Exercises and Solutions to the Concentrated
Advanced Course on Stochastic Partial
Differential Equations

Fred Espen Benth

1 Introduction

In September 1998 professor Helge Holden gave an advanced course on stochas-
tic partial differential equations at the Centre for Mathematical Physics and
Stochastics (MaPhySto). The course consisted of lectures and tutorial classes.

This note contains the exercises with suggested solutions discussed in the
classes. Notation and necessary theoretical background to understand the ex-
ercises can be found in the monograph, [HOUZ]. All references to exercises,
equations, theorems etc below are from [HOUZ).

We have included an annotated list of references which is recommended for
the ones interested in White Noise Analysis and its applications.

2 Exercises

Day 1
Exercise 1. Ezercise 2.6

Exercise 2. Consider w(¢,w) = (w,¢), ¢ € L*(R"),w € S'(R*). Show that
w(@p) is normally distributed with expectation zero and variance ||¢||?.

Exercise 3. Consider Wy(z,w) = w(¢,,w), for ¢ € L2(IR?),z € R?, where
¢2(y) == ¢(y — ). Prove that Wg(z,w) has properties (2.1.20)-(2.1.22).

Exercise 4. Show that E[H,] = 0 for a # 0, where H, is defined in Def.
2.2.1-2, pp.19-20.

Exercise 5. Let f € L*(u,) with chaos expansion f = Y . ;caHa. Find
E[f]-
Exercise 6. Consider the 1-dimensional, 1-parameter smoothed white noise

oo

(¢,€)H,

Jj=1

where &; is the j’th Hermite function. Find the variance of w(¢) by using its
chaos expansion.



Exercise 7. Let {{;}jcw be the Hermite functions and define T' = zjoil &E ().

Show, by using Th. 2.8.1, p. 28, that T € S'(IR%). Moreover, prove that T = §;
in the sense of distributions, where &y is the Dirac §-function at t.

Exercise 8. Let N = m = d = 1. Find the (formal) chaos expansion of
Wi(w) = (w,d¢). Show that Wy € (S)_, for all p € [0,1].

Exercise 9. Show that Wy(z,w) € (S)1 for ¢ € S(IR). (Let for simplicity
N=m=d=1).

Day 2

Exercise 1. Exercises 2.9 and 2.8 a-c

Exercise 2. Show that w(¢) ¢ w(v)) = w(¢) - w(yp) if suppd N supprh = .
Exercise 3. Show that

(2.1) w?(¢) o w(yh) = w?(P)w(®) — |P]*w(v)) — 2(4, ¥)w(¢)

Moreover, if supp ¢ N suppt) = () then

(2.2) w®?(¢) o w(®)) = w($)w(v))

Exercise 4. Variation of exercise 2.24: Use Th. 2.5.9, p. 52, to find the
Skorohod integrals in exercise 2.24 a-c.

Day 3

Exercise 1. FEzercises 2.8 e+f, 2.11, 2.13, 2.15 and 2.24 d

Exercise 2. Ezercises 3.4 a-c and 8.5 a+d (In exercise a, use X (0) = G instead
of X(T)=G).

Day 4

Exercise 1. FEzercise 4.4

Exercise 2. Use Cor. 4.3.2, p. 150, to show that the solution of

W =IAU+UW;, (t)€ Ry x R
U(0,2) = f(=), z € R
18 1

U(t,x) = E[f(b(t))] o exp(B(t) — t)

Exercise 3. Assume that f(z) € (S)—1 for every x and that f satisfies all the
conditions in Th. 4.8.1, p. 147. Prove that

Ut,z) = u(t,z) o X;
is the solution of

{ U =IAU+UW,, (t2)€ Ry xR*
) = f(2), z € R*



where u(t,z) solves

fu = LA, (t,z) € Ry x R?
u(0,2) = f(z), z€ R
and
dXt = Xt dBt,XO =1
Day 5

Exercise 4. Exercises 4.5 and 4.8

3 Solutions to exercises

Day 1
Exercise 1:

Let ¢, — ¢ in L2(IR%) when n — oo, where {¢,, }ncv is a sequence in S(R?).
Then {{w, ¢n)}necv is a Cauchy sequence in L?(p):

B [(w, 6n) — (@, 6m))’] = B [{w, 6n — dm)?]
= ||¢n - ¢m||2 -0

whenever n,m — oo. Hence, {{w, ¢n) }nev is convergent in L?(u1) and we denote
its limit (w, ¢). It is easily shown that

E [(w,9)?] = lI]I*
and
E [(w, ¢)(w, )] = (¢,9)

for any ¢ € S(RY).
Let {¢n}nenw be another sequence in S(IR?) converging to ¢ in L?>(IR?).
Then
B [((w, ) = (,6))°] = [[Yal> = 20, 9) + l6]*

But |[¢n|| = [|¢]| and (¢n,d) — ||¢||> when n — oo. Therefore, {w,1,) con-
verges to (w, ). The definition of (w, ¢) is thus independent of the choice of the
approximating sequence.

Exercise 2:

From the Bochner-Minlos Theorem, p. 12, the characteristic function of (w, ¢)
is

E [exp(i{w, 6))] = exp(—5I¢I1)

Thus, {w, ¢) is normally distributed with zero expectation and variance ||¢||?.

Exercise 3:



Property (2.1.22): Since
62l = [ 62 —2)dy =101
Rd

we get from exercise 2 above that Wy (z) ~ N (0, [|¢][?)

Property (2.1.21): We consider the case (Wy(z), Wy (y)) for 2,y € IR®. The gen-
eral case will follow similarly. Our argument will in fact prove that (W (z), W4 (y))
is a Gaussian vector. Let ¢1,¢2 € IR and h > 0. By the Bochner-Minlos Theorem
on p. 12,

E[exp(iciWy(x + h) +icaWy(y + h)] = E [exp(i{w, c1¢z+h + cadytn))]
1
= eXp(—§||01¢z+h + c2¢y4all?)
But

llerdarn + c2dytnll® = i lldarnll® + 2c12(batns bysn) + 3lldytnll®
Gl + 2cica(¢e, dy) + c3l01

=l | (O Gt ]| o]

Hence, (Wy(z + h), Wy (y + h)) is Gaussian with zero expectation and covari-

ance matrix
[ Il*  (bz: ¢y) ]
(6o, 0y) 11117

which we see is independent of h. We have proved stationarity (and Gaussian-
ity).
Property (2.1.20): If suppd,, Nsuppg,, = 0, then

E [W¢(.’L‘1)W¢(.’172)] = (¢z1,Pz,) =0

Hence, since (Wy (1), We(2z2)) is Gaussian and Wy (z1) and Wy (z2) are inde-
pendent.

Exercise 4:

From p. 22 (proof of Th. 2.2.3),

1, a=0

E[H,| = E[HoHo] Z{ 0, a#0

Exercise 5:

From the exercise above,

E[f] :anE[Ha] =Co

Exercise 6:



By Th. 2.2.4, p. 23:

where we used Parseval’s identity in the last equality.

Exercise T:
Note that with d =1 in Th. 2.3.1, p. 28, we have the multi-index ordering
{69132, ={(1),(2),3),--} = {7}
Recall (2.2.5), p. 19:
sup [€(s)] = O(j /%)
z€R
We must find a 6 > 0 such that (2.4.6), p. 29, holds, i.e.

252 5(]) -0 <KZJ_1/6 P—

j=1
= sz_(1/6+9)
j=1

This sum is finite if 6 > 5/6. Hence, T € S'(IR).
Let ¢ € S(IR). By definition of d;:

(6¢, 0) = B(t)
Write ¢ = 3257, (¢,&;)¢;. Then

8

(T, ¢) = &()($,&)

Jj=1

= Z(¢ &)&5(t)

8

= ¢(t)
Hence, T' = d;.

Exercise 8:

From exercise 7 above, §; = -7, £;(t)§;. We calculate (formally)

(w,0e) = Zﬁ] (w, &)

= > G0H,



Note that (w,d;) is only a suggestive notation (we are not allowed to write the
dual pairing of two distributions). But its formal chaos expansion will define an
element in (S)_,, as we now prove:
From Def. 2.3.2, pp. 29-30, we must find a ¢ > 0 for every p € [0,1] such
that
Z b2 ()77 (2IN) "™ < oo

We have b, = &;(t) when a = €;, and zero otherwise. When a = ¢;, —ge; is
a vector with zeros everywhere except at coordinate j, where it has value —q.
Formula (2.3.8), p. 29, becomes

(2IN)~1% = 1'[,'(21')(_‘161')" = (2j)7¢

where we have used the notation (ga); to indicate the i’th coordinate. Hence,

Ze £)(1)'(24) Q—Z@

< K2 Zj*l/‘*j*q
j=1

This sum is finite whenever ¢ > 5/6, and we can conclude that W; € (S)_,.
Note that formally we have

e’} d t
=> E/ &i(s)dsH,, = W,
j=1 "0

Exercise 9:

The chaos expansion of Wy (z) is

= (¢, 8)H
j=1
We must show ((2.3.9), p. 29)
D (62,€)% () (2IN)F4 < o0
j=1
for all k € IN. But

o

> (60,6 ()2 24 = 28" (6, ,)%5*

j=1 j=1

Recall that ¢, € S(IR), and by Th. 2.3.1 on p. 28,
D ($2,€5)%% < o0
j=1

for all ¢ > 0. Hence, we can conclude that Wy(z) € (S)1. Note that this will
also hold for d > 1.



Day 2
Exercise 1:

Answer to 2.9: Let m=N=1. The chaos expansions are

From Def. 2.4.1, p.39,
Z ¢7 Tb ¢Jnk €jtek
7,k=1
Def. 2.2.1, p. 19, says:
J 7£ k: H€j+€k = <w7nj) ' (wank) = HGjHGk
j=k: Hye, = hz((%ﬂj)) = (wﬂ?j)Q -1= ng -

Thus

w(¢) < w(’l/)) = Z(¢a nj)(":[)ank)HejHek - Z(¢7 nj)("ﬁ;nk)
Jik gk

= ¢577] 'l/} nk

j=1

But if ¢ = Ej(¢) nJ)nJJw = Zk(wank)nka then
(6,9) =D (1) (%, m))
j=1

Thus, we have proved

w(@) © w(yh) = w(g) - w(y) — (¢,7)

Answer to 2.8 a: Follows by the exercise 2.9 above with ¢ = ¢.
Answer to 2.8 b: We find the chaos expansion for f(w) = B°?(z,w). By (2.2.24),

p- 24,
B(z,w) = Z/ nj(u) du - He,
j=1"0



By def. 2.4.1, p. 39,

B*%(z,w) = Z / n;(u) du / Nk (u) duH,, 4,
k=170 0
= 2/ n; () du-/ nk(v) duH,; H,,
jk=1"0 0
[e’s} z 2
=X ([ wwa)
j=1 0
= B*(z,w) — 129 -- -4

Answer to 2.8 c: From b above,
B*(z,w) = B*(z,w) + 1122 - - - 24
=T1xo---Tq + Z / T]] d’LL / ( )du Héjk
7,k=1 0

where €r = €; + €.

Exercise 2:

From exercise 1 (2.9) above:

w(¢) o w(®p) = w(¢) - w¥) — (¢, ¢)
Note that (¢,%) = 0 when supp ¢ Nsupp v = (. Hence,
w($) © w(y) = w(e) - w(t)
See (2.4.3), p. 40, for a general statement.

Exercise 3:

Assume first that

w?(4) o w()) = w(P)w(®) — [|¢I*w(®) — 2(¢, ) w(4)
holds. If supp ¢ N supp®) = (), then

w?(9) o w(®) = v ($)w(¥) — l|g|*w(v)
= (v”(9) - [14lI”) w(¥)
= ™ ($)u()

Thus, we have shown the second part of the exercise. Now, let’s prove the first
statement: From the definition of Wick products,

w () o w(th) = (fjm,)(qﬁﬁ, )o(i«/}& )
k=1

i,j=1

= > (6,6)(9,6) (6, &) Heyys

.5,k



Def. 2.2.1, p. 19, yields,

<w7£i)<w7 j)(wagk)a 7’75.7 #k
(w7 i)2_1)<w7€k)7 Z:.77ék
Heijk = <w7€i)(< 7§j>2_1)7 275.7 =k
(w7 i)2_1)w7§j)7 Z:k#.j
<w7€i)3 - 3(&), ’i)a i= J= k
Thus,
w02(¢) < U}(’L/}) = z (¢a 51)(¢7 é‘j)(wagk)HeiHejHek + Z(¢7 gz)z(wagk)Hg Hek
i£j#k itk
+23 (6,6)(6,&) (W, &) He, HE + Z(¢, &) (v, &) H?,
i#£j
= ($,6)° (W, &) He, —2> (6, 6)(8, &) (@, &) H.
i#£k iF#]

=33 (6,6)° (¥, &) He
= (W, ) (W, ) = D (6,&)° (&) He, =2 (6,6:)(6,&) (1, &) He
i#j i#j
=33 (9,6)° (¥, &) He

We now investigate the second and the third term:

S WG Hey D (6,6) =D (. E)H I = Y (1, &)(9,&)* He,
j=1 i=1,i#j j=1 7j=1
= ||| w( (6, &) (W, &) H
=1
The third term is:
(b &)H, D (6.6)W,&) =D (6,&) He(6,%) — D (6,&)° (%, &) H.
i=1 j=1,j#i i=1 i=1
= (¢, P)w() — D _(6,&)* (v, &) He
=1

Putting all together yields,

w?(9) o w(yh) = w’(¢)w(1h) — ||| w( +Z¢£z (¥, &) He, — 2(¢, ) w(9)

+2Z¢§ (¢, &) He, —SZM (¥, &)H.
= uw’($ ) @) — [l w(y )—2(¢,¢) w(4)

Exercise 4:



Answer to a: We apply Th. 2.5.9, p. 52, to get

/ Blto)dBI(t / Blto) o Wt
- /0 (; /0 ¢(u) duHéj) o (; gj(t)H€j> dt
-/ ' > ( " &) dug <t)) H.dt
—Z/togj du - / &t H,,, dt

= (Z / & (u) duHEJ.> o (Z /0 Tﬁj(u) duHeJ)

B(to) ¢ B(T)
B(to) - B(T) — (1[0 t0)» Ljo,1))
B(to) - B(T) —
Note that we could have used Cor. 2.5.12, p. 54, to obtain this result immedi-

ately.
Answer to b: We calculate,

/OT/OTg<s)d / / )) o W (t) dt
/ s)dB(s / W(t

= B(T)o / 9(s) dB(s)

By theory on p. 15,
T
| 9a56) = [ 10m(5)dBGs) = @ 10m9)
0 R
Thus, by exercise 1 (2.9) above,

T T T
/ / 9(s)dB(s) 6B(t) = B(T) o / 9(s) dB(s)
0 0 0

= B(T)/0 9(s) dB(s) — (110,17, 1[0,119)

T T
- B(T) / 9(s) dB(s) - / o(s) ds

10



Answer to c: Since B°%(ty) +to = B2(ty),

/BHO )B(t /B2to ) o W(t)dt
= B*(to)  B(T)
= B°*(ty) © B(T) + toB(ty)

From exercise 1 (2.9) above,
Boz(to) < B(T) = Bz(to)B(T) - toB(T) — 2toB(t0)
Altogether,
/ B*(t0) 6B(t) = B*(to)B(T) — toB(T) — 2toB(to) + to B(T)
= B?(to) B(T) — 2t B(to)
Day 3

Exercise 1:

Answer to 2.8 e: By (2.6.48), p. 65,

NE
S|=

exp®(w(m)) = ™ (m)

3
Il
<}

I
NE
S|

1 hn(“’(’h))

3
Il
o

I
WE
S|=

()

3
Il
<

where we have used (2.4.17), p.44. From def. 2.2.1, p.19,

Ha(w) = Hz?ilhai (<w7 771))

Thus
H‘nel (LU) = hn(("‘)) 771))

which implies,

exp? (w(m) = 3~ Hyes ()

Answer to 2.8 f: From (2.6.55), p. 66,
exp®(w(m) = exp(w(m)) exp(—1/2)

By exercise above we get,

exp(um) = 3 Yo,



Answer to 2.11: From (2.6.54), p. 66,

E[Ky(x)] = E [exp®(Wy(2))]
= exp (E[Wy(2)))
=exp(0) =1

By (2.6.56), p. 67,

Kole,) = exp (Wa(a,) — S101°)
Thus,
K3 (z) = exp (2W, — [|6]?)
—exp (W2 — 52011 - ex  Sll2017 — o?)
= exp®(Wag) - exp(||o||*)
We can calculate,

Var[Ky(x)] = B [K2(2)] - B[Ky(2)]”
= exp([|¢]1?) - exp(E[Wagy]) — 1
= exp|¢]]” — 1

Answer to 2.13: Define

cos® X = i (_1)nX<>2n
B (2n)!
n=0

Let X = w(¢) and apply the Hermite transform: From def. 2.6.14, p. 65,

(="

Gr (PO

(cos® w(@)) (2) = cos(iv()(2) = D

n=0

We know from calculus that

cos(i(¢)(2)) = % (exp(it(¢)(2)) + exp(—ii(¢)(2)))

By inverting the Hermite transform,

cos®(w(¢)) = % (exp®(iw(4)) + exp(—iw(4)))

= 3 (exp®(u(ig) + exp® (u(~ig))

From (2.6.55), p. 66,

exp (w(id)) = exp (w(ie) — 5lli0I"

12



By definition of the real L?(IR)-norm:

ligll? = /R (ig(2)? do = i /R o(2)? d = —[|9)?

Hence,
exp (5 idl1?) = exp(51417)
Similarly, | ~ ig]]> = ~|lg| and
exp(— 5~ i6IP) = exp (5 I6]1)
We get,

cos® (w(9)) = exp(3 19I17)5 (exp(in(8) + exp(~iu4)
= exp(5 19I1”) cos ul)

Proof of b is similar.

Answer to 2.15 a: Since,

1 2_ 1 o Lo
and 1 1 1

22 L2, 12

5% 2(:t: 1) =xt 2t
we get

1 1 1
exp(tz — itz) = exp(imQ) exp(—§($ —1)?)

Taylor expansion of the last term around ¢ = 0 gives,

1 — 1 d" 1 n
exp(-5(@ =) =} o ep(=5@ =) o -t
n=0
=1 d" 1, 0o
_;H% eXP(—§U ) lu=e - (=1)" -t

_ ZOO (=)™ [ d» Loy m
S~ al \dur exp( 2" )) -t
Invoking def. (C.1.), p. 207, we get

e

1 o 1, & tm
exp(—g(e ~ ) = ex(—32") 3 Tha(@)
Thus,
o t"
2 —
exp(tzx —t°/2) = ;} mhn(w)

13



Answer to 2.15 b: Put t = ||4|| and z = w(¢)/]|#|| in the formula from exercise

a above: \
exp(u(d) — 1[16I) 2”¢” ”¢”))

Answer to 2.15 c¢: The result follows immediately with ¢ = 194 in exercise b
above.

Answer to 2.15 d: By definition of the Wick exponential,
exp® w(@) = 3 — u"(¢)
Lemma 2.6.16, p. 66, yields,

exp® () = exp(w(9) — 2 1)

Hence,
oo

L 1 w(e)
2O = 2 (1oeat i)
n= 0

By uniqueness of the chaos expansion,

w(¢)

(@) = 19l hn (“¢||

)
Answer to 2.24 d: By cor. 2.5.12, p. 54,

T T
/0 exp(B(T)) dB(t) = exp(B(T)) o /0 W) dt
— exp® (B(T)) exp(T/2) o B(T)
= exp(T'/2) (B(T) ¢ exp®(B(T)))
By def. og the Wick exponential and exercise 2.15 d above (with ¢ = 19 77):

oo

B(T) o exp®( Z Be( (T

> B(T
Z OT]” +1hn+1(”1[(() Tin)

Hence, since [|1jo 71l = T"/2,

el Tn+1/2 B(T)
Z rhna (=
n=0 n: T

T
/0 exp(B(T)) B(t) = exp(T/2) )

Exercise 2:

Answer to 8.4 a: Rewrite the equation for X; in integral form,

t t
Xt=m+/rXsds+/aXsoWsds
0 0

14



We apply the Hermite transform to this integral equation. Denote HX;(z) =
X;(2), and note that H(X; o W) (z) = HX;(2) - HWs(2):

() =2+ /0 (r + alW, (2)) X, (2) ds

Observe that this is an ordinary deterministic (complex-valued) differential
equation for each z.

d - B .
EXt(z) = (r+aWi(2)Xe(2), Xo(z)==

The solution is known to be

X (2) = z exp(rt) exp(oz/0 Ws(2) ds)

Note that .
H (exp® (aB(1))) (2) = exp(a / W,(2) ds)
Hence,

X; = z exp(rt) exp®(aB(t))
= zexp(rt) exp(aB(t) — a’t/2)
= zexp((r — a®/2)t + aB(t))

Answer to 8.4 b: The integral form of the equation is
¢ ¢
X, =x+/ rXsds+/ aoWsds
0 0
Apply the Hermite transform to get the differential equation
d

2Xi(2) = rXi(2) = aWi(2)

If we multiply both sides with the integrating factor exp(—rt) and integrate, we
get

¢
exp(—rt) Xy (2) — Xo(z) = /0 aexp(—rs)W,(z)ds

Or, by rewriting and inverting the Hermite transform,
X, = zexp(rt) + exp(rt) /Ot exp(—rs)W,(z) ds
= zexp(rt) + /Ot exp(r(t — )W, (2) ds
=zexp(rt) + H (/Ot exp(r(t — s))Ws ds) (2)
=zexp(rt) + H (/Ot exp(r(t — s) dB(s)) (2)

15



We can conclude,
t
X, = zexp(rt) + / exp(r(t — s)) dB(s)
0
Answer to 8.4 c¢: The integral form of the problem is,

¢ ¢
Xt=$+/rds+/ aXsoW(s)ds
0 0

Hermite transformation,

t
Xi(z)=z+rt+ / aX(2)Wq(z)ds
0
which gives the differential equation,
d

%Xt(z) - aWt(z)Xt(z) =r

Multiplying both sides with exp(—a« f(f W, (2)ds) and then integrating, yields,

Xi(2) exp(—a /Ot W,(z)ds) — Xo(2) = /Otrexp(—a /OS Wy (2) du) ds

The Hermite transformed solution is:

Xi(2) = zexp(a /Ot W,(2) ds) + /Otrexp(/t Wy (2) du) ds
Observe that

H (exp®(a(B(t) — B(s))) () = exp(a /0 t Wau(2) du)
Inversion of the Hermite transform provides us with the solution:

X; = zexp®(aB(t)) + /Ot rexp®’(a(B(t) — B(s)))ds
= zexp(aB(t) — a’t/2) + /Ot rexp(a(B(t) — B(s)) + o®(t — 8)/2) ds
Answer to 8.5 a: Rewriting the problem on integral form:
t ¢
X, = G+/0 rXsds+/0 aX,oW,ds

Hermite transform,

Xi(2) =G(2) + /t rX,(2)ds + /t aX,(2)W,(2) ds
0 0

or,

%X’t(z) =(r+ aWt(z))Xt(z)

16



Solving as in the exercises above,

Xi(z) = G(z) exp(rt + a/o W,(2) ds)

Inverting the Hermite transform, using the fact H(X oY) = HXHY,

X; = G oexp®(rt + aB(t))
= G oexp((r — a?/2)t + aB(t))

Answer to 3.5 d: Rewriting,
¢ ¢
X, :G+/ B(T)dt+/ XsoWsds
0 0
Hermite transformation,

%,(2) = G(2) + Br(2)t + /0 R ()W, (2) ds

or,
d - . -
aXt( z) = Wi(2)X4(2) = Br(z)

Multiplying with the integrating factor exp(— fo z) ds) and integrating,

X, (2) exp(— /W Yds) — Xo(z /exp /W ) du)Br(z) ds

Inversion of the Hermite transform yields the solution,
t
X, = G oexp®(B(t)) + B(T) o/ exp® (B(t) — B(s)) ds
0

Day 4
Exercise 1:

Answer to 4.4 a: Consider the problem

{—:LU+U<>W¢(3:,w), (t,z) € Ry x R?
U0,z) = f(x) e R?

Denote the Hermite transform of U(t,z) by U(t,x;#). By formally applying

the Hermite transform to the problem above, we get a deterministic partial
differential equation of parabolic type (with complex values):

(3.1) {Q_It] LU+U°W¢() (t,z) € Ry x R?
' U

z) = f(a) z € R’

By considering the real and imaginary part of U, we have a Feynman-Kac
representation of the solution (see e.g. [K9)]),

Ot 25 2) = B [ F(X2) exp /0 (X 2) ds)]
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where E? is the expectation with respect to the probability P on the space 0
(where the process X; lives), conditioned on Xg = z. For each z, U(t,z; 2)
solves (3.1). We must prove the following,

1 U(t,z) =H (U, x;2)) for aU(t,z) € (S)_1.
2 that we can invert the Hermite transform through (3.1), i.e.

oUu , . 9U(z)
Hoar ) =5

HLU (2) = LU ()

We consider 1, which we divide into three subparts:
(i): We prove that s — W4(X,(&); 2) is continuous on [0, #] for each z € K,(R)
and bounded in (s, 2) on [0,t] x K (R) (almost surely @).

Since (¢,n;) is the convolution between ¢ € L2(IR?) and n; € S(IR?), the
function z — (¢z,n;) is bounded and uniformly continuous. Consider z —
Wy (z; 2) for z € K (R) (for some g, R):

N

Wo(z;2) = jggnmz;(%nj)%
]:
and thus Wy (z; 2) is the limit of a uniformly convergent sequence of uniformly
continuous functions. Hence, Wy(z; 2) is continuous in z for z € K4(R). From
stochastic analysis we know that s — X;(w) is continuous for almost all paths.
Thus, s = Wy (X,(®); 2) is continuous for z € Ky (R)

(i): We show that Wy (X,(0); 2) is integrable (in s) in (S)_; and

t ¢
H ( / WX, (@), w) ds) (2) = / T, (X, (@): 2) ds
0 0
By (i) above, all assumptions in lemma 2.8.5, p. 78, are satisfied for
H(Wp(X5(@),))(2) = We(X5(0); 2)

Hence, (i) follows.
(i43): We show that

# (B |1 e[ WX 9] ) ) = £ [ rxp ol [ Wo(Xei2) )

Note that E® is taken with respect to w, the variable in X;. What we need to
prove is that the Hermite transform commutes with E%. We haven’t specified
any topology for the probability space on which X} lives, and thus we cannot say
anything about the continuity of the mapping @ — X;(w). Hence, lemma, 2.8.5,
p. 78 cannot be used. But there exists a weaker result on integration implying
that the functional in question is Pettis integrable (rather than integrable in
the sense of Bochner which is the essence of lemma 2.8.5.). We don’t state the
general result, but simply give the conditions for our special case: If

& = F(Xu(&)) exp( / Wy (X.(2); 2) ds)
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is measurable and bounded on  for every z € K,(R) for some positive ¢, K,
then

(X&) exp®( / Wi (X4 (&), ) ds

is Pettis integrable on Q and the Hermite transform commutes with £%. But
we can find ¢, K positive such that

t
& = F(X.(@)) exp( / W (X4(); 2) ds)

is bounded for every z € K,(R) since f € L®(IR%) and ¢ € L?(IR%). Thus we
have proved the result.

Summing up, we can conclude

Ut z) = E° [f()(,f)em(/olt Wy(X,,w) ds)]

which proves part 1.
Part 2 can be proven using lemma 2.8.4, p. 77 together with regularity of

U(t,z; z) in (t,z), due to the fact that L is uniformly elliptic (which essentially

makes U(t,z;z) C1? for every z € K,(R).) We skip this proof here, and leave
it to the interested reader.

Answer to 4.4 b: Since Wy(x) - W, in (S)_1 when ¢ — dg. Therefore, when
¢ - (507

¢ t
exp°(/ We(Xs,w)ds) — exp°(/ Wx, ds)
0 0

in (S)_1 a.s) (this is true since we have combined an analytic function exp()
with a convergent sequence). We can conclude

B (1) e[ Waxow 9] - 2[00 ([ W, as)
in (8)—1 when ¢ — .

Exercise 2:

From cor. 4.3.2, p. 150 with K(t,z) = W; and 0 =1,
t
Utt,) = B [ 1) o0xp°( | Wi-sd)
0

= [ 100 exo [ W)

— 7 [£(By)] o exp(B(t) — 1/2)

Exercise 3:

From the assumptions on f, u(t,z) € (S)_; for all (,z) € Ry x IR®. Moreover,
u(t,z) is an (S)_1-solution of
Ou 1
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Obviously X; € L?(u) since X; = exp(B(t) — t/2), and thus U(t,z) = u(t,z) o
X; € (8)_1. By Wick Calculus we have the following;:

9 (ult,z) 0 Xy) =

ou 0
T —(t,z) o Xy + u(t, x)oa—Xt

at
= ( Au(t,z ) o X +ult,z) o Xy o Wy
- % (u(t,2) o X;) + (u(t, ) 0 X;) o W
_ %AU(t, 2) + U(t,z) o W,

Moreover, U(0,2) = u(0,2) o Xo = f(z) o1 = f(x).

Day 5

Exercise 1:

Answer to 4.5: Given

rz+t—s
/ / W(s,y)dyds
z4s—t
The proof that U is the unique (S)*-solution of the problem will go as follows:

1 Ut z) € (S)*
2 HU(t,z)(z) := U(t, z; ) is the unique solution of

(?2[}8(:;46%) 82U(tzZ) W(t - z) (t,.’L’) cR. xR
U(O,.’L’,Z) Bt (OJ:L.;Z) 0

for every z € CIV.

3 The Hermite transform commutes with differentiation, i.e

ou_o0 L oU_ o
otz o2 & ox2  Ox?

We start with 1: The chaos expansion of W(s,y) is
o0
y) =Y ni(s,y)H,
j=1
which implies that

0o z4+t—s
S s
j=1 r+s—t

(since W (s, y) is strongly integrable in (S)*). Since

n;(s,y) = (E(;gn@é;g))(say)
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(see p. 19, (2.2.8) for notation), we can bound the coefficients by applying prop.
2.3.7, p.36: U(t,z) € (S)* if

z4t—s 2
sup( / / (s,y dyds) (2j)7 1 < o0
z4s—t

for some ¢ > 0. But,

1
sup [n;(s,y)| < 2 5uP €500 (8)| sup €56 ()]
(s,y)eR? y 2

1
+ 5 sup [0 (8)] sup €500 (y)]
8 Yy
K(6§j))71/12(6éj) )71/12
K

IN A

Hence we get the bound
z+t—s
([ s
r+s—t

sup K%t%(25)77 < o0
J
for every ¢ > 0. We have proved that U(t, z) € (S)*.
We consider part 2: The Hermite transform of U(¢,x) is seen to be

rz+t—s
Ul(t, z; 2) / / W (s,y; z) dy ds
r+s—t

where W (s, y;2) = > o1 mj(8,9)z; (we have assumed — which is also true — that
the Hermite transform commutes with both integrals. Prove this!). Recall from
calculus: 6/8tf0 s,t)ds = f(t,t) +f0t 0/0tf(s,t)ds:

z+t—s B z+t—t _
/ / (s, y;z)dydsz/ W(t,y; z) dy +

+s—t r+t—t

r+t—s
/ at/ﬁﬂ t W (s,y; z) dyds

:/ (W(s,x+t—s,z)—W(s,x+s—t;z)) ds
0

2 t
< K2(/ 2(t — 5)ds)? = 4K>t*
0

Thus,

A similar calculation gives,

T+t—s N
2/ / W(s,y;2)dyds = 2W (t,z;2) +
ot T+s—t

t (oW oW
+/0 <%(8,$+t—s,z)—%(S,x-"t—saz)) ds
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On the other hand,

r+t—s + 6 B )
6:(:2/ /z sy§2)dyds=/0 %(W(s,x+t—s;z)—W(,s,x_(_s_t)) ds

+s—t
b oW oW
_/0 (x(s,a:—i—t—s,z)—E(s,x—l—s—t,z)) ds

Hence,
o?U o*U =
T (t,z;2) — el (t,z;2) = W(t,z; 2)
for (t,z) € Ry x IR. Boundary conditions,
- oU
U(O,.’L’,Z) - Oa %(O,IE,Z) =0

We have proved part 2.

Consider part 3: We shall not investigate this point in detail, but refer to lemma
2.8.4, p. 77. This lemma however, is for processes in (S)_1.The analogue for
(S)* can be obtained by substituting the boundedness condition in z with an
exponential growth condition. If we, however, want to show that U(¢,z) is an
(S)_1-solution, we can apply lemma 2.8.4 as it stands. Sketch of such a proof:

(i) Show that U /8t and AU /dx are continuous in ¢ and z and bounded in
(t,z,2) € Ry x R x K,(R) for some ¢, R.

(ii) Show the same for 82U /dt? and §>U /9.
From lemma 2.8.4 we can then conclude that differentiation and the Hermite
transform commutes.
Answer to 4.4 b: If W(s,y) = W(y), we have
z+t—s 1 t
// dyds—i/ (B(x +t—s)—B(x+s—t))ds
T 0

+s—t

by the relation B(t fo
Answer to 4.8: Notice that ¢ (x) = E[p(m)] Thus, using E[X oY] = E[X]E[Y]
we get
E[(K(z) op'(z))] = (E[K(2) E[Y'(2)))'
= (exp E[Ws ()] - ¢4(2))'
= ¢y (@)

=-1

Since E[p(a)] = co(a) = co(b) = E[p(b)] = 0, we have that co(z) is the solution
of the following second order differential equation:

{ ch(z) = -1, z € [a,b]
co(a) = co(b) =0

22



It is straightforward to check that the solution is
L. s
co(x) = —3 (z° — (a+b)z + ab)

co(x) is the best w-constant approzimation to p(x,w).
We proceed with ¢, (x): Introduce the short-hand notation ¢; for ¢;. From
(4.6.28), p. 172:

sei@+ ([ ow-0ar) g =0

for z € [a,b]. We have used that f = —1 only gives chaos of order 0, namely
—1. In addition we have the boundary conditions ¢;(a) = ¢;(b) = 0. Inserting
the expression for cp:

%cy(w) — (¢4, &) - (—%)(237 —(a+b)=0

or
¢ (@) + (¢, &) (22 — (a+)) =0

Define the function g;(z) = (¢},,§;)(2z — (a + b)). We can write the solution
¢;(z) on the following form,

T ry
cj(z) = k1 + ko —/ / 9j(2) dzdy
where the constants k; and ko are solutions of
ki+aks =0
and
b ry
k1 + bks :/ / 9i(2)dzdy

The equations for k; and k, are obtained from the boundary conditions.
Note that c; (z) is the best Gaussian approzimation to p(z,w).
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