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Abstract

Quadratic bosonic Hamiltonians with a linear perturbation are studied. Depend-
ing on the infrared and ultraviolet behavior of the perturbation, their properties are
described from the point of view of spectral and scattering theory.

1 Introduction

Some of the simplest exactly solvable models in classical and quantum physics are
quadratic Hamiltonians with a linear perturbation. Following [Sch] we will call
them van Hove Hamiltonians. They arise in classical and quantum �eld theory in
many contexts. For example, the Hamiltonian of electrodynamics with prescribed
external charges is a van Hove Hamiltonian.

It is well known that one can fully analyze the properties of van Hove Hamilto-
nians. These properties are quite interesting, both physically and mathematically.
In fact, some types of van Hove Hamiltonians can be viewed as exactly solvable toy
models of renormalization, both in the infrared and ultraviolet regime. Depending
on the assumptions on the perturbation, one can distinguish several types of these
Hamiltonians with distinct properties.

Let us describe some of the results of our paper in a somewhat informal language.
We will restrict ourselves to the quantum case, since the classical case is very similar.
(In the main part of the paper a di�erent, more compact notation is used; moreover,
both the classical and quatum case is treated).

Let (K;dk) be a space with a measure. (We use the notation dk to denote an
arbitrary measure, not necessarily the Lebesgue measure). Let K 3 k 7! a�(k) and
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K 3 k 7! a(k) be the corresponding bosonic creation and annihilation operators.
LetK 3 k 7! h(k) be an almost everywhere positive measurable function, describing
the dispersion relation. Finally, suppose that K 3 k 7! z(k) is a complex function
describing the interaction. We de�ne two varieties of van Hove Hamiltonians. Van
Hove Hamiltonians of the �rst kind are self-adjoint operator of the following form:

HI :=

Z �
h(k)a�(k)a(k)dk + z(k)a�(k)dk + z(k)a(k)

�
dk: (1.1)

Van Hove Hamiltonians of the second kind have the form

HII :=

Z
h(k)

�
a�(k) +

z(k)

h(k)

��
a(k) +

z(k)

h(k)

�
dk: (1.2)

It turns out that if we assumeR
h(k)<1 jz(k)j2dk +

R
h(k)�1

jz(k)j2

h(k)2
dk <1; (1.3)

then either HI or HII is well de�ned. More precisely,

R
h(k)<1 jz(k)j2dk +

R
h(k)�1

jz(k)j2

h(k) dk <1; (1.4)

guarantees that HI is well de�ned; under the conditionR
h(k)<1

jz(k)j2

h(k) dk +
R
h(k)�1

jz(k)j2

h(k)2
dk <1; (1.5)

we can de�ne HII.
The conditions (1.4) and (1.5) are true at the same time i�Z jz(k)j2

h(k)
dk <1; (1.6)

and then the two types of van Hove Hamiltonians di�er by a constant:

HII = HI +

Z jz(k)j2
h(k)

dk: (1.7)

Next we would like to describe various types of behavior of van Hove Hamiltoni-
ans. We will consider separately the case when the dispersion relation is separated
away from zero and the case of a bounded dispersion relation. In the former case
the infrared problem is absent and we can study the ultraviolet problem in its pure
form. In the latter case the ultraviolet problem is absent and all the diÆculties are
due to the infrared problem. We will see that one can distinguish 3� 3 = 9 distinct
classes of van Hove Hamiltonians.
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1.1 Ultraviolet problem

Assume that for some 0 < c0 we have c0 � h(k). We allow h to be unbounded.
(In quantum �eld theory this behavior is typical for massive particles). Under this
assumption, we can always de�ne HII. We can distinguish three cases:

(1)
R jz(k)j2dk <1:
This is the most regular case. The perturbation is operator bounded. HI and
HII are well de�ned by the Kato-Rellich theorem [Kato, RS2]. One can de�ne
a \dressing operator"

U := exp

�
�
Z

z(k)

h(k)
a�(k)dk +

Z
z(k)

h(k)
a(k)dk

�
(1.8)

which intertwines HII with the quadratic Hamiltonian:

HII = U

Z
h(k)a�(k)a(k)dkU�: (1.9)

Because of (1.9), the Hamiltonians have a ground state.

(2)
R jz(k)j2

h(k) dk <1;
R jz(k)j2dk =1:

This is also quite a regular case. The only di�erence with (1) is the fact that the
perturbation is only form bounded and one needs to use the KLMN theorem
to de�ne HI or HII [Kato, RS2].

(3)
R jz(k)j2

h(k)2
dk <1;

R jz(k)j2

h(k) dk =1:

The operator HI is not de�ned. This follows from the fact that the \countert-
erm" in (1.7) is in�nite. But the dressing operator (1.8) is well de�ned, which
can be used to de�ne HII.

Note that all the diÆculty stems from the ultraviolet behavior of the interac-
tion. Thus this case provides an example of \the ultraviolet renormalization":
one has to subtract an in�nite counterterm from HI to de�ne a Hamiltonian.

1.2 Infrared problem

Let us assume that the function k 7! h(k) is bounded, but we allow h to have
arbitrarily small positive values. (This is typical for zero-mass particles with an
ultraviolet cut-o�). Then the operator HI is always well de�ned. We can distinguish
the following three cases:

(1)
R jz(k)j

h(k)2dk <1:

Again, this is the most regular case. The perturbation is operator bounded,
both HI and HII are well de�ned by the Kato-Rellich theorem [Kato, RS2].
One can de�ne the dressing operator (1.8) and the Hamiltonians have a ground
state.
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(2)
R jz(k)j

h(k) dk <1;
R jz(k)j2

h(k)2 dk =1:

In this case, the perturbation is operator bounded, but the dressing operator
is not de�ned. HI, and consequently also HII, have no ground states, but are
bounded from below. This is the case where the infrared problem manifests
itself. In quantum �eld theory this case is typical for the photons (or scalar
massless particles) interacting with an external classical source of non-zero
charge, as noted by Kibble [Ki]. One can say that the vacuum \escapes from
the Hilbert space", \soft photons are present in every state in the Hilbert
space". The dressing operator (at least in the usual sense) is no longer well
de�ned.

(3)
R jz(k)j2dk <1;

R jz(k)j2

h(k) dk =1:
This is the case where the infrared problem is the most severe. In order to
de�ne HI one cannot use the Kato-Rellich nor the KLMN theorem. Instead
one needs Nelson's commutator theorem [RS2]. HI is unbounded from below
and the dressing operator is not well de�ned. The operator HII is not de�ned
at all.

1.3 Scattering theory

Van Hove Hamiltonians are also interesting from the point of view of scattering
theory. It turns out that the usual formalism of scattering theory, used in the
context of Schr�odinger operators and described for instance in [RS3], does not apply
in the case of van Hove Hamiltonians. Instead, one needs to use some other versions
to scattering theory. We have in fact a choice of at leat two approaches.

One of them is based on replacing the usual de�nition of wave operators with a
de�nition that uses the so-called Abelian limit [Ya]. In order to de�ne unitary wave
operators one has to perform the so-called \renormalization of the wave function".
This approach breaks down if we have the infrared problem (unless one is willing
to divide by zero).

The second approach to scattering for van Hove Hamiltonians is based on the
notion of asymptotic �elds. It goes back to the so-called LSZ formalism. In this
approach there is no need for renormalization and the infrared problem is manifested
by the non-Fock property of asymptotic �elds. An essentially the same formalism
works in a much more complicated context, eg [HK, DG1, DG2].

Both approaches lead essentially to the same wave operator equal to the dressing
operator. Unfortunately, the scattering operator turns out to be equal to one|so
physically, scattering theory of van Hove Hamiltonians turns out to be trivial.

1.4 Remarks about the literature

Many of the ideas of this paper are contained in the literature in one form or another.
The analysis of the ultraviolet problem can be found eg. in the book of Berezin

[Be], chapter III, $ 7.4 and [Sch], following earlier papers [vH, EP, To, GS].
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The understanding of the infrared problem can be traced back to the paper by
Bloch and Nordsieck [BN], and was then analyzed in a series of papers of Kibble
[Ki]. The infrared problem is related to the so-called coherent state representations,
which were discussed already in [Fr].

In recent literature one can �nd analysis of operators similar to but more compli-
cated than van Hove Hamiltonians|under the names of the spin-boson, the Pauli-
Fierz or the non-relativistic QED Hamiltonian, see eg. [DG1, BFS1, DJ]. In fact,
one can view van Hove Hamiltonians as a special, exactly solvable subclass of Pauli-
Fierz Hamiltonians. We believe that it is useful to study van Hove Hamiltonians to
gain intuition about properties of Pauli-Fierz Hamiltonians.

We could not �nd a complete treatment of van Hove Hamiltonians in the litera-
ture. We think that a careful analysis of van Hove Hamiltonian helps to understand
some of the concepts of quantum �eld theory. It is also an instructive exercise in
the theory of unbounded operators.

Acknowledgments. I would like to acknowledge useful discussions with C. G�erard
and S. DeBi�evre. A part of this work was done during visits at the Aarhus and
Copenhagen University supported by MaPhySto funded by the Danish National
Research Foundation.

2 Notation

2.1 Di�erentiation in a Hilbert space

Let W be a Hilbert space with the scalar product (�j�).
Let DomG be a subset ofW and G : DomG! R. Let w0 2 DomG and w 2 W.

We will say that the derivative of G at w0 in the direction of w exists i� there exists
� > 0 such that fw0 + tw : jtj < �g � DomG and there exists

d

dt
G(w0 + tw)

���
t=0

=: rwG(w0):

We will say that G is di�erentiable at w0 i�

D := fw 2 W : rwG(w0) exists g

is a dense linear subspace of W and

D 3 w 7! rwG(w0)

is a bounded linear functional. If this is the case, then the gradient of G at w0 is
denoted by rG(w0) 2 W and de�ned by

Re(wjrG(w0)) = rwG(w0); w 2 W:
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2.2 Unbounded perators

Let h be a positive self-adjoint operator on W. Let Dom h denote its domain and
(Dom h)� the space of bounded antilinear functionals on Domh. sph will denote
the spectrum of h.

Clearly, W can be embedded in a natural way in (Dom h)�. The operator h ex-
tends to a map fromW to (Dom h)�. We denote by hW the image of this extension.
(Note in particular that if h � c0 > 0, then hW = (Dom h)�).

Clearly, if f is a function on the spectrum of h such that jf(t)j � t, t 2 sph,
then f(h)W can be treated as a subspace of hW.

2.3 Fock spaces

[RS2, BR] If X is a vector space, then
Æ
�s(X ) will denote the algebraic symmetric

Fock space over X , that means the space of �nite linear combinations of symmetric
tensor products of elements of X . 
 will denote the vacuum.

If W is a Hilbert space, then �s(W) will denote the (complete) Fock space, that

is the completion of
Æ
�s(W).

If u is a contraction on W, then �(u) denotes the contraction on �s(W) that on
the n particle sector equals u
n.

If h is a self-adjoint operator, then d�(h) denotes the self-adjoint operator that
on the n particle sector equals h
 1
(n�1) + � � �+ 1
(n�1) 
 h.

Let b be a sesquilinear form onW with the domain fW. Abusing the notation, we
will use the symbol d�(b) to denote the sequilinear form on �s(W) with the domain
Æ
�s(fW) that on the n particle sector equals b
 1
(n�1) + � � �+ 1
(n�1) 
 b.

2.4 Creation and annihilation operators

The notion of creation and annihillation operators is standard in the context of
Fock spaces and can be found eg. in [BR, RS2]. Nevertheless, we will need slight
generalizations of these concepts.

Let w be an antilinear form onW with the domain Domw = fW �W. We de�ne

the annihilation operator w(a) as an operator with the domain
Æ
�s(fW) satisfying

w(a) z
n :=
p
n(wjz)z
(n�1); z 2 fW:

(Note that vectors of the form z
n span
Æ
�s(fW)).

The operator w(a) is closable i� w 2 W. If this is the case, we denote its closure
by the same symbol. Its adjoint is called the creation operator and denoted

w(a�) := w(a)�:

If f 2 Æ
�s(Z), then f(a�) and f(a) have the obvious meaning as polynomials in

a� and a. For instance z
n(a�) = (z(a�))n and z
n(a) = (z(a))n.
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We also introduce the �eld operator

�(w) :=
1p
2
(w(a�) +w(a)); (2.10)

which is self-adjoint on Domw(a). We also introduce the Weyl operators

W (w) := ei�(w): (2.11)

If w 62 W, then the annihilation operator w(a) is not closable. In this case the
creation operator w(a�) is not even densely de�ned and is not of much use. On the
other hand, we can de�ne the \creation form", denoted w(a�f):

Æ
�s(fW)� �s(W) 3 (�;	) 7! (�jw(a�f)	) := (w(a)�j	):

Note that w(a�f) is a di�erent object from w(a�). In what follows, however, we will
sometimes abuse the notation and we will write w(a�) instead of w(a�f).

3 Van Hove Hamiltonians

3.1 Classical dynamics

LetW be a Hilbert space. We will say that � :W !W preserves the scalar product
i�

(�(w1)� �(w2)j�(w3)� �(w4)) = (w1 � w2jw3 � w4); w1; : : : ; w4 2 W:

Suppose that h is a positive operator on W. We will assume that Kerh = f0g.
Let

z 2 W + hW (3.12)

For w 2 W, t 2 R, we de�ne

�t(w) := eithw + (eith � 1)h�1z:

It is easy to see that R 3 t 7! �t is a 1-parameter group of transformations preserving
the scalar product. Therefore, it preserves the real scalar product Re(�j�) and the
symplectic form Im(�j�).

If z 2 W + h1=2W, then we de�ne DomGI := Dom h1=2 and for w 2 DomGI we
set

GI(w) :=
1

2
((wjhw) + (zjw) + (wjz)) :

If z 2 h1=2W + hW, then we de�ne DomGII := fw 2 W : h1=2w + h�1=2z 2 Wg,
and for w 2 DomGII we set

GII(w) :=
1

2
kh1=2w + h�1=2zk2:
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Clearly, both GI and GII are well de�ned i� z 2 h1=2W, and then

GII = GI +
1

2
(zjh�1z):

Therefore, for any z 2 W + hW, there exists a family of functions, which equals
fGI + c : c 2 Rg for z 2 W + h1=2W and fGII + c : c 2 Rg for z 2 h1=2W + hW.
We will say that a function of this form is a Hamiltonian for �t. This name will be
justi�ed by the theorem below.

Theorem 3.1 Let z 2 W + hW and let G be a Hamiltonian for �t. Then the
following statements are true:

(1) The function G is di�erentiable at w 2 W i� hw + z belongs to W. We then
have

rG(w) = hw + z:

The dynamics t 7! �t(w) is di�erentiable wrt t i� hw + z 2 W. We have

d

dt
�t(w) = i(h�t(w) + z):

Thus we can write
d

dt
�t(w) = irG(�t(w));

which is equivalent to

Im(w1j ddt�t(w) = Re(w1jrG(�t(w))); w1 2 W: (3.13)

Clearly, (3.13) is the Hamilton equation for the Hamiltonian G. This justi�es
calling G by the name of \a Hamiltonian of �t".

Note also that �t leaves DomG invariant and G is constant along the trajec-
tories.

(2) 0 belongs to DomG i� z 2 W + h1=2W. We have G = GI i� GI(0) = 0.

(3) G is bounded from below i� z 2 h1=2W + hW. We have G = GII i� infG = 0.

(4) G has a minimum i� z 2 hW. This minimum is at �h�1z, and then

GII(w) =
1

2

�
w + h�1zjh(w + h�1z)

�
:

3.2 Quantum dynamics

Let h, z be as above. Assume z 2 W + hW. Set

V (t) := �(eith) exp
�
(1� e�ith)h�1z(a�)� (1� eith)h

�1
z(a)

�
:

De�ne for B 2 �s(W)
�t (B) := V (t)BV (t)�: (3.14)
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It is easy to check that �t is a 1-parameter group of �-automorphisms of B(�s(W))
continuous in the strong operator topology.

In order to make the relationship with the classical dynamics more clear, one
can note that

�t(w(a�)) = ((eith � 1)h�1zjw) + (eithw)(a�):

For z 2 W + h1=2W, de�ne

UI(t) := eiIm(h�1zjeithh�1z)�it(zjh�1z)V (t):

For z 2 h1=2W + hW, de�ne

UII(t) := eiIm(h�1zjeithh�1z)V (t):

We easily check that both UI(t) and UII(t) are 1-parameter strongly continuous
unitary groups. Therefore, there exist self-adjoint operators HI and HII such that

UI(t) = eitHI ; UII(t) = eitHII :

Clearly, both HI and HII are well de�ned i� z 2 h1=2W, and then

HII = HI + (zjh�1z):

Therefore, for any z 2 W + hW, there exists a family of self-adjoint operators
which equals fHI + c : c 2 Rg for z 2 W + h1=2W and fHII + c : c 2 Rg for
z 2 h1=2W + hW. We will say that a function of this form is a Hamiltonian for �t.

The operators H will be called van Hove Hamiltonians. As we saw above, there
are two natural ways to �x the arbitrary constant in the de�nition of H. The
operator HI will be called the van Hove Hamiltonian of the �rst kind and HII will
be called the van Hove Hamiltonian of the second kind.

Theorem 3.2 Let z 2 W + hW and let H be a Hamiltonian for �t. Then the
following statements are true:

(1) H implements �t, that means

�t(B) = eitHBe�itH ; B 2 B(�s(W)):

(2) 
 belongs to DomjHj1=2 (the form domain of H) i� z 2 W + h1=2W. Under
this condition H = HI i� (
jH
) = 0

(3) The operator H is bounded from below i� z 2 h1=2W + hW. Under this condi-
tion H = HII i� infH = 0.

(4) The operator H has a ground state (infH is an eigenvalue of H, where infH
denotes the in�mum of the spectrum of H) i� z 2 hW. Then we can de�ne
the \dressing operator"

U := exp
�
�h�1z(a�) + h

�1
z(a)

�
;

and
HII = Ud�(h)U�: (3.15)
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Easy calculations show that, at least formally,

HI = d�(h) + z(a�) + z(a); (3.16)

HII = d�(h) + z(a�) + z(a) + (zjh�1z): (3.17)

Below we will make these formulas precise.

Remark 3.3 By the spectral theorem, one can �nd a measure space (K;dk) such
that W is isomorphic to L2(K;dk) and h is a multiplication operator by a mea-
surable function K 3 k 7! h(k). Then we can introduce K 3 k 7! a�(k); a(k)
and write

R
z(k)a�(k)dk,

R
z(k)a(k),

R
h(k)a�(k)a(k)dk instead of z(a�), z(a) and

d�(h). We used this notation in the introduction. For example, Condition (1.3) of
the introduction, R

h(k)<1 jz(k)j2dk +
R
h(k)�1

jz(k)j2

h(k)2
dk <1;

corresponds to the condition z 2 W + hW.
The notation involving the operator valued measures a�(k) and a(k) is very com-

mon and often convenient, but it depends on a non-canonical choice of the measure
space K, and therefore we do not use it.

3.3 Separating the infrared from the ultraviolet part

Let p1; p2 be two complementary orthogonal projections commuting with h. For
i = 1; 2, let Wi := Ranpi. For w 2 W set wi := piw 2 Wi. Likewise, set hi := pih,
treated as a self-adjoint operator on Wi

We clearly have W = W1 �W2 and hence we have the identi�cation �s(W) =
�s(W1)
 �s(W2). The dynamics �t factorizes

�t(B1 
B2) = �t1(B1)
 �t2(B2); B1 2 B(�s(W1); B2 2 B(�s(W2);

Likewise, it is easy to see that

UI(t) = UI;1(t)
 UI;2(t);

UII(t) = UII;1(t)
 UII;2(t):

Therefore,
HI := HI;1 
 1 + 1
HI;2;

HII := HII;1 
 1 + 1
HII;2

In particular, we can take p1 := 1[0;1](h), p2 := 1]1;1[(h). Then h1 is bounded and
h2 is bounded from below by a positive constant. In the case of h1, the ultraviolet
problem is absent, but the infrared problem can show up. In the case of h2 we
have the opposite situation: the infrared problem is absent, but we can face the
ultraviolet problem.

In the next two subsections we will separately describe the properties of van
Hove Hamiltonians for two types of 1-particle energies.
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3.4 3 types of the ultraviolet problem

Theorem 3.4 Assume that h is a self-adjoint (possibly unbounded) operator bounded
from below by a positive constant. Then the dressing operator U and the van Hove
Hamiltonian of the second kind HII are well de�ned. HII possesses a unique ground
state at 0. Moreover, we can distinguish 3 cases:

(1) Let z 2 W.
Then z(a�) + z(a) is a d�(h)-bounded operator with the in�nitesimal bound.
HI and HII are self-adjoint on Domd�(h) and can be de�ned by the formulas
(3.16), (3.17) and by the Kato-Rellich theorem.

(2) Let z 2 h1=2WnW.
Then z(a�)+z(a) is not an operator. Instead of z(a�)+z(a) we should consider

the form with the domain
Æ
�s(Dom z) equal to z(a�f) + z(a). This form is

d�(h)-form bounded with the in�nitesimal bound. The operators HI and HII

are bounded from below and their form domains equal Domd�(h)1=2. They can
be de�ned by the formulas (3.16), (3.17) and by the KLMN theorem.

(3) Let z 2 hWnh1=2W.
Then the form z(a�f) + z(a) is not d�(h)-form bounded. HI is not de�ned.

3.5 3 types of the infrared problem

Theorem 3.5 Assume that h is a bounded positive operator. Then the formula
(3.16) de�nes the operator HI as an essentially self-adjoint operator on Domd�(h+1)
by Nelson's commutator theorem. Moreover, we can distinguish the following three
cases:

(1) Let z 2 hW
Then z(a�) + z(a) is d�(h)-bounded with the in�nitesimal bound. The opera-
tors HI and HII are self-adjoint on Domd�(h) and they can be de�ned by the
formulas (3.16), (3.17) and the Kato-Rellich theorem. They have ground states
and the dressing operator U is well de�ned.

(2) Let z 2 h1=2WnhW
Then z(a�) + z(a) is d�(h)-bounded with the in�nitesimal bound. Again, the
operators HI and HII are self-adjoint on Domd�(h) and they can be de�ned by
the formulas (3.16), (3.17) and the Kato-Rellich theorem. They are bounded
from below but have no ground state and the dressing operator U is not de�ned.

(3) Let z 2 Wnh1=2W.
Then z(a�) + z(a) is not d�(h)-form bounded. HI is not bounded from below
and the operator HII is not de�ned at all.

In the following subsections we will show various elements of the above theorems.
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3.6 Relative form boundedness of �eld operators

Proposition 3.6 Let h be a positive operator on W and z 2 h1=2W. Then

(1)
kz(a)	k2 � (zjh�1z)(	jd�(h)	):

(2) z(a�f) + z(a) is form bounded wrt d�(h) with the in�nitesimal bound. More
precisely, for any � > 0, we have

j(	j(z(a�f ) + z(a))	)j � �(zjh�1z)(	jd�(h)	) + ��1k	k2:

Proof. (1) If z is an antilinear functional on W with the domain Domz, then

Dom z �Dom z 3 (w1; w2) 7! (w1jz)(zjw2)

de�nes a sesquilinear form, that we will denote by jz)(zj. Note that the following
inequality is true:

jz)(zj � (zjh�1z)h; (3.18)

Clearly,
kz(a)	k2 = (	jd� (jz)(zj) 	) :

(3.18) implies
d� (jz)(zj) � (zjh�1z)d�(h):

(2)

�(	j(z(a�f) + z(a))	) = �2Re
�
	jz(a)	)

� 2k	kkz(a)	k � ��1k	k2 + �kz(a)	k2:
2

Corollary 3.7 If z 2 h1=2W, then both (3.16) and (3.17) (with z(a�) replaced by
z(a�f)) de�ne by the KLMN theorem the self-adjoint operators HI and HII with the
form domains Domd�(h)1=2.

3.7 Relative boundedness of �eld operators

Proposition 3.8 Let h be a positive operator on W and z 2 h1=2W \W. Then

(1)
k(z(a�) + z(a))	k2 � 4(zjh�1z)(	jd�(h)	) + 2kzk2k	k2:

(2) z(a�)+z(a) is bounded wrt d�(h) with the in�nitesimal bound. More precisely,
for any � > 0, we have

k(z(a�) + z(a))	k2 � 2�(zjh�1z)kd�(h)	k2 + �
2��1(zjh�1z) + 2kzk2� k	k2:

12



Proof. (2) follows immediately from (1). To see (1) we compute using Proposition
3.6 (1):

k(z(a�) + z(a))	k2 � 2kz(a�)	k2 + kz(a)	k2

= 4kz(a�)	k2 + 2kzk2k	k2

� 4(zjh�1z)(	jd�(h)	) + 2kzk2k	k2:
2

Corollary 3.9 If z 2 W \ h1=2W, then both (3.16) and (3.17) de�ne by the Kato-
Rellich theorem the self-adjoint operators HI and HII with the domains Domd�(h).

3.8 The in�mum of van Hove Hamiltonians

Proposition 3.10 Assume z 2 W + h1=2W. Then the operator HI satis�es

infHI = �(zjh�1z):

Proof. We drop I from HI.
Step 1) To show that

d�(h) + z(a�) + z(a) � �(zjh�1z): (3.19)

we set � := �(zjh�1z)�1 in Proposition 3.6 (1).
Step 2) For any n de�ne Wn := 1[ 1

n
;1[(h)W, hn := 1[ 1

n
;1[(h)h, z

n := 1[ 1
n
;1[(h)z,

and the operators on �s(Wn), Hn := d�(hn)+zn(a�)+zn(a) and Un := exp(�h�1zn(a�)+

h
�1
zn(a)). Then Un�HnUn = d�(hn)� (znjh�1zn): Clearly, inf d�(hn) = 0, hence

infHn = �(znjh�1zn): (3.20)

Step 3) Likewise, de�ne Wn := 1[0; 1
n
[(h)W, hn := 1[0; 1

n
[(h)h, zn := 1[0; 1

n
[(h)z, and

the operator on �s(Wn), Hn := d�(hn) + zn(a
�) + zn(a). We have 
 2 d�(hn) =

DomHn and (
jHn
) = 0. Hence,

infHn � 0: (3.21)

Step 4) �s(W) can be identi�ed with �s(Wn)
 �s(Wn) and

H = Hn 
 1 + 1
Hn: (3.22)

Therefore,
infH = infHn + infHn: (3.23)

It follows from (3.19), (3.20), (3.21) and (3.23) that

�(zjh�1z) � infH � �(znjh�1zn):

For n!1, the rhs goes to �(zjh�1z). 2
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3.9 Essential self-adjointness of van Hove Hamiltonians

Proposition 3.11 Suppose that z 2 W. Then HI is essentially self-adjoint on
Domd�(1 + h).

Proof. First assume that h is bounded. We apply Nelson's commutator theorem
with the comparison operator B := 1 + d�(1 + h) [RS2]. In fact,

k(z(a�) + z(a))	k � ckN	k � ckB	)k;

kd�(h)	k � kB	k:
Moreover,

[B; (z(a�) + z(a))] = (1 + h)z(a�) + (1 + h)z(a):

Hence
j(	j[B; (z(a�) + z(a))]	)j � (	jB	):

Hence H is essentially self-adjoint on DomB.
Next consider an arbitrary h. As described in Subsection 3.3, we can split

W = W1 � W2, where W1 = Ran1[0;1](h). We can de�ne the operator HI on
Æ
�s(W) =

Æ
�s(W1)


Æ
�s(W2) and it splits as

HI = HI;1 
 1 + 1
HI;2;

with
HI;i = d�(hi) + zi(a

�) + zi(a):

We proved above that HI;1 is essentially self-adjoint on Domd�(h1+1). By corollary
3.9, HI;2 is self-adjoint on Domd�(h2). This implies thatHI is essentially self-adjoint

on Domd�(h1 +1)
Æ
Domd�(h1), which is dense in Domd�(h+1). (

Æ
 denotes the
algebraic tensor product). 2

3.10 Absence of a ground state

Let us recall the following well known result about coherent states:

Theorem 3.12 Suppose that fW is a dense subspace of W and f is an antilinear
functional on fW. Let 	 2 �s(W), for any w 2 fW, 	 2 Domh(a) and

h(a)	 = (hjf)	:

Then the following is true:

(1) If f 2 W, then 	 is proportional to exp(f(a�)� f(a))
.

(2) If f 62 W, then 	 = 0.

14



Proof. By induction we show that for w1; : : : ; wn 2 fW, wn�1(a) � � �w1(a)	 2
Domwn(a) and

wn(a) � � �w1(a)	 = (w1jf) � � � (wnjf)	:
This implies

(w1(a
�) � � �wn(a

�)
j	) = (w1jf) � � � (wnjf)(
j	): (3.24)

In particular,
(wj	) = (w(a�)
j	) = (wjf)(
j	); w 2 fW:

Using the fact that fW is dense in W we see that (
j	)f is a bounded functional
on W, hence it belongs to W. Thus either f 2 W or (
j	) = 0. In the latter case,
(3.24) implies that 	 = 0. 2

Proposition 3.13 Suppose that z 62 hW. Then HI has no ground state.

Proof. We use the notation of the proof of Proposition 3.10. Let 	 be a ground
state of H. Then it is also a ground state of Hn
 1 and of 1
Hn. Being a ground

state of 1
Hn, it must be equal to 	n 
 Un
. Therefore, for w 2 fW :=
1S
n=1

Wn

w(a)	 = (wjh�1z)	:

But fW is dense inW. By Theorem 3.12, this means that either h�1z 2 W or 	 = 0.
2

4 Scattering theory

4.1 The usual formalism

The most common setup for scattering theory starts with a pair of self-adjoint
operators H0 and H. The wave operators 
� are de�ned by the formulas


� := s� lim
t!�1

eitHe�itH0 : (4.25)

Note that 
� are automatically isometric and


�H0 = H
�: (4.26)

The scattering operator is de�ned as

S := 
+�
�: (4.27)

It satis�es
S = w� lim

t+;t�!1
eit+H0e�i(t++t�)Heit�H0 (4.28)

and commutes with H0. If we have

Ran
+ = Ran
�;

then S is unitary.
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4.2 Wave operators de�ned by the Abelian limit|general

formalism

The limits in (4.25) often do not exists. This happens, for instance, if H0 has an
eigenvector, which is not an eigenvector of H. This is the case of many models of
quantum �eld theory, whose free vacuum (the unique eigenvector of H0) is often
di�erent from the interacting vacuum (the unique eigenvector of H).

Nevertheless, sometimes even in this situation some kind of a scattering theory
can be developed. In this subsection we will describe one of possible approaches to
scattering theory, which, as we will see, works in the case of van Hove Hamiltonians.
One can argue that this approach, or some its variation, is implicit in most textbook
presentations of QFT.

Again, we start with a pair of self-adjoint operators H0 and H. We suppose that
there exists the Abelian limit


�ur := s� lim
�#0

2�

Z 1

0
e�itHe�itH0e�2�t: (4.29)

Note that there is no guarantee that 
�ur are isometric. One knows only that 
�ur
are contractions. One can easily see that 
�ur have the intertwining property:


�urH0 = H
�ur: (4.30)

We will call 
�ur the \unrenormalized wave operators". Of course, it may happen
that 
�ur = 0.

De�ne the \renormalization of wave function operator"

Z� := 
��ur 

�
ur:

It is easy to see hat Z� commutes with H0. Assume that KerZ� = f0g. Then we
de�ne the \renormalized wave operators"


�rn := 
�ur(Z
�)�1=2:

Note that 
�rn are isometric and have the intertwining property:


�rnH0 = H
�rn: (4.31)

The unrenormalized scattering operator is de�ned as

Sur := 
+�
ur 


�
ur: (4.32)

Note that it can be also obtained as the following weak limit:

Sur = w� lim
��;�+#0

4���+

Z 1

0
dt�

Z 1

0
dt+e

it+H0e�i(t�+t+)Heit�H0e�2(��+2�+)t:

Sur is a contraction that commutes with H0.
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We can de�ne the renormalized scattering operator as

Srn := (Z+)�1=2Sur(Z
�)�1=2 = 
+�

rn 

�
rn:

Srn also commutes with H0 and if

Ran
+
rn = Ran
�rn;

then it is unitary.
We will see in the following subsection that van Hove Hamiltonians provide an

example where the formalism based on the Abelian limit is applicable.

4.3 Wave operators for the van Hove Hamiltonian

Let z 2 h1=2W + hW. Let H = HII be the van Hove Hamiltonian of the second
kind and

H0 := d�(h):

It is easy to see that in the case of the van Hove Hamiltonian, the limit in (4.25)
does not exist unless H = H0. Hence the construction of wave operators cannot be
based on the approach described in Subsection 4.1.

We will show, however, that the formalism of Subsection 4.2 works for van Hove
Hamiltonians if h has an absolutely continuous spectrum. It will turn out that the
two renormalized wave operator coincide with one another and are equal to the
dressing operator U . The operators Z� =: Z coincide and are just constants. The
renormalized scattering operator equals identity.

If z 62 hW, then Z = 0. This is one of the manifestations of the infrared problem.
All these statements are described in the following theorem.

Theorem 4.1 Suppose that h has absolutely continuous spectrum and z 2 h1=2W+
hW. Then 
�ur exists and


�ur = Z1=2U; Sur = Z;

where
Z = e�kh

�1zk2 :

Z 6= 0 i� z 2 hW, and then
Z = (
jU
)2:

We can then de�ne the renormalized operators, which are equal


�rn = U; Srn = 1:
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Proof. Let us assume that z 2 hW. (The general case can be obtained by the
limiting argument). Set g := h�1z.

eitHe�itH0 = UeitH0U�e�itH0

= U exp(�eithg(a�) + e�ithg(a))

= Ue
1

2
kgk2 exp(�eithg(a�)) exp(e�ithg(a)):

(4.33)

Let Pm be the projection onto the states with � m particles. Suppose that Pm	 =
	. Now

2�
R1
0 e�2�t exp(�eithg(a�)) exp(e�ithg(a))	dt = 	

+2�
R1
0 e�2�t

�
exp(�eithg(a�))� 1

�
	dt

+2�
R1
0 e�2�t exp(�eithg(a�))�exp(e�ithg(a))� 1

�
dt:

(4.34)

The norm of the third term can be estimated from above by

2�

Z 1

0
e�2�tk exp(�eithg(a�))Pmkk

�
exp(e�ithg(a))� 1

�
	kdt:

Clearly, k exp(�eithg(a�))Pmk is bounded uniformly in time. Besides, k�exp(e�ithg(a))�
1
�
	k ! 0, by the absolute continuity of h and the Riemann-Lebesgue lemma.

Therefore, the third term of (4.34) goes to zero.
The second term equals

1P
n=1

2�
1R
0

e�2�t (�1)n

n! (eithg)
n(a�)	dt

=
1P
n=1

(�1)n

n! 2�
�
(2�� id�(h))�1g
n

�
(a�)	:

(4.35)

Note that the nth term on the right goes to zero as �& 0 and can be estimated byp
(m+ 1) � � � (m+ n)

n!
kgknk	k: (4.36)

The series with elements (4.36) is convergent. Hence by the dominated convergence
theorem, (4.35) goes to zero as �& 0.

This shows that, for a �nite particle 	, the left hand side of (4.34) goes to 	.
By density, we can extend this to all 	 2 �s(W). 2

4.4 Asymptotic �elds|general formalism

There exists an alternative approach to scattering in quantum �eld theory. Instead
of starting from wave operators, one looks at the limits of certain observables in
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the interaction picture. There are various forms of this approach, some of them go
under the name of the LSZ formalism, see eg. [Schwa].

Let us present the abstract framework of one of the versions of this approach
developed in [HK] and used eg. in [DG2].

Suppose that H is a self-adjoint operator on the Fock space �s(W) and h is a
self-adjoint operator on W. Assume that for some subspace W1 � W there exists

s� lim
t!�1

eitHW (e�ithw)e�itH =:W�(w); w 2 W1:

Then
W1 3 w 7!W�(w) 2 U(�s(W)) (4.37)

are two representations of Canonical Commutation Relations (CCR), that means

W�(w1)W
�(w2) = e�

i

2
Im(w1jw2)W�(w1 + w2):

Moreover, they satisfy

eitHW�(w)e�itH =W�(eithw):

Suppose that the representations (4.37) are unitarily equivalent to the Fock
representation, which means that there exist unitary operators 
� such that

W�(w) = 
�W (w)
��: (4.38)

Then the operators 
� are de�ned up to a phase factor. They are called wave
operators.

The scattering operator is de�ned as S := 
+�
�. Again, the scattering opera-
tor is de�ned up to a phase factor.

Suppose that both the formalism of Subsection 4.2 and of Subsection 4.4 apply.
One can ask whether the renormalized wave operators 
�rn, de�ned as in Subsection
4.2, and the wave operator 
� de�ned in this section coincide up to a phase factor.
In general, there seems to be no guarantee for this to hold. Nevertheless we will see
that this is true in the case of van Hove Hamiltonians.

4.5 Asymptotic �elds for van Hove Hamiltonians

The formalism of asymptotic �elds works very well in the case of van Hove Hamil-
tonians.

Theorem 4.2 Let h have an absolutely continuous spectrum, 0 � � � 1 and
z 2 h1��W + hW. Let w 2 Dom h��.

(1) There exists the norm limit

lim
jtj!1

eitHW (e�ithw)eitH =W (w)ei2Re(wjh�1z) =:W as(w):
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(2) Domh�� 3 w 7!W as(w) is a regular representation of CCR.

(3) This representation is unitarily equivalent to the Fock representation i� z 2
hW, and then

W as(w) = UW (w)U�;

where U is the dressing operator.

Proof.

eitHW (e�ithw)eitH =W (w) exp
�
i2Re(wj(1 � e�ith)h�1z)

�
:

Now h�1z 2 h��W +W and w 2 Dom h�� . Hence limjtj!1(wje�ithh�1z) = 0 by
the Riemann-Lebesgue lemma. This proves (1). 2

5 Examples

5.1 Harmonic oscillators

In this section we describe van Hove Hamiltonians in a somewhat more concrete
setting, typical for physical applications. We will restrict ourselves to the classical
case, since it is parallel to the quantum case. We will describe a system of harmonic
oscillators with a linear perturbing potential.

Up to now, we assumed that our system is described by phase space W. There
was no need to introduce the con�guration space. For a system of harmonic os-
cillators it is however natural to start from a con�guration space, which will be
described by a real Hilbert space X with the scalar product denoted by the dot.
The preliminary phase space is X � X . It has the structure of a symplectic space
with the symplectic form

(x1; �1)!(x2; �2) = x1 � �2 � x2 � �1: (5.39)

Note, however, that we will have to take a slightly di�erent phase space.
Let r denote a positive operator on X and q is a linear functional on X (possibly

unbounded and not everywhere de�ned). A system of harmonic oscillators with a
linear perturbing potential is described by the (classical) Hamiltonian

G(x; �) =
1

2
jrxj2 + 1

2
j�j2 + q � x;

de�ned for x 3 Dom r \ Dom q, � 2 X . It is easy to see that X � X is not an
appropriate space for the Hamiltonian G. It is natural to replace it by the space
W := r�1=2X � r1=2X . We keep the symplectic form (5.39)

We equip W with the complex structure

i(x; �) := (�r�1�; rx):
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We can view W as a complex Hilbert space:

(w1jw2) = r1=2x1 � r1=2x2 + r�1=2�1 � r�1=2�2 + ix1 � �2 � ix2 � �1;
w1 = (x1; �1); w2 = (x2; �2):

Note that the symplectic form (5.39) is the imaginary part of the scalar product.
Introduce z := (r�1=2q; 0) and a positive self-adjoint operator h on W de�ned

by h := r � r. Then we can rewrite G as

G(w) =
1

2

�
(wjhw) + (zjw) + (wjz)�:

Note that the infrared and ultraviolet conditions expressed in terms of q instead
of z have their power shifted by 1=2. More precisely, z 2 h�W i� q 2 r1=2+�X .

5.2 Scalar massless �eld theory

Suppose that X = L2(Rd ), r = jirj. Then the Hamiltonian 1
2 jrxj2+ 1

2 j�j2 describes
the so called scalar massless �eld theory. After taking the Fourier transformation,
the operator r becomes the multiplication by j�j, where � is the momentum variable.

Suppose that we add a linear perturbation given by q 2 S(Rd). After taking the
Fourier transformation we get q̂ 2 S(Rd) and we see that the ultraviolet problem is
absent. The infrared problem will depend on whether q̂(0) equals zero or not. q̂(0)
equals the integral of q over the whole con�guration space. Since in some physical
examples q can be interpreted as the density of the charge, we will call q̂(0) the
total charge. Note that if q̂(0) = 0, then jq̂(�)j = O(j�j) around zero.

Concerning the type of the infrared behavior, we easily get the following table
(the number in the round brackets corresponds to the part of Theorem 3.5):

Dimension of con�guration space Nonzero total charge Zero total charge

d = 1 Hamiltonian unde�ned (2)

d = 2 (3) (1)

d = 3 (2) (1)

d � 4 (1) (1)

Remark 5.1 As we see from the table, in dimension 3, in the nonzero charge case
we get the infrared behavior of type (2). Thus the Hamiltonian is bounded from
below, but the ground state is absent. This is the type of the infrared problem widely
discussed in the literature [Ki].

Some authors say, however, that the type (2) behavior is an artifact of the model
and disappears if one takes a more physical Hamiltonian. In fact, in [BFS2] it is
proven that the (ultraviolet cut-o�) Hamiltonian of QED with a con�ning potential
possesses a ground state. This is related to the fact that in above considerations we
considered a scalar �eld, whereas photons in QED have spin one and are coupled to
the charge by the minimal coupling prescription.
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6 Time dependent van Hove Hamiltonians

In this section we describe a certain class of strongly continuous dynamics on the
Fock space. One can say that these are the dynamics generated by all possible time
dependent families of van Hove Hamiltonians.

Let R 3 t 7! gt 2 W be a continuous vector valued function and R 3 t 7!
ut 2 U(W) be a strongly continuous function with values in unitary operators. We
assume that g0 = 0 and u0 = 1. Set

V (t) := �(ut) exp
�
igt(a�) + igt(a)

�
:

For A 2 B(�s(W)) we set
�t(A) := V (t)AV (t)�:

Note that
�t(w(a�)) = utw(a�) + i(gtjw):

Theorem 6.1 (1) V (t) is a strongly continuous family of unitary operators on
�s(W) such that V (0) = 1.

(2) �t is a pointwise strongly continuous family of �-automorphisms of B(�s(W))
such that �0 is the identity.

(3) V (t) is the distinguished implementation of �t in the following sense: if ~V (t) is
a family of unitary operators such that �t(A) = ~V (t)A ~V (t)� and (
j ~V (t)
) >
0, then ~V (t) = V (t).

One can ask what is the time-dependent generator of V (t). To answer this
question we proceed formally, without worrying about the exact meaning of various
objects involved in our formulas.

Suppose that the dot denotes the temporal derivative. It is easy to check the
following identities:

d
dte

igt(a�)+igt(a) =
�
i
2 Im( _g

tjgt) + i _gt(a�) + i _g
t
(a)
�
eig

t(a�)+igt(a);

d
dt�(u

t) = d�( _utut�)�(ut):

Therefore,

d

dt
V (t) = i

�1
2
Im( _gtjgt) + ut _gt(a�) + ut _gt(a)� id�( _utut�)

�
V (t)

Now suppose that t 7! zt is a family of vectors and t 7! ht is a family of self-
adjoint operators. Suppose that ut is the solution of

d

dt
ut = ihtut; u0 = 1;
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and

gt :=
tR
0

us�zsds;

�t := 1
2 Im

tR
0

(ztjutus�zs)ds:

Then
d

dt
V (t) = iH(t)V (t);

where
H(t) := d�(ht) + zt(a�) + zt(a) + �t:

Thus, at least on a formal level, V (t) is generated by van Hove Hamiltonians.
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