nj ·I(|ξnj | ≤ δ1)) =
[

sup
C∈C:ν(C)≤α

j(n)−1
∑

j≤j(n)

νnj(C)
]

·E(ξ21 ·I(|ξ1| ≤ δ1j(n)1/2))

whence by (ii) and the fact that limn→∞ E(ξ21 · I(|ξ1| ≤ δ1j(n)1/2)) = E(ξ21) = 1 condition (7.2.4) is

also fulfilled. 2

NOTE: Corollary 7.2.7 can also be proved more directly by application of Corollary 7.1.8.

Considering as in 6.2.8 function-indexed partial-sum processes Sn = (Sn(f))f∈F , defined by

Sn(f) := j(n)−1
∑

j≤j(n)

f(ηnj) · ξj , f ∈ F ,

F being countable, uniformly bounded, having uniformly integrable L2-entropy (whence (F , d) is

totally bounded w.r.t. d = d
(2)
ν for each p-measure ν on X according to 4.3.21), Corollary 7.1.6 yields

the following result (cf. [Zi97], 7.2):

7.2.8. THEOREM.

Let (ηnj)1≤j≤j(n),n∈N being a triangular array of rowwise independent (but not necessarily identically

distributed) re’s in (X,X ), (ξj)j∈N be a sequence of i i d rv’s ξj with E(ξ1) = 0 and E(ξ21) = 1, such

that the whole array (ηnj) is independent of the sequence (ξj). Suppose that there is some p-measure

ν on X such that the following conditions are fulfilled (again with νnj := L{ηnj}):

lim
n→∞

j(n)−1
∑

j≤j(n)

νnj(f · g) = ν(f · g) for all f, g ∈ F(7.2.9)

lim
α→0

lim sup
n→∞

sup
d
(2)
ν (f,g)≤α

j(n)−1
∑

j≤j(n)

νnj((f − g)2) = 0.(7.2.10)

Then (

j(n)−1/2
∑

j≤j(n)

f(ηnj) · ξj
)

f∈F
L−→
sep

Gν in l∞(F),
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where Gν = (Gν(f))f∈F is a mean-zero Gaussian process with sample paths in U b(F , d(2)
ν ) and

cov(Gν(f), Gν(g)) = ν(f · g) for f, g ∈ F .

PROOF. The assertion follows from Corollary 7.1.6 in an analogous way as in the proof of 7.2.7. 2

Concerning on the other hand partial-sum processes Sn = (Sn(f))f∈F with

Sn(f) :=
∑

j≤j(n)

f(ηj) · ξnj, f ∈ F ,

where ηj, j ∈ N, are i i d re’s in (X,X ) with L{ηj} = ν, and where (ξnj)1≤j≤j(n),n∈N (with j(n) −→∞
as n → ∞) is a triangular array of rowwise independent (but not necessarily identically distributed)

rv’s such that the whole array (ξnj) is independent of the sequence (ηj), the following result is men-

tioned in [Zi97], 4.4:

7.2.11. THEOREM.

Let E(ξnj) = 0 for all 1 ≤ j ≤ j(n) and n ∈ N. Assume that F has uniformly integrable L2-entropy

and that ν(F 2) < ∞, where F denotes the envelope of F . Suppose that the following conditions are

fulfilled:

(i) limn→∞
∑

j≤j(n) E

(

F 2(ηj) ξ
2
nj · I(F (ηj)|ξnj | > δ)

)

= 0 for all δ > 0

(Lindeberg-type condition)

(ii) limn→∞
∑

j≤j(n) E(ξ2nj) = 1.

Then

Sn
L−→
sep

Gν in l∞(F),

where Gν = (Gν(f))f∈F is a mean-zero Gaussian process with sample paths in U b(F , d(2)
ν ) and

cov(Gν(f), Gν(g)) = ν(f · g) for f, g ∈ F .

PROOF. We are going to apply Theorem 7.1.3 with wnj = δηj and d = d
(2)
ν . For thist, one has to

verify that Sn
P−→

fidi
Gν , but this follows from the classical multivariate CLT for triangular arrays. So

it remains to verify (7.1.4) – (7.1.6):

As to (7.1.4):
∑

j≤j(n) E

(

wnj(F )|ξnj | ·I(wnj(F )|ξnj | > δn)
)

=
∑

j≤j(n) E

(

F (ηj) |ξnj | ·I(F (ηj)|ξnj| >
δn)

)

≤ δ−1
n

∑

j≤j(n) E

(

F 2(ηj) ξ
2
nj · I(F (ηj)|ξnj | > δn)

)

−→ 0 with an appropriate chosen sequence

(δn)n∈N ⊂ R+ with δn −→ 0, since by (i)

lim
n→∞

δ−1
∑

j≤j(n)

E

(

F 2(ηj) ξ
2
nj · I(F (ηj)|ξnj| > δ)

)

= 0 for all δ > 0.
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As to (7.1.6): supn∈N

∑

j≤j(n) E

(

wnj(F
2)ξ2nj · I(wnj(F )|ξnj | ≤ δn)

)

≤ supn∈N

∑

j≤j(n) E(F 2(ηj)) ·
E(ξ2nj) = ν(F 2) · supn∈N

∑

j≤j(n) E(ξ2nj) <∞ by (ii), since ν(F 2) <∞.

As to (7.1.5) (with d = d
(2)
ν ): sup

d
(2)
ν (f,g)≤α

∑

j≤j(n) E

(

(wnj(f) − wnj(g))
2ξ2nj · I(wnj(F )|ξnj | ≤

δn)
)

≤ sup
d
(2)
ν (f,g)≤α

∑

j≤j(n) E

(

(f(ηj)− g(ηj))2
)

· E(ξ2nj) = sup
d
(2)
ν (f,g)≤α ν((f − g)

2) ·∑j≤j(n) E(ξ2nj)

≤ α2
∑

j≤j(n) E(ξ2nj) which implies (7.1.5). 2

Finally, concerning function-indexed partial-sum processes with fixed locations and index set F being

countable, uniformly bounded and having uniformly integrable L2-entropy, we obtain from Theorem

7.2.8:

7.2.12. THEOREM (cf. [Zi97], 7.3).

Let (X,X ) = (Id, Id ∩ Bd), d ≥ 1, (Id ≡ [0, 1]d) and consider (cf. (1.4.2))

Sn(f) := n−d/2
∑

j∈Jn
f(j/n)ξj , f ∈ F ,

(Jn := {1, ..., n}d), where the ξj, j ∈ Nd, are i i d with E(ξj) = 0 and E(ξ2j ) = 1. Let ν be the restriction

of the d-dimensional Lebesgue measure λd on Id ∩ Bd and suppose that the following two conditions

are fulfilled:

lim
n→∞

n−d
∑

j∈Jn
δj/n(f · g) = λd(f · g) for all f, g ∈ F(7.2.13)

lim
α→0

lim sup
n→∞

sup
λd((f−g)2)≤α

n−d
∑

j∈Jn
δj/n((f − g)2) = 0.(7.2.14)

Then

Sn
L−→
sep

Gν in l∞(F),

where Gν = (Gν(f))f∈F is a mean-zero Gaussian process with sample paths in U b(F , d(2)

λd
) and

cov(Gν(f), Gν(g)) = λd(f · g) for f, g ∈ F .

In the set-indexed case, i.e. for (cf. (1.4.2))

Sn(C) = n−d/2
∑

j∈Jn
1C(j/n)ξj , C ∈ C,

with C ⊂ Id ∩ Bd, attempts to find natural conditions under which (7.2.13) and (7.2.14) hold have

been made in [Al87]; cf. also [Gae94], Remark 2.16 and the results contained in [Va96], Section 2.12.2:

Partial-Sum Processes on Lattices.
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7.3 FCLT’s for empirical processes

Let X = (X,X ) be again an arbitrary measurable space (sample space) and (ηnj)1≤j≤j(n),n∈N (with

j(n) −→ ∞ as n → ∞) be a triangular array of re’s in (X,X ) assumed to be rowwise independent

(but not necessarily identically distributed) with law L{ηnj} = νnj). Let F be a class of X -measurable

functions f : X −→ R with X -measurable envelope F : X −→ R; F being countable for simplicity.

Assume that F has uniformly integrable L2-entropy and that there is some pseudo-metric d on F such

that (F , d) is totally bounded (e.g. d = d
(2)
ν for some p-measure ν on X with ν(F 2) <∞; cf. 4.3.21).

We are going to apply our FCLT for RMP’s 7.1.3 with wnj = δηnj and ξnj = j(n)−1/2 to obtain the

following

FCLT for empirical processes in the non-i i d -case,

i.e. for Sn = (Sn(f))f∈F with

Sn(f) := j(n)−1/2
∑

j≤j(n)

(f(ηnj)− νnj(f)), f ∈ F .

7.3.1. THEOREM (cf. [Zi97], 4.2).

Assume Sn
P−→

fidi
Ḡ, where Ḡ = (Ḡ(f))f∈F is a mean-zero Gaussian process. Let

ν̄n := j(n)−1
∑

j≤j(n)

νnj , an(α) := sup
d(f,g)≤α

(

ν̄n((f − g)2)
)1/2

, α > 0,

and suppose that the following conditions are fulfilled:

sup
n∈N

ν̄n(F
2) <∞ (whence Sn has its sample paths in l∞(F))(7.3.2)

lim
α→0

lim sup
n→∞

an(α) = 0(7.3.3)

lim
n→∞

j(n)−1
∑

j≤j(n)

E

(

F 2(ηnj) · I(F (ηnj) > δj(n)1/2)
)

= 0 for all δ > 0.(7.3.4)

Then

Sn
L−→
sep

G in l∞(F),

where G = (G(f))f∈F is a mean-zero Gaussian process with sample paths in U b(F , d) and G
L
=
fidi

Ḡ.

PROOF. The proof runs along the same pattern as the proof of Theorem 7.2.11. According to

Theorem 7.1.3 we have to verify (7.1.4) – (7.1.6) (with wnj = δηnj and ξnj = j(n)−1/2):

As to (7.1.4):
∑

j≤j(n) E

(

wnj(F )|ξnj |·I(wnj(F )|ξnj | > δn)
)

=
∑

j≤j(n) E

(

F (ηnj) j(n)−1/2·I(F (ηnj) >

δnj(n)1/2)
)

≤ δ−1
n j(n)−1

∑

j≤j(n) E

(

F 2(ηnj) · I(F (ηnj) > δnj(n)1/2)
)

−→ 0 with an appropriate cho-

sen sequence (δn)n∈N ⊂ R+ with δn −→ 0, since by (7.3.4)

δ−1j(n)−1
∑

j≤j(n)

E

(

F 2(ηnj) · I(F (ηnj) > δj(n)1/2)
)

−→ 0
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as n −→∞ for all δ > 0.

As to (7.1.6): supn∈N

∑

j≤j(n) E
(

wnj(F
2)ξ2nj· I(wnj(F )|ξnj | ≤ δn)

)

= supn∈N

∑

j≤j(n) E(F 2(ηnj)j(n)−1·
I(F (ηnj) ≤ δnj(n)1/2)

)

≤ supn∈N j(n)−1
∑

j≤j(n) E(F 2(ηnj)) = supn∈N j(n)−1
∑

j≤j(n) νnj(F
2) =

supn∈N ν̄n(F
2) <∞ by (7.3.2).

As to (7.1.5): supd(f,g)≤α
∑

j≤j(n) E

(

(wnj(f)−wnj(g))2ξ2nj·I(wnj(F )|ξnj | ≤ δn)
)

= supd(f,g)≤α
∑

j≤j(n)

E

(

(f(ηnj)−g(ηnj))2j(n)−1·I(F (ηnj) ≤ δnj(n)1/2)
)

≤ supd(f,g)≤α j(n)−1
∑

j≤j(n) E

(

(f(ηnj)−g(ηnj))2
)

=

supd(f,g)≤α j(n)−1
∑

j≤j(n) νnj((f − g)2) = supd(f,g)≤α ν̄n((f − g)2) = a2
n(α),

from which (7.1.5) follows according to (7.3.3). 2

Replacing the triangular array (ηnj) by a sequence (ηj)j∈N of i i d re’s in (X,X ) with law L{ηj} = ν,

we obtain from Theorem 7.3.1 the following FCLT for empirical F-processes in the i i d -case, i.e. for

βn = (βn(f))f∈F with βn(f) := n−1/2
∑

j≤n(f(ηj) − ν(f)) = n1/2(νn(f) − ν(f)), where νn(f) :=

n−1
∑

j≤n f(ηj) (cf. 2.2.1 in the set-indexed case):

7.3.5. THEOREM.

Suppose that F has uniformly integrable L2-entropy and that ν(F 2) < ∞ (F being countable for

simplicity). Then

βn
L−→
sep

Gν in l∞(F),

where Gν = (Gν(f))f∈F is a mean-zero Gaussian process with sample paths in U b(F , d(2)
ν ) and

cov(Gν(f), Gν(g)) = ν(f · g)− ν(f) · ν(g) for f, g ∈ F .

PROOF. βn
P−→

fidi
Gν follows by the classical multivariate CLT. The conditions (7.3.2) and (7.3.3) are

obviously fulfilled. As to (7.3.4) we have in the present case

lim
n→∞

n−1
∑

j≤n
E

(

F 2(ηj) · I(F (ηj) > δn1/2)
)

= lim
n→∞

E

(

F 2(η1) · I(F (η1) > δn1/2)
)

= 0,

since E(F 2(η1)) = ν(F 2) <∞. Thus Theorem 7.3.1 yields the assertion. 2

7.3.6. REMARK.

Concerning VCGC’s F (having uniformly integrable L2-entropy according to 4.3.21) with ν(F 2) <∞,

the assertion of Thoerem 7.3.5 holds true, especially for F = {1C : C ∈ C}, C ⊂ X being a countable

VCC; see Theorem 2.2.1.
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7.4 FCLT’s for smoothed empirical processes

Throughout this section X is supposed to be an arbitrary linear metric space endowed with its Borel

σ-field X . The basic situation is the same as in Section 6.4, i.e. given i i d re’s ηj , j ∈ N, in (X,X )

with law L{ηj} = ν on X we consider the smoothed empirical measures

ν̃n := νn ? µn , n ∈ N,

indexed by classes F of X -measurable functions f : X −→ R with X -measurable envelope F : X −→ R

assuming that ν(F 2) :=
∫

X F
2 dν <∞. Remember from 6.4 that

ν̃n(f) =

∫

X

∫

X
f(x+ y)νn(dx)µn(dy) = n−1

∑

j≤n

∫

X
f(ηj + y)µn(dy)(7.4.1)

and E(ν̃n(f)) = ν ? µn(f) ∀f ∈ F (cf. (6.4.3) and (6.4.4)).

Also our decomposition from 6.4 will be again important, i.e.

(7.4.2) ν̃n − ν = ν̃n − ν ? µn + ν ? µn − ν,

noticing that ν̃n− ν ? µn = ν̃n−E(ν̃n) is a mean-zero RMP and where ν ? µn− ν is the non-stochastic

bias term.

As in 6.4 let F̃ be the class of all translates fx of elements f of F (with fx(y) := f(x + y), y ∈ X).

Without imposing the condition F = F̃ we are going to apply our FCLT for RMP’s 7.1.3 with

(cf. (7.4.1))

wnj(f) :=

∫

X
f(ηj + y)µn(dy), and ξnj := n−1/2 , 1 ≤ j ≤ j(n) := n, n ∈ N,

to obtain sufficient conditions under which

(7.4.3)
(√

n(ν̃n(f)− ν(f))
)

f∈F
L−→

sep
G in l∞(F),

where G = (G(f))f∈F is a mean-zero Gaussian process with sample paths in U b(F , d(2)
ν ).

Remember that U b(F , d(2)
ν ) is a separable subspace of (l∞(F), || · ||F ) if and only if (F , d(2)

ν ) is totally

bounded ([Gae90], Corollary 2) where the latter is true for classes F having uniformly integrable

L2-entropy (cf. 4.3.21).

Now, in view of (7.4.2), Theorem 7.1.3 yields immediately the following FCLT. (Note that the ηj’s on

which the wnj’s are based are i i d .)

7.4.4. THEOREM (cf. [Ro97], Theorem 3.2.2).

Let X be a linear metric space and let F have uniformly integrable L2-entropy. Assume that the

following conditions (7.4.5) – (7.4.8) are fulfilled:
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For each ρ > 0 there exists δn ≡ δn(ρ), n ∈ N, δn → 0 such that

lim sup
n→∞

√
n · E

(

wn1(F ) I(wn1(F ) > δn
√
n)

)

≤ ρ(7.4.5)

lim
α→0

lim sup
n→∞

sup
d
(2)
ν (f,g)≤α

E

(

(wn1(f)− wn1(g))
2) · I(wn1(F ) ≤ δn

√
n)

)

= 0(7.4.6)

sup
n∈N

E

(

wn1(F
2) · I(wnj(F ) ≤ δn

√
n)

)

<∞(7.4.7)

sup
f∈F

√
n|ν ? µn(f)− ν(f)| −→ 0 .(7.4.8)

Assume, in addition, that there exists a mean-zero Gaussian process Ḡ = (Ḡ(f))f∈F such that
√
n(ν̃n−

ν ? µn)
P−→

fidi
Ḡ.

Then there exists a mean-zero Gaussian process G = (G(f))f∈F with sample paths in U b(F , d(2)
ν ) such

that √
n(ν̃n − ν) L−→

sep
G in l∞(F) and G

L
=
fidi

Ḡ.

Before going further, let us have a view on a FCLT for smoothed empirical processes under the

condition F = F̃ :

From van der Vaart [Va94] one gets the following result. For this, F is called a ν-Donsker class if (cf.

Theorem 7.3.5)
(√

n(νn(f)− ν(f))
)

f∈F
L−→

sep
Gν in l∞(F).

7.4.9. THEOREM.

Let X = Rd, d ≥ 1, and assume F = F̃ . Let F be ν-Donsker and µn p-measures on Bd with µn −→ δ0
weakly. Suppose that the following two conditions are fulfilled:

sup
f∈F

∫

X

[
∫

X
(f(x+ y)− f(x))µn(dy)

]2
ν(dx) −→ 0(7.4.10)

sup
f∈F

√
n
∣
∣ν ? µn(f)− ν(f)

∣
∣ −→ 0(7.4.11)

Then √
n(ν̃n − ν) L−→

sep
G in l∞(F),

where G = (G(f))f∈F is a mean-zero Gaussian process with sample paths in U b(F , d(2)
ν ).

NOTE: In [Va94] the µn’s are even allowed to be random p-measures on Bd. On the other hand it

should be noted that F being a ν-Donsker class does in general not imply that F̃ is also a ν-Donsker

class (cf. Example 2.2.8 in [Ro97]) as it is imposed in 7.4.9 via the F = F̃ - assumption. See also

[Ro99] for a comparison with a result of Yukich [Yu92] obtained in the case X = Rd, d ≥ 1,F = F̃ ,F
a ν-Donsker class. The method of proof in [Va94] and [Yu92], respectively, is completely different

from our approach via RMP’s (see [Ro99] for a discussion). Their key method consists of showing
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asymptotic (stochastic) equivalence of the empirical process
√
n(νn − ν) and the unbiased smoothed

empirical processes
√
n(ν̃n − ν ? µn) in order to apply the Cramér-Slutzky-type result (cf. Theorem

2.3.15).

Now, in view of Theorem 7.4.9 we will present in the following more tractable conditions compared

with those in Theorem 7.4.4, but again without imposing the condition F = F̃ :

7.4.12. THEOREM (cf. [Ro97], Theorem 3.2.3).

Let X be a linear metric space and F have uniformly integrable L2-entropy. Assume that the following

conditions (7.4.13) and (7.4.14) are fulfilled:

sup
f∈F

∫

X

[
∫

X
(f(x+ y)− f(x))µn(dy)

]2
ν(dx) −→ 0(7.4.13)

sup
f∈F∪{F 3}

√
n
∣
∣ν ? µn(f)− ν(f)

∣
∣ −→ 0.(7.4.14)

Then √
n(ν̃n − ν) L−→

sep
Gν in l∞(F),

where Gν = (Gν(f))f∈F is a mean-zero Gaussian process with sample paths in U b(F , d(2)
ν ) and

cov(Gν(f), Gν(g)) = ν(f · g)− ν(f) · ν(g) for f, g ∈ F .

PROOF. To prove this result, one shows (7.4.5) – (7.4.7), fidi-convergence and then one applies
Theorem 7.4.4. This is carried out in [Ro99].

NOTE: Condition (7.4.13) is just (7.4.10), whereas (7.4.14) is apparently a bit stronger than (7.4.11) implying convergence also
for F 3. In (7.4.14) it is tacitly understood that ν ? µn(F 3) and ν(F 3) exist. (7.4.14) can be replaced by (7.4.11) if, in addition,

ν ? µn(F 2+ε) −→ ν(F 2+ε) for some ε > 0. On the other hand, as already mentioned in Section 6.4, the condition F = F̃ implies
that F is uniformly bounded. But for uniformly bounded F (7.4.14) reduces to (7.4.11), and so we get finally the following result:

7.4.15. THEOREM (cf. [Ro97], Theorem 3.2.4).

Let X be a linear metric space and let F be uniformly bounded having uniformly integrable L2-entropy.

Assume that the conditions (7.4.8) and (7.4.13) are satisfied. Then

√
n(ν̃n − ν) L−→

sep
Gν in l∞(F),

where Gν = (Gν(f))f∈F is a mean-zero Gaussian process with sample paths in U b(F , d(2)
ν ) and

cov(Gν(f), Gν(g)) = ν(f · g)− ν(f) · ν(g) for f, g ∈ F .

7.5 A uniform FCLT for the unbiased smoothed empirical process

As in Section 7.4 X is supposed to be an arbitrary linear metric space endowed with its Borel σ-field

X and ηj , j ∈ N, are i i d re’s in (X,X ) with law L{ηj} = ν on X .

Let us consider first the non-smoothed empirical process Gν
n :=

√
n(νn−ν) indexed by a (countable, for
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simplicity) class F of X -measurable functions f : X −→ R with X -measurable envelope F : X −→ R

such that ν(F 2) <∞.

As we know from (7.1.2) and the general comments preceeding (7.1.2) we have

Gν
n

L−→
sep

Gν in l∞(F) ⇐⇒ dBL(Gν
n,Gν) −→ 0,

where Gν = (Gν(g))f∈F is a mean-zero Gaussian process with sample paths in U b(F , d(2)
ν ) and

cov(Gν(f), Gν(g)) = ν(f · g)− ν(f) · ν(g) for f, g ∈ F ,

calling (as in Section 7.4) F to be a ν-Donsker class in this case.

Now, concerning the question whether the class F is also a uniform Donsker class, i.e whether

supν∈M1(X) dBL(Gν
n,Gν) −→ 0 (and (F , d(2)

ν ) is totally bounded uniformly in ν), where M1(X) de-

notes the class of all p-measures on X , the following result is known (see [Gi97], Theorem 5.3 and

[Gi91]):

7.5.1. THEOREM.

Let X be an arbitrary measurable space and F be uniformly bounded having uniformly integrable L2-

entropy. Then (with L{Gν} being tight)

(7.5.2) sup
ν∈M1(X)

dBL(Gν
n,Gν) −→ 0.

Uniform Donsker classes were e.g. studied by Sheehy and Wellner [She92] (who also studied in detail (7.5.2) with the supremum
taken over subclasses of M1(X)) and by Giné and Zinn [Gi91]. They showed that (putting measurablilty questions aside) a so-called
uniformly pregaussian class F (saying F is UPG) is a uniform Donsker class.

F is UPG means that the following two conditions are fulfilled:

sup
ν∈M1(X)

E(||Zν ||F ) <∞(7.5.3)

lim
δ→0

sup
ν∈M1(X)

E

(

sup{|Zν(f)− Zν(g)| : f, g ∈ F , d(2)
ν (f, g) ≤ δ}

)

= 0.(7.5.4)

In both conditions Zν can be replaced by Gν (see [Gi97], Theorem 5.3).

Here Zν = (Zν(f))f∈F stands for a mean-zero Gaussian process with tight law L{Zν} on B(l∞(F))

whose covariance structure is given by

cov(Zν(f), Zν(g)) = ν(f · g) for f, g ∈ F .

From [Va96], Example 1.5.10 it follows that also Zν (as Gν) can be chosen to have its sample paths in

U b(F , d(2)
ν ); note that d

(2)
ν coincides with the so-called intrinsic pseudo-metric ρZν (on F) for Zν , i.e.

ρZν (f, g) := E1/2(|Zν(f)− Zν(g)|2) = d(2)
ν (f, g) for f, g ∈ F .
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Now we are going to establish an analogous result as (7.5.2) for smoothed empirical processes under

conditions similar to (7.5.3) and (7.5.4) replacing Gν
n by the unbiased smoothed empirical process

G̃ν
n := (G̃νn(f))f∈F ,

where G̃νn(f) :=
√
n(ν̃n(f)− ν ? µn(f)), f ∈ F .

7.5.5. THEOREM (cf. [Ro97], Theorem 4.4).

Let X be a linear metric space and F be uniformly bounded. Suppose that for every ν ∈M1(X) there

is a mean-zero Gaussian process Gν = (Gν(h))h∈F∪G with tight law L{Gν} on B(l∞(F ∪ G)) where

G := {gf,µn : f ∈ F , n ∈ N} with gf,µn(x) :=

∫

X
f(x+ y)µn(dy), x ∈ X.

Assume that the following conditions (7.5.6) – (7.5.8) are fulfilled:

sup
ν∈M1(X)

E(||Gν ||F ) <∞(7.5.6)

lim
δ→0

sup
ν∈M1(X)

E

(

sup
{
|Gν(h1)−Gν(h1)| : h1, h2 ∈ F ∪ G, d(2)

ν (h1, h2) ≤ δ
})

= 0(7.5.7)

sup
ν∈M1(X)

sup
f∈F

∫

X

[
∫

X
(f(x+ y)− f(x))µn(dy)

]2
ν(dx) −→ 0.(7.5.8)

Then

(7.5.9) sup
ν∈M1(X)

dBL(G̃ν
n,Gν) −→ 0.

In (7.5.9) not only G̃ν
n but also Gν (restricted to the index set F) is considered as a process with

sample paths in l∞(F) whose law L{Gν} is tight on B(l∞(F)); so dBL in (7.5.9) stands for the

bounded Lipschitz distance based on l∞(F) (and not on l∞(F ∪ G)).

PROOF. We follow the lines of proof of (7.5.2) as given in [Gi97], respectively the lines of proof of

Theorem 2.3 in [Gi91] under the conditions (7.5.3) and (7.5.4) using Gaussian comparison methods.

First, we show that for each τ > 0

(7.5.10) sup
ν∈M1(X)

N(τ,F , d(2)
ν ) <∞.

As to (7.5.10), according to Sudakov’s Inequality (cf. [Va96], A.2.5) there exists a constant 0 < K <∞
such that for every ν ∈M1(X)

(

logN(τ,F , ρZν )
)1/2

≤ K · E(||Zν ||F )
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(with ρZν (f, g) := E1/2(|Zν(f)− Zν(g)|2) = d
(2)
ν (f, g) ∀ f, g ∈ F)

whence
(

logN(τ,F , d(2)
ν )

)1/2
≤ K · E(||Zν ||F ).

Now, let g be a standardnormal distributed rv which is independent of Gν ; then

L{Gν + g · ν} = L{Zν}

(as can be seen by computing covariances), so

E(||Zν ||F ) ≤ E(||Gν ||F ) + E(|g|) · sup
f∈F
|ν(f)|,

whence (7.5.6) together with F being uniformly bounded yields (7.5.10).

Next, let k := supν∈M1(X)N(τ,F , d(2)
ν ), and for each ν ∈M1(X) let f1, ..., fk ∈ F denote the centers

of the d
(2)
ν -balls with radius τ that cover F . (Note that, of course, f1, ..., fk depend on ν.) Then for

each f ∈ F let πτ (f) ∈ {f1, ..., fk} be such that

d(2)
ν (πτ (f), f) ≤ τ ( where w.l.o.g. πτ (fi) = fi ∀ i = 1, ..., k).

This allows us to define the processes G̃ν
n(πτ ) = (G̃νn(πτ )(f))f∈F and Gν(πτ ) = (Gν(πτ )(f))f∈F with

sample paths in l∞(F) by

G̃νn(πτ )(f) := G̃νn(πτ (f))

and Gν(πτ )(f) := Gν(πτ (f)) , f ∈ F .

Then, for each H ∈ BL1(l
∞(F)) we have the decomposition

∣
∣E∗(H(G̃ν

n))− E(H(Gν))
∣
∣ ≤

∣
∣E∗(H(G̃ν

n))− E(H(G̃ν
n(πτ )))

∣
∣

+
∣
∣E(H(G̃ν

n(πτ )))− E(H(Gν(πτ )))
∣
∣

+
∣
∣E(H(Gν(πτ )))− E(H(Gν))

∣
∣

=: I1n + I2n + I3n.

We will show

(7.5.11) lim sup
τ→0

lim sup
n→∞

sup
ν∈M1(X)

sup
H∈BL1(l∞(F))

Iin = 0 for i = 1, 2, 3.

As to I3n: Since H ∈ BL1(l
∞(F)) we have

∣
∣E(H(Gν(πτ )))− E(H(Gν))

∣
∣

≤ E(||Gν(πτ )−Gν ||F ) ≤ E(sup{|Gν(f)−Gν(g)| : f, g ∈ F , d(2)
ν (f, g) ≤ τ}),

so (7.5.7) yields (7.5.11) for i = 3.
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As to I2n: Let ν ∈M1(X) and H ∈ BL1(l
∞(F)) be arbitrary. Then there exists a bounded Lipschitz

function L : Rk −→ R s.t.

H(x(πτ )) = L((x(f1), ..., x(fk))) ∀ x ∈ l∞(F)

with x(πτ )(f) := x(πτ (f)), f ∈ F . So we obtain
∣
∣E(H(G̃ν

n(πτ )))− E(H(Gν(πτ )))
∣
∣

≤ dBL
(
(G̃ν

n(f1), ..., G̃
ν
n(fk))

t, (Gν(f1), ...,Gν(fk))
t
)
,

where the superscript t denotes the transposed vector and here dBL is the bounded Lipschitz metric

on the space of all p-measures (laws) on Bk in Rk.

Now (G̃ν
n(f1), ..., G̃

ν
n(fk))

t =
√
nn−1

∑

j≤n ζnj with

ζnj =











∫

X f1(ηj + y)µn(dy)− ν ? µn(f1)

...

∫

X fk(ηj + y)µn(dy)− ν ? µn(fk)











, j = 1, ..., n, n ∈ N.

Let Vn1 = (Vn1(i, l))1≤i,j≤k and Σk = (Σk(i, l))1≤i,j≤k denote the covariance matrix of ζnj and

(Gν(f1), ...,Gν(fk))
t, respectively, where

Σk(i, l) = ν(fi · fl)− ν(fi) · ν(fl) , 1 ≤ i, l ≤ k.

According to the triangle inequality

dBL
(
(G̃ν

n(f1), ..., G̃
ν
n(fk))

t, (Gν(f1), ...,Gν(fk))
t
)

≤ dBL
(
(G̃ν

n(f1), ..., G̃
ν
n(fk))

t,Nk(0,Vn1)
)

+ dBL
(
Nk(0,Vn1),Nk(0,Σk)

)
.

Note that L{(Gν(f1), ...,Gν(fk))
t} = Nk(0,Σk).

Now the components
∫

X fi(ηj + y)µn(dy), i = 1, ..., k, of ζnj are rv’s which are bounded by 1 (since F
is assumed to be uniformly bounded with envelope F ≡ 1 w.l.o.g.) for any fi ∈ F , so this bound does

not depend on ν. An application of Lemma 2.1 in [Gi91] now gives

lim
n→∞

sup
ν∈M1(X)

dBL
(
(G̃ν

n(f1), ..., G̃
ν
n(fk))

t,Nk(0,Vn1)
)

= 0.

From Lemma 2.2 in [Gi91] we have

dBL
(
Nk(0,Vn1),Nk(0,Σk)

)
≤ C · sup

1≤i,l≤k
|Vn1(i, l)− Σk(i, l)|

with a constant C depending only on k.

Keeping in mind that the f1, ..., fk (and therefore also Vn1 and Σk) depend on ν we are going to show

that

(7.5.12) sup
ν∈M1(X)

sup
1≤i,l≤k

|Vn1(i, l)− Σk(i, l)| −→ 0,
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whence lim supn→∞ supν∈M1(X)dBL
(
Nk(0,Vn1),Nk(0,Σk)

)
= 0, which completes the proof of (7.5.11)

for i = 2.

As to (7.5.12):

Vn1(i, l) =

∫

X

[
∫

X
fi(x+ y)µn(dy)− ν ? µn(fi)

]
·
[
∫

X
fl(x+ y)µn(dy)− ν ? µn(fl)

]
ν(dx)

which is equal to (inserting fi(x) and fl(x), respectively)

∫

X

[
∫

X
fi(x+ y)µn(dy)− fi(x)

]
·
[
∫

X
fl(x+ y)µn(dy) − fl(x)

]
ν(dx)

+

∫

X

[
fi(x)− ν ? µn(fi)

]
·
[
∫

X
fl(x+ y)µn(dy)− fl(x)

]
ν(dx)

+

∫

X

[
fl(x)− ν ? µn(fl)

]
·
[
∫

X
fi(x+ y)µn(dy)− fi(x)

]
ν(dx)

+

∫

X

[
fl(x)− ν ? µn(fl)

]
·
[
fi(x)− ν ? µn(fi)

]
ν(dx)

=: In1(fi, fl) + In2(fi, fl) + In3(fi, fl) + In4(fi, fl).

The Cauchy-Schwarz inequality together with (7.5.8) yields

sup
ν∈M1(X)

sup
1≤i,l≤k

In1(fi, fl) −→ 0.

Next,

|In4(fi, fl)− Σk(i, l)| = |In4(fi, fl)− (ν(fi · fl)− ν(fi) · ν(fl))|
= |ν ? µn(fi)− ν(fi)| · |ν ? µn(fl)− ν(fl)|

≤ sup
f∈F

∣
∣

∫

X

∫

X
(f(x+ y)− f(x))µn(dy)ν(dx)

∣
∣2 ≤ sup

f∈F

∫

X

[
∫

X
(f(x+ y)− f(x))µn(dy)

]2
ν(dx),

whence by (7.5.8)

sup
ν∈M1(X)

sup
1≤i,l≤k

|In4(fi, fl)− Σk(i, l)| −→ 0.

From this, the Cauchy-Schwarz Inequality and (7.5.8) aggain, we also have

sup
ν∈M1(X)

sup
1≤i,l≤k

Inj(fi, fl) −→ 0 for j = 2, 3.

This proves (7.5.12).

As to I1n

(

:=
∣
∣E∗(H(G̃ν

n))− E(H(G̃ν
n(πτ )))

∣
∣

)

:

Since H ∈ BL1(l
∞(F)) it suffices to show that

lim
τ→0

lim sup
n→∞

sup
ν∈M1(X)

P
(
sup{|G̃ν

n(f1)− G̃ν
n(f2)| : f1, f2 ∈ F , d(2)

ν (f1, f2) ≤ τ} > δ
)

= 0
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for all δ > 0.

Since for each f ∈ F

G̃ν
n(f) = Gν

n(gf,µn) (with gf,µn(x) :=

∫

X
f(x+ y)µn(dy) , x ∈ X)

we have

sup{|G̃ν
n(f1)− G̃ν

n(f2)| : f1, f2 ∈ F , d(2)
ν (f1, f2) ≤ τ}

= sup{|Gν
n(gf1,µn)−Gν

n(gf2,µn)| : f1, f2 ∈ F , d(2)
ν (f1, f2) ≤ τ}

≤ sup{|Gν
n(f1)−Gν

n(f2)| : f1, f2 ∈ F , d(2)
ν (f1, f2) ≤ τ} + 2 · sup

f∈F
|Gν

n(f)−Gν
n(gf,µn)|.(7.5.13)

We show first

(a) lim supn→∞ supν∈M1(X)P
(
supf∈F |Gν

n(f)−Gν
n(gf,µn)| > δ

)
= 0 ∀δ > 0.

Let δ > 0 be arbitrary but fixed. Then by Markov’s inequality and the Symmetrization Inequality

5.1.2 we obtain

P
(

sup
f∈F
|Gν

n(f)−Gν
n(gf,µn)| > δ

)

≤ δ−1√n E(sup
f∈F
|νn(f − gf,µn)− ν(f − gf,µn)|)

≤ 2 δ−1√n E(sup
f∈F
|n−1

∑

j≤n
εj(f − gf,µn)(ηj)|),

where ε1, ε2, ... is a canonically formed Rademacher sequence which is independent of (ηj)j∈N.

Now, by Lemma 2.9.1 in [Va96] we can replace the εj ’s by a sequence of i i d rv’s gj with L{gj} =

N (0, 1), to obtain the following upper bound (by taking expectations w.r.t. the gj ’s (denoted by Eg)

and the ηj ’s (denoted by Eν) seperately:

P
(

sup
f∈F
|Gν

n(f)−Gν
n(gf,µn)| > δ

)

≤ C · Eν Eg
(

sup
f∈F
|n−1/2

∑

j≤n
gj · (f − gf,µn)(ηj)|

)

where the constant C depends on δ but not on n.

Now , for fixed realizations η1(ω), ..., ηn(ω) consider the process Zωνn = (Zωνn(f))f∈Fn with

Zωνn(f) := n−1/2
∑

j≤n
gj · f(ηj(ω)) , f ∈ Fn,

and Fn := {f, gf,µn : f ∈ F}.

Then Zωνn is a mean-zero Gaussian process with

cov(Zωνn(f1), Z
ω
νn(f2)) = νn(f1 · f2, ω) for f1, f2 ∈ Fn,
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where νn(f1 · f2, ω) := n−1
∑

j≤n δηj(ω)(f1 · f2).

Considering instead the process (indexed also by Fn)

Gω
νn + g · νn( · , ω) = (Gωνn(f) + g · νn(f, ω))f∈Fn ,

where Gω
νn = (Gωνn(f))f∈Fn is a mean-zero Gaussian process with

cov(Gωνn(f1), G
ω
νn(f2)) = νn(f1 · f2, ω)− νn(f1, ω) · νn(f2, ω)

for f1, f2 ∈ Fn, and where g with L{g} = N (0, 1) is independent of Gω
νn , we have (as can be seen by

computing covariances) that ∀ω

(?) Zωνn
L
=
fidi

Gω
νn + g · νn( · , ω).

Thus ∀ω

Eg
(

sup
f∈F
|n−1/2

∑

j≤n
gj · (f − gf,µn)(ηj(ω))|

)

≤
(?)

E
(
sup
f∈F
|Gωνn(f)−Gωνn(gf,µn)|

)
+ E(|g|) · sup

f∈F
|νn(f − gf,µn , ω)|

≤ sup
ν∈M1(X)

E(sup
f∈F
|Gν(f)−Gν(gf,µn)|) + E(|g|) · sup

ν∈M1(X)

sup
f∈F
|ν(f − gf,µn)|.

Now let ε > 0 be arbitrary and (using (7.5.7)) choose δ > 0 s.t.

sup
ν∈M1(X)

E
(
sup

{
|Gν(h1)−Gν(h2)| : h1, h2 ∈ F ∪ G, d(2)

ν (h1, h2) ≤ δ
})
≤ ε.

Then by (7.5.8) for large enough n we have for all f ∈ F

sup
ν∈M1(X)

(d(2)
ν (f, gf,µn))

2

= sup
ν∈M1(X)

ν((f − gf,µn)2) = sup
ν∈M1(X)

∫

X

[
∫

X
(f(x+ y)− f(x))µn(dy)

]2
ν(dx) ≤ δ2,

and so

lim sup
n→∞

sup
ν∈M1(X)

Eν Eg
(

sup
f∈F
|n−1/2

∑

j≤n
gj · (f − gf,µn)(ηj)|

)

≤ lim sup
n→∞

sup
ν∈M1(X)

E(sup
f∈F
|Gν(f)−Gν(gf,µn)|) + E(|g|) lim sup

n→∞
sup

ν∈M1(X)

sup
f∈F
|ν(f − gf,µn)|

= lim sup
n→∞

sup
ν∈M1(X)

E(sup{|Gν(f)−Gν(gf,µn)| : f ∈ F , d(2)
ν (f, gf,µn) ≤ δ}) + 0

≤ sup
ν∈M1(X)

E
(
sup

{
|Gν(h1)−Gν(h2)| : h1, h2 ∈ F ∪ G, d(2)

ν (h1, h2) ≤ δ
})
≤ ε,

136



where we have used that

lim sup
n→∞

sup
ν∈M1(X)

sup
f∈F
|ν(f − gf,µn)|

≤ lim sup
n→∞

sup
ν∈M1(X)

sup
f∈F

[ ∫

X

[
∫

X
(f(x+ y)− f(x))µn(dy)

]2
ν(dx)

]1/2
= 0

according to (7.5.8). Thus (a) is proved.

To conclude the proof of (7.5.11) for i = 1, we still have to show (see (7.5.13)) that

lim
τ→0

lim sup
n→∞

sup
ν∈M1(X)

P
(
sup{|Gνn(f1)−Gνn(f2)| : f1, f2 ∈ F , d(2)

ν (f1, f2) ≤ τ} > δ
)

= 0

for all δ > 0.

This is proved by similar techniques. Since this expression, however, does not involve any smoothing

operations we refer to [Gi97] for a proof.

So we have shown (7.5.11) for i = 1, too, and the theorem is proved. 2

Finally, from [Va96], Theorem 2.8.3 we have that (7.5.6) and (7.5.7) are fulfilled if F∪G has uniformly

integrable L2-entropy, which in turn is implied if F ∪ G is a VCGC. So, Theorem 7.5.5 yields

7.5.14. THEOREM.

Let X be a linear metric space and let F be uniformly bounded. Suppose that F ∪ G has uniformly

integrable L2-entropy and that (7.5.8) is fulfilled. Then

sup
ν∈M1(X)

dBL(G̃ν
n,Gν) −→ 0.

7.5.15. REMARK.

As we will see in the next section, the results of Section 7.5 are important in the area of bootstrapping

empirical processes (see Section 8.4 and the literature cited there).
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8 Bootstrapping

8.1 Introduction

Bootstrapping is a resampling technique where one replaces the original data given as observations

y1, ..., yn of i i d re’s η1, ..., ηn in a sample space X = (X,X ) with law L{ηj} ≡ ν on the σ-Algebra X
in X by the so-called bootstrap sample η∗1 , ...η

∗
n where the η∗j ’s are also assumed to be i i d re’s in X

with law L{η∗j } = Qn, 1 ≤ j ≤ n, n ∈ N, and where Qn may depend on the original data. In fact, the

η∗j ’s, 1 ≤ j ≤ n, n ∈ N, depend on n; if necessary, we indicate this by writing η∗n1, ..., η
∗
nn.

A typical example of Qn is the empirical measure νn based on the observations of η1, ..., ηn, i.e. in case

of L{η∗j } = νn we get instead of the empirical process Gν
n :=

√
n(νn − ν) the so-called bootstrapped

empirical process (of sample size n)

Gνn
n =

√
n
(

n−1
∑

j≤n
δη∗j − νn

)

based on η∗1 , ..., η
∗
n, n ∈ N, to be thought as defined on a basic p-space (Ω∗,A∗,P∗), i.e. depending on

the realizations yj = ηj(ω) of the original re’s ηj (defined on a basic p-space (Ω,A,P)), the processes

Gνn
n , n ∈ N, are given as

(*) Gνn
n (ω∗) =

√
n
(

n−1
∑

j≤n
δη∗j (ω∗) − νn(ω)

)

where νn(ω) = n−1
∑

j≤n
δyj , yj = ηj(ω), 1 ≤ j ≤ n, are to be considered as constants in (*).

This principle proves to be useful when considering the problem of approximating the law of certain

statistics T (η1, ..., ηn; ν) with unknown ν by the law of T (η∗1 , ..., η
∗
n; νn), being efficient at least for

“smooth” functionals T in view of the fact (cf. Section 6.3) that νn approximates ν as n −→ ∞;

in addition, in this connection the law of T (η∗1 , ..., η
∗
n; νn) may either be computed directly or can be

approximated by Monte Carlo simulation methods.

In Efron’s fundamental paper [Ef79] this procedure was given the name bootstrap. It works in para-

metric and in non-parametric settings as we will see in the following sections.

8.2 On the construction of confidence intervals for an unknown real-valued pa-

rameter by bootstrapping

We will follow here mainly the presentation in [Fa87]. Given i i d rv’s ηj , j ∈ N, with distribution

function (df) F , defined on a basic p-space (Ω,A,P), assume that an unknown parameter ϑ can be

represented as a functional of F , i.e. ϑ = T (F ) with a properly choosen T defined on the space of all

df’s.

For emample, ϑ = E(η1) is representable as the mean-value functional

(8.2.1) ϑ = T (F ) :=

∫

R

x dF (x).
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Then, to obtain an estimate ϑn for ϑ, based on η1, ..., ηn, using the plug in method, one simply replaces

the unknown F in (8.2.1) by the empirical df (edf) Fn, based on η1, ..., ηn, i.e.

(8.2.2) ϑn := T (Fn).

In case of the mean-value functional (8.2.1), which will be considered exclusively in this section,

T (Fn) = n−1
∑

j≤n
ηj .

To obtain confidence intervals for ϑ based on ϑn one would need the knowledge of the df Gn, where

(8.2.3) Gn(t) := P

(

n1/2
(
T (Fn)− T (F )

)
≤ t

)

, t ∈ R.

In fact, knowing Gn one could proceed as follows:

Given α ∈ (0, 1), choose (a minimal) dα = dα(n) and (a maximal) bα = bα(n) such that

Gn(dα) ≥ 1− α

2
and Gn(bα − 0) ≤ α

2

to obtain with

[T (Fn)−
dα√
n
, T (Fn)−

bα√
n

]

confidence intervals of level 1− α. In fact

P

(

T (F ) ∈ [T (Fn)−
dα√
n
, T (Fn)−

bα√
n

]
)

= P

(

T (F ) ≤ T (Fn)−
bα√
n

)

− P

(

T (F ) < T (Fn)−
dα√
n

)
(8.2.4)

= P

(

n1/2(T (Fn)− T (F )) ≥ bα
)

− P

(

n1/2(T (Fn)− T (F )) > dα

)

= 1−Gn(bα − 0)− (1−Gn(dα))

= Gn(dα)−Gn(bα − 0) ≥ 1− α

2
− α

2
= 1− α

But this does not work without knowing Gn, i.e. F . Here bootstrapping comes into play:

Choosing so-called independent bootstrap-rv’s η∗j , j ∈ N, defined on another p-space (Ω∗,A∗,P∗), where

for each n ∈ N the η∗j , 1 ≤ j ≤ n, are i d with df Fn, one replaces in (8.2.3) Fn by the edf F ∗
n based on

η∗1 , ..., η
∗
n, and F by Fn(·, ω), based on η1(ω), ..., ηn(ω), to obtain as a nonparametric estimate for Gn

the function

G∗
n(t) := P∗

(

n1/2
(
T (F ∗

n)− T (Fn(·, ω)
))
≤ t

)

, t ∈ R,

i.e. for each fixed ω ∈ Ω G∗
n is defined within the bootstrap model by

(8.2.5) G∗
n(t, ω) := P∗

(

{ω∗ ∈ Ω∗ : n1/2
(
T (F ∗

n(·, ω∗))− T (Fn(·, ω))
)
≤ t}

)

, t ∈ R,

with F ∗
n(s, ω∗) := n−1

∑

j≤n
1(−∞,s](η

∗
j (ω

∗)), s ∈ R.

Note that in (8.2.5) the term T (Fn(·, ω)) is to be considered as a constant within the bootstrap model
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for each fixed ω ∈ Ω.

Now, in view of (8.2.5), for each n ∈ N and given η1(ω), ..., ηn(ω) for fixed ω ∈ Ω, one can determine

(a minimal) d∗α = d∗α(n, ω) and (a maximal) b∗α = b∗α(n, ω) such that

G∗
n(d

∗
α(n, ω), ω) ≥ 1− α

2
and G∗

n(b
∗
α(n, ω)− 0, ω) ≤ α

2
.

to obtain

(8.2.6) P∗
(

T (Fn(·, ω) ∈ [T (F ∗
n)− d∗α√

n
, T (F ∗

n)− b∗α√
n

]
)

= G∗
n(d

∗
α(n, ω), ω)−G∗

n(b
∗
α(n, ω)−0, ω) ≥ 1−α.

At this point it is essential to note that in the present situation (see below for its verification):

(8.2.7) d∗α(n, ·)− dα(n) −→ 0 P− a.s. and b∗α(n, ·)− bα(n) −→ 0 P− a.s.
Therefore the intervals

(8.2.8) [T (Fn)−
d∗α√
n
, T (Fn)−

b∗α√
n

], n ∈ N,

constitute a sequence of P− a.s. consistent estimators for the intervals

[T (Fn)−
dα√
n
, T (Fn)−

bα√
n

], n ∈ N,

yielding thus in view of (8.2.4) a sequence of P− a.s. confidence intervals of asymptotic level 1−α for

the unknown parameter ϑ = T (F ).

To verify (8.2.7) in the case of 0 < σ2 := V (η1) <∞ one uses the following result in [Si81]:

8.2.9. THEOREM.

Assume that 0 < σ2 := V (η1) <∞; then

(8.2.10) sup
t∈R

|G∗
n(t, ω)−Gn(t)| −→ 0 for P− a.s. ω ∈ Ω.

On the other hand, according to the central limit theorem, one has that

Gn(t) −→ G0(t) := Φ(
t

σ
) ∀ t ∈ R

(Φ being the standard normal df).

Therefore, by (8.2.10), for P− a.a. ω ∈ Ω we get

(8.2.11) G∗
n(t, ω) −→ G0(t) ∀ t ∈ R.

Since G0 is continuous and strictly monotone increasing, it follows from (8.2.11) (cf. [Wit70], Satz

2.11, S. 53) that, with dα(n) and bα(n) denoting the (1 − α
2 ) - quantile and α

2 - quantile of Gn (cf.

(8.2.4)) and with d∗α(n, ω) and b∗α(n, ω) denoting the (1 − α
2 ) - quantile and α

2 - quantile of G∗
n(·, ω)

(cf. (8.2.6)), the assertion (8.2.7) is verified.

IMPORTANT NOTE: For the proof of (8.2.7) continuity and strict monotone increasing of the limit-

ing df G0 was essential.
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8.3 Bootstrapping empirical processes

Let us reconsider at first the uniform empirical process αn of Section 1.1 based on i i d rv’s ηj defined

on (Ω,A,P) with L{ηj} = U [0, 1], where we have seen (cf. (1.1.6)) that αn converges in law to the

Brownian Bridge B0 as n −→∞. According to Theorem 2.3.9 this implies (cf. (2.3.12))

(8.3.1) lim
δ→0

lim sup
n→∞

P(wαn(δ) ≥ ε) = 0 ∀ ε > 0.

Now, it is well known that for an arbitrary rv ξ with df F the law L{ξ} of ξ can be represented as

L{F−1(η)} where L{η} = U [0, 1] and

F−1(s) := inf{t ∈ R : F (t) ≥ s}, 0 ≤ s ≤ 1.

Thus, for a sequence of i i d rv’s ξj , j ∈ N, with df F one gets

(8.3.2) L
{(

n1/2
(
T (Fn)− T (F )

))

t∈R

}

= L
{(
αn(F (t))

)

t∈R

}

,

where Fn is the edf based on ξ1, ..., ξn.

Considering the bootstrap-procedure, given the data in form of η1(ω), ..., ηn(ω) (with the ηj’s as

before), let ξ∗j (= ξ∗nj), 1 ≤ j ≤ n, be i i d bootstrap rv’s with df

Gn(·, ω) := n−1
∑

j≤n
1[0,·](ηj(ω)),

let F ∗
n be the edf based on ξ∗1 , ..., ξ

∗
n and let

α∗
n(ω) =

(

α∗
n(s, ω)

)

s∈[0,1]

be the bootstrapped uniform empirical process. i.e.

α∗
n(s, ω) = n1/2

(

F ∗
n(s)−Gn(s, ω)

)

, 0 ≤ s ≤ 1;

then

(8.3.3) α∗
n(ω)

L−→ B0 for P− a.s. ω.

To prove (8.3.3) we may and do assume (cf. (8.3.2)) that

α∗
n(ω) =

(

αn(Gn(s, ω))
)

s∈[0,1]
.

So, we must show that for P− a.s. ω

(8.3.4)
(

αn(Gn(s, ω))
)

s∈[0,1]

L−→ B0.
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For this, it suffices to show (in view of the fact αn
L−→ B0) that for P− a.s. ω

(+) P

(

sup
s∈[0,1]

|αn(Gn(s, ω))− αn(s)| ≥ ε
)

−→ 0 as n→∞ ∀ ε > 0

(cf. [Gae77] 8.6.2).

Now, given an arbitrary ε > 0 and ||Gn(·, ω)− id[0,1]|| := sup
s∈[0,1]

|Gn(s, ω)− s|, we have

P

(

sup
s∈[0,1]

|αn(Gn(s, ω))− αn(s)| ≥ ε
)

≤ P

(

wαn
(
||Gn(·, ω) − id[0,1]||

)
≥ ε

)

,

where again wαn denotes the oscillation-modulus of αn.

But, by the classical Glivenko-Cantelli theorem, for P− a.s. ω

||Gn(·, ω)− id[0,1]|| −→ 0 as n→∞,

whence, according to (8.3.1), for P− a.s. ω

P
(

wαn
(
||Gn(·, ω)− id[0,1]||

)
≥ ε

)

−→ 0 as n→∞,

which proves (+).

For a different proof see [Bi81].

In what follows, let now X = (X,X ) be an arbitrary measurable space (sample space) and ηj , j ∈ N, be

i i d re’s in X with law L{ηj} ≡ ν on X, defined as coordinate projections on (Ω,A,P) := (XN,XN, νN).

Let νn be the empirical measure based on η1, ..., ηn, and, given the data in form of yj = ηj(ω), 1 ≤
j ≤ n, n ∈ N, let η∗j (= η∗nj), 1 ≤ j ≤ n, n ∈ N, be i i d bootstrap re’s in X, defined on another p-space

(Ω∗,A∗,P∗), where for each n ∈ N the η∗j , 1 ≤ j ≤ n, are i i d with law

L{η∗j }(B) = νn(B,ω) := n−1
∑

j≤n
1B(ηj(ω)), B ∈ X .

Then, the bootstrapped empirical process Gνn
n is (for fixed ω) defined by

(8.3.5) Gνn
n (ω) := n1/2

(

ν∗n − νn(·, ω)
)

,

where ν∗n denotes the empirical measure based on η∗1 , ..., η
∗
n. Now, given e.g. a VCGC F with ν(F 2) <

∞, we know from Theorem 7.3.5 that for the empirical process Gν
n =

(
Gνn(f)

)

f∈F indexed by F , where

Gνn(f) := n1/2
(

νn(f)− ν(f)
)

, f ∈ F ,

(8.3.6) Gν
n

L−→
sep

Gν in l∞(F),

where Gν =
(
Gν(f)

)

f∈F is a mean-zero Gaussian process with sample paths in U b(F , d(2)
ν ) and

cov(Gν(f), Gν(g)) = ν(f · g) − ν(f) · ν(g), f, g ∈ F . On the other side, given the data yj = ηj(ω)

142



(for any fixed ω) one may ask in view of (8.3.3) whether in the present general situation an analogous

result holds true for the bootstrapped empirical process Gνn
n (ω) =

(
Gνnn (f, ω)

)

f∈F , where (cf. (8.3.5))

Gνnn (f, ω) := n1/2
(

ν∗n(f)−νn(f, ω)
)

and νn(f, ω) := n−1
∑

j≤n
f(ηj(ω)), f ∈ F . The answer is contained

in the following theorem proved by Giné and Zinn in 1990 (cf. also [Gi96], Section 4):

8.3.7. THEOREM ([Gi90]).

Under the usual measurability assumptions the following two statements are equivalent:

(a) Gν
n

L−→
sep

Gν in l∞(F) and ν(F 2) <∞

(b) Gνn
n (ω)

L−→
sep

Gν in l∞(F) for P− a.a. ω ∈ Ω.

(As before, F denotes the envelope of F .)

When specializing to F = {1C : C ∈ C} with C ⊂ X being a VCC, the validity of (b) in Theorem 8.3.7

was shown in [Gae86] and used in [Gae90b] to construct confidence bands for probability distributions

on VCC C of sets in arbitrary sample spaces X = (X,X ), yielding as result that a confidence band of

asymptotic level 1− α for ν = (ν(C))C∈C is given for P− a.a. y := (yj = ηj(ω))j∈N by

y 7−→
{

νn(C, y)± n−1/2c∗α(n, y), C ∈ C
}

,

where c∗α(n, y) := inf{t ∈ R+ : H∗
n(t, y) ≥ 1− α} with

H∗
n(t, y) := P∗

(

sup
C∈C
|Gνnn (1C , y)| ≤ t

)

, t ∈ R+,

provided that (cf. the Important Note concerning the parametric case at the end of Section 8.2) the

following two conditions (C1) and (C2) are fulfilled for

H0(t) := P

(

sup
C∈C
|Gν(1C)| ≤ t

)

, t ∈ R+ :

(C1) H0 is continuous

(C2) H0 is strictly monotone increasing.

In his Diploma-Thesis Molnár [Mo02] proved rigorously what was expected, namely that for count-

able VCC’s C ⊂ X both conditions (C1) and (C2) are fulfilled. We owe thanks to Dick Dudley for his

guidance in finding the proof presented by Péter Molnár.

8.4 Smoothed empirical processes and the bootstrap

In this last section we want to present a short sketch on bootstrapping smoothed empirical processes.

For details we refer to our paper [Gae03].
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The context is the same as in Section 7.4: So, throughout X is now supposed to be an arbitrary linear

metric space endowed with its Borel σ-field X . Let ηj, j ∈ N, be i i d re’s in X = (X,X ) with law

L{ηj} ≡ ν on X, defined as coordinate projections on the p-space

(Ω,A,P) := (XN,XN, νN),

and let νn := n−1
∑

j≤n
δηj be the empirical measure based on η1, ..., ηn, n ∈ N. Consider the smoothed

empirical measure ν̃n := νn ? µn (with given non-random µn ∈ M1(X)), n ∈ N, and the bootstrapped

empirical process (already mentioned in Section 8.1)

Gνn
n :=

√
n
(

n−1
∑

j≤n
δη∗j − νn

)

based on η∗1 , ..., η
∗
n, n ∈ N, defined on a basic p-space (Ω∗,A∗,P∗), where the η∗j ’s are assumed to be

independent re’s in X with L{η∗j } = νn, 1 ≤ j ≤ n, n ∈ N. To be precise, given e.g. a class F of

X -measurable functions f : X −→ R (with X -measurable envelope F : X −→ R s.t. ν(F 2) <∞) the

processs Gνn
n =

(
Gνnn (f)

)

f∈F indexed by F is defined for any fixed yj = ηj(ω), 1 ≤ j ≤ n, ω ∈ Ω, by

(8.4.1) Gνn
n (ω∗, f) :=

√
n
(

n−1
∑

j≤n
f(η∗j (ω

∗))− νn(f, ω)
)

for each ω∗ ∈ Ω∗ and f ∈ F , where νn(f, ω) := n−1
∑

j≤n
f(yj), n ∈ N, are considered as constants in

(8.4.1).

Now we are in the position of deriving the following result for the smoothed bootstrapped empirical

process (of sample size n) given by

(8.4.2)
√
n
(

n−1
∑

j≤n
(δη∗j ? µn)− νn ? µn

)

.

For this, it is important to note by comparing this process with the unbiased smoothed empirical

process G̃ν
n of Section 7.5 that the process (8.4.2) arises through bootstrapping G̃ν

n:

In fact, given

G̃ν
n :=

√
n(ν̃n − ν ? µn) =

√
n
(

(n−1
∑

j≤n
δηj ) ? µn − ν ? µn

)

=
√
n
( ∑

j≤n
(δηj ? µn)− ν ? µn

)

based on i i d re’s ηj in X with L{ηj} = ν and then replacing ν by νn and ηj by η∗j with L{η∗j } = νn we

get the process (8.4.2) which will be denoted by G̃νn
n (and also called bootstrapped smoothed empirical

process (of sample size n).

To this process one can apply Theorem 7.5.14 to obtain

8.4.3. THEOREM (cf. [Gae03]), Theorem 2.4).

Let the conditions of Theorem 7.5.14 be satisfied. Then

dBL(G̃νn
n ,Gν)

∗ P−→ 0.
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[Lé45] Lévy, P. (1945). Sur le mouvement brownien dépendant de plusieurs parameters. C.R. Acad. Sci. Paris

220, 420 - 422.

[Li90] Liese, F. (1990). Estimation of Intensity Measures of Poisson Point Processes. In: Transactions 11 th.

Prague Conf., Vol. A, pp. 121 - 139. Kluwer.

151



[Ma84] Mack, Y.P.C. (1984). Remarks on some smoothed empirical distribution functions and processes. Bull.

of Informatics and Cybernetics 21, 29 - 35.

[Mo02] Molnár, P. (2002). Zur Konstruktion von Konfidenzbändern für Wahrscheinlichkeiten in beliebigen
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