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Abstract

Bessel processes play an important role in �nancial mathematics be-
cause of their strong relation to �nancial models like geometric Brown-
ian motion or CIR processes. We are interested in the �rst time Bessel
processes and more generally, radial Ornstein{Uhlenbeck processes hit a
given barrier. We give explicit expressions of the Laplace transforms of
�rst hitting times by (squared) radial Ornstein{Uhlenbeck processes, i. e.,
CIR processes. As a natural extension we study squared Bessel processes
and squared Ornstein{Uhlenbeck processes with negative dimensions or
negative starting points and derive their properties.

Keywords: First hitting times; CIR processes; Bessel processes; radial Ornstein{
Uhlenbeck processes; Bessel processes with negative dimensions

1 Introduction

Bessel processes have come to play a distinguished role in �nancial mathematics
for at least two reasons, which have a lot to do with the models being usually
considered. One of these models is the Cox{Ingersoll{Ross (CIR) family of dif-
fusions, also known as square-root di�usions, which solve

dXt = (a+ bXt) dt+ c
p
jXtj dBt ; (1)

with X0 = x0 � 0, a � 0, b 2 R, c > 0 and (Bt) standard Brownian motion. For
every given value x0 � 0, equation (1) admits a unique solution; this solution
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is strong, i.e. adapted with respect to the natural �ltration of (Bt), and takes
values in [0;1). If a = 0 and x0 = 0, the solution of (1) is Xt � 0, and
from the comparison theorem for one-dimensional di�usion processes (Revuz
and Yor [59], Theorem IX.(3.7)), we deduce Xt � 0 for a � 0, x0 � 0. Hence, in
this case, the absolute value in (1) may be omitted a posteriori. Cox, Ingersoll
and Ross [10] proposed this family of di�usions for modelling short term interest
rates. In recent �nancial literature they are often studied from di�erent points
of view, or serve as important reference processes, see for instance Chen and
Scott [8], Deelstra and Parker [12], Delbaen [13], DuÆe and Singleton [17], Fryd-
man [23] and Leblanc [40, 39]; they are used for modeling stochastic volatility,
see e. g. Ball [3], Genotte and Marsh [25] and Heston [29]. The other even more
fundamental model is geometric Brownian motion, standardly used as a model
for stock prices

St = S0 exp(� t+ �Bt) ; (2)

with �; � 2 R, (Bt) standard Brownian motion. In both cases, X and S can be
represented in terms of (squares of) Bessel processes. We recall the de�nition of
(squares of) Bessel processes (Revuz and Yor [59], Chapter XI).

De�nition 1 For every Æ � 0 and x0 � 0 the unique strong solution to the
equation

Xt = x0 + Æ t+ 2

Z t

0

p
jXsj dBs (3)

is called the square of a Æ-dimensional Bessel process started at x0 and is denoted
by BESQÆ

x0 .

Clearly, equation (3) is a particular case of equation (1), with a = Æ, b = 0,
c = 2. We call the number Æ the dimension of BESQÆ. This terminology arises
from the fact that, in the case Æ 2 N, a BESQÆ process Xt can be represented
by the square of the Euclidean norm of Æ-dimensional Brownian motion Bt:
Xt = jBtj2. The number � � Æ=2� 1 is called the index of the process BESQÆ.
For Æ � 2, BESQÆ processes will never reach 0 for t > 0, and for 0 � Æ < 2 they
reach 0 almost surely.

De�nition 2 The square root of BESQÆ
y2 , Æ � 0; y � 0 is called the Bessel

process of dimension Æ started at y and is denoted by BESÆy.

For a study of Bessel processes we refer to Revuz and Yor [59] and Pitman and
Yor [53, 54], see also Appendix A. We now show how a general CIR process (1)
may be represented in terms of a BESQ process. The relation

Xt = ebt Y

�
c2

4b
(1� e�bt)

�
; (4)

where Y denotes a squared Bessel process with dimension Æ = 4a
c2 , clearly estab-

lishes a correspondance between the two families of processes. We remark that
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this relation is used e. g. in Delbaen and Shirakawa [14] and Szatzschneider [67].
For geometric Brownian motion (2), there is the Lamperti relation

St = �(
�
�2 )

�
�2
Z t

0

S2
s ds

�
; t � 0 ; (5)

where
�
�(

�
�2 )(u); u � 0

�
denotes a Bessel process with index �

�2 , with

�(
�
�2 )(0) = S0, see Lamperti [37] and also Williams [72]. The Lamperti repre-

sentation (5) has been very useful e. g. in connection with Asian option pricing,
see Geman and Yor [24] and Yor [75], Chapter 6. For a multivariate extension
of the Lamperti relation we refer to Jacobsen [32]. It may be helpful to indicate

that At = �2
R t
0
S2
s ds admits as its inverse process

u!
Z u

0

dh

�2
�
�
( �
�2 )

h

�2

We now make some remarks about the range of the values of the parameters
a; b; c; � and � which appear in (1), (2), (3), (4) and (5). The signs of c and

� are irrelevant since B
(d)
= �B. We assume c; � > 0. In fact, by scaling we

may and will restrict ourselves to c = 2 and � = 1. For c = 2, CIR processes
de�ned by (1) coincide with squared radial Ornstein{Uhlenbeck processes which
are studied in detail in Section 2, see (7), and in the following we will use either
one or the other terminology. The sign of b inuences the behaviour of a CIR
process X , since in the case a > 0 there exists a unique stationary density of
X only if b < 0; we note that stationary CIR processes also enjoy the ergodic

property. In the case a � c2

2 = 2, a CIR process starting in x0 � 0 stays strictly
positive for t > 0; for a < 2, a CIR process Xt starting in x0 � 0 hits 0 with
probability p 2]0; 1[ if b > 0 and almost surely if b � 0. Note that in the case
a > 0 the boundary 0 is instantaneously reecting, whereas in the case a = 0,
as soon as a CIR process Xt hits 0 it is extinct, i.e. it remains at 0.
Until now, studies of square-root di�usions de�ned by (1) have always assumed
a � 0 and x0 � 0. Under these assumptions, we have seen how to deduce
Xt � 0 for all t � 0 from the comparison theorem for one-dimensional di�usion
processes and the absolute value in the square root term can be omitted. But
it seems to be natural also to consider a < 0 or to start the process in x0 < 0.
In such cases one should be already careful about the formulation of the square
root term; for the introduction we consider the case a < 0 and x0 > 0 with the
formulation (1). But see also Section 3 for a more general substitution, i. e., we
replace �(x) � c

pjxj by ~�(x) � c
p
�x+ + �x�, �; � � 0. The process (Xt),

t � 0, de�ned by (1) with a < 0, b 2 R, c > 0 and starting in x0 > 0 remains in
R+ until T0 = infft > 0jXt = 0g. Then, since Yt � �XT0+t satis�es

dYt = (�a� bYt) dt+ c
p
jYtj d ~Bt ;
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with ( ~Bt) standard Brownian motion, we know that Yt � 0 for all t � 0,
thus (Xt; t � T0) ranges in R� and (Yt) is a CIR process (1) with parameters
�a > 0; �b 2 R and c > 0.
Consider formula (5) with � < 0. We know from Dufresne [18] (see also Pollack
and Siegmund [58] and Yor [76], Th�eor�eme 1)Z 1

0

exp 2(Bs + � s)ds
(d)
=

1

2Z(��)
;

where Z�, � > 0, is a Gamma variable with index �, i. e.,

P (Z� 2 dt) = t��1e�t

�(�)
dt :

Since St ! 0, as t ! 1, then �
(�)
u ! 0 as u converges to

R1
0

exp 2(Bs +

�s)ds, and ~T0 � infftj�(�)t = 0g =
R1
0

exp 2(Bs + �s)ds. It seems natural to

consider (� ~T0+u
; u � 0). The case � < �1 corresponds to a Bessel process �(�)

with dimension Æ = 2(� + 1) < 0. In Section 3, we will derive and discuss
properties of negative-dimensional squared Bessel processes, and also squared
radial Ornstein{Uhlenbeck processes with Æ < 0, with starting points in R.
The above discussion shows how �rst hitting times of squared radial Ornstein{
Uhlenbeck processes, i.e. CIR processes, may arise. In Section 2, we present a
survey of the explicit computations of the Laplace transform of �rst hitting times
of (squared) radial Ornstein{Uhlenbeck processes, by exploiting the relation
between radial Ornstein{Uhlenbeck processes and Bessel processes. Note that
because of the previous discussions about the sign and behaviour of X in the
negative dimensional case we will have no diÆculties in computing the Laplace
transforms of �rst hitting times Ty of a negative dimensional process X starting
in x0 in all possible cases, say x0 > 0 > y.
From a �nancial point of view we are interested in the quantity

Ea[1(Tx<t)(Rt � k)+] ;

with a radial Ornstein{Uhlenbeck process (Rt) starting in a � 0, see Section 2,
and k 2 R

+ . We remark that the quantity E[1(Tx<t)(St � k)+], expressing
values of barrier options with underlying stock price process (St) as in (2), is
investigated in Chesney et al. [9] by considering Laplace transforms with respect
to time. The Laplace transform of Ea[1(Tx<t)(Rt � k)+] with respect to time is

Z 1

0

e��tEa[1(Tx<t)(Rt � k)+]dt = Ea[

Z 1

Tx

e��t(Rt � k)+dt]

= Ea[e
��Tx

Z 1

0

e��u(RTx+u � k)+du] :
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Using the strong Markov property this equals

Ea[e
��Tx ]Ex[

Z 1

0

e��u(Ru � k)+du] ; (6)

which gives a clear motivation for our next computations of the Laplace trans-
forms of �rst hitting times of radial Ornstein{Uhlenbeck processes, as well as
to that of their resolvents, here applied to the function r ! (r� k)+; as for the
resolvent we refer to Remark 6 in Section 2.
To close up this introduction let us mention that we have preferred, in this
paper, the use of stochastic arguments, i.e. Itô's formula, Doob's h-transform,
time reversal, etc. to that of di�erential equations arguments which nonetheless
play an important role throughout.

2 First hitting times of radial Ornstein{

Uhlenbeck processes

As motivated in the introduction, we are interested in the law of �rst hit-
ting times of (squared) radial Ornstein{Uhlenbeck processes. For general dis-
cussions of �rst hitting times of di�usions we refer to Arbib [2], Breiman [7],
Horowitz [30], Kent [35], Nobile et al. [48], Novikov [49, 50, 51], Pitman and
Yor [56, 57], Ricciardi and Sato [60], Rogers [61], Salminen [62], Shepp [64],
Siegert [66], Truman and Williams [69] and Yor [73]. More general discussions

of inverse local times and occupation times
R T
0 1(Xs�y)ds, when X is a di�usion

and T a particular stopping time, are dealt with in Hawkes and Truman [28],
Truman [68] and Truman et al. [70], with particular emphasis on the Ornstein{
Uhlenbeck case.
First we recall the de�nition of (squared) radial Ornstein{Uhlenbeck processes.
We will use another notation than in (1) which is related to the notation in
De�nition 1. Let (Wt) be a one-dimensional Brownian motion, � 2 R, Æ � 0 and
z � 0. The solution to the equation

Zt = z +

Z t

0

(Æ � 2�Zs) ds+ 2

Z t

0

p
jZsj dWs (7)

is unique and strong (Revuz and Yor [59], Chapter IX x3); as in the discussion
of equation (1) we deduce Zt � 0. It is called a squared Æ-dimensional radial
Ornstein{Uhlenbeck process with parameter �� and its law on C(R+ ;R) is de-
noted by ��QÆ

z. It is a Markov process; hence, the square root of this process is
also a Markov process and is called a Æ-dimensional radial Ornstein{Uhlenbeck
process with parameter ��. Denote its law on C(R+ ;R) by

��P Æ
x where x =

p
z.

The following application of Girsanov's theorem relates ��P Æ
x to P Æ

x , the law of
a BESÆ(x) process, hence obviously ��QÆ

z to Q
Æ
z, the law of a squared BESÆ(z)

process.
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Proposition 1 For every � 2 R and x � 0, the following relationship holds:

��P Æ
x

��
Ft = exp

�
��
2
[R2

t � x2 � Æ t]� �2

2

Z t

0

R2
sds

�
� P Æ

x

��
Ft : (8)

Proof: The only care needed to justify (8) is that the Girsanov local martingale
which appears in (8) is in fact a martingale. But this follows from the fact that
both di�usions with laws ��P Æ

x and P Æ
x are non-explosive (see e.g. McKean's

presentation of Girsanov's theorem in the case of explosion [44], Section 3.7).
This closes the proof.

Remark 1 More generally, we can replace in (8) the restrictions to the �-�elds
Ft by restrictions to FT \ (T <1), for any (Ft)-stopping time T .

Corollary 1 For Æ � 2 (resp. Æ < 2), and x > 0, (Rt; t � 0) does not visit 0
a.s. (resp. visits 0 a.s.) under ��P Æ

x .

Proof: The result for � = 0 is well-known, and it extends to any � 2 R, with
the help of (8). This closes the proof.
The following consequence of Proposition 1 will be helpful later to transfer
results valid for ��P Æ

x , with � > 0, to �P Æ
x .

Corollary 2 For every � 2 R and every stopping time T with respect to (Ft),
there is the absolute continuity relationship:

�P Æ
x

��
FT\(T<1)

= exp(�(R2
T � x� Æ T )) � ��P Æ

x

��
FT\(T<1)

(9)

Because Rt =
p
Zt reaches 0 a.s. for Æ < 2, we need some care to use Itô's

formula and express (Rt) as the solution of some stochastic equation: For Æ > 1,
it is the solution to the equation

dRt =

�
Æ � 1

2Rt
� �Rt

�
dt+ dWt ; R0 = x =

p
z :

For Æ = 1 we have with Itô-Tanaka's formula

jRtj = jxj � �

Z t

0

jRsj ds+ ~Wt + Lt;

where (Rt) is a
��P 1

x process, ~Wt �
R t
0
sgn(Rs)dWs is standard Brownian motion

and Lt is the local time of Brownian motion. For Æ < 1 we obtain from (48)

Rt = x+
Æ � 1

2
p.v.

Z t

0

ds

Rs
� �

Z t

0

Rsds+ Ŵt ;

where (Ŵt) is standard Brownian motion under ��P Æ and p.v. denotes the
principal value.
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Our aim is to �nd the law of

Tx!y � infft jRt = yg ; (10)

the �rst time a radial Ornstein{Uhlenbeck process (Rt) with parameter ��
starting in x � 0 hits the level y. We distinguish between the cases 0 � y < x
and 0 � x < y. For Æ < 2, we have ��P Æ

x (Tx!0 < 1) > 0, that is, the process
(Rt) may reach 0; if Æ < 2 and � > 0, then ��P Æ

x (Tx!0 <1) = 1, that is, (Rt)
reaches 0 almost surely and hence every y almost surely, 0 � y < x. For Æ � 2,
we have ��P Æ

x (Tx!y <1) = 1 almost surely for every y � x.
Call ��P Æ

x the law of a Æ-dimensional radial Ornstein{Uhlenbeck process with
parameter ��. The density ��pÆx(t) of the �rst hitting time of 0 of a radial
Ornstein{Uhlenbeck process is calculated in Elworthy et al. [21], Corollary 3.10,
by using a time reversal argument from Tx!0, that is, for y = 0 the problem is
already solved:

��pÆx(t) =
x2�Æ

2��(�)
exp

�
�
2 (Æt+ x2(1� coth(�t)))

� � �

sinh(�t)

� 4�Æ
2
; (11)

where Æ < 2, � > 0, x > 0 and � = 4�Æ
2 � 1.

We have for 0 � y � x

Tx!0
(law)
= Tx!y + Ty!0 ;

where Tx!y and Ty!0 may be assumed to be independent because of the strong
Markov property. Hence, with (11) we obtain for the Laplace transform (LT) of
Tx!y

��EÆ
x [exp (��Tx!y)] =

�x(�)

�y(�)
; (12)

where, still in the case � > 0, we �nd

�x(�) =
��EÆ

x [exp (��Tx!0)] =

Z 1

0

exp(��t) ��pÆx(t) dt:

Results for the case � < 0 will be derived from those for � > 0 with the
help of Corollary 2. Our main results are Theorem 1, 2, 3, 4 and Corollary 3
and 4, where we derive explicit expressions of the LTs of �rst hitting times by
radial Ornstein{Uhlenbeck processes with arbitrary x; y � 0. But let us �rst
concentrate on the case � = 0, i.e. Bessel processes.

2.1 First hitting times of Bessel processes.

In order to �nd an expression of the law and/or the LT of certain �rst hitting
times of Bessel processes, it is convenient to consider time reversed Bessel pro-
cesses. More generally, for time reversed di�usion processes, see Appendix B.
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Let (Xt) be a Bessel process with dimension Æ < 2 starting in x > 0. The time
reversed process (X(Tx!0)�u ; u � Tx!0) enjoys the following relationship with

(X̂u; u � 0), a Æ̂-dimensional Bessel process starting in 0, with Æ̂ � (4� Æ), see
Appendix B:

�
X(Tx!0)�u; u � Tx!0

� (law)
=
�
X̂u; u � L̂0!x

�
;

where
L̂0!x = supft j X̂t = xg;

which is �nite since fX̂u; u � 0g is transient (which follows from Æ̂ > 2). In

particular, as remarked in Getoor and Sharpe [27], Sharpe [63], L̂0!x under P Æ̂
0

has the same law as Tx!0 under P Æ
x . We know (Getoor [26], Pitman and Yor

[53]):

L̂0!x
(law)
=

x2

2Z�̂
; (13)

where Z�̂ is a Gamma variable with parameter �̂ � Æ̂
2 � 1, i.e.:

P (Z�̂ 2 dt) = t�̂�1e�t

�(�̂)
dt ; (14)

and hence

P Æ
x (Tx!0 2 dt) = P Æ̂

0 (L̂0!x 2 dt) = 1

t�(�̂)

�
x2

2t

��̂
e�

x2

2t dt : (15)

We note that (11) was obtained in Elworthy et al. [21] in an analogous way,
additionally using Girsanov's transformation.
Since, for y 6= 0, y < x, the �rst hitting time Tx!y is not distributed as L̂y!x,

the last exit time of x by (X̂u) starting in y, we cannot use the same time
reversal argument as above in order to �nd an expression for its LT. Tx!y has

the same law as L̂y%x where L̂y%x denotes the last exit time of x by (X̂u)
starting in y at the last exit time of y, i.e., we consider the process starting in
y conditioned on never visiting y again. We have

L̂0!x
(law)
= L̂0!y + L̂y%x ; (16)

where L̂0!y and L̂y%x are independent because of the strong Markov property
(or path decomposition) at last exit times (for a survey see Millar [45]). Figure 1
illustrates the situation.
Our aim is to �nd an expression of the LT of L̂y%x:

E Æ̂
0

h
exp

�
��2

2 L̂y%x

�i
=
E Æ̂
0

h
exp

�
��2

2 L̂0!x

�i
E Æ̂
0

h
exp

�
��2

2 L̂0!y

�i :
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t

Xt

2 4 6 8
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Tx→y Tx→0

L̂y↗x L̂0→y

8

6

4

2

x

y

Figure 1: A simulated path of a BESÆx process, Æ < 2, starting in x = 5.

With (15), and with the Sommerfeld integral representation of the Macdonald
function K�̂ = K� , also known as the modi�ed Bessel function of the third kind
of order �̂ = ��, (see e.g. Lebedev [38] p. 119, (5.10.25))

K�(z) =
1

2

�z
2

�� Z 1

0

e�t�
z2

4t t���1dt ; (17)

we obtain the LT of L̂0!y:

E Æ̂
0

h
exp

�
��2

2 L̂0!y

�i
=

(�y)�̂K�̂(�y)

2�̂�1�(�̂)
:

Thus (see also Getoor [26], Getoor and Sharpe [27], Kent [34] (3.7) and Pitman
and Yor [53]) for y < x, y 6= 0:

EÆ
x

h
exp

�
��2

2 Tx!y

�i
= E Æ̂

0

h
exp

�
��2

2 L̂y%x

�i

=

�
x

y

��̂
K�̂(� x)

K�̂(� y)
=
�y
x

�� K�(�x)

K�(�y)
:

This formula might also have been obtained by looking for a function � such

that �(Xt) exp(��2

2 t) is a local martingale.
Likewise, in the case 0 < x < y we have, see Kent [34] (3.8) and Pitman and
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Yor [53]):

EÆ
x

h
exp

�
��2

2 Tx!y

�i
=
�y
x

�� I�(�x)
I�(�y)

;

with I� the modi�ed Bessel function of the �rst kind of order �. Since

lim
"#0

I�(�")

"�
=
��
2

��
��1(� + 1) (18)

we obtain for x = 0; y > 0

EÆ
0

h
exp

�
��2

2 T0!y

�i
=
��
2

��
��1(� + 1)

y�

I�(�y)
:

We remark that for Brownian motion, that is, in the case Æ = 1, we have

Tx!0
(law)
= Ty!0 + ( ~T(x�y)!0);

where x > y � 0 and ( ~T(x�y)!0) denotes an independent copy of Tx!y. We
know the density of Tx!0 for Brownian motion

�x(t) =
xp
2�t3

e�
x2

2t ;

i. e., we know the density of T(x�y)!0 and hence the density of Tx!y. Note that

E1
x

h
exp

�
��2

2 Tx!0

�i
=

Z 1

0

e�
�2t
2 �x(t) dt = e��x:

2.2 First hitting times of radial Ornstein{Uhlenbeck pro-

cesses.

Our aim is to �nd an explicit expression of the LT (12) of Tx!y of a ra-
dial Ornstein{Uhlenbeck process R. We pursue an idea we got by studying
Breiman [7] and exploit the relation between CIR and BES processes. Breiman
considers an Ornstein{Uhlenbeck process Y (u) = e�uB( 12e

2u) (our 1
2 corrects a

misprint in [7]) with B standard Brownian motion, B(1) = 0, and gives the LT
of the �rst hitting time Tc for Y from the boundaries �c

E(e��Tc) = ~D�1� (c) ;

where

~D�(c) =
21��=2

�(�2 )

Z 1

0

e�
t2

2 t��1 cosh(ct) dt ;

see also Borodin and Salminen [6], II.7.2.0.1, p. 429. First hitting times of
Ornstein{Uhlenbeck processes are also studied by Ricciardi and Sato [60] and
Horowitz [30].
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A Æ-dimensional radial Ornstein{Uhlenbeck process Rt with parameter ��,
R0 = 0, can be written as

Rt = e��tX
�
e2�t � 1

2�

�
; (19)

where X is a BESÆ process, X0 = 0. We are interested in the �rst time Tx, Rt

hits the level x > 0. Although some of our next arguments may work for � < 0,
we restrict ourselves for now to the case � > 0. Later, to deal with the case
� < 0, we shall use Corollary 4. Analogously to Breiman [7] we assume that D�

is a function such that fD�(Rt)e
��t, t � 0g is a martingale with respect to the

�ltration ofX
�
e2�t�1

2�

�
. Equivalently, fD�(

1p
2�u+1

Xu)(2�u+1)�
�
2� ; u � 0g is a

martingale with respect to the �ltration ofXu. This means via Itô's formula that

fD�(
rp

2�u+1
)(2�u+1)�

�
2� ; r � 0; u � 0g solves 1

2
d2

dr2 +
Æ�1
2r

d
dr +

d
du = 0, i. e., it

is a space-time harmonic function with respect to 1
2
d2

dr2 +
Æ�1
2r

d
dr+

d
du . Further we

assume that (D�(r); r � �) is bounded for every �. Then fD�(Rt)e
��t; t < Txg

is bounded. Applying the optional stopping theorem (see e. g. Revuz and Yor
[59], xII.3) we have

��EÆ
0 [D�(RTx)e

��Tx ] = D�(0) ;

thus
��EÆ

0 [e
��Tx ] =

D�(0)

D�(x)
:

Now we are motivated to �nd the function D� explicitly. First, we derive the
space-time harmonic functions for Bessel processes.
We know by Widder [71], Theorem 14.1.1, that the most general R+ -valued
space-time harmonic function h(x; t) with x 2 Rn ; t � 0, with respect to 1

2�x+
d
dt is of the form

h(x; t) =

Z
Rn

exp

�
� � x� j�j2t

2

�
m(d�); (20)

where m is a positive measure. We assume h is not identically zero. From (20)
we obtain the general positive space-time harmonic function (~h(r; t); r; t 2 R+ )

with respect to 1
2
d2

dr2 +
n�1
2r

d
dr +

d
dt via

~h(r; t) =

Z
Sn�1

h(�r; t)�(d�) =

Z
Rn

Z
Sn�1

exp(� � �r � j�j2t
2

)�(d�)m(d�); (21)

where � is the uniform probability measure on the unit sphere Sn�1. We know
the following integral representation for the Bessel function I�

I�(j�j) =
j�2 j�

�(� + 1)

Z
Sn�1

exp(� � �)�(d�) ;

11



� 2 R
n ; � = n

2 � 1, see Lebedev [38], x5.10, and (5.c2) in Pitman and Yor [53],
and inserting in (21) we have

~h(r; t) = �(� + 1) 2�
Z
Rn

I�(j�jr) exp
�
�j�j

2t

2

�
(j�jr)�� m(d�) :

Substituting j�j by u 2 R+ we obtain a space time harmonic function ~h with
respect to a Bessel process with index �

~h(r; t) = �(� + 1) 2�
Z 1

0

I�(ur)e
�u2t

2 (ur)�� ~m(du) :

We believe this formula is true for all dimensions, although a simple proof still
eludes us. In fact, we only need to �nd a function D� such that

D�

�
rp

2�t+ 1

�
(2�t+ 1)�

�
2� = ~h(r; t)

= �(� + 1) 2�
Z 1

0

I�(ur)e
�u2t

2 r��f(u) du

with an L1-function f : R+ ! R+ ; then fD�(Rt)e
��t; t � Txg is a bounded

martingale and the optional stopping theorem applies.
Let us �rst look for D� such that

D�

�
rp

2�t+ 1

�
(2�t+ 1)�

�
2� = �(� + 1)

�
2

r

�� Z 1

0

I�(ru) e
�u2t

2 f(u) du ;

equivalently,

D�(y) = (2�t+ 1)
�
2�� �

2 �(� + 1)

�
2

y

��Z 1

0

I�(
p
2�t+ 1 yu) e�

u2t
2 f(u) du

= (2�t+ 1)
�
2�� �+1

2 �(� + 1)

�
2

y

��Z 1

0

I�(�y) e
� �2

4� g

�
�p

2�t+ 1

�
d�;(22)

with g(v) = e�
v2

4� f(v). The righthandside of (22) should not depend on t, hence
we may choose g(v) � c0 v

�
�
���1, with a constant c0 > 0, or

f(v) � c0 v
�
�
���1e�

v2

4� ; (23)

(2 L1). We see that D�(
rp
2�t

)(2�t)�
�
2� = ~h(r; t), and certainly also ~h(r; t + c)

with a constant c, is a space-time harmonic function with respect to 1
2
d2

dr2 +
Æ�1
2r

d
dr +

d
dt . Thus

D�

�
rp

2�t+ 1

�
(2�t+ 1)�

�
2�

= �(� + 1)

�
2

r

��Z 1

0

I�(ru) e
�u2

2 (t+
1
2� )f(u) du

12



with f in (23) and we �nd

D�(y) = �(� + 1)

�
2

y

�� Z 1

0

I�(�y) e
� �2

4� �
�
�
���1 d�: (24)

With (18) we see

D�(0) =

Z 1

0

e�
�2

4� �
�
�
�1d� = 2

�
�
�1 �

�
2� �( �2� ) :

Recalling the de�nition of the conuent hypergeometric function �

�(a; b; z) =

1X
j=0

(a)j
(b)j

zj

j!
;

where b 6= 0;�1;�2; : : : and

(r)0 = 1; (r)j =
�(r + j)

�(r)
= r(r + 1) : : : (r + j � 1);

j = 1; 2; : : :, see e.g. Lebedev [38] (9.9.1), and of the Whittaker's functions

Mk;�(z) = z�+
1
2 e�

1
2 z �(�� k + 1

2 ; 2�+ 1; z);

see e.g. Lebedev [38] (9.13.16), �nally, we obtain together with the Bateman
Manuscript Project [4], 4.16.(20), the following theorem.

Theorem 1 The LT of the �rst time Tx = infft jRt = xg a Æ-dimensional
radial Ornstein{Uhlenbeck process Rt starting in 0 with parameter �� hits the
level x is

��EÆ
0(e

��Tx) =
2
�
�
���1 x� �( �2� )�

�
2�

�(� + 1)

Z 1

0

I�(�x) e
� �2

4� �
�
�
���1d�

=
(
p
�x) �+1 e�

�x2

2

M 1
2 (��

�
+�+1); �2

(�x2)

=
1

�( �2� ; � + 1;�x2)
:

For 0 < y < x we have
T0!x = T0!y + Ty!x

where T0!y and Ty!x are independent because of the strong Markov property.
We deduce

13



Corollary 3 The LT of the �rst time Tx = infft jRt = xg a Æ-dimensional
radial Ornstein{Uhlenbeck process Rt starting in y, 0 < y < x, with parameter
�� hits the level x is

��EÆ
y(e

��Tx) =
�
x
y

��+1

e
�
2 (y

2�x2)
M 1

2 (��
�
+�+1);�2

(�y2)

M 1
2 (��

�
+�+1); �2

(�x2)

=
�( �2� ; � + 1;�y2)

�( �
2� ; � + 1;�x2)

:

Analogously, we obtain the LT of Tx in the case 0 < x < y. Note that here
we have to use the modi�ed Bessel functions of the third kind K� instead of
the modi�ed Bessel functions of the �rst kind I� such that the required uniform
integrability assumption is satis�ed. With the conuent hypergeometric function
of the second kind  

 (a; b; z) =
�(1� b)

�(1 + a� b)
�(a; b; z) +

�(b� 1)

�(a)
z1�b �(1 + a� b; 2� b; z);

see e.g. Lebedev [38], (9.10.3), and with Whittaker's functions

Wk;�(z) = z�+
1
2 e�

1
2 z  (�� k + 1

2 ; 2�+ 1; z);

see e.g. Lebedev [38], (9.13.16), we obtain with Bateman Manuscript Project [4],
4.16.(37), the following theorem.

Theorem 2 The LT of the �rst time Tx = infft jRt = xg a Æ-dimensional
radial Ornstein{Uhlenbeck process Rt starting in y, 0 < x < y, with parameter
�� hits the level x is

��EÆ
y(e

��Tx) =
�
x
y

�� R1
0
K�(�y)e

� �2

4� �
�
�
���1d�R1

0
K�(�x)e�

�2

4� �
�
�
���1d�

=
�
x
y

��+1

e
�
2 (y

2�x2)
W 1

2 (��
�
+�+1); �2

(�y2)

W 1
2 (��

�
+�+1);�2

(�x2)

=
 ( �2� ; � + 1;�y2)

 ( �2� ; � + 1;�x2)
:

With

K�(x) � �(��)
2�+1

x�

for x! 0 and � < 0, we obtain immediately

14



Corollary 4 The LT of the �rst time T0 = infft jRt = 0g a Æ-dimensional
radial Ornstein{Uhlenbeck process Rt starting in y with Æ < 2 with parameter
�� hits 0 is

��EÆ
y(e

��T0) =
2��

�
�
+2 y�� ��

�
2�

�
�
�
2�

�
�(��)

Z 1

0

K�(�y) e
� �2

4� �
�
�
���1d�

= 4 (
p
�y)���1 e

�y2

2
�( �2� � �)

�(��) W 1
2 (��

�
+�+1); �2

(�y2)

= 4
�( �2� � �)

�(��)  (
�

2�
; � + 1;�y2)

For Æ � 2 we have T0 =1 almost surely, i.e., ��EÆ
y(e

��T0) = 0.

Remark 2 In the case treated in Corollary 4 we know the density of T0 by
(11).

Remark 3 The Laplace transforms of �rst hitting times of squared Æ-
dimensional Bessel or radial Ornstein{Uhlenbeck processes are obtained im-
mediately. Moreover, from the investigation of the behaviour of squared Bessel
or radial Ornstein{Uhlenbeck processes with negative dimensions or negative
starting points, see the introduction and Section 3, we have no diÆculties in
extending the results above to, e. g., the case x > 0 > y.

Remark 4 In disguised versions the formulae above also appear in Pitman and
Yor [53], Chapter 12, and Eisenbaum [19].

We now show how to deduce the laws of �rst hitting times in the case � < 0 for
our previous formulae.

Theorem 3 (� < 0): Let � = �� > 0. The LT of the �rst time Tx =
infft jRt = xg a Æ-dimensional radial Ornstein{Uhlenbeck process Rt starting
in 0 with parameter � hits the level x is

�EÆ
0(e

��Tx) =
e�x

2

�(�+Æ�2� ; Æ2 ;�x
2)
:

Theorem 4 (� < 0): Let � = �� > 0. The LT of the �rst time Tx =
infft jRt = xg a Æ-dimensional radial Ornstein{Uhlenbeck process Rt starting
in y, 0 < x < y, with parameter � hits the level x is

�EÆ
y(e

��Tx) = e�(x
2�y2) (

�+Æ�
2� ; Æ2 ;�y

2)

 (�+Æ�2� ; Æ2 ;�x
2)
:
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The statements of the � < 0 version of Corollary 3 and 4 are left to the reader.
Proof of Theorems 3 and 4: From Corollary 2 we know that for any f : R+ �
R+ ! R, f(Rt; t) is a

��P Æ
x -martingale if and only if f(Rt; t) exp(��(R2

t � Æt))
is a ��P Æ

x -martingale. In other terms, a function ��H : R+ ! R+ is such that:

��H(r)e��t is space time harmonic wrt. the
���P Æ

x

�
x�0 -family, (25)

if and only if, ��H(r)e�r
2

e�(�+Æ�)t is space time harmonic with respect to the���P Æ
x

�
x�0-family.

Consequently, if F�(r)e
��t is space time harmonic with respect to

���P Æ
x

�
x�0,

then:
��H�(r) = F�+Æ�

2�
(r)e��r

2

satis�es (25). Now, Theorems 3 and 4 follow from Theorems 1 and 2 applied
with the parameter �(= ��) > 0. This closes the proof.

Remark 5 We mention another approach to obtain results concerning �rst
hitting times of radial Ornstein{Uhlenbeck processes. Consider a Æ-dimensional
radial Ornstein{Uhlenbeck process (Rt), starting in x > 0, Æ < 2. We are in-
terested in Ty = infftjRt = yg, x > y � 0. In analogy to the case of BES
processes in Section 2.1 we consider the process (Rt) time reversed, starting
from T0 = infftjRt = 0g, see Appendix B. Denote the time reversed process by
(R̂t). With the same notation as in (16) we are interested in L̂x%y, i. e., in the

process (R̂t) after L̂0!y. By using the technique of enlargement of �ltration, we

can write (R̂t) after L̂0!y as a di�usion. For a treatment see e.g. Jeulin [33]
and Yor [78], x12. Heuristically spoken, we enlarge the original �ltration pro-
gressively, so that the last exit time L̂0!y becomes a stopping time. Applying
Theorem 12.4 in Yor [78] we obtain

Proposition 2 For the di�usion process ~Ru � R̂(L̂0!y+u)
we have

~Ru = y +

Z u

0

b( ~Rv)dv �
Z u

0

s0( ~Rv)

s(y)� s( ~Rv)
1( ~Rv>y)

dv + ~Wu; (26)

where u � 0, b is the drift and s is the scale function of the transient di�usion
R̂.

As an illustration consider the process R̂ to be a transient BES process X̂ , i.e.
a BES process with index � > 0, started in 0. Its scale function may be chosen
as s(x) = �x�2� and we obtain from (26)

~Xu � X̂(L̂0!y+u)
= y +

Z u

0

1
~Xv

(� + 1
2 )

~X2�
v + (� � 1

2 )y
2�

~X2�
v � y2�

dv + ~Wu: (27)
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For a BES3(0) process X̂ (27) reduces to

~Xu � X̂(L̂0!y+u)
= y +

Z u

0

dv
~Xv � y

+ ~Wu:

Hence for a BES3(0) process X we have

(XLy+u � y; u � 0)
(law)
= (Xu; u � 0) :

In general, the transition density ~p of the di�usion ~R in (26) is unknown. Note
that if it were known, we would obtain the density of the last hitting time of x
by the process ~R immediately from the formula

Py(~Lx 2 dt) = � 1

2s(x)
~pt(y; x) dt ;

see Borodin and Salminen [6] IV.43, Revuz and Yor [59] VII.(4.16), where ~R0 = y
and s is the scale function of ~R with lima#0 s(a) = �1 and s(1) = 0.

Remark 6 As motivated in the end of Section 1 we are interested in the resol-
vent of radial Ornstein{Uhlenbeck processes. We obtain for the resolvent (see
(6)) with f(r) � (r � k)+

Ex[

Z 1

0

e��tf(Rt)dt] =

Z 1

0

f(r)

Z 1

0

e��tpt(x; r) dt dr

with pt the transition density of Rt, leaving us with the computation ofR1
0 e��tpt(x; y) dt. First, we consider BESÆx processes and obtain with Ap-
pendix A.2Z 1

0

e��t
1

t
y
�y
x

��
exp

�
�x

2 + y2

2t

�
I�

�xy
t

�
dt = 2

�y
x

��
y I�(z1)K�(z2);

where
z1 =

p
2�min(x; y)

and
z2 =

p
2�max(x; y);

see Oberhettinger and Badii [52] (I.1.15.55). For a treatment of the resolvent for
Bessel processes we refer to Itô and McKean [31], and also to De Schepper et al.

[11] and Alili and Gruet [1]. Using relation (19) we obtain for a Æ-dimensional
radial Ornstein{Uhlenbeck process with parameter ��

Z 1

0

e��t 2y �
e2�t

e2�t � 1

�
e�ty

x

��
exp

�
��x

2 + e2�ty2

e2�t � 1

�
I�

�
2�xye�t

e2�t � 1

�
dt

= y
�y
x

�� Z 1

0

(u+ 1)
1
2 (���

�
)

u
exp

�
��x

2 + (u+ 1)y2

u

�
I�

�
2�xy

p
u+ 1

u

�
du:
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3 BESQ processes with negative dimensions and

extensions

Bessel processes with nonnegative dimension Æ � 0 and starting point x � 0 are
well-studied, e.g. Revuz and Yor [59], Chapter XI. As already pointed out in the
introduction it seems to be quite natural also to consider Bessel processes with
negative dimensions or negative starting points. Therefore we are motivated to
extend the de�nition of BESQÆ

x processes and to introduce the class of BESQÆ
x

processes with arbitrary Æ; x 2 R.

De�nition 3 The solution to the stochastic di�erential equation

dXt = Æ dt+ 2
p
jXtj dWt ; X0 = x ; (28)

where fWtg is a one-dimensional Brownian motion, Æ 2 R and x 2 R, is called
the square of a Æ-dimensional Bessel process, starting in x, and is denoted by
BESQÆ

x.

Moreover, we generalize the de�nition of a CIR process, i.e., a squared Æ-
dimensional radial Ornstein-Uhlenbeck process with parameter �� in (7), by
allowing the starting point and Æ to be in R.

De�nition 4 The solution to the stochastic di�erential equation

dXt = (Æ + 2�Xt) dt+ 2
p
jXtj dWt; X0 = x ; (29)

where Æ; �; x 2 R and fWtg is a one-dimensional Brownian motion, is called a
squared Æ-dimensional radial Ornstein{Uhlenbeck process with parameter �.

First, we will derive and discuss properties of BESQÆ
x processes (28) with Æ; x 2

R, and as an extension we study CIR processes (29) in Section 3.1.
As mentioned in the introduction equation (28) is not the only possible way of
de�ning BESQÆ processes with Æ 2 R. We will discuss this point after investi-
gating the behaviour of BESQÆ processes with Æ 2 R de�ned by (28). Equation
(28) has a unique strong solution (Revuz and Yor [59], Chapter IX x3). Denote
its law by QÆ

x. First, we want to investigate the behaviour of a BESQ
Æ
x process,

starting in x > 0 with dimension Æ � 0. In the case Æ = 0 the process reaches
0 in �nite time and stays there. As for the case Æ < 0, we deduce from the
comparison theorem that 0 is also reached in �nite time. Let us consider the
behaviour of a BESQÆ

x process fXtg with Æ < 0 and x > 0 after it reached 0;
we �nd:

~Xu � XT0+u = Æ u+ 2

Z T0+u

T0

p
jXsj dWs ; u � 0 ; (30)

where T0 = infft jXt = 0g denotes the �rst time the process fXtg hits 0. With
the notation  � �Æ we obtain from (30)

� ~Xu =  u+ 2

Z u

0

q
j ~Xsj d ~Ws ; u � 0 ;

18



t

Xt

10

−10

−20

−30

−40

10 20 30 40 50 60

Figure 2: A simulated path of a BES� process with  � 2; x0 = 5.
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Figure 3: A simulated path of a BES� process with  < 2; x0 = 5.

where ~Ws � �(Ws+T0 �WT0), that is, after the BESQ
�
x process fXtg hits 0,

it behaves as a {BESQ
0 process. Two simulated paths of a BES�x process with

 � 2, respectively  < 2, are shown in Figures 2 and 3.
From the above discussion we deduce that a BESQÆ

x process with Æ < 0 and
x � 0 behaves as [{BESQ�Æ�x], especially it never becomes positive. For a BESQÆ

x

process with dimension Æ � 0 and starting point x � 0, we obtain with the same
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argument, that it behaves as a �BESQ�Æ�x process; this means, until it hits 0 for

the �rst time it behaves as a �BESQ�Æ�x process, and after that it behaves as a
BESQÆ

0 process.
Let us now pursue another way of extending De�nition 1 to BESQÆ processes
with Æ 2 R. Instead of a BESQÆ process in (28) with di�usion coeÆcient �(x) =
2
pjxj we consider the process

Xt = x0 � Æt+ 2

Z t

0

q
�X+

s + �X�s dBs ;

where �; � � 0, x+ = max(x; 0), x� = max(�x; 0), and as before x0 > 0; Æ > 0.
For t � T0, we have

Xt = x0 � Æt+ 2

Z t

0

p
�Xs dBs : (31)

After T0 the process evolves as

XT0+t = �Æt+ 2

Z T0+t

T0

q
�X+

s + �X�s dBs ;

and with Yt � �XT0+t we have

Yt = Æt+ 2

Z t

0

q
�Y �s + �Y +

s d ~Bs :

This admits only one solution which is the positive process

Yt = Æt+ 2

Z t

0

p
�Ys d ~Bs : (32)

Note that the parameter � in (32), as well as the parameter � in (31), can be
thought of as coming from a time transformation of a BESQ process Z

Zt = t+ 2

Z t

0

p
Zs dBs ;

since

Zc2t = c2t+ 2

Z t

0

p
c2Zc2s d �Bs :

After this remark let us now continue to investigate properties of processes
de�ned by (28). An important and well-known property of squared Bessel pro-
cesses with nonnegative dimensions is their additivity property, see Appendix
A.4. The additivity property is no longer true for BESQÆ processes with Æ 2 R

arbitrary. Consider the BESQ�
x process Z� and the BESQ

~�
y process Z

~�, where
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� > 0; ~� � � < 0 with � � , x � 0 and y � 0. Assuming that the additivity
property holds, would yield:

Z� + Z
~� (law)

= Z� � Z (law)
= Z�� � 0;

since � � , which cannot be true because of the independence of Z� and Z .
Our aim is to �nd the semigroup of a BESQ�x process fXtg with  � 0, x � 0.
Our result is the following

Proposition 3 The semigroup of a BESQ�x process,  > 0, x � 0, is given
by:

Q�x (Xt 2 dy) = q�t (x; y)dy ;

with

q�t (x; y) = q4+t (y; x)1(y>0) +

Z t

0

( + 2) q4+s (0; x) qt�s(0;�y)1(y<0) ds :

Proof: a) We decompose the process (Xt) before and after T0, its �rst hitting
time of 0; we obtain

E�x [f(Xt)] = A+B ;

where

A = E�x [f(Xt) 1(t<T0)] ;

B = E�x [f(Xt) 1(T0<t)] = E�x [f(XT0+(t�T0)) 1(T0<t)]

=

Z t

0

Q�x (T0 2 ds)
Z 0

�1
f(y) qt�s(0;�y)dy ;

since (�X(T0+u); u � 0) is distributed as a BESQ
0 process.

b) We shall compute A with either of the following arguments:

(b.1) We use the absolute continuity relationship:

Q�x
��
Ft\(t<T0) =

�
Xt

x

���
� Q4+

x

��
Ft ;

where 4 +  = 2(1 + �), and we note, from formula (49), that:

�y
x

���
q4+t (x; y) = q4+t (y; x) :

Thus, we obtain:

A =

Z 1

0

f(y) q4+t (y; x) dy : (33)
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(b.2) The following time reversal argument shall con�rm formula (33). First, we
note

E�x [f(Xt) 1(t<T0)] = E4+
0 [f(XLx�t) 1(t<Lx)]

=

Z 1

t

qx(s)E
4+
0 [f(Xs�t)jXs = x] ds ; (34)

where qx(s) ds � Q4+
0 (Lx 2 ds). Then, standard Markovian computa-

tions show that:

E4+
0 [f(Xs�t)jXs = x] =

Z
f(y)

q4+s�t (0; y) q
4+
t (y; x)

q4+s (0; x)
dy : (35)

Moreover, we �nd, by comparison of (15) and (50), say, that:

qx(s) = (2 + ) q4+s (0; x) : (36)

Putting together (34), (35) and (36), we obtain:

E�x [f(Xt) 1(t<T0)] =

Z 1

t

(2 + )

Z
f(y) q4+s�t (0; y) q

4+
t (y; x) dy ds :

Using Fubini's theorem, integrating in (ds), and using (36) with y instead
of x, we obtain �nally:

A =

Z 1

0

f(y)q4+t (y; x) dy ;

that is, formula (33).

c) The computation of B is done with the formula Q�x (T0 2 ds) = qs(s)ds,
followed by the use of formula (36).
This closes the proof.
In order to make the semigroup formula q�t (x; y) more explicit, we need to
compute Z t

0

q4+s (0; x) qt�s(0; �y) ds ;

where �y = �y, for y < 0. Elementary computations yield:

q
(�)
t (x; y) = k(x; y; ; t)e����

Z 1

0

(w + 1)2m

wm
exp

�
��w � �

w

�
dw ; (37)

with

k(x; y; ; t) � ��2
�
2

� 2�


x

2+1 jyj 2�1 t��1;
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and

m � 

2
; � � jyj

2t
; � � x

2t
:

We expand formula (37) for  2 N as follows:

q
(�)
t (x; y) = k(x; y; ; t) e����

2mX
k=0

�
2m

k

�Z 1

0

wm�k exp
�
��w � �

w

�
dw

= k(x; y; ; t) e���� 2

2mX
k=0

�
2m

k

��
�

�

� 1
2 (k�m�1)

Kk�m�1(2
p
��) ;

where K�(z) denotes the Macdonald function with index �, see formula (17),
taken from Lebedev [38], (5.10.25).
As a test on our above description of the law Q�x of a BESQ�x process (Zt)t�0
with ; x > 0, we now make some computations involving linear functionals
of this process; see also Revuz and Yor [59] (Exercise (XI.1.34)), and for an
improvement of this exercise see F�ollmer et al. [22]. Since (�ZT0+t; t � 0) is a
BESQ

0 process, independent of the past of (Zt) up to T0, we have

Q�x

�
exp(�

Z 1

0

Zu f(u) du)

�
=

Z 1

0

Q�x

�
exp (�

Z t

0

Zu f(u) du)

����T0 = t

�

�Q
0

�
exp(

Z 1

0

Xv f(t+ v) du)

�
Q�x [T0 2 dt];

with a BESQ
0 process (Xv)v�0 and a positive Borel function f . In the fol-

lowing, negative dimensional BESQ processes are denoted by (Zt) and positive
dimensional ones by (Xt). We obtain

Q�x

�
exp(�

Z t

0

Zu f(u) du)

����T0 = t

�
= Q4+

0

�
exp(�

Z t

0

Xu f(t�u) du)
����Lx = t

�

and with the equalities

Q4+
0

�
exp (�

Z t

0

Xu f(t� u) du)

����Lx = t

�

= Q4+
0

�
exp (�

Z t

0

Xu f(t� u) du)

����Xt = x

�

= Q4+
x

�
exp (�

Z t

0

Xt�u f(t� u) du)

����Xt = 0

�

= Q4+
x

�
exp (�

Z t

0

Xu f(u) du)

����Xt = 0

�
;
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�nally, we have

Q�x

�
exp(�

Z 1

0

Zu f(u) du)

�
=

Z 1

0

Q4+
x

�
exp (�

Z t

0

Xu f(u) du)

����Xt = 0

�

�Q
0

�
exp(

Z 1

0

Xv f(t+ v) dv)

�
qx(t) dt :(38)

Our aim is to determine

Q4+
x

�
exp (�

Z t

0

Xu f(u) du)

����Xt = 0

�

and

Q
0

�
exp(

Z 1

0

Xv f(t+ v) dv)

�

more explicitly. Using the well-known fact that for a function h : R+ ! R in L1

with h(x) � c for all x 2 R
+ and continuous in a neighbourhood of 0:

lim
�!1

Z 1

0

�e��yh(y)dy = h(0) ;

we deduce that the ratio

QÆ
x(exp(��Xt �

R t
0
Xu f(u) du))

QÆ
x(exp(��Xt))

=

R1
0
e��yqÆt (x; y)Q

Æ
x(exp(�

R t
0
Xu f(u) du)jXt = y) dyR1

0
e��yqÆt (x; y) dy

; (39)

as � tends to in�nity, converges to

QÆ
x

�
exp(�

Z t

0

Xu f(u) du)jXt = 0

�
:

Let us consider the numerator and denominator of ratio (39) separately. Via
Pitman and Yor [55] (formula (1.h), and Revuz and Yor [59] (Theorem (XI.1.7))
we know

Lemma 1 Consider a positive function f : R+ ! R
+ with

R n
0 f(s)ds <1 for

all n. Then

QÆ
x

�
exp(�

Z t

0

Xuf(u)du� �

2
Xt)

�

= ( 0f (t) + � f (t))
�Æ=2 exp

x

2

"
�0f (0)�

(�0f + ��f )(t)

( 0f + � f )(t)

#
;(40)
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where �f is the unique solution of the Sturm-Liouville equation

1

2
�00f (s) = f(s)�f (s);

with s 2 (0;1), �f (0) = 1, which is positive and non increasing, and �0f (0) is
the right derivative in 0, and

 f (t) � �f (t)

Z t

0

ds

�2f (s)
:

Furthermore

QÆ
x

�
exp(�

Z 1

0

Xuf(u)du)

�
= �f (1)Æ=2 exp

�x
2
�0f (0)

�
; (41)

where �f (1) 2 [0; 1] is the limit at in�nity of �f (s).

From the formula following Corollary (XI.1.3) in Revuz and Yor [59] we know

QÆ
x(exp(�

�

2
Xt)) = (1 + �t)�

Æ
2 exp

 
��

2x

1 + �t

!
;

and together with (40) we obtain

QÆ
x(exp(�

Z t

0

Xu f(u) du)jXt = 0)

=

�
t

 f (t)

�Æ=2
exp

�
x

2
(�0f (0)�

�f (t)

 f (t)
+

1

t
)

�
: (42)

Now we will determine QÆ
x(exp(

R1
0
Xsf(t + s)ds)) more explicitly. Note that

the function

�t(s) � �f (t+ s)

�f (t)

solves
1

2
�00t (s) = f(t+ s)�t(s);

and that formula (41) leads to

QÆ
x

�
exp�

Z 1

0

Xsf(t+ s)ds)

�
= �t(1)Æ=2 exp

�x
2
�0t(0)

�

=

�
�f (1)

�f (t)

�Æ=2
exp

�
x

2

�0f (t)

�f (t)

�
:
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Lemma 2 For a positive decreasing function f : R+ ! R
+ , such that

QÆ
x

�
exp

Z 1

0

Xsf(s)ds

�
<1; (43)

there exists a function ~� which is on (0;1) the unique solution of

1

2
~�00(s) = �f(s)~�(s);

with ~�(0) = 1 such that

QÆ
x

�
exp

Z 1

0

Xuf(t+ u)du

�
=

 
~�(1)
~�(t)

!Æ=2

exp

 
x

2

~�0(t)
~�(t)

!
:

Proof: Concerning veri�cations of condition (43) we refer to McGill [43]. We
want to determine functions �(t) and �(t) with

QÆ
x

�
exp

Z 1

0

Xuf(t+ u)du

�
= (�(t))Æ=2 exp(x�(t)): (44)

Using the Markov property we have

QÆ
x

�
exp

Z 1

0

Xuf(u)dujFt

�

= exp

�Z t

0

Xuf(u)du

�
QÆ
Xt

�
exp

Z 1

0

Xuf(t+ u)du

�
:

Denote

h(x; t;!) � (�(t))Æ=2 exp(x�(t)) exp

�Z t

0

Xuf(u)du

�
:

Since QÆ
x

�
exp

R1
0 Xu f(u) dujFt

�
is a martingale, with Itô's formula we see that

the functions � and � have to ful�ll the following condition in terms of h

@

@t
h(x; t) + 2x

@2

@x2
h(x; t) + Æ

@

@x
h(x; t) = 0:

This implies

�0(t) + f(t) + 2�2(t) = 0; �(t) +
�0(t)
2�(t)

= 0:

Hence

�(t) = � �0(t)
2�(t)

; f(t) =
�00(t)
2�(t)

�
�
�0(t)
�(t)

�2

:

Consider the function ~� : R+ ! R
+ with

~�(s) � �(0)

�(s)
:
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Then ~� is on (0;1) the unique solution of

1

2
~�00(t) = �f(t)~�(t);

with ~�(0) = 1. We obtain

�(t) =
~�0(t)

2~�(t)
:

From (44) we deduce by dominated convergence that limt!1 �(t) = 1, and
hence ~�(1) � limt!1 ~�(t) = �(0).
Altogether we obtain for (38) with (42) and Lemma 2

Theorem 5

Q�x

�
exp(�

Z 1

0

Zuf(u)du)

�
=

1

�(2 + 1)

�x
2

� 
2+1

�
Z 1

0

�
1

 f (t)

� 
2+2

 
~�(1)
~�(t)

!=2

exp

�
x

2

�
�0f (0)�

�f (t)

 f (t)

��
dt ;

with �f and  f from Lemma 1, and ~� from Lemma 2.

Example: Consider

f(u) � �2

2
1[0;a](u) ; a; � > 0 :

We know (Pitman and Yor [54], p. 432 (2.m))

Q4+
x

�
exp(��

2

2

Z t

0

Xudu)

����Xt = 0

�

=

�
�t

sinh(�t)

� 4+
2

exp
�
� x

2t
(�t coth(�t)� 1)

�
;

and hence we have

Q�x

�
exp(��

2

2

Z a

0

Zt dt)

�
=

Z a

0

�
�t

sinh(�t)

� 4+
2

exp
�
� x

2t
(�t coth(�t)� 1)

�

�Q
0

�
exp(

�2

2

Z a�t

0

Xvdv)

�
qx(t) dt

+

Z 1

a

Q4+
x

�
exp(��

2

2

Z a

0

Xudu)

����Xt = 0

�
qx(t) dt:

We investigate more deeply

Q4+
x!0
(t)

�
exp(��

2

2

Z a

0

Xudu)

�
� Q4+

x

�
exp(� �2

2

Z a

0

Xudu)

����Xt = 0

�
;
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where a continuous process with law Q4+
x!0
(t)

is called the Squared Bessel Bridge

from x to 0 over [0; t], see e.g. Revuz and Yor [59], XI.3. For A 2 Fa we have

Q4+
x!0
(t)

(A) = lim
y#0

E4+
x

�
1A1[0;y](Xt)

�
Q4+
x (Xt 2 [0; y])

= lim
y#0

E4+
x

�
1AE4+

x (1[0;y](Xt)jFa)
�

Q4+
x (Xt 2 [0; y])

= lim
y#0

E4+
x

 
1A

Q4+
Xa

(Xt�a 2 [0; y])

Q4+
x (Xt 2 [0; y])

!
;

and

lim
y#0

Q4+
Xa

(Xt�a 2 [0; y])

Q4+
x (Xt 2 [0; y])

=
q4+t�a (Xa; 0)

q4+t (x; 0)
�  (a;Xa) ;

where qÆt (x; y) is the transition density of BESQÆ, Æ > 0. From Yor [77] (proof
of the theorem in 0.5) we obtain

lim
y#0

q4+t�a (Xa; y)

q4+t (x; y)
=

�
t

t� a

� 4+
2

exp

�
� Xa

2(t� a)

�
exp

� x
2t

�
:

Formula (2.k) in Pitman and Yor [54] gives us

Q4+
x

�
exp

�
� Xa

2(t� a)
� �2

2

Z a

0

Xu du

��

=

�
cosh(�a) +

1

�(t � a)
sinh(�a)

�� 4+
2

exp

0
@��x

2
�

1 + coth(�a)
�(t�a)

coth(�a) + 1
�(t�a)

1
A :

Hence we have

Q4+
x!0
(t)

�
exp(��

2

2

Z a

0

Xudu)

�
=

��
t� a

t

�
cosh(�a) +

1

�t
sinh(�a)

�� 4+
2

� exp
0
@ x

2t
� �x

2

1 + coth(�a)
�(t�a)

coth(�a) + 1
�(t�a)

1
A :

If in addition �(a� t) < �
2 , we obtain

Q
0

�
exp(

�2

2

Z a�t

0

Xvdv)

�
= cos(�(a� t))�


2 ;

and �nally,

Q�x

�
exp(��

2

2

Z a

0

Ztdt)

�
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=
1

�(2 + 1)

�x
2

�
2+1

"
�

2+2

Z a

0

exp
�
�x
2
� coth(�t)

� cos(�(a� t))�

2

sinh(�t)

2+2

dt

+

Z 1

0

[cosh(�a)u+
1

�
sinh(�a)]�


2�2 exp

�
��x

2

�u+ coth(�a)

� coth(�a)u+ 1

�
du

#
:

3.1 Extension to squared radial Ornstein{Uhlenbeck pro-

cesses.

As an extension to BESQÆ
x processes in (28) with Æ; x 2 R we now investigate

squared Æ-dimensional radial Ornstein{Uhlenbeck processes, i.e., CIR processes,
de�ned by (29) with Æ; x 2 R. We consider the case Æ < 0 and x > 0; for
� = 0 this corresponds to a BESQÆ

x process with negative dimension Æ. We call
�QÆ

x the law on C(R+ ;R) and, as before, we denote QÆ
x � 0QÆ

x. Via Girsanov
transformation we obtain the relationship

�QÆ
x

��
Ft = exp

�
�

Z t

0

p
jXsj sgn (Xs) dWs � �2

2

Z t

0

jXsj ds
�
QÆ
x

��
Ft : (45)

Note that because no explosion occurs on both sides of this formula, the
density is a true martingale. We may also write the stochastic integralR t
0
sgn (Xs)

pjXsj dWs in a simpler form, since we have from Itô's formula:

jXtj = jxj+
Z t

0

sgn (Xs) (Æ ds+ 2
p
jXsj dWs) + L0

t (X) ;

where L0
t (X) is the semimartingale local time of X in 0. For L0

t (X) we obtain
with Revuz and Yor [59], Corollary VI.1.9,

L0
t (X) = lim

"#0
1

"

Z t

0

1[0;"](Xs) dhX;Xis = lim
"#0

4

"

Z t

0

jXsj 1[0;"](Xs) ds

� lim
"#0

�
4

Z t

0

1[0;"](Xs) ds

�
= 0 :

Hence we haveZ t

0

sgn (Xs)
p
jXsj dWs =

1

2

�
jXtj � jxj � Æ

Z t

0

sgn (Xs) ds

�
:

Thus, (45) takes the form

Lemma 3

�QÆ
x

��
Ft � exp

�
�

2

�
jXtj � jxj � Æ

Z t

0

sgn (Xs) ds

�
� �2

2

Z t

0

jXsj ds
�
QÆ
x

��
Ft :
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Applying Lemma 3 we obtain the conditional expectation formula

�qÆt (x; y) = qÆt (x; y) exp

�
�

2
(jyj � jxj)

�

�QÆ
x

�
exp

�
�Æ�

2

Z t

0

sgn(Xs) ds� �2

2

Z t

0

jXsj ds
����� Xt = y

�
(46)

where qÆt denotes the semigroup density in y of a BESQÆ process, Æ < 0, given
by (37).
Using the time-space transformation from a BESQÆ process (XÆ

t ) to a squared
radial Ornstein{Uhlenbeck process (�XÆ

t )

�XÆ
t = e2�tXÆ�

1�e�2�t
2�

� ;
we also have together with the relationship (46)

�qÆt (x; y) = e�2�t qÆ�
1�e�2�t

2�

� (x; e�2�ty) ;
from which �qÆt (x; y) is obtained since qÆt (x; y) is known, see (37). Hence we
obtain from (46)

Theorem 6 We have

QÆ
x

�
exp

�
�Æ�

2

Z t

0

sgn(Xs) ds� �2

2

Z t

0

jXsj ds
����� Xt = y

�

= qÆ�
1�e�2�t

2�

� (x; e�2�ty) exp��2�t� �

2
(jyj � jxj)

�
=qÆt (x; y);

with qÆt (x; y) given by (37).
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Appendices

A Some properties of Bessel processes

A.1

In addition to De�nitions 1 and 2 we give explicit expressions for Bessel pro-
cesses. For Æ > 1 a BESÆx0 process Xt satis�es E[

R t
0 (ds=Xs)] < 1 and is the

solution to the equation

Xt = x0 +
Æ � 1

2

Z t

0

ds

Xs
+Wt : (47)

For Æ � 1 the situation is less simple. For Æ = 1 the role of (47) is played by

Xt = jWtj = ~Wt + Lt ;

where ~Wt �
R t
0
sgn(Ws)dWs is a standard Brownian motion, and Lt is the local

time of Brownian motion. For a treatment of local times see e.g. Revuz and Yor
[59], Chapter VI. For Æ < 1 we have

Xt = x0 +
Æ � 1

2
p.v.

Z t

0

ds

Xs
+Wt ; (48)

where the principal value is de�ned as

p.v.

Z t

0

ds

Xs
�
Z 1

0

xÆ�2(Lxt � L0
t )dx

and the family of local times (Lxt ; x � 0) is de�ned asZ t

0

'(Xs)ds =

Z 1

0

'(x)Lxt x
Æ�1dx

for all Borel functions ' : R+ ! R+ , see Bertoin [5]. The decomposition (48)
was obtained using the fact that a power of a Bessel process is another Bessel
process time-changed:

qX1=q
� (t) = X�q

 Z t

0

ds

X
2=p
� (s)

!
;

where 1
p +

1
q = 1; � > � 1

q , see e.g. Revuz and Yor [59], Proposition (XI.1.11).

A.2 Transition densities.

(Squared) Bessel processes are Markov processes and their transition densities
are known explicitly. For Æ > 0, the transition density for BESQÆ is equal to

qÆt (x; y) =
1

2t

�y
x

��
2

exp

�
�x+ y

2t

�
I�

�p
xy

t

�
; (49)
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where t > 0; x > 0; � � Æ
2 � 1 and I� is the modi�ed Bessel function of the �rst

kind of index �. For x = 0 we have

qÆt (0; y) = (2t)�
Æ
2� (Æ=2)

�1
y
Æ
2�1 exp

n
� y

2t

o
: (50)

For the case Æ = 0, the semi-group of BESQ0 is equal to

Q0
t (x; �) = exp

n
� x

2t

o
"0 + ~Qt(x; �); (51)

where "0 is the Dirac measure in 0 and ~Qt(x; �) has the density

q0t (x; y) =
1

2t

�y
x

�� 1
2

exp

�
�x+ y

2t

�
I1

�p
xy

t

�
:

The transition density for BESÆ is obtained from (49), (50) resp. (51) and is
equal to

pÆt (x; y) =
1

t

�y
x

��
y exp

�
�x

2 + y2

2t

�
I�

�xy
t

�
;

with t > 0; x > 0, and

pÆt (0; y) = 2��t�(�+1)�(� + 1)�1y2�+1 exp

�
�y

2

2t

�
;

for Æ > 0, and the semi-group for BES0 is equal to

P 0
t (x; �) = exp

�
�x

2

2t

�
"0 + ~Pt(x; �) ;

where "0 is the Dirac measure in 0 and ~Pt(x; �) has the density

p0t (x; y) =
x

t
exp

�
�x

2 + y2

2t

�
I1

�xy
t

�
:

A.3 Scaling property.

BESÆ processes have the Brownian scaling property, i.e. if X is a BESÆx, then the
process c�1Xc2t is a BES

Æ
x=c for any c > 0. BESQÆ processes have the following

scaling property: if X is a BESQÆ
x, then the process c�1Xct is a BESÆx=c.

A.4 Additivity property of squared Bessel processes.

An important and well-known property of BESQÆ processes with Æ � 0 is the
following additivity property.
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Theorem 7 (Shiga and Watanabe [65]) For every Æ; Æ0 � 0 and x; x0 � 0:

QÆ
x �QÆ0

x0 = QÆ+Æ0

x+x0 ;

where QÆ
x �QÆ0

x0 denotes the convolution of QÆ
x and QÆ0

x0 .

For a proof see Shiga and Watanabe [65] or Revuz and Yor[59], Theorem
(XI.1.2).

B Time reversal

Consider a transient di�usion X , living on R+ , with X0 = x0 � 0. Denote its
last exit time of a � 0 by La = supfu jXu = ag, where sup ; = 0. For a �xed,
La is �nite almost surely, and for x0 < a, La > 0 almost surely. We consider
the time reversed process ~X , where

~Xt(!) �
�

XLa(!)�t(!) ; if 0 < t < La(!) ;
@ if La(!) � t or La(!) =1 ;

(52)

where @ denotes the `cemetery`, and ~X0(!) = XLa(!)(!), if 0 < La(!) < 1,

else ~X0(!) = @. As a consequence we have the equality

fXu; u � Lag = f ~XT0�u; u � T0g ; (53)

where we assume X starting in 0 and T0 � inffuj ~Xu = 0g.
We remark that a di�usion may be reversed at cooptional times, a more general
class than last exit times, see Nagasawa [46, 47], Revuz and Yor [59], Chapter
VII.4. However, for our purposes here it is reasonable to restrict ourselves to
last exit times. In the following, we state a general time reversal result (see
Nagasawa [46, 47], Sharpe [63], Getoor and Sharpe [27], Revuz and Yor [59]).
Denote the semi-group of X by (Pt), the potential kernel of X by U , and let
~Ft = �( ~Xs; s � t) be the natural �ltration of ~X .

Theorem 8 We assume that there is a probability measure � such that the
potential � = �U is a Radon measure. Further we assume that there is a second
semi-group on R

+ , denoted by (P̂t), such that P̂tf is right-continuous in t for
every continuous function f with compact support on R

+ and such that the
resolvents (Up) and (Ûp) are in duality with respect to �, i.e.,Z

Upf � g d� =
Z
f � Ûpg d� (54)

for every p > 0 and every positive Borel functions f and g. Equality (54) can
also be written as

hUpf; gi� = hf; Ûpgi� :
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Then under P�, the process ~X is a Markov process with respect to ( ~Ft) with

transition semi-group (P̂t) and we have the duality

hP�f; gi� = hf; P̂�gi� ;
for any positive Borel function � on R+ where P�f(x) =

R1
0
�(t)Ptf(x)dt.

We will obtain explicit formulae for time-reversed di�usions via Doob's h-
transform.

B.1 Doob's h transform.

Consider a one-dimensional di�usion X , with sample space (I@;1;Fc
1), where

I � [�1;1] and I@;1 := f! : [0;1) 7! I [ f@gg, Fc
1 := �f!(t)j t � 0g.

De�nition 5 A non-negative measurable function h : I 7! R [ f1g is called
�-excessive for X, � � 0, if

a) e��tEx(h(Xt)) � h(x), for all x 2 I; t � 0,

b) e��tEx(h(Xt))! h(x); for all x 2 I as t # 0.
A 0-excessive function is simply called excessive.

Let h be an �-excessive function for a di�usion X . The life time of a path
! 2 I@;1 is de�ned by �(!) := infft j!t = @g. We construct a new probability
measure P h by

P h
x

��
Ft = e��t

h(!(t))

h(x)
PxjFt ; (55)

for t < � and x 2 I . The process under the new measure P h is a regular di�usion
and is called Doob's h-transform of X . As for Doob's h-transform we refer to
Doob [16] and Dellacherie and Meyer [15]; in presenting Doob's h-transform we
followed Borodin and Salminen [6].
As an application let us consider a transient di�usion X under probability mea-
sure P with scale function s. Doob's h-transform ofX with the excessive function
h � s, that is, the process under the new measure P h, is a process which reaches
0 almost surely. We have

PxjFt =
�
1
s

�
(Xt^T0)�
1
s

�
(x)

P h
x

��
Ft : (56)

Note that we obtain

s (Xt)

s(x)
PxjFt � 1(t<T0) P

h
x

��
Ft ;

and hence,

Qh
t f(x) �

1

s(x)
Ex [(fs)(Xt)] � 1

s(x)
Pt(fs)(x) ; (57)
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is the semigroup of the process under P h killed when it reaches 0. In other
words, we have the following time reversal result: Doob's h-transform of the
transient process under P with h = s is the process under P h killed at T0; this
is the process ~X in our former notation.
From formula (56) we can obtain explicit formulae of the di�usion processes via
Girsanov's theorem. Assume, a process (Xt) under Px has the form

Xt = x+

Z t

0

�(Xu) du+

Z t

0

�(Xu) dBu ;

then via Girsanov's theorem we obtain with (56) that the process under P h
x has

the form

Xt = x+

Z t

0

�
� +

�
�
s0

s

��
(Xu) du+

Z t

0

�(Xu) dB̂u; t � T0 : (58)
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