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Abstract

We de�ne a class of tessellation models based on perturbing or deforming

standard tessellations such as the Voronoi tessellation. We show how

distributions over this class of `deformed' tessellations can be used to de�ne

prior distributions for models based on tessellations, and how inference for

such models can be carried out using Markov chain Monte Carlo methods;

stability properties of the algorithms are investigated. Our approach applies

not only to �xed dimension problems, but also to variable dimension problems,

in which the number of cells in the tessellation is unknown. We illustrate

our methods with two real examples. The �rst relates to reconstructing animal

territories, represented by the individual cells of a tessellation, from observation

of an inhomogeneous Poisson point process. The second example involves the

analysis of an image of a cross-section through a sample of metal, with the

tessellation modelling the micro-crystalline structure of the metal.
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1. Introduction

A major topic in stochastic geometry is random tessellations. Briey, a tessellation

of a d-dimensional Euclidean space is a subdivision of the space into non-overlapping

d-dimensional sets called cells. Joseph Mecke is one of the main contributors to the

development of a general theory for random tessellations, cf. Chapter 10 in [27] and

the references therein. In particular his approach of Palm measure theory has proven

to be very successful, and has indeed been of great value for one of us, see e.g. [15, 16,

17, 18, 19].

So far, research on random tessellations has focused rather on mathematical mod-

elling and analysis than statistical aspects. Some recent exceptions are the work in

[21, 1, 2, 20] which are all based on a Bayesian Markov chain Monte Carlo (MCMC)

approach. We �nd that such an approach is both natural and very useful for many

statistical applications of random tessellations, partly because of the complicated struc-

tures and models used and partly because some prior knowledge is often available. The

abovementioned papers are all related to particular applications, and there is indeed

scope for a further development of Bayesian MCMC methods for random tessellations.

In this paper we present a way of modelling exible priors for random deformations

of tessellation models, discuss how a Bayesian MCMC analysis can be performed, and

illustrate the methodology on some real datasets. The idea of using deformed templates

for Bayesian image problems goes at least back to the seminal work by Ulf Grenander,

see e.g. [11, 12].

In Sections 2 and 3, for simplicity and speci�city we restrict attention to a template

given by a planar Voronoi tessellation [17, 27, 22]. Speci�cally, we consider �rst

a Voronoi tessellation de�ned on a convex compact set S � R
2 , with non-empty

interior intS and boundary @S. This is generated by a �nite point con�guration

x = fx1; : : : ; xng � R
2 of \nuclei" so that the Voronoi cell with nucleus xi is given by

C(xijx) = fs 2 S : ks� xik � ks� xjk for all j 6= ig; i = 1; : : : ; n:

An example is shown in Figure 1. A nonempty intersection between two or more cells

is either empty, a single point called a vertex of V (x), or a bounded line segment (of

positive length) called an edge of V (x). Let V(x) be the set of vertices of V (x), and

assume that
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Figure 1: A Voronoi tessellation

(C1) V(x) � intS and no edge of V (x) has more than two intersection points with

@S.

Such intersection points are called boundary vertices of V (x).

Next each vertex vj 2 V(x); is translated or perturbed by a vector zvj 2 R
2 ; in the

sequel we abuse notation and write zj for zvj . We assume that this creates vertices

v0j = vj+zj ; vj 2 V(x); of a new tessellation of S with the same connectivity structure

as in V (x). Figure 2 shows a Voronoi tessellation and its perturbation. More precisely

we assume that

(C2) the perturbed vertices are pairwise di�erent and contained in intS;

(C3) the perturbed edges are disjoint except possibly at their endpoints.

Clearly, (C2) and (C3) ensure that the perturbed edges de�ne a new tessellation of

S with cells, edges and vertices which are in one-to-one correspondence with those of
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Figure 2: A perturbation of a Voronoi tessellation

V (x). This perturbed (or deformed) tessellation is denoted V (x; z) where z = fzj :

vj 2 V(x)g � R
2 speci�es the associated \disturbances". The Voronoi cells are convex,

while the cells of V (x; z) are possibly nonconvex. However both types of cells are

polygonal except possibly at the boundary edges.

Our approach is easiest to understand, and to implement, in the case where the

point con�guration of nuclei x is �xed, since the connectivity structure of V (x), and

hence the dimension of the problem, is then �xed and known. Section 2 considers this

case, while Section 3 concerns the case where x is random. Note that we do not perturb

the boundary vertices of V (x). Our approach may easily be extended to this case, cf.

Section 4, but we imagine that S is so large that perturbing the boundary vertices of

V (x) is not needed or may even be unnatural. For the same reason we henceforth let x

be contained in S. For example, in Section 3.3, the disturbed tessellation is observed

within an observation window W � S, where S is chosen to be suÆciently larger than

W in order to account for edge e�ects.
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Given (x; z) and various hyperparameters introduced in Sections 2 and 3, di�erent

types of data and observation models are considered in the application examples in

Sections 2.3, 3.3 and 3.4. In Sections 2.1 and 3.1 we combine the observation model with

a prior for (x; z) and the hyperparameters to obtain a posterior distribution for nuclei,

perturbations and hyperparameters. Then in Sections 2.2 and 3.2 we construct various

algorithms for making MCMC simulations from the posterior, and demonstrate their

performance for making Bayesian inference in Sections 2.3, 3.3 and 3.4. Furthermore,

in Sections 2.3, 3.3 and 3.4, we investigate the stability properties of our MCMC

algorithms.

The data in Sections 2.3 and 3.3 is a point pattern of badger latrines, and the

observation model is the same as in [2], namely an inhomogeneous Poisson process

with an intensity that is related to the deformed tessellation. The data in Section 3.4

is a noisy blurred grey-scale image of the grain structure in a two-dimensional cross-

section through a sample of metal. In both case the aim is to reconstruct the unobserved

tessellation and study the uncertainty of various tessellation characteristics.

Finally, Section 4 contains some concluding remarks. In particular, we discuss

how our approach easily extends to other types of template models for polygonal

tessellations than just Voronoi tessellations.

Since MCMC methods are not very widely used by stochastic geometers, we presume

only a limited knowledge, but the reader should at least be familiar with the Metropolis-

Hastings algorithm in a fairly general setting | for background material on MCMC,

see e.g. [9] or [23].

Besides the notation introduced above, we use the following notation throughout this

paper. Let 1(x;z) denote the indicator function of the event that (C1){(C3) are satis�ed.

Let N(�;�) denote the bivariate normal distribution with mean � and covariance

matrix �, and let '(s;�2) = exp(�ksk2=(2�2))=(2��2) be the density for N(0; �2I)

where �2 > 0 and I is the identity matrix. Finally, let n(A) denote the cardinality of

any �nite set A.
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2. Deformation of Voronoi tessellations with �xed nuclei

Throughout this section we let the nuclei x be �xed and assume that (C1) is satis�ed.

We often suppress in the notation the dependence on x.

2.1. Speci�cation of prior and posterior distributions

To begin with the disturbances z are taken to be independent with density '(s;�2)

subject to (C2) and (C3) holding. Thus the prior for the disturbances z given �2 is

�(zj�2) = c(�2)
Y
V(x)

'(zj ;�
2)1(x;z) (1)

where c(�2) is a normalising constant which depends on �2. Note that a closed

form expression for c(�2) is unknown. An obvious way to complete the prior for

the perturbed tessellation would be to take a conjugate prior �(�2) for �2, say �2 �

InverseGamma(a1; a2) where a1; a2 > 0 are user-speci�ed parameters (see Section 2.3),

and then let

�(z; �2) = �(zj�2)�(�2)

/ c(�2)
Y
V(x)

'(zj ;�
2)1(x;z)(�

2)�(a1+1) exp(�a2=�
2): (2)

This conditional formulation, although natural, would however lead to diÆculties in

any Metropolis-Hastings implementation because c(�2) is unknown. Speci�cally, the

Hastings ratio for a proposal �2 ! ~�2 would depend on c(�2)=c(~�2). In principle this

ratio of normalising constants may be estimated by e.g. path sampling [6], but this

would be computationally demanding.

Instead, we de�ne a joint prior for z and �2 directly by

�(z; �2) /
Y
V(x)

'(zj ;�
2)1(x;z)(�

2)�(a1+1) exp(�a2=�
2): (3)

This formulation is not identical to that in (2), since c(�2) 6= 1 and the marginal prior

for �2 is no longer exactly InverseGamma(a1; a2), but the conditional prior distribution

(1) is the same in the two models. Furthermore, the marginal priors for �2 may often

be expected to be rather close, as the case of small perturbations is likely to be the

most relevant in practical applications. More speci�cally c(�2) is close to 1, when �2
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is suÆciently small that (C2) and (C3) almost always hold under the model (2). For

the rest of this section, we consider the model de�ned in (3).

As well as the prior for the tessellation, we need to consider the model generating

observations conditional on the tessellation, and the prior for its parameters. For the

present, we write � for the (possibly vector) parameter of that model, assume � to

be independent of (z; �2) with prior �(�), and write L(yjx; z; �) for the likelihood for

observations y (this is what we called the observation model in Section 1). Examples

of likelihoods are given in Sections 2.3 and 3.3.

Finally, combining the prior and the likelihood terms we obtain the posterior density

�(z; �2; �jy) /
Y
V(x)

'(zj ;�
2)1(x;z)(�

2)�(a1+1) exp(�a2=�
2)L(yjx; z; �)�(�):

2.2. MCMC implementation

We can now specify a MCMC algorithm generating a Markov chain with the poste-

rior 2.1 as its equilibrium distribution. We use a so-called hybrid algorithm (sometimes

also called a Metropolis-within-Gibbs algorithm) with separate updates for z, �2 and

�; speci�c updating schemes are given in Sections 2.3, 3.3 and 3.4. We denote the

generic current state of the chain by (z; �2; �), and assume that it is in the support of

the posterior, i.e. 1(x;z) = 1 and �2 > 0. Updating for � depends on the form of the

likelihood, cf. Section 2.3, so in the present section we just describe the updates of z

and �2.

To update z, we �rst choose some random set of vertices V � V(x); a single random

vertex, the vertices associated with a random nucleus or the whole of V(x) are obvious

choices, but any scheme which picks each vertex with positive probability and which

does not depend on z could be used. We then propose disturbances z0, with

z0j � N(zj ; �
2
z I)

independently for each zj corresponding to a vertex in V , and z0j = zj otherwise. The

Hastings ratio for such a proposal is

r(z; z0j�2; �) =

Q
V '(z

0
j ;�

2)1(x;z0)L(yjx; z
0; �)Q

V '(zj ;�
2)L(yjx; z; �)

= exp
�X

V

�
jjzj jj

2 � jjz0j jj
2
�
=(2��2)

�
1(x;z0)L(yjx; z

0; �)=L(yjx; z; �)
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and the acceptance probability is 1 ^ r(z; z0j�2; �).

To update �2, we use Gibbs sampling, exploiting the fact that

�2jz; y � InverseGamma(a1 + n(V(x)); a2 +
1

2

X
V(x)

jjzj jj
2):

2.3. Reconstruction of badger territories

In practice, this framework is rather limited in its applicability, because of the

assumption that the nuclei are known. A case where this assumption is natural is in

the reconstruction of animal territories where nest sites or the equivalent are known.

[2] gives an example concerning the reconstruction of badger (Meles meles) territories

when the locations of their setts (burrows) are known. That paper concentrates on the

case where the tessellation is assumed to be Voronoi, but the nuclei are not precisely

known; they are required to be consistent with the observed setts, in the sense that the

Voronoi tessellation of the nuclei must contain one sett per cell. A natural alternative,

however, is to �x the nuclei to coincide with the setts and allow the tessellation to be

perturbed away from the Voronoi. The approach of [1] allows this by considering a

weighted tessellation, but below we instead apply the model of this section.

The observation in this case consists of the locations of badger latrines, which tend

to occur close to the boundaries between territories. Figure 3 shows the data set used

here; the smaller dots indicate locations of latrines, and the larger circles indicate

the known locations of setts. We assume that the latrines can be modelled by an

inhomogeneous Poisson process, observed within a window W � S, with an intensity

that is related to the deformed tessellation, c.f. [2]. Speci�cally, let E(x; z) � S be the

union of all edges of V (x; z), and for each s 2 S, let d(s; E(x; z)) =
V
e2E(x;z) jjs � ejj

denote the minimum distance from s to a point on such an edge. Then the intensity

of the process at s is

�(s;x; z; �; �; ) = �+ �g(d(s; E(x; z))=(2))

where �; �;  > 0, and g(�) is the decreasing sigmoid function

g(d) =

8><
>:
1=
�
1 + (d=(1� d))2

�
; 0 � d � 1

0 otherwise:
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Figure 3: Badger setts and latrines

Thus � represents the background intensity of the process of latrines, � represents

the extra intensity at a territory border, and  represents the distance at which the

extra intensity drops to half its value at a boundary; in the notation of Section 2.1,

� = (�; �; ).

We take the priors for these parameters to be independent Gamma distributions,

with � � Ga(b1; b2), � � Ga(c1; c2),  � Ga(d1; d2).

For the purposes of this section, we take the observation window W to be the same

as the space S on which the tessellation is de�ned. In Section 3.3 we extend this to

the case where W is strictly contained in S and where the nuclei outside W are not

�xed, as a way of dealing with edge e�ects.

Writing y = fy1; : : : ; ykg for the realisation of the point process within W , the

likelihood is given by

L(yjx; z; �) = exp(�

Z
W

�(s;x; z; �)ds)
Y
yi2y

�(yi;x; z; �):

Evaluation of this likelihood can be carried out exactly if all the cells are convex (see [2]
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for details), but extending this calculation to non-convex polygons, which arise when

the Voronoi tessellation is perturbed, is not straightforward using the same technique.

Instead, we use the approach of [1] which uses a spatial discretisation; details are

omitted here.

2.3.1. Algorithmic details and stability properties We now specify the �-update and

various hyperparameters, and study the stability properties of the hybrid algorithm.

The likelihood involves �; �;  in a rather complex way; we therefore update these

parameters simultaneously, using independent Gaussian random walk proposals. More

precisely, if � = (�; �; ) is the current state, we propose independent normal vari-

ates �0; �0; 0 with means �; �;  and standard deviations ��; �� ; � , respectively. The

Hastings ratio for the proposal �0 = (�0; �0; 0) is then

h(�; �0jz; �) =
�(�0)L(yjx; z; �0)1[�0 2 (0;1)3]

�(�)L(yjx; z; �)
(4)

and the acceptance probability is 1 ^ h(�; �0jz; �).

To complete the implementation of the algorithm, we need to specify the values for

��; �� ; � , the value of �z and choice of vertex set V in updating z, and the schedule of

di�erent types of step. For simplicity, we use a standard systematic-scan for updating

z; �; �, and let V consist of all vertices in V (x). The standard deviations are chosen in

line with the results in [24], i.e. so that the acceptance probability is about 20-30 %

for both z-updates and �-updates.

The following proposition ensures that the Markov chain underlying the hybrid

algorithm converges toward the posterior distribution whatever the initial state, and

that the law of large numbers applies for estimating posterior means by ergodic averages

(see e.g. [14]). That is, the initial state can be given by any (z0; �
2
0 ; �0) in the support

of the posterior; e.g. z0 = 0 and suitably chosen �20 > 0 and �0 2 (0;1)3.

Proposition 1. The hybrid algorithm as speci�ed above is ergodic, i.e. aperiodic and

Harris recurrent.

Proof. Set m = n(V(x)). The support of the posterior is given by A = B � (0;1)4

where B = fz 2 R
2m : 1(x;z) = 1g is bounded. The chain is obviously irreducible on

A, and by construction of the algorithm it is easily veri�ed that any d-cycle (see [14])
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must have d = 1, i.e. the chain is aperiodic. By Theorem 1 in [3], the chain is Harris

recurrent.

It is tempting to try to establish geometric ergodicity, since this implies a central

limit theorem for ergodic averages (see e.g. [14]). There exist a few papers on conditions

ensuring geometric ergodicity for hybrid algorithms, see [25, 26] and , but these

conditions seem hard to use in the present setting. Suppose we restrict the priors

for �2; �; �;  to compact intervals I�2 ; I�; I� ; I � (0;1), whereby the prior densities

and the intensity �(�) are uniformly bounded from above and away from 0. These

restrictions on the ranges of �2; �; �;  can be chosen to have a negligible e�ect on

the practical interpretation of the model. An upper bound on �2 and  that is large

compared with the dimensions of S will make no practical di�erence, nor will an upper

bound on � and � that is large compared with some realistic upper limit on the density

of latrines (based on their physical size). Similarly, a lower bound on �2 that is small

compared with the likely accuracy of the sett and latrine locations in the data will have

no practical e�ect, nor will a lower bound on � that is small compared with jW j�1.

Finally, if there is prior belief that � � 0 or  � 0, this will be reected in the choice

of hyperparameters, with c1 � 1 or d1 � 1 respectively.

We adjust for these restrictions in the Gibbs update for �2 which now follows an

inverse gamma distribution restricted to I�2 , and in the Hastings ratio (4) where we

replace (0;1)3 in the indicator function by I�� I� � I . Then the algorithm becomes

not only geometrically but uniformly ergodic as shown in the next proposition.

Proposition 2. The modi�ed hybrid algorithm as speci�ed above is uniformly ergodic.

Proof. Let Pm(�; �) denote the m-step transition kernel for the Markov chain as-

sociated with the modi�ed hybrid algorithm, and Amod the support of the modi�ed

posterior distribution. Then Amod = B � I�2 � I� � I� � I with B as in the proof

of Proposition 1. By continuity of densities, boundedness of B, and the de�nitions

of I�2 ; I�; I� ; I , the modi�ed posterior density and the various proposal densities are

uniformly bounded from above and away from 0 as long as the proposal is in Amod,

and hence the di�erent Hastings ratios are uniformly bounded away from zero as long

as the proposal is in Amod. Now, uniform ergodicity is equivalent to the condition that

for some m 2 N, some nontrivial measure Q, and all (z; �2; �) 2 Amod, we have that
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Pm((z; �2; �); �) � Q(�) (Theorem 16.0.2 in [14]). But if m = n(V(x)) and � > 0 is a

lower bound for both the two Hastings ratios (when the proposal is in Amod) and the

three proposal densities (including the inverse gamma distribution restricted to I�2 ),

then for any Borel set F � Amod, P
m(�; F ) � (�5m!=mm)

R
(z;�2;�)2F

dzd�2d�, where

m!=mm is the probability that the m selected vertices of V (x) are all di�erent.

2.3.2. Results The results given here are based on the data in Figure 3, with all

distances expressed in kilometres, and where W = S is the rectangular region shown

in Figure 3. Note that in this application, the underlying (undeformed) Voronoi

tessellation is �xed, with nuclei equal to the setts, and the individual cells can be

interpreted as the territories of particular badger groups.

The priors for �; �;  are di�use, i.e. they correspond to letting b1; b2; c1; c2; d1; d2 !

0. The range of �2 is bounded above at 0.05, since sampling from the prior shows that

large deviations from Voronoi tessellations are inconsistent with the biological meaning

of the tessellations. Apart from this constraint, the prior for z and �2 is of the form in

(3), with a1 = 20; a2 = 0:01, so the prior for �2 is approximately InverseGamma(a1; a2).

The posterior used here is based on 2 runs each of 70,000 iterations, with a burn-

in of 10,000 iterations, starting with the zs generated independently given an initial

value of � = 0:025 (subject to the conditions (C1){(C3) on the edges of the resulting

tessellation).

As with any fully Bayesian analysis of a complex model, there are many aspects

of the joint posterior that can readily be investigated; here we simply give some

illustrative examples. Figure 4 shows the most likely single tessellation under this

model. Displaying the uncertainty in the whole tessellation is diÆcult, but Figure

5 shows a sample (of size 10) from the posterior distribution for one particular cell,

indicating the uncertainty in its boundaries. Finally, Figure 6 shows the posterior

expected intensity of latrines at each location, under this model, in latrines per square

kilometre. Again, the uncertainty is not shown, though the information is readily

available from the MCMC output.

The eÆciency of the MCMC algorithm can be controlled through the proposal

variance, �2z ; the runs here have an acceptance rate of about 40%, somewhat higher

than is optimal.
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Figure 4: The most likely reconstruction of the territories

3. Unknown nuclei

The model in Section 2.1 can be extended to the case where the number and locations

of the nuclei x � S are unknown. In the sequel we let T � S be a given Borel set with

area jT j > 0, and assume that x n T is �xed but xT � x \ T is unknown. Section 3.3

contains an example of how T may be speci�ed. We suppress in the notation the

dependence on x n T .

3.1. Speci�cation of prior and posterior distributions

We need to specify a prior for xT . The natural candidate is a homogeneous Poisson

process on T with unknown intensity hyper-parameter � � Gamma(e1; e2), say, where

e1; e2 > 0 are user-speci�ed parameters, see Sections 3.3 and 3.4. If, as seems natural,

our prior beliefs about the extent to which the tessellation is deformed are scale-

invariant, then �2 should vary inversely with �, so that �2j� � InverseGamma(a1; a2=�),

say.
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Figure 5: A sample from the posterior for a particular cell

However, as in Section 2.1, rather than the obvious conditional formulation of the

prior for the tessellation, it is necessary to specify a joint prior for xT ; z; �; �
2, to avoid

diÆculties with unknown normalising constants. We therefore take

�(xT ; z; �; �
2) /

�e1�1e�e2��n(xT )e��jT j
Y
V(x)

'(zj ;�
2)1(x;z)(�

2)�(a1+1) exp(�a2=(��
2)): (5)

We again take � to be independent of the (xT ; z; �; �
2) a priori, with prior �(�) that

depends on the application. Hence, combining the prior and the likelihood terms we

obtain the posterior density

�(xT ; z; �; �
2; �jy) / �e1�1e�e2��n(xT )e��jT j

�
Y
V(x)

'(zj ;�
2)1(x;z)(�

2)a1�1 exp(�a2=(��
2))L(yjx; z; �)�(�): (6)
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5
10

15

Figure 6: Posterior intensity surface

3.2. MCMC implementation

The MCMC algorithm for this posterior is a hybrid one, with separate Gibbs or

Metropolis-Hastings steps for updating z, �, �2, and �, and for updating xT (with

necessary changes to z, as detailed below). Updating for � is given in Section 3.3, and

the updating for z and for �2 is as in Section 2 with a2 replaced by a2=�. So in this

section we just describe the updates for � and xT , assuming the current state is in the

support of the posterior.

For �, recalling its interdependence with �2, we have

�(�jxT ; z; �; �
2; �; y) / �e1�1+n(xT )�a1 exp(�(e2 + jT j)�) exp(�a2=(�

2�))

which is the form of the Generalized Inverse Gaussian distribution (GIG) [13]. We

have

�jxT ; z; �; �
2; �; y � GIG(2(e2 + jT j); 2a2=�

2; e1 + n(xT )� a1);

and Gibbs sampling is possible using the algorithm of [5].
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The main novelty lies in the updating of xT through Metropolis-Hastings steps in

which single nuclei are either born or killed; for convenience, these types of steps are

taken to be equally likely. A step in which a nucleus is moved from one location to

another is also possible; however, since this will in general lead to the deletion of some

vertices, and the creation of others, it is convenient to regard it as a combination of a

death step and a birth step. Since changing xT changes V(x), these steps necessarily

a�ect z too.

In a birth step, a new nucleus is proposed at a uniform random location � in T . The

birth leads to the creation of new vertices,

V+(�jx [ f�g) = V(x [ f�g) n V(x);

and also to the deletion of the vertices

V�(�jx [ f�g) = C(�jx [ f�g) \ V(x):

Writing z0 for the proposed displacements of the vertices, we retain existing displace-

ments where possible, so that z0j = zj for vertices in V(x) n V�(�jx [ f�g) and propose

new values, from the prior, for new vertices, so that z0j � N(0; �2I) for vertices in

V+(�jx [ f�g).

In a death step, the deletion of a uniformly randomly chosen nucleus � from xT is

proposed. Again, displacements of newly created vertices are proposed from the prior.

In the notation already introduced for the birth step, the new vertices are simply those

of V (x) that lie in C(�jx), precisely V�(�jx), and the vertices removed are just those

of the cell of �, that is V+(�jx).

The birth and death steps can be considered as a version of Peter Green's reversible

jump MCMC algorithm [10], and the Hastings ratio can be derived along similar lines

as in [8]. The Hastings ratio for a birth proposal xT ! xT [ f�g is given by

r(xT ; z; �; z
0j�; �; y) =

�(xT [ f�g; z
0; �; �2; �jy)

�(xT ; z; �; �2; �jy)
�

1
n(xT )+1

Q
V�(�jx[f�g)

'(zj ;�
2)

1
jT j

Q
V+(�jx[f�g)

'(z0j ;�
2)

:

This simpli�es to

r(xT ; z; �; z
0j�; �; y) =

jT j�1(x[f�g;z0)L(yjx [ f�g; z
0; �)

(n(xT ) + 1)L(yjx; z; �)
(7)
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cancelling terms and using (6) and the facts that 1(x;z) = 1 for an existing tessellation,

V(x [ f�g) = [V(x) n V�(�jx [ f�g)] [ V+(�jx [ f�g) (8)

and

z and z0 agree on V(x) n V�(�jx [ f�g). (9)

The acceptance probability for a birth proposal (xT ; z) ! (xT [ f�g; z0) is then

1 ^ r(xT ; z; �; z
0j �; �; y), and for a death proposal (xT [ f�g; z0) ! (xT ; z) is 1 ^

r(xT ; z; �; z
0j�; �; y)�1. In our code for birth and death updates we exploit the proper-

ties (8) and (9), i.e. that these types of updates depend only on local information.

Finally, we consider a step in which a nucleus is moved, assuming xT 6= ;. A nucleus

� is uniformly randomly chosen from xT , and it is proposed to move � to a uniformly

randomly chosen point � in b(�; r)\T , where b(�; r) denotes the ball in R2 with centre

� and radius r > 0. We can split this into a death step followed by a birth step:

�rst, xT ! xT nf�g leads to the deletion of V+(�jx) and the creation of V�(�jx); next,

xT nf�g ! (xnf�g)[f�g leads to the deletion of V�(�jxnf�g)[f�g) and the creation of

V+(�jxnf�g)[f�g). We retain all other displacements in z, and newly created vertices

are proposed from the prior as before. Write z0 for the proposed displacements. By

similar arguments as those leading to (7), we obtain the Hastings ratio for the move

proposal (xT ; z)! ((xT n f�g) [ f�g; z0),

r(xT ; z; �; �; z
0j�; �; y) =

jb(�; r) \ T j1f(xnf�g)[f�g;z0gL(yj(x n f�g) [ f�g; z
0; �)

jb(�; r) \ T jL(yjx; z; �)

and the acceptance probability is 1 ^ r(xT ; z; �; �; z0j�; �; y).

3.3. Reconstruction of badger territories taking boundary e�ects into ac-

count

For this section, we revisit the example of Section 2.3, but we take the space S, on

which the tessellation is de�ned, to be strictly larger than the window W over which

the point process of latrines is observed (further details are given in Section 3.3.2). The

nuclei in the observation window, x\W , are assumed known as before; on T = S nW ,

the process of nuclei is unobserved.

We have the same likelihood as in Section 2.3. All latrines contributing to the
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likelihood are in W , and the integral of the intensity is again over W , but nuclei in T

can a�ect the likelihood, since their existence can generate edges which intersect W .

3.3.1. Algorithmic details and stability properties The updating scheme of Section 2.3

is extended with systematic updates for � by Gibbs sampling and for xT by moving,

creating and destroying nuclei, as described in Section 3.2

Note that, for speci�city, we use a systematic updating scheme; however Propositions

3 and 4 below are true for a random updating scheme also.

Proposition 3. The hybrid algorithm as speci�ed above is aperiodic and irreducible.

Proof. The support of the posterior is D = f(xT ; z) : 1(x;z) = 1g � (0;1)5, and

irreducibility on D and aperiodic is straightforwardly veri�ed.

Because of the complicated xT -updates, it seems hard to establish Harris recurrence

by the result in [3] used in the proof of Proposition 1. But note that the Hastings ratio

in (7) for a birth proposal is smaller than

jT j�

n(xT ) + 1

�
�+ �

�

�k
e�jW j:

Suppose we restrict the priors for �; �2; �; �;  to compact intervals I�; I�2 ; I�; I� ; I �

(0;1). These restrictions can, as with Proposition 2, be chosen to have negligible e�ect

on practical results. An upper bound on � which is large compared with a realistic

upper limit on the number of territories in S will have no e�ect; the other constraints

are discussed before Proposition 2.

These restrictions imply that the Hastings ratio for a birth proposal is always strictly

smaller than c=(n(xT ) + 1) for some constant c (i.e. independent of (xT ; z; �; �
2; �) 2

Dmod), and we obtain not only Harris recurrency but geometric ergodicity for the

modi�ed hybrid algorithm:

Proposition 4. The modi�ed hybrid algorithm as speci�ed above is geometrically er-

godic.

Proof. The proof is similar to the proof of Proposition 3.3 in [7], so we give only

a sketch. Note that the support of the posterior is now Dmod = f(xT ; z) : 1(x;z) =

1g�I��I�2�I��I��I . We verify that the associated Markov chainMi; i = 0; 1; : : : ;
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with states in Dmod is in fact V -geometrically ergodic, since the following geometric

drift condition is satis�ed for the function

V (xT ; z; �; �
2; �) =Mn(xT )

where M = 1 _ c: there exists real constants a < 1 and b, and a small set C � Dmod,

so that for all (xT ; z; �; �
2; �) 2 Dmod,

E(V (M1)jM0 = (xT ; z; �; �
2; �)) � aV (xT ; z; �; �

2; �) + b1C(xT ; z; �; �
2; �))

(see Theorem 15.0.1 in [14]).

Because of the upper bound c=(n(xT )+1) on the Hastings ratio for birth proposals,

following the proof in [7] and using that each iteration in the algorithm starts with an

xT update, we obtain

E(V (M1)jM0 = (xT ; z; �; �
2; �)) � ((1 + 1=M)=2)V (M0) for n(xT ) � K

where V is speci�ed as above and K <1 is chosen suÆciently large. As for the small

set, take any integer m � K and set C = f(xT ; z; �; �2; �) 2 Dmod : n(xT ) < Kg. For

(xT ; z; �; �
2; �) 2 C, by continuity of densities, compactness of I�; I�2 ; I�; I� ; I , and

boundedness of the set f(xT ; z) : 1(x;z) = 1; n(xT ) < Kg, there is a uniform lower

bound � > 0 on the transition probability for updating �, �2, � and moving a nucleus.

De�ne the probability measure

Q(F ) = 1[(xT ; z; �; �
2; �) 2 F ) xT = ;; zT = ;]

for events F � Dmod, where zT is the component of z corresponding to the disturbances

of xT . Then by similar arguments as in the proof of Proposition 3.2 in [7], using that

n(xT )=c is a lower bound on the Hastings ratio for death proposals, we obtain for any

(xT ; z; �; �
2; �) 2 C and any event F � Dmod,

Pm((xT ; z; �; �
2; �); F )

� [�n(xT )=(2c)][�(n(xT )� 1)=(2c)] � � � [�=(2c)][�=2]m�n(xT )Q(F )

= [�=2]mn(xT )!=c
n(xT )

� [�=(2(c _ 1))]mQ(F ):

Hence, by de�nition of small sets [14], we conclude that C is small.
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3.3.2. Results The results shown here are based on the same data as in Section 2.3,

but with S strictly larger than the observation window W . Speci�cally, we take S to

be a rectangle extending beyond W by 1km in each direction. In Figure 7 the outer

rectangle shown is S, the inner one is W ; the region between them is T .

The prior for the parameters �; �;  is the same as in Section 2.3. The prior for the

tessellation now needs to specify the joint distribution of � and � and of the unknown

nuclei and displacements; this is given by (5), with the values of a1 and a2, and the

upper bound on �, again as in Section 2.3.

The posterior here is based on 2 MCMC runs, each of 60,000 iterations with a burn-

in of 10,000 iterations. Figure 7 shows a typical reconstruction. Note the way in which

the nuclei in T can inuence the likelihood for the point process in W ; for example,

the nucleus just below the bottom edge of W leads to edges inside W that run close to

some of the observed latrines. Note also that perturbations of vertices outside W may

be important; for example, the one vertex that lies above W controls the position of

an edge that is mainly inside W and which again runs close to some latrines.

To give an indication of the uncertainty in the reconstruction, Figure 8 shows

samples from the posteriors for just two of the cells. For the cell nearer the centre

(the same one as in Figure 5), allowing for edge e�ects makes little di�erence, as

expected. For the cell near the top of W , however, acknowledging the possibility of

other nuclei, in T , gives some indication of the uncertainty in its outer boundary. With

the region T used here, there is still the possibility that this particular cell reaches the

boundary of S; if necessary, a larger region T could be used to eliminate this e�ect, at

added computational cost. Finally, to summarise the inference that can be made about

the whole process of nuclei, Figure 9 shows the expected intensity of nuclei over T , in

nuclei per square kilometre (along with the know positions of the nuclei in W ). The

surface is shown unsmoothed, and some of the �ne-scale variation is due to sampling

variation in the MCMC analysis; nevertheless, there are some discernible features.

Speci�cally, there is a low intensity near to W except at a few places where there are

latrines observed close to the edge of W , in particular near the centre of the top edge

of W , towards the bottom of the left edge, and towards the right of the bottom edge.

The algorithm moves rather quickly around the space of possible con�gurations xT ,

essentially because the data are rather uninformative about xT . The birth and death
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Figure 7: An example of a reconstruction allowing for edge e�ects

steps in the algorithm have acceptance rates of 35 to 45%. (The other types of steps,

updating z and the various parameters, have acceptance rates which can be `tuned' to

eÆcient levels.)

3.4. Reconstruction of the tessellation in a noisy blurred image

In this example we consider the reconstruction of the microscopic grain structure

in a two-dimensional cross-section through a sample of metal, using a noisy, grey-scale

image. The image used here is shown in Figure 10; it is a 64�64 pixel section of a

larger image, on a grey scale with 256 levels. We write yij for the observed value in

the image in pixel (i; j) for i = 1; : : : ; nr and j = 1; : : : ; nc, where nr = nc = 64.

In addition to the image shown in Figure 10, we make some use of an empirical,

algorithmic reconstruction of the image. This reconstruction is a binary image, at

the same resolution as the observed image, partitioning the region into grains of

irregular shape, with edges that are a single pixel wide, and is shown in Figure 11.
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Figure 8: Posterior samples for two cells

The reconstruction is computationally easy to obtain, but incorporates no notion of

uncertainty. Furthermore, it does not incorporate our expectation that, because of the

mechanism by which the �ne-scale structure in the metal is formed, the grain structure

is likely to be close to a Voronoi tessellation. Thus we aim to reconstruct the grains

using a deformed Voronoi tessellation as a representation of the (unobserved) true

structure.

To specify a likelihood for this problem, we �rst consider the observed marginal

distribution for yij , considering separately the two cases where the empirical reconstruc-

tion does or does not indicate an edge in a given pixel. Let p1(�) and p0(�) respectively

denote these two marginal distributions (de�ned on 0, . . . , 255), and let ~p1(�) and ~p0(�)

be versions obtained by smoothing with a locally linear `lowess' algorithm [4], and

satisfying

~pk(yij) > 0; k = 0; 1; yij = 0; : : : ; 255:

Then exploration of the spatial structure in the data suggests the following model. We
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Figure 9: Posterior intensity surface for nuclei

take W = [0; nr] � [0; nc] � S. Given a deformed tessellation V (x; z) on S, de�ne a

binary nr � nc image I(x; z), a discretized version of V (x; z), by

Iij(x; z) = 1fE(x; z) \ [i� 1; i)� [j � 1; j) 6= ;g:

Then a simple 1-pixel \thickening" of the edges is obtained by de�ning a new image

~I(x; z), where ~Iij(x; z) is the maximum of Ii0j0(x; z) for (i � i0)2 + (j � j0)2 � 1, i.e.

when either (i0; j0) = (i; j) or (i0; j0) is a horizontal or vertical nearest-neighbour to

(i; j). Finally, we de�ne a model for the observed image by taking the associated

random variables Yij , i = 1; : : : ; nr; j = 1; : : : ; nc, to be conditionally independent

given (x; z) with

P (Yij = yij jx; z) = P (Yij = yij j~Iij(x; z)) = ~p~Iij (x;z)(yij):

Hence the required likelihood is

L(yjx; z) =
Y
ij

~p~Iij(x;z)(yij):
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Figure 10: A grey-scale image of a cross-section of a sample of metal

Of course, this likelihood is rather simple, ignoring the local correlation structure in

the observed image. But there is no obstacle, other than computational issues, to

incorporating more sophisticated models into our framework. A natural alternative

approach would be to approximate the distributions over the grey scale by Gaussian

distributions, and write

Y = B(�0(I � I(x; z)) + �1I(x; z) + �);

where � consists of independent N(0;  2) noise for some  2 > 0, B is a (nrnc)� (nrnc)

matrix representing \blurring" in the image, �0 and �1 are real parameters, and I is

the (nrnc) � (nrnc) identity matrix. Then �0; �1 and  2 could be readily estimated

from the data.

3.4.1. Algorithmic details and stability properties The algorithm in this example is

rather straightforward. Updates of � are carried out by Gibbs sampling, as in Section
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Figure 11: An empirical reconstruction of the image in Figure 10

3.2. Updates of z and x are carried out as in Sections 2.3 and 3.2 respectively; in each

case, the required likelihood ratio L(yjx0; z0)=L(yjx; z) can be calculated as a product

of terms corresponding only to those (i; j) for which ~Iij(x
0; z0) 6= ~Iij(x; z).

As in Section 3.3.1, it is straightforward to see that the algorithm is aperiodic and

irreducible. Furthermore, there is an upper bound on the Hastings ratio for a birth

proposal, given by
jT j�

n(xT ) + 1

�
maxk;yijf~pk(yij)g

mink;yijf~pk(yij)g

�nrnc
:

Thus provided � and �2 are restricted to compact intervals I�; I�2 � (0;1), we

immediately have that the modi�ed algorithm is Harris recurrent and geometrically

ergodic, by the same proof as in Proposition 4.

3.4.2. Results The results here are based on analysis of the image shown in Figure 10

(mapped on to the unit square).

The prior for � and � is speci�ed jointly as in (5), with e1 = 400, e2 = 10 and
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Figure 12: The posterior modal reconstruction

a1 = 8, a2 = 2. This gives � a prior which is approximately the Gamma(400,10)

distribution|the marginal prior is not exactly Gamma, because of the indicator term

in (5)|representing reasonably strong prior information about the mean size of cells;

similarly, the prior for �2 given � is approximately InverseGamma(8,2/�) representing

strong prior belief that the perturbations will be reasonably small compared with the

cells, i.e. that the tessellation will be close to Voronoi.

The posterior distributions illustrated here are based on 2 runs of length 150,000

iterations, each with a burn-in of 10,000 iterations. Figure 12 shows the single most

likely tessellation obtained (i.e. the one with the highest posterior density). It can

be seen that it successfully identi�es the clearest `grains' or microcrystals from Fig-

ure 10. Figure 13 shows another tessellation chosen for contrast as the one with

the highest number of cells obtained. Clearly, some features are common to these

tessellations, at least approximately; these include much of the bottom part of the

�gure. However, there are substantial di�erences, most noticeably in the top left
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Figure 13: A reconstruction with a large number of cells

corner. Not surprisingly, the common features tend to coincide with obvious structure

in the raw image, Figure 10, while the di�erences are in areas where the data are less

informative. Similarly, in the clearer regions, the tessellations show some similarity

with the algorithmic reconstruction in Figure 11, but there are substantial di�erences,

due partly to the more constrained shapes of cells in the model-based reconstruction.

A summary of one aspect of the posterior variability of the �tted tessellations is given

by the posterior distribution for the number of cells. Figure 14 shows this posterior

and also the corresponding prior. Note that although the prior is rather informative

about � (as mentioned above) and hence about the number of cells, the posterior for

the number of cells is much more concentrated: not surprisingly, we can learn a lot

about the actual number of cells or microcrystals in the region represented by this

image. Nevertheless, there remains considerable uncertainty in this number, and an

advantage of our Bayesian approach is the ability to quantify that uncertainty. For

comparison, the number of cells in the algorithmic reconstruction is 40, a value out in
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Figure 14: Prior and posterior distributions for the number of cells

the upper tail of the posterior distribution.

The algorithm mixes rather slowly in this example, since births and deaths here

inherently give large changes in the tessellation and (since the whole tessellation is

observed, albeit with noise) in the image. The acceptance rates for birth and death

moves are each approximately 4%. (The acceptance rates for other types of moves can

be `tuned', and for these runs have acceptance rates of 20 to 30%.) Somewhat longer

runs would be required for a de�nitive analysis of these data, but the results here are

enough to indicate the feasibility of our approach. In addition, further analysis should

perhaps incorporate both more detailed modelling of local correlation, along the lines

suggested above, and allowance for edge e�ects, as in Section 3.3.

4. Generalizations

The class of deformed Voronoi tessellations is very exible and widely applicable.

There are, however, some obvious straightforward extensions to the model as discussed
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below.

Remark 4.1. The speci�c distribution of individual vertex perturbations, approxi-

mately N(0; �2I), does not really a�ect the details above (except in choosing a \conju-

gate" prior for �2, for convenience); any other bivariate distribution could be chosen.

Having zero mean and circularity seem natural, so the obvious variations would be

heavier, or perhaps lighter, even �nite, tails.

Remark 4.2. Taking the individual perturbations zj to be nearly independent, as we

have done here, seems very natural when our prior simply represents the belief that the

deformed tessellation is close to a Voronoi tessellation. If we have more speci�c prior

information, this may well induce prior dependence in the zjs. This might be because

we have prior knowledge about the shapes of cells, which will lead to dependence

between perturbations of vertices of the same cell, or because we have information

about the mechanism causing the perturbation from an underlying Voronoi model.

For example, if we believe that an image of a Voronoi tessellation has been deformed

by some smooth transformation of the plane, this might lead to positive dependence

between perturbation of vertices that are close together. It would also be natural to

incorporate such dependence in the proposal distributions for zjs.

Remark 4.3. Let fv1; : : : ; vmg denote the set of boundary vertices of V (x). As men-

tioned in Section 1, our approach may easily be extended to perturb these vertices into

v0j = zj+vj ; j = 1; : : : ;m; let @z = fz1; : : : ; zmg denote the set of such perturbations. It

is then natural to add the condition that the ordering of boundary vertices is preserved.

More precisely, consider any continuous parametrisation s(t); 0 � t < 1; of the closed

curve @S. Then we may require that

(C4) if vj = s(t1); j = 1; : : : ;m; where 0 � t1 < : : : < tm < 1, and v0j = s(t0j); j =

1; : : : ;m; then each v0j 2 @S, and 0 � t0i < : : : < t0m < t01 < : : : < t0i�1 < 1 for

some integer i with 1 � i � m.

This condition does not depend on the choice of parametrisation of @S. The prior (5)

may then be extended to a joint prior for @z and (x; z; �; �2) so that (C4) is satis�ed

almost surely. Finally, the MCMC algorithm in Section 3.2 can be straightforwardly

extended to include updating of @z.
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Remark 4.4. The starting tessellation itself need not be Voronoi. The key require-

ments are that there should be some way of de�ning the topology of the tessellation, i.e.

what vertices exist, and how they are connected, and that the tessellation boundaries

themselves should be de�ned purely by the positions of the vertices and by the topology

| essentially that cells should be polygonal. The nuclei are just a set of objects that

de�ne the topology | they need not be points in S as in Section 3. Nor need they be

in one-to-one correspondence with the cells; the sets V+(�jx [ f�g) and V�(�jx [ f�g)

can simply be de�ned as the vertices added or removed, respectively, when adding

nucleus � to existing nuclei x. For example, the undisturbed tessellation could be a

line tessellation, with the \nuclei" being points in the space of lines in S. Then there

are typically many more cells than nuclei; V+(�jx[f�g) is simply the set of new vertices

where the line � intersects the existing lines in x, and V�(�jx [ f�g) is always empty.

If the prior for x is based on a stationary Poisson line process restricted to the space

of lines intersecting S (see e.g. [27]), then very little of the detail in Section 3 need

change. In fact this model would be much easier to program than our posterior based

on deformed Voronoi tessellations.
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