
DIRECTIONAL ANALYSIS OF DIGITIZED

PLANAR SETS BY CONFIGURATION COUNTS

E.B.V. JENSEN,� University of Aarhus

M. KIDERLEN,�� University of Karlsruhe

Abstract

The directional distribution of a random set Z can be used to quantify its

anisotropy. A method for estimating this quantity from a digitization of Z in

a sampling window, i.e. its pixel image, is presented. The image is analyzed

locally by considering pixel squares of size n � n. This allows to count the

number of di�erent types of n � n con�gurations in the pixel image. In the

present paper, it is shown that it su�ces to restrict attention to the so-called

informative con�gurations. The number of informative con�gurations increases

only polynomially in n. An algorithm to �nd these informative con�gurations

is presented. Furthermore, estimators of the directional distribution based on

counts of observed informative con�gurations are derived. The procedure is

illustrated by a simulated example and an analysis of a microscopic image of

steel.

Keywords: digitization; oriented rose of directions; length density; stationary

random set; mean normal measure

1. Introduction

The rose of normal directions is commonly used for the detection and analysis of

anisotropies in homogeneous planar structures, see Stoyan et al. [8]. For a structure

consisting of �bres, the direct way to obtain the rose of normal directions is to measure

the normal directions from a set of typical points on the �bres, selected with uniform

probability. If the estimation procedure is supposed to be automized or if only digitized
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images are available, the rose is estimated by comparing neighbouring pixels in the

digitized image (see below).

This procedure can also be applied to structures that consist of two or more phases,

considering the phase boundaries. More speci�cally, if Z � R
2 is the (su�ciently

regular) phase of interest, the rose of normal directions of the boundary bdZ can be

determined. It describes the distribution of the normal direction at a typical point of

bdZ. However, it is more natural to consider the distribution of the outer unit normal

vector at a typical point of bdZ, thus using the information that bdZ separates the

two phases Z and its complement ZC . The resulting distribution is called the oriented

rose of normal directions or the directional distribution of Z. The usual procedure to

estimate the rose of normal directions by comparing neighbouring pixels is not su�cient

to estimate the oriented rose. In the present paper, we present a new method, where

not only pairs of pixels but pixel squares of size 2 � 2 or larger are used to analyze

the image. In Kiderlen & Jensen [4], the theoretical basis of the method has been

developed and the information available in pixel squares of size 2�2 has been studied.

In the present paper, the focus is on pixel squares of arbitrary size.

The idea of using pixel squares has been suggested by Ohser et al. [5] and Ohser &

M�ucklich [6] to estimate the length density and the density of the Euler characteristics

of Z. If B and W are two non-overlapping sets that form an n� n pixel square, then

the probability

pB;W (t) := P (tB � Z; tW � ZC) (1.1)

(where t is a scaling factor) can e�ciently be estimated by �ltering the discretized

image. (B stands for `black' points belonging to the random set Z,W for `white' points

not hitting Z.) This is the reason, why we also restrict attention to such subsets B;W .

The number of possible subsets (B;W ) of the n�n pixel square increases exponentially

in n. One of our main �ndings is that for inference on the directional distribution of Z

it su�ces to consider a subset Tn of informative con�gurations (B;W ): The number of

informative con�gurations increases only polynomially in n. Yet, the con�gurations in

Tn lead to the same information on the directional distribution as all pairs of subsets

of the n� n pixel square.

The paper is organized as follows: In the next section we de�ne the mean normal
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measure and the oriented rose of normal directions. Also, the traditional procedure

to estimate the un-oriented rose by comparing neighbouring pixels is recalled in this

section. In Section 3, we describe in more detail how to estimate the probabilities

(1.1) from the discretization of a random set. In Section 4, inference about the

directional distribution of Z based on observation of events of the type tB � Z; tW �

ZC is discussed. An approximation to (1.1), valid for small t, is presented and

discussed in Section 4.1. Furthermore, an algorithm for �nding the set Tn of informative

con�gurations is suggested and a simple procedure for calculating the probability of

observing an informative con�guration is given. In Section 4.2, estimators for the

mean normal measure will be given explicitly for n =2 and 3. A simulated image and a

microscopic image of steel will be analyzed in Section 5, illustrating the new approach.

In Section 6, considerations concerning information are presented.

2. The mean normal measure and the oriented rose

In the following we will specify the notions and concepts used. Consider a random

set Z � R2. We assume stationarity (i.e. homogeneity with respect to all translations).

It is convenient to de�ne the mean normal measure L of Z, the normalization of which

is the oriented rose. L, a measure on the unit circle S1 of R2, has been introduced by

Weil [9], [10]. Consider a subset B of S1 and let NZ(B) be the part of the boundary

of Z with outer unit normal in B, cf. Figure 1. LetW � R2 be a window with positive,

�nite area and let L(NZ(B)\W ) be the length measure of the part of NZ(B) contained

in W .

Figure 1: The set Z is a union of particles of elliptic shape. The set B of directions is the

upper half of S1 (left) while NZ(B) is the thickly drawn part of the boundary of Z (right).
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If we normalize the expected value of L(NZ (B)\W ) with respect to the area A(W )

of W , we obtain the mean normal measure

L(�) =
EL(NZ (�) \W )

A(W )
:

The stationarity of Z ensures that this de�nition is independent of the window W .

The following observation is crucial for the construction of the estimators of L in

Section 4.2: The boundary of a convex particle K (e.g. one of the ellipses in Figure

1) is clearly a closed curve. Mathematically, this can be expressed by saying that the

boundary length measure L(NK (�)) of K has a centroid coinciding with the origin.

The measure L inherits this property and hence we have

Z
S1
u dL(u) = 0: (2.1)

(Recall that an integral on S1 has the following simple interpretation. For f : S1 ! R

we have

Z
S1
f(u)dL(u) =

Z 2�

0

f(cos'; sin')d �L(');

where �L is the mean normal measure represented as a measure on [0; 2�). The centroid

property (2.1) can be written as

Z 2�

0

cos'd �L(') =

Z 2�

0

sin'd �L(') = 0:)

Note that the total mass of the mean normal measure is the length density

LA = L(S1): (2.2)

We will assume throughout the following that 0 < LA < 1 holds. Then, the nor-

malizationRo(�) = L(�)=LA is the oriented rose of normal directions, the quantity, we

are interested in. If we symmetrize Ro, we obtain the (un-oriented) rose of normal

directions of bdZ

R =
1

2
(Ro +R�

o) ;

as we do not distinguish between outer and inner normal directions. Here, R�
o is

obtained from Ro by replacing outer normals with inner normals. (Phrased more

abstractly, the measure R�

o is the reection of Ro at the origin.)
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A digitization (or discretization) of Z is the intersection of Z with a scaled lattice.

For a �xed scaling factor t > 0, we consider Z \ tL, where

L :=Z2 = f(i; j) j i; j 2Zg

is the usual lattice of points with integer coordinates. Other lattices, for example those

with hexagonal cells, have been considered in the literature (e.g. [7]). Although the

methods could be applied to these lattices as well, we restrict here to the usual lattice

as it is the most important for applications. The lattice square

L n := f(i; j) j i; j = 0; : : : ; n� 1g

consists of n2 points (n > 1). A line passing through at least two points of L n will be

called an n{lattice line.

To estimate the (un-oriented) rose of normal directions R from the discretized set

Z \ tL, Serra [7] suggested to consider pairs of lattice points. See also K�arkk�ainen et

al. [2], [3], Ohser & M�ucklich [6] and references therein. If b and w are two points of

the un-scaled lattice, then the probability

pb;w(t) := P(tb2 Z; tw 62 Z) = P(tb2 Z \ tL; tw 62 Z \ tL) (2.3)

can be estimated from the discretized set Z \ tL. Indeed, due to the stationarity of

Z, the relative number of translated point pairs tb + x; tw + x 2 tL in the sampling

window with tb + x 2 Z; tw + x 62 Z yields an estimator for pb;w(t). Under regularity

conditions, we have

lim
t!0+

1

t
pb;w(t) =

1

2

Z
S1
jhb�w; vij dL(v): (2.4)

((2.4) is proved for example in Kiderlen & Jensen [4], under the condition that Z locally

is a �nite union of convex sets with interior points. In what follows, Z will be assumed

to ful�l this condition.) Here, hb �w; vi denotes the usual inner product of b �w and

v. Recall that for two vectors x and y in the plane

hx; yi = kxk � kyk � cos <) (x; y);

where kxk denotes the length of the vector x and <) (x; y) is the angle between the

vectors x and y. Since kvk = 1 for v 2 S1, we thus have for small scaling factors t

pb;w(t)

ktb� twk
:
=

LA
2

Z
S1
j cos <) (b � w; v)jdRo(v): (2.5)
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Formula (2.5) connects observations based on comparison of pairs of points from the

discretized set to an integral transform (the so called cosine transform) of Ro.

As the integrand in (2.5) remains unchanged if v is replaced with �v, Ro and R�
o

have the same cosine transform. Hence, the oriented rose of normal directions Ro

cannot be determined using (2.5). This shows that the information from pairs of

lattice points is not su�cient to determine the oriented rose. Theoretically, the right

hand side of (2.5) determines the un-oriented rose R uniquely, if the normalization of

b� w runs through all of S1 (see e.g. page 379 in Gardner [1]). Note, however, that

using discretized images, the number of point pairs and hence the number of natural

orientations in (2.4) is always �nite. Therefore only approximations of the un-oriented

rose can be obtained this way.

3. Con�guration counts by �ltering

In this section, we will briey describe how counts of n � n con�gurations can be

performed by the simple linear �ltering procedure, described e.g. in Ohser et al.

[5]. An n� n con�guration (with scaling factor t) is a subset tB of the scaled lattice

square tL n. Usually, we will illustrate the con�guration by n � n points such that

elements from tB are shown as `black' points and elements from tW = tL nntB are

shown as `white' points. As an example, for n = 2 the notation

�
� �

� �

�
t

stands for the

pair (tB; tW ) with B = f(0; 0); (1; 0); (1; 1)g and W = f(0; 1)g. The index t indicates

the scaling.

The set of n � n con�gurations is in one-to-one correspondence with the integers

0; 1; : : : ; 2n
2

� 1. One way of establishing this correspondence is as follows. Let us

represent a con�guration given by tB � tL n as an n� n matrix

fzhljh; l = 0; : : : ; n� 1g;

where zhl = 1; if (h; l) 2 B and zhl = 0, otherwise. Furthermore, let Fn be the n � n

matrix with elements

fhl = 2h+nl;
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h; l = 0; : : : ; n� 1. Then, we can associate to the con�guration the number

gB =
n�1X
h=0

n�1X
l=0

zhlfhl:

For instance, for the con�guration

�
� �

� �

�
t

with B = f(0; 0); (1; 0); (1;1)g we get

gB = 1 � 20 + 1 � 21 + 0 � 22 + 1 � 23 = 11:

Let us now consider a binary image of size k �m

Z = fzij ji = 0; : : : ; k � 1; j = 0; : : : ;m� 1g;

where k;m � n and zij = 1; if (it; jt) 2 Z; and zij = 0; otherwise. For each tB � tL n,

we want to count the number of con�gurations of type B in the image, i.e. the number

of translated pairs tB + x; tW + x contained in f0; : : : ; k � 1g � f0; : : : ;m � 1g such

that tB + x � Z and tW + x � ZC . This information is available in the grey-tone

image

G = fgijji = 0; : : : ; k � n; j = 0; : : : ;m� ng

obtained by linear �ltering of Z with Fn. Here,

gij =
n�1X
h=0

n�1X
l=0

zi+h;j+lfhl :

The number of con�gurations of type B is equal to the number of pixels in G with value

gB. This number can be calculated very e�ciently using binary operations, avoiding

the explicit calculation of G, cf. Ohser et al. [5]. The approach is illustrated in

Figure 2.

Figure 2: Illustration of con�guration counts. Here n = 2, k = m = 6, B =

f(1; 0); (0; 1); (1; 1)g, gB = 14 and the number of con�gurations of type B is 3.
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4. The mean normal measure and n� n con�gurations

4.1. Informative con�gurations

In analogy to the classical procedure, we now present a formula connecting the

information obtained from the discretized random set and properties of the mean

normal measure. Let B � L n, n > 1, and W = L nnB such that B and W are disjoint

and together form L n. Generalizing (2.4), Theorem 4 in Kiderlen & Jensen [4]

states that

lim
t!0+

1

t
P(tB � Z; tW � ZC ) =

Z
S1
h(B;W )(�v)dL(v); (4.1)

where

h(B;W )(v) =

�
min
b2B

hb; vi � max
w2W

hw; vi

�+
; v 2 S1: (4.2)

(Here f+ := maxff; 0g denotes the positive part of a function f .) The function h(B;W )

has the following intuitive interpretation: Let S(v) be the (possibly empty) union of

all lines orthogonal to v, separating the sets W and B, in such a way that W lies in

the negative half plane with respect to v. (For a precise de�nition of separation, cf. the

�rst paragraph of Appendix A.) Then h(B;W )(v) is equal to the width of the strip

S(v), cf. Figure 3.

This interpretation is intuitive and shows that for small t, the boundary of Z can

be thought of as a line g with outer unit normal v: The probability that a n � n-

square `randomly thrown on g' allows the observation of the con�guration (B;W ) is

proportional to the probability that g lies in S(v), which in turn is proportional to the

width of S(v).

De�nition (4.2) shows that h(B;W ) is invariant under simultaneous translations of

B and W . Moreover,

h(B;W )(�v) = h(W;B)(v)

and

h(#B;#W )(#v) = h(B;W )(v)

for any v 2 S1 and any rotation # �xing the origin. Note that if L is symmetric, the

integral in (4.1) remains the same if B and W are interchanged.
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Figure 3: Illustration of the function h(B;W ). For details, see text.

Several n � n con�gurations (B;W ) can lead to the same function h(B;W ). As

an important example, consider the pair (B;W ) and de�ne the twin pair (B;W )� of

(B;W ) by (B;W )� = (B0;W 0) with

B0 := �n(W ); W 0 := �n(B):

Here �n denotes the reection of a set at the midpoint ((n � 1)=2; (n� 1)=2) of L n.

Thus, (B0;W 0) is obtained by a reection and a subsequent interchange, an operation,

we will call reection-switch in the following, cf. Figure 4. From the de�nition of

h(B;W ), it follows that

h(B;W )� = h(B;W ):

Figure 4: Consecutive reection and switch of a con�guration leading to its twin.

It is clear that the number of possible choices of (B;W ) (with ; 6= B, ; 6= W ,

B[W = L n, B\W = ;) is increasing exponentially in n: there are 2n
2

�2 such choices.

But for most choices of (B;W ), the function h(B;W ) is identically zero, meaning that the

probability of observing such a con�guration goes to zero, as t! 0+ : A con�guration

(B;W ) with a non-identically zero h(B;W ) is called an informative con�guration. From

the geometric interpretation of h(B;W ), it follows that (B;W ) is informative if and only
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if there is an n�lattice line separating B and W and not hitting both of them. (Here,

Lemma 1 in the Appendix has been used.) For a given n > 1, the algorithm below

determines the set Tn of informative n� n con�gurations.

Algorithm 1

0. Set Tn := ;.

1. Choose an n-lattice line g. Decompose L n in g \ L n, H+ and H� where H+

and H� are the remaining lattice points on each side of g.

1.1. Put B = g [H+ and W = H�. If W is not empty, then include (B;W )

and its twin (B;W )� in Tn.

1.2. Put B = g [H� and W = H+. If W is not empty, then include (B;W )

and its twin (B;W )� in Tn.

2. Repeat 1. until all n-lattice lines have been considered.

3. Tn is the output.

Note that the number of informative con�gurations is at most of order n4:

It is important to have a simple way to determine the h function for a particular

informative con�guration. The theorem below gives such a simple description. The

proof of this result can be found in Appendix A.

Theorem 1. Let (B;W ) 2 Tn be an informative con�guration. Then, there exist

vectors a; b 2 R2 such that

h(B;W )(�v) = minfha; vi+; hb; vi+g (4.3)

for all v 2 S1.

The construction of a and b for a given informative con�guration (B;W ) will be

explained in the Appendix. For n = 2 and 3, the values of a and b are part of

Table 1 and 2 below. A main step in the construction of a and b is to �nd a reduced

con�guration (B0;W 0) such that B0 � B, W 0 � W , jB0j � 2; jW 0j � 2 and such that

any line separating B0 and W 0 separates also B and W . See also Figure 5.
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Figure 5: An example of an informative 3� 3 con�guration (left) and its associated reduced

con�guration (right) where the dots indicate that the corresponding pixel may be black or

white.

In the following table we list the output of Algorithm 1 for n = 2 together with the

values for a and b. If the column for the twin pair contains `(s)', then the pair (B;W )

under consideration is a self-twin, i.e.

(B;W )� = (B;W ):

There are 8 groups of con�gurations in Tn for n = 2: They are ordered according to

increasing angle of a+ b with the x�axis.

No. con�g. twin a b

1

�
� Æ

� Æ

�
t

(s)

�
1
1

� �
1
�1

�

2

�
� Æ

� �

�
t

�
Æ Æ

� Æ

�
t

�
0
1

� �
1
0

�

3

�
Æ Æ

� �

�
t

(s)

�
�1
1

� �
1
1

�

4

�
Æ �

� �

�
t

�
Æ Æ

Æ �

�
t

�
0
1

� �
�1
0

�

5

�
Æ �

Æ �

�
t

(s)

�
�1
1

� �
�1
�1

�

6

�
� �

Æ �

�
t

�
Æ �

Æ Æ

�
t

�
�1
0

� �
0
�1

�

7

�
� �

Æ Æ

�
t

(s)

�
�1
�1

� �
1
�1

�

8

�
� �

� Æ

�
t

�
� Æ

Æ Æ

�
t

�
1
0

� �
0
�1

�

Table 1: The 8 groups of con�gurations in Tn for n=2.

For n = 3, we obtain the following table, where con�gurations with the same

values of a and b are grouped. Each group consists of at most two con�gurations
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and their twins. The �rst 16 groups are ordered as follows. For con�guration No. i

with corresponding ai and bi according to Table 2, let vi be the unit vector for which

the function

hai;bi(v) = minfhai; vi
+; hbi; vi

+g: (4.4)

attains its maximum. Hence, vi is the `most probable' outer unit vector of Z given

con�guration No. i. Explicitly, vi is the normalization of �iai + �ibi with

�i := kbik
2 � hai; bii; �i := kaik

2 � hai; bii:

(It turns out that the set of the 16 directions fv1; : : : ; v16g is also the set of all directions

of n-grid lines for n = 3.) The con�gurations No. 1; : : : ; 16 are now ordered according

to increasing angles of vi with respect to the x-axis. The last 4 groups are related to

the previous groups in the following way. Let

Ii =

Z
S1

hai;bi(v)dL(v); i = 1; : : : ; 20:

Then, Ii; i = 17; 18; 19; 20, can be expressed in terms of the other integrals, since

Ii+16 = I4i�2 + I4i�1 + I4i; i = 1; 2; 3; 4: (4.5)

The result (4.5) is most easily shown by direct calculation.
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No. con�g. twin con�g. twin a b

1

h
� Æ Æ

� Æ Æ

� Æ Æ

i
t

h
� � Æ

� � Æ

� � Æ

i
t

- -

�
1

2

� �
1

�2

�

2

h
� Æ Æ

� Æ Æ

� � Æ

i
t

h
� Æ Æ

� � Æ

� � Æ

i
t

h
� � Æ

� � Æ

� � �

i
t

h
Æ Æ Æ

� Æ Æ

� Æ Æ

i
t

�
0

1

� �
1

�1

�

3

h
Æ Æ Æ

� Æ Æ

� � Æ

i
t

h
� Æ Æ

� � Æ

� � �

i
t

- -

�
�1

2

� �
2

�1

�

4

h
� Æ Æ

� � �

� � �

i
t

h
Æ Æ Æ

Æ Æ Æ

� � Æ

i
t

h
Æ Æ Æ

� Æ Æ

� � �

i
t

h
Æ Æ Æ

� � Æ

� � �

i
t

�
�1

1

� �
1

0

�

5

h
Æ Æ Æ

� � �

� � �

i
t

h
Æ Æ Æ

Æ Æ Æ

� � �

i
t

- -

�
�2

1

� �
2

1

�

6

h
Æ Æ �

� � �

� � �

i
t

h
Æ Æ Æ

Æ Æ Æ

Æ � �

i
t

h
Æ Æ Æ

Æ Æ �

� � �

i
t

h
Æ Æ Æ

Æ � �

� � �

i
t

�
1

1

� �
�1

0

�

7

h
Æ Æ �

Æ � �

� � �

i
t

h
Æ Æ Æ

Æ Æ �

Æ � �

i
t

- -

�
1

2

� �
�2

�1

�

8

h
Æ � �

Æ � �

� � �

i
t

h
Æ Æ Æ

Æ Æ �

Æ Æ �

i
t

h
Æ Æ �

Æ Æ �

Æ � �

i
t

h
Æ Æ �

Æ � �

Æ � �

i
t

�
0

1

� �
�1

�1

�

9

h
Æ � �

Æ � �

Æ � �

i
t

h
Æ Æ �

Æ Æ �

Æ Æ �

i
t

- -

�
�1

2

� �
�1

�2

�

10

h
� � �

Æ � �

Æ � �

i
t

h
Æ Æ �

Æ Æ �

Æ Æ Æ

i
t

h
Æ � �

Æ Æ �

Æ Æ �

i
t

h
Æ � �

Æ � �

Æ Æ �

i
t

�
�1

1

� �
0

�1

�

11

h
Æ � �

Æ Æ �

Æ Æ Æ

i
t

h
� � �

Æ � �

Æ Æ �

i
t

- -

�
�2

1

� �
1

�2

�

12

h
� � �

Æ Æ �

Æ Æ Æ

i
t

h
� � �

Æ � �

Æ Æ Æ

i
t

h
� � �

� � �

Æ Æ �

i
t

h
Æ � �

Æ Æ Æ

Æ Æ Æ

i
t

�
�1

0

� �
1

�1

�

13

h
� � �

Æ Æ Æ

Æ Æ Æ

i
t

h
� � �

� � �

Æ Æ Æ

i
t

- -

�
�2

�1

� �
2

�1

�

14

h
� � �

� Æ Æ

Æ Æ Æ

i
t

h
� � �

� � Æ

Æ Æ Æ

i
t

h
� � �

� � �

� Æ Æ

i
t

h
� � Æ

Æ Æ Æ

Æ Æ Æ

i
t

�
1

0

� �
�1

�1

�

15

h
� � Æ

� Æ Æ

Æ Æ Æ

i
t

h
� � �

� � Æ

� Æ Æ

i
t

- -

�
2

1

� �
�1

�2

�

16

h
� � Æ

� Æ Æ

� Æ Æ

i
t

h
� � Æ

� � Æ

� Æ Æ

i
t

h
� � �

� � Æ

� � Æ

i
t

h
� Æ Æ

� Æ Æ

Æ Æ Æ

i
t

�
1

1

� �
0

�1

�

17

h
� � Æ

� � �

� � �

i
t

h
Æ Æ Æ

Æ Æ Æ

� Æ Æ

i
t

- -

�
0

1

� �
1

0

�

18

h
Æ � �

� � �

� � �

i
t

h
Æ Æ Æ

Æ Æ Æ

Æ Æ �

i
t

- -

�
0

1

� �
�1

0

�

19

h
� � �

� � �

Æ � �

i
t

h
Æ Æ �

Æ Æ Æ

Æ Æ Æ

i
t

- -

�
�1

0

� �
0

�1

�

20

h
� � �

� � �

� � Æ

i
t

h
� Æ Æ

Æ Æ Æ

Æ Æ Æ

i
t

- -

�
1

0

� �
0

�1

�

Table 2: The 20 groups of pairs in Tn for n=3.
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4.2. Estimation of the mean normal measure

In this section, we will discuss how to estimate the mean normal measure from

observations of the di�erent types of n� n con�gurations.

Let us group the set of con�gurations into types such that con�gurations of the

same type have the same h function. Let kn be the number of types. For instance,

k2 = 8 and k3 = 20; cf. Table 1 and 2. Let ai and bi be the vectors associated with the

ith type of informative con�guration and mi the number of con�gurations of type i,

i = 1; : : : ; kn: The non-informative con�gurations will be combined in type 0. Recall

that the non-informative con�gurations consist of (B;W ) for which either B = ; or

W = ; or there is no n�lattice line separating B and W and not hitting both of them.

Let the mean normal measure L be parametrized by � 2 �, where � is a subset of

R
d, say. Let L� be the notation used for the mean normal measure with parameter �

and let

Ii(�) =

Z
S1
hai;bi(v) dL�(v); i = 1; : : : ; kn;

be the corresponding parametrized integrals where hai;bi is given in (4.4). Then,

according to (4.1) and Theorem 1, the probability of observing a type i con�guration

is for small t, approximately,

pi(�) = tmiIi(�); i = 1; : : : ; kn:

Clearly, the probability of observing a non-informative n� n con�guration is then for

small t, approximately,

p0(�) = 1�
knX
i=1

pi(�):

Now, let us suppose that we have observed ni con�gurations of type i, i = 0; 1; : : : ; kn.

As suggested in Kiderlen & Jensen [4], we will use as estimate of � a value �̂ 2 �,

at which

`(�) =
knX
i=0

ni lnpi(�) = n0 ln(1 �
knX
i=1

tmiIi(�)) +
knX
i=1

ni ln(tmiIi(�)) (4.6)

is maximal (if such a value exists). The use of ` is motivated by statistical arguments.

In particular, ` is closely related to the divergence of the observed frequencies from the

corresponding probabilities pi(�); i = 0; : : : ; kn:
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Let us discuss in more detail how the estimation can be done in the case where L is

a discrete measure. Assume that it is concentrated on d directions v1; : : : ; vd and that

L = L� is parametrized by � = (�1; : : : ; �d), where �i is the mass at the ith direction

vi, i = 1; : : : ; d. Because of (2.1), the parameters must satisfy

dX
i=1

�i cos'i = 0;
dX
i=1

�i sin'i = 0: (4.7)

Under the discrete model, the integrals Ii(�) are linear functions of �. It can then be

shown by straightforward methods that the function ` in (4.6) is a concave function.

The problem of �nding the maximum of ` is thereby a concave optimization problem

with linear constraints and can be solved by using standard software such as GAMS.

Let us suppose that n = 2 such that 2� 2 con�gurations are observed. Let d = 8.

For the directions v1; : : : ; v8 we choose the sides and diagonals of the 2 � 2 lattice

square, where v1; : : : ; v8 are ordered according to increasing angles with respect to the

x-axis, starting with v1 = (1; 0). Then

Ii(�) = �i�i; i = 1; : : : ; 8; (4.8)

where

�i = max
v2S1

hai;bi(v) = hai;bi(vi); i = 1; : : : ; 8;

and (ai; bi) is given in Table 1. For n = 2, the problem is thereby to maximize (4.6),

where Ii(�) is given in (4:8), subject to the linear side conditions in (4.7) and

�i � 0; i = 1; : : : ; 8;
8X

i=1

tmiIi(�) � 1:

Here, mi = 1 for i odd and mi = 2 for i even.

For n = 3, we again assume a discrete model supported by the lattice directions,

i.e. by the 16 possible directions of 3-grid lines v1; : : : ; v16. Again, we order these

according to increasing angle starting with v1 = (1; 0). Then

Ii(�) =

8<
:

�i�i i = 1; : : : ; 16P2
j=0�4(i�16)�j�4(i�16)�j i = 17; 18; 19; 20;

(4.9)

where

�i = max
v2S1

hai;bi(v) = hai;bi(vi); i = 1; : : : ; 16:
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For n = 3, the problem is thereby to maximize (4.6), with Ii(�) given in (4.9), subject

to the linear side conditions given in (4.7) and

�i � 0; i = 1; : : : ; 16;
20X
i=1

tmiIi(�) � 1:

Here, mi = 2 or 4, see Table 2.

5. Examples

In this section, we give two examples of how the suggested methods work in practice.

The �rst example is based on a discretization of a simulated Boolean model. Boolean

models are widely used as simple geometric models for random sets. They are obtained

as unions of random particles, attached to uniform points (the germs) in a sampling

window. (The particles are independent from one another and from the germs. Also,

the model has to be simulated in a window which is larger then the target window

to avoid edge e�ects.) The Boolean model depends on two parameters: The mean

number of particles (germs) per unit area and the random particle, also called typical

particle. The following simulations have in average 35 particles per unit area. The

typical particle

K0 := �fx = (x1; x2) 2 R
2
�� kxk � 1; x1 � 0g

is the right half of the unit disk, randomly scaled with the random variable �, chosen

uniformly in [0:05; 0:15]. Figure 6 shows a realization of Z and its digitization with

respect to the lattice tZ2, t = 0:04.

For the estimation of the mean normal measure, we decreased t to the value 0:01

and estimated the measure as described in Section 4.2, using 2� 2 con�gurations and

3� 3 con�gurations, respectively.

The estimated distributions are conveniently illustrated by the use of the Blaschke

body. The Blaschke body B(Z) of Z is a geometrical representation of the mean normal

measure. It is (up to translation) the uniquely determined compact convex set whose

boundary measure L(NZ (�)) equals L (see Figure 1 and the de�nition of NZ , there).

If, for example, Z is isotropic, then L is up to normalization the uniform distribution
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Figure 6: Realization of the Boolean model in the unit square and its digitization.

on S1 and B(Z) is a disc. If Z has a boundary consisting of line segments with �nitely

many directions, then L is a measure with �nitely many support points and B(Z)

is a convex polygon. In the present example, Z is a Boolean model, hence B(Z) is

up to translation and scaling equal to the mean typical grain, which is a half-disc.

The estimation procedures described yield a (�nitely supported) approximation of the

mean normal measure. An approximation of the Blaschke body can easily be obtained

from these: Order the support points according to increasing angles with respect to

the x-axis and draw a polygon as follows: a line segment with the direction of the �rst

support point and length equal to the corresponding mass is drawn (starting e.g. at

the origin). At its end-point a line segment with the direction of the second support

point and length equal to its mass is appended. Continuation of this procedure for all

support points leads to a polygon. The condition (4.7) is crucial now: it guarantees

that the polygon will be closed. It is also convex, and its counterclockwise rotation

with 90� leads to the desired approximation of B(Z).

Figure 7: Analysis of the Boolean model: The estimates for the Blaschke body for n = 2

(left), n = 3 (middle) and the exact Blaschke body (right).
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The results of the estimation procedure, based on one digitized realization of Z is

shown in Figure 7.

Figure 8: Binary image of rolled stainless steel in a longitidial section (courtesy J. Ohser).

The white phase is ferrite, the black phase is austenite.

We also analyzed a binary image, showing the microstructure of steel, cf. Figure 8.

An earlier analysis can be found in [6], p.137{139, using pairs of pixels only. The

estimates of the mean normal measure based on observations of 2 � 2 and 3 � 3

con�gurations, respectively, are shown in Figure 9. Again, the representation in terms

of the Blaschke body is used. The estimators are both (almost) centrally symmetric.

This indicates that the mean normal measures of black and white phase coincide here.

Figure 9: The estimators for the Blaschke body of the steel sample in the cases n = 2 (left)

and n = 3.

Finally we want to address the problem of non-su�cient resolution. It is clear that

the estimation procedure is unreliable, if the features of Z are very small compared to

the scaling t. To quantify this unreliability, we suggest to count the relative number �

of non-informative con�gurations, excluding the two con�gurations of completely black
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and completely white n� n squares. For n = 2 there are only two such con�gurations

�
� �

� �

�
t

and

�
� �

� �

�
t

:

The number � can be determined together with the numbers of informative con�gura-

tions. It depends on the scaling t. According to (4.1), � is close to 0, if t is su�ciently

small. As a rule of thumb, we suggest to accept the resolution if � is at most 1%.

Otherwise either t or n must be decreased.

6. Some considerations concerning information

According to Table 1, observation of 2� 2 con�gurations gives information about 8

integrals of the type

Z
S1
ha;b(v)dL(v); (6.1)

where a and b are listed in Table 1. If instead we only compare pairs of points we get

information about integrals of the form

1

2

Z
S1
jhb� w; vij dL(v); (6.2)

cf. (2.4), where b and w are pairs of di�erent points in the 2� 2 lattice square. There

are only 4 di�erent values of (6.2) in the 2� 2 case. If L is symmetric the eight values

in (6.1) are pairwise equal, and there is no gain of information in considering pairs of

subsets instead of pairs of points.

For n = 3, the situation is more complex. We have information on 20 integrals of

the type (6.1), cf. Table 2, and 8 of the type (6.2). The last 4 integrals of the type (6.1)

can be expressed in terms of the 16 previous ones, cf. (4.5), but observing the number

of 3 � 3 con�gurations of the last 4 types still provides extra statistical information.

If L is symmetric, the 20 values of (6.1) reduce to 10. There is here still a statistical

gain in information, considering subsets instead of points.
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Appendix A. Proof of Theorem 1

To proof Theorem 1, we �rst show two lemmas. We will need separation of compact

subsets B and W of R2: B and W are called separable if there is a line g such that

B and W lie on di�erent sides of g. (More precisely, writing H+ and H� for the two

closed half planes bounded by g, we require B � H+ and W � H�, or vice versa.)

B and W � R2 are called strictly separable if there is a line g separating the two sets

without hitting them. Two subsets B and W of L n are called n-separable, if there is

an n-lattice line separating B and W and not hitting both of them. n-separation is

the digitized notion for strict separation of subsets of L n:

Lemma 1. Two subsets B and W of L n can be strictly separated if and only if they

can be n-separated.

Proof. Consider B; W � L n. Clearly n-separation implies strict separation, as

the sets are �nite. To show that strict separation implies n-separation, a suitable

translation and rotation can be applied to the strictly separating line.

Consider a partition of L n consisting of two n-separable subsets B andW . If we are

only interested in the set of lines separating B and W , these sets can be replaced by

considerably smaller subsets of L n, see Figure 5. This is made precise in the following

lemma, which makes essential use of the regular structure of L n.

Lemma 2. Assume B and W are n-separable nonempty, disjoint sets with B [W =

L n. Then there are sets B0 � B and W 0 � W with jB0j � 2; jW 0j � 2 and such that

any line separating B0 and W 0 separates also B and W .

More precisely, if g is the n-lattice line separating B and W , hitting only B, say,

then we can chose B0 to consist of the two most distant points in g \ B and W 0 to

consist of the two (possibly coinciding) most distant points in ~g \ W where ~g is the

separating line parallel to g with ~g \W 6= ;.
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Proof. Let B andW form a partition of L n consisting of two nonempty, n-separable

sets. As in the formulation of the Lemma, let g be the n-lattice line separating B and

W hitting only B and B0 := fb1; b2g be the set of the two most distant points in B\g.

Furthermore, let ~g be the line parallel to g, separating B and W and hitting W . Let

W 0 := fw1; w2g be the set of the two most distant points in W \ ~g. If W 0 consists of

two points, we assume that the lines h1 =a�fb1; w1g (`a�' stands for a�ne hull) and

h2 =a�fb2; w2g have an intersection in the open strip S between g and ~g (if not, the

names of w1 and w2 have to be interchanged). Note that the width of S is positive.

To show that all lines separating B0 and W 0 also separate B and W , it is enough to

show that h1 and h2 separate B and W . We concentrate on h1, the other line can be

treated analogously. We show by contradiction that there is no point of W in the open

half plane Hh1 which is de�ned by its bounding line h1 and the assumption b2 2 Hh1 .

That the other open half plane associated to h1 contains no points of B can then be

treated the same way.

Assume that there is an a 2W \Hh1 (see Figure 10). As all points of W lie in the

closed half plane H~g bounded by ~g and not containing g, we have a 2 Hh1 \H~g. This

wedge can be further restricted by the following consideration: Let b be the point of

(B \ g) n fb1g closest to b1. We will use later that due to this de�nition, there are no

points in g\L n between b and b1 on g. Let ~h1 be the line parallel to h1 passing through

b, and H~h1
the open half plane bounded by ~h1 containing w1. We have a 2 H~h1

, for

the following reason: If we assume that a 62 H~h1
, then the point z := ~h1 \ ~g lies in the

convex hull of b; w1 and a, and as all these points are in L n, we have z 2 [0; n� 1]2.

But z 2 Z2, as z = b + (w1 � b1). Thus, z 2 L n, and as z 2 ~g we have z 2 W ,

contradicting the property of w1 being the most distant point from w2. We conclude

that

a 2 Hh1 \H~h1
; (A.1)

i.e. a is contained in a strip parallel to h1.

Put v := w1 � b1 2Z2 and let Sg := S [ g the `one sided closure' of S. As a 2 H~g,

there is a unique m 2 N such that a is contained in the shifted strip Sg +mv. Hence

the shifted point a0 := a�mv 2Z2 lies in Sg . As v is the direction of the lines h1 and
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rb1

rb

rb2

g

bw1

b
z

~g

h1

~h1

b
a

Sg Sg+mv

Figure 10: Separation of B and W , where only the relevant lattice points are included.

~h1, we conclude using (A.1) that

a0 2 P;

where P is the half open parallelogram Sg \Hh1 \H~h1
. It is clear that a0 lies in the

convex hull of a; b and b1 and so, with arguments as before, a0 2 L n = B [W . Hence,

a0 2 P \ L n:

But this is impossible, as S does not contain any point of L n and g does not contain

any point of L n between b and b1. This proves that there are no points in W \Hh1

and the Lemma is shown.

Proof of Theorem 1

Let (B;W ) be an informative con�guration. This means that h(B;W ) is not identically

zero and hence B and W are strictly separable. According to Lemma 1, B and W are

n�separable, so there exist sets B0 � B and W 0 �W , having the properties described

in Lemma 2. Using the geometric interpretation of the h function, see e.g. Figure 3,

it is clear that h(B;W ) = h(B0;W 0). Let B
0 = fb1; b2g and W 0 = fw1; w2g. As at least

one of the sets constructed in Lemma 2 consists of two points, we can assume without

loss of generality that b1 6= b2 and that

w1 �w2 = t(b1 � b2); for some t � 0: (A.2)
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We will show that

h(B0;W 0)(�v) = minfhw2 � b1; vi
+; hw1 � b2; vi

+g; v 2 S1; (A.3)

which clearly implies Theorem 1 with a = w2 � b1, b = w1 � b2:

First note that

h(B0;W 0)(�v) =

�
min
w2W 0

hw; vi �max
b2B0

hb; vi

�+
: (A.4)

It is easy to show (A.3) for t = 0: For t > 0 the condition (A.2) implies that

hw1; vi � hw2; vi , hb1; vi � hb2; vi: (A.5)

In order to prove (A.3), suppose that

hw1; vi � hw2; vi: (A.6)

Then, because of (A.4) and (A.5), we have

h(B;W )(�v) = [hw1 � b2; vi]
+ = minfhw2 � b1; vi

+; hw1 � b2; vi
+g:

The last equality holds, as (A.5) and (A.6) imply that hw1 � b2; vi � hw2 � b1; vi.

The proof of (A.3) in the case hw1; vi > hw2; vi is analogous.
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