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1 Introduction

In quantum �eld theory and string theory one frequently encounters the problem

of integrating over geometrical objects, e.g., Riemannian manifolds or Riemannian

manifolds with some additional structure. One wishes to de�ne a measure on sets of

geometrical objects and integrate functions that are independent of the coordinates

used to describe the objects. The prime example of a theory where this problem

arises is the path integral quantization of general relativity where one attempts to

give meaning to expressions of the form

hF i =
Z

e�S(g)F ([g])D[g];

where g is a Riemannian metric on a manifold M , [g] is the equivalence class of g

under di�eomorhisms of M , F is a function and S(g) is a di�eomorphism invariant

action functional, e.g., the Einstein{Hilbert action [1, 2]. Giving a mathematical

meaning to expressions of this form is largely an unsolved problem but some headway

has been made, mainly in two dimensions, see [3] and references therein.

One of the strategies used in physics to deal with functional integrals of this type

is to introduce discretizations of the geometrical objects under consideration and

try to prove convergence of the discretization as a cuto� parameter, e.g., a lattice

spacing, is taken to zero. It inspires con�dence in the results obtained when di�erent

discretizations lead to identical continuum results. This approach is described in

detail in the monograph [3].

For one-dimensional objects, i.e., when the functional integral is over paths, the

situation is radically di�erent from the higher dimensional analogues, since we have

measures on parametrized paths in Rd (for example the Wiener measure) that are

mathematically well-understood and give rise to measures on unparametrized paths

as we shall discuss below. We study two di�erent discretizations of integrals over un-

parametrized paths and show that the discrete measures converge to the appropriate

continuum measure.

In ordinary quantum �eld theory applications of random paths it is often the

convergence of regularized propagators that is of main interest and various results in

this vein have been known for a long time. Our main interest is the convergence of

the underlying measures on unparametrized paths, whereas convergence of propaga-

tors merely means convergence of the total volume of the measures. Corresponding
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problems in non-relativistic quantum mechanics normally involve only parametrized

paths. In this case various aspects of discrete approximations pertaining to the

Wiener-measure on paths parametrized by a �nite time interval have been discussed

by many authors, see, e.g., [4] and references therein.

This paper is organized as follows. In the next section we introduce the models of

discretized random paths we wish to study and give a proof of pointwise convergence

of the lattice propagator to the continuum propagator, that will be needed later. In

section 3 we de�ne the appropriate path spaces, the continuum measures and the

discretized measures. In section 4 we use standard tools of probability theory to prove

the convergence of the discretized measures. In section 5 we determine a family of

sets of unparamterized paths that generates the Borel sets of unparametrized paths

and plays a role similar to the one played by cylinder sets for the Wiener-measure.

Finally, in section 6 we apply the results of the previous sections to evaluate the

measure of some of these sets.

2 Propagators

Let � denote the Laplacian in Rd . It is well-known that the Euclidean propagator

G(x; y) = 2(��+m2)�1(x; y) (1)

of a scalar particle of mass m > 0 in Rd has the path integral representation

G(x; y) =

Z
!:x!y

e�mj!jD!; (2)

where ! is a path from x to y in Rd and j!j denotes its length. The most straight-

forward interpretation of the formal expression on the right hand side of Eq. (2) is

obtained by regarding it as a limit of lattice propagators. We replace Rd by the

hypercubic lattice aZd with lattice spacing a and de�ne a lattice propagator as

Ga(x; y) = a2�d
X
!:x!y

e�m(a)j!j (3)

for x; y 2 aZd where the sum is over all lattice paths from x to y. The prefactor

a2�d is dictated by dimensional considerations and the dependence of the parameter

m(a) (lattice mass) on a is determined by the requirement that Ga(x; y) converge to

G(x; y) as a! 0.
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Using translation invariance we may set G(x; y) = G(x � y) and Ga(x; y) =

Ga(x� y). The Fourier transform of the lattice propagator is then

cGa(k) = ad
X
x2aZd

Ga(x)e�ik�x

= eam(a)

 
m2 + 2a�2

dX
j=1

(1� cos(akj))

!�1

(4)

where k 2 [��=a; �=a]d and m(a) is given by the equation

eam(a) = 2d+m2a2: (5)

Evidently this implies the desired uniform convergence in momentum space

d�1cGa(k)! 2(k2 +m2)�1 = bG(k) (6)

as a! 0, for any k 2 R
d .

Pointwise convergence in space-time can be obtained as follows. We extend the

lattice propagator from aZd to a smooth function on Rd by setting

Ga(x) =
1

(2�)d

Z
[��=a;�=a]d

cGa(k)e�ik�x dk (7)

for any x 2 R
d . For � = (�1; : : : ; �d), where the �i's are non-negative integers, let

@� =
dY
i=1

@�i

@x�ii
:

De�ning cGa(k) = 0 outside [��=a; �=a]d it is easily veri�ed that

@�cGa(k)! @� bG(k)
uniformly on Rd for any multiindex �. Moreover, there is a constant c� such that

j@�cGa(k)j � c�(k
2 +m2)�1�j�j=2 (8)

where j�j = �1 + : : : + �d. Thus, choosing j�j > d, the right hand side of Eq. (8)

is integrable so the dominated convergence theorem together with Fourier inversion

implies that

d�1x�Ga(x)! x�G(x) (9)
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as a! 0, where x� = x�11 : : : x�dd . In particular,

d�1Ga(x)! G(x) (10)

for x 6= 0.

There is another path integral representation of the propagatorG(x; y) introduced

in [5] whose analogue for surfaces has played an important role in string theory in

recent years [6]. The alternative representation is given by

G(x; y) =

Z
!:x!y

exp

�
�1

2

Z �
j _!j2e�1 +m2e

�
dt

�
D!De; (11)

where the integration is over paths ! in Rd from x to y and over intrinsic metrics e

on the paths. An intrinsic metric on the path is simply a positive de�nite function

de�ned on the path. In order to give a meaning to Eq. (11), we note an important

common feature of the two action functionals

S1(!) = mj!j = m

Z
j _!j dt (12)

and

S2(!; e) =
1

2

Z �
j _!j2e�1 +m2e

�
dt (13)

which occur in the path integrals (2) and (11). The actions are invariant under

reparametrizations

t0 = '(t)

!0(t0) = !(t)

e0(t0) =
e(t)

_'(t)
; (14)

where ' is an increasing di�eomorphism between intervals. Thus the path integra-

tions in Eqs. (2) and (11) should be regarded as being taken over di�eomorphism

classes of paths in the �rst case and over di�eomorphism classes of paths and metrics

in the second one. The standard method for dealing with functional integration over

such orbit spaces is the so called Faddeev-Popov procedure. We discuss the orbit

spaces and the appropriate measures on them more thoroughly in Section 3. For the

moment we note that any pair (!; e) can uniquely be reparametrized to (!0; e0) such
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that the parameter interval of the latter is [0; 1] and the metric e0 is constant on [0; 1]

and equal to the volume

T �
Z

e(t)dt (15)

of e, which is parametrization independent. It follows that the path integral (11) is

e�ectively an integral over T and over paths ! parametrized on [0; 1]. An interpreta-

tion of (11) is then obtained by subdividing [0; 1] into N subintervals of length N�1

and letting ! be an N -step piecewise linear path x = x0 ! x1 ! � � � ! xN = y for

which Z 1

0

j _!j2 dt = 1

N

N�1X
i=0

�
xi+1 � xi
N�1

�2

= N
N�1X
i=0

(xi+1 � xi)
2 :

Setting

a2 =
T

N

we have

Ha(x; y) � a2

(2�a2)d=2

1X
N=1

Z N�1Y
i=1

dxi

(2�a2)
d
2

exp

 
�1

2

N�1X
i=0

jxi+1 � xij2
a2

� 1

2
m2a2N

!

= a2
1X

N=1

(2�a2N)�
d
2 exp

�
�jx� yj2

2a2N
� 1

2
m2a2N

�
!
Z 1

0

(2�T )�
d
2 exp

�
�jx� yj2

2T
� 1

2
m2T

�
dT

= G(x; y) (16)

for x 6= y, as a ! 0. Hence, the function Ha(x; y) de�ned here provides a discrete

approximation to G(x; y). In the same way as for the hypercubic lattice approxima-

tion we show in the Section 4 that the measures on piecewise linear paths de�ned

by the approximation Ha converge to a continuum path measure which attributes a

proper meaning to Eq. (11).

3 The continuum measures and discrete approxi-

mations

As noted in the previous section the appropriate space to integrate over in Eqs. (2)

and (11) consists of equivalence classes of paths under reparametrizations. In this

section we de�ne those orbit spaces and the relevant measures.
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3.1 Picewise linear paths

It is convenient to start with Eq. (11) and for notational and technical simplicity to

consider �rst paths with only one �xed endpoint x. Let �(x) be the space consisting

of pairs (e; !) where e : [0; 1]! R is a positive continuous function and ! : [0; 1]!
R
d is continuous with !(0) = x. Let Di�+[0; 1] denote the set of all increasing

di�eomorphisms of the unit interval. As remarked in the previous section there is a

unique ' 2 Di�+[0; 1] such that the reparametrised pair (e0; !0) de�ned by Eq. (14)

has e0 = T where T is a constant. Hence we conclude that

~�(x) � �(x)=Di�+[0; 1] = R+ � 
(x);

where 
(x) denotes the set of continuous paths ! : [0; 1]! R
d with !(0) = x.

Let us de�ne a metric ~d on ~�(x) by

~d((T; !); (T 0; !0)) = jT � T 0j+ d(!; !0);

where d is the standard uniform metric on 
(x) de�ned by

d(!; !0) = supfj!(s)� !0(s)j : s 2 [0; 1]g:

Equipped with ~d the set ~�(x) becomes a separable metric space. The discussion of

probability measures and their convergence properties is particularly convenient on

complete metric spaces (see, e.g., [8]). Since 
(x) with the metric d is complete we

can complete ~�(x) by adjoining 0� 
(x). This will be assumed in the folowing. All

measures on ~�(x) that will be considered vanish identically on 0� 
(x).

On 
(x) we have the family of Wiener measures W t
x; t > 0; de�ned on the Borel

subsets of 
(x). Here t denotes the variance of the measure. We note that W t
x is

uniquely de�ned by the characteristic functions of its �nite dimensional distributions

which are given for 0 < t1 < t2 < � � � < tn � 1 by

ptt1;:::;tn(�1; : : : ; �n) =

Z
exp (i�1 � !(t1) + � � �+ i�n � !(tn)) dW t

x(!)

=

Z nY
i=1

dxi(2�t(ti � ti�1))
�d=2 exp

�
� jxi � xi�1j2
2t(ti � ti�1)

+ i�i � xi
�

= exp

 
� t

2

nX
i=1

(ti � ti�1)(�i + � � �+ �n)
2 + ix � (�1 + � � �+ �n)

!
;

(17)
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where �1; : : : ; �n 2 R
d , t0 = 0 and x0 = x.

For a Borel set B � ~�(x) we let

Bt = f! : (t; !) 2 Bg for t > 0 ;

and de�ne the measure Wx on ~�(x) by

Wx(B) =

Z 1

0

e�
1

2
m2tW t

x(Bt)dt :

The above de�nition requires t!W t
x(Bt) to be a measurable function. Rather than

proving this directly we show that this must be the case by giving an alternative

de�nition of Wx. First, let x = 0 and consider the product M of Lebesgue measure

on R+ and W 1
0 on 
(0), i.e.,

dM(t; !) = dtdW 1
0 (!) :

De�ning a homeomorphism h of R+ � 
(0) onto itself by h(t; !) = (t; t�
1

2!) and

observing that

W t
0(A) =W 1

0 (t
� 1

2A)

for Borel sets A � 
(0), it follows that we have a measure W0 on ~�(0) given by

W0(B) =

Z
B

e�
1

2
m2td(M Æ h)(t; !) ;

where the measure M Æ h on R+ � 
(0) is de�ned by (M Æ h)(B) = M(h(B)) for

Borel sets B � R+ � 
(0). This shows that W0 is well de�ned. For arbitrary x we

obtain Wx as the translation of W0 by x.

To set up the discrete approximation toWx, given by Eq. (16) for the propagator,

let ~�a;N(x) � ~�(x) be the set of pairs (T; !), where T = a2N and ! is an N -step

piecewise linear path x = x0 ! x1 ! � � � ! xN such that the step xi�1 ! xi is

parametrized linearly by the interval [(i� 1)=N; i=N ]. De�ne the measure Wx;a;N on

~�(x) supported on ~�a;N(x) by

dWx;a;N(T; !) =
NY
i=1

dxi(2�a
2)�

d
2 exp

�
� 1

2a2
jxi � xi�1j2

�
: (18)

For N = 0 we let Wx;a;0 be the Dirac measure at the trivial (constant) path. The

approximating measure Wx;a on ~�(x) is supported on the set

~�a(x) �
1[

N=0

~�a;N(x)

8



and de�ned by

Wx;a = (1� e�
1

2
m2a2)

1X
N=0

e�
1

2
m2a2NWx;a;N : (19)

The normalization factor in Eq. (19) has been chosen such that Wx;a is a probability

measure, whereas the volume ofWx isWx(~�(x)) =
2
m2 . We prove the following result

in the next section.

Theorem 3.1. Wx;a ! m2

2
Wx as a! 0 :

Here and in the following convergence of measures is in the sense of weak conver-

gence, i.e., Z
fdWx;a !

Z
fdWx as a! 0 ;

for all bounded continuous functions f on ~�(x).

3.2 Lattice paths

Next let us discuss the measure pertaining to Eq. (2). The relevant orbit space is

now

~
(x) = 
(x)=Di�+[0; 1] = f[!] : ! 2 
(x)g ;

where [!] = f! Æ' j ' 2 Di�+[0; 1]g. The quotient space ~
(x) inherits in a standard

fashion a pseudo-metric �d from the metric d on 
(x), given by

�d([!]; [!0]) = inffd(!; !0 Æ ') : ' 2 Di�+[0; 1]g :

Here the term pseudo-metric means that �d([!]; [!0]) = 0 may occur even if [!] 6= [!0].

For example, we have �d([!]; [! Æ f ]) = 0 whenever f : [0; 1]! [0; 1] is a uniform limit

of increasing di�eomorphisms. This defect is eliminated by taking a further quotient

setting

�
(x) = f�! : ! 2 
(x)g ;

where �! = f[!0] : �d([!]; [!0]) = 0g. Then �d de�nes a metric on �
(x), and it is

straightforward to verify that �
(x) is a complete separable metric space.
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It is not hard to see that the same space �
(x) results from the above construc-

tion if, e.g., we replace Di�+[0; 1] by the group Homeo+[0; 1] of increasing homeo-

morphisms of the unit interval. Let us also note that evidently the quotient map

� : 
(x)! �
(x) is continuous.

The measure Wx on ~�(x) = R+ � 
(x) constructed in the previous subsection

gives rise to a measure V 0
x on 
(x) by integration over the t-variable,

V 0
x(A) =Wx(R+ � A) =

Z 1

0

e�
1

2
m2tW t

x(A)dt

for Borel sets A � 
(x). Transporting this measure to �
(x) by � we obtain a measure

Vx given by

Vx( �A) = V 0
x(�

�1( �A)) :

This measure is de�ned on those sets �A for which ��1( �A) is a Borel set. This �-

algebra contains the Borel algebra of �
(x) since � is continuous and we claim that

the measure so de�ned is the appropriate one to associate to Eq. (2).

In order to de�ne the corresponding lattice approximation let 
a;N (x) denote the

set of parametrized paths in x+ aZd with N steps, such that the ith step is linearly

parametrized by [ i�1
N
; i
N
]. Here x is an arbitrary point in R

d . We let the discrete

measure V 0
x;a;N on 
(x), supported on 
a;N (x) be de�ned by

V 0
x;a;N(!) = e��0N for ! 2 
a;N (x) ; (20)

where �0 = log 2d, i.e., V 0
x;a;N is a normalized counting measure.

Furthermore, in correspondence with Eqs. (3) and (5) we de�ne the measure V 0
x;a

on 
(x) supported on


a(x) �
1[

N=0


a;N (x)

by

V 0
x;a = (1� e�

1

2d
m2a2)

1X
N=0

e�
1

2d
m2a2NV 0

x;a;N : (21)

Here, V 0
x;a;0 denotes the Dirac measure at the trivial path in 
(x), and the normali-

sation has been chosen such that V 0
x;a is a probability measure.

Similarly, we de�ne

�
a;N (x) = �(
a;N (x))

10



and

�
a(x) = �(
a(x)) =
1[

N=0

�
a;N (x) :

Correspondingly we de�ne the transported measures Vx;a;N and Vx;a given by

Vx;a;N( �A) = V 0
x;a;N(�

�1( �A)) (22)

and

Vx;a( �A) = (1� e�
1

2d
m2a2)

1X
N=0

e�
1

2d
m2a2NVx;a;N( �A) (23)

for Borel sets �A � �
(x). With these de�nitions we then have

Theorem 3.2. Vx;a ! m2

2
Vx as a! 0 :

This result is proven in the subsequent section as a consequence of the stronger

result V 0
x;a ! m2

2
V 0
x as a! 0 :

3.3 Paths with two �xed endpoints

Let us briey discuss paths with both endpoints x; y �xed. It is straightforward to

introduce analogues to the spaces de�ned above for paths with one �xed endpoint.

We shall use the same notation except that x is everywhere replaced by x; y. On


(x; y) the family of Wiener measures W t
x;y; t > 0, is de�ned by the characteristic

functions

qtt1;:::;tn(�1; : : : ; �n) =

Z
exp (i�1 � !(t1) + � � �+ i�n � !(tn)) dW t

x;y(!)

=

Z nY
i=1

dxi(2�t(ti � ti�1))
�d=2 exp

�
� jxi � xi�1j2
2t(ti � ti�1)

+ i�i � xi
�

� (2�t(1� tn))
�d=2 exp

�
� jy � xnj2
2t(1� tn)

�
(24)

= Zt
x;y exp

0@� t

2

nX
i=1

(ti � ti�1)(�i + � � �+ �n)
2 �

 
nX
i=1

ti�i

!2

+ i
nX
i=1

(tiy + (1� ti)x)�i

1A
where

Zt
x;y = (2�t)�d=2e�

jx�yj2

2t ;

the volume of W t
x;y, is simply the heat kernel.
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We then de�ne the measure Wx;y on ~�(x; y) for x 6= y by

Wx;y(B) =

Z 1

0

e�
1

2
m2tW t

x;y(Bt)dt :

where B � ~�(x; y) is a Borel set and Bt � 
(x; y) is de�ned as previously. The fact

that this expression is well de�ned is shown in a similar way as forWx by �rst noting

that

W t
0;0(A) = t�

d
2W 1

0;0(t
� 1

2A)

for Borel sets A � 
(0; 0) , and then using

W t
x;y(A) = exp

�
�jx� yj2

2t

�
W 1

0;0(A� !x;y) ;

where !x;y is the linear path from x to y and A is a Borel subset of 
(x; y). The last

relation is a direct consequence of Eq. (24).

Having de�ned Wx;y the measures V 0
x;y and Vx;y are de�ned in a similar way as

V 0
x and Vx.

The piecewise linear approximation is de�ned in analogy with Eq. (19) by

Wx;y;a = (1� e�
1

2
m2a2)

1X
N=0

e�
1

2
m2a2NWx;y;a;N ; (25)

where

dWx;y;a;N(T; !) =
NY
i=1

dxi(2�a
2)�

d
2 exp

�
� 1

2a2
jxi � xi�1j2

�
(26)

for an N -step piecewise linear path ! : x = x0 ! x1 ! � � � ! xN�1 ! xN = y.

Here Wx;y;a;1 is the Dirac measure Æ(1;!0), where !0 is the linear path from x to y,

and T = a2N as before.

Similarly, the hypercubic approximation is de�ned for x 6= y, x� y 2 aZd, by

V 0
x;y;a = (1� e�m

2a2)
1X

N=1

e�m
2a2NV 0

x;y;a;N ; (27)

where

V 0
x;y;a;N(!) = a�de��0N for ! 2 
a;N (x; y) ; (28)

and Vx;y;a is obtained by transporting to �
(x; y) by the quotient map �. Since in all

cases we are interested in the limit a! 0 we shall assume 0 < a < 1.
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It should be noted that in contrast to the case of paths with one �xed endpoint,

the approximating measures de�ned here are not probability measures. The volume

of Wx;y;a;N is obtained by explicit computation and equals

Za2N
x;y = (2�a2N)�

d
2 e�

jx�yj2

2a2N ; (29)

which by insertion into (25) immediately shows that the volume of Wx;y;a equals�
1� e�

1

2
m2a2

�
a�2Ha(x; y) and converges to m2

2
G(x; y) as a ! 0 according to Eq.

(16). Similarly, the volume of Vx;y equals
�
1� e�

1

2d
m2a2

�
a�2Ga(x; y) and converges

to m2

2
G(x; y) as a! 0 according to Eq. (10). On the other hand, the volume of Wx;y

and of Vx;y both equal G(x; y). The convergence of volumes extends to the following

result.

Theorem 3.3. Wx;y;a ! m2

2
Wx;y and Vx;y;a ! m2

2
Vx;y as a ! 0 for

x 6= y .

The proof is given in the next section.

4 Convergence of the approximations

In a complete separable metric space M there is a standard two-step procedure

for proving convergence of a family ma; a > 0, of Borel probability measures to a

measure m. The �rst step is to verify that ma; a > 0, is a tight (or precompact)

family. This means that for every � > 0 there exists a compact set K � M such

that ma(K) � 1� � for all a > 0. The second step is to show thatZ
M

f dma !
Z
M

f dm (30)

as a! 0 for a collection of functions that determine the measure in the sense that if

the integrals of these functions coincide for two measures then the measures coincide.

Of course, the �rst step is superuous if one can establish the convergence (30) for

all bounded continuous functions f . But this only happens rarely. Generally, the

�rst step ensures that every sequence man from the given family has a convergent

subsequence, and the second step then implies that its limit is independent of the

chosen sequence or subsequence. For the spaces 
(x) and 
(x; y) the second step can

be accomplished by proving convergence of the characteristic functions of the �nite

13



dimensional distributions. For the spaces ~�(x) and ~�(x; y) a little more is required

as we discuss below.

In the following four lemmas we show that the approximations introduced in the

previous section form tight families.

Lemma 4.1. Wx;a; 0 < a < 1, is a tight family of measures on ~�(x).

Proof. The following is an adaptation of the corresponding argument for the piece-

wise linear approximations to the measure W t
x (see [8]). According to the Arzela-

Ascoli theorem the sets of compact closure in 
(x) are the equicontinuous ones.

De�ning the modulus of continuity

m(!; Æ) = supfj!(s)� !(t)j : js� tj < Æg for Æ > 0; ! 2 
(x) ;

it follows that complements to sets of the form

C =
1[
n=1

�
! : m(!; Æn) >

1

n

�
(31)

have compact closures in 
(x) for an arbitrary sequence fÆng of positive numbers.

We observe that by Eq. (19)

Wx;a ([t0;+1)� 
(x)) < � if t0 > �m�2 log � (32)

for any � > 0 and all a > 0. In order to prove the lemma it therefore suÆces to show

that for any �; "; t0 > 0 there exists a Æ > 0 such that

Wx;a([0; t0]� f! 2 
(x) : m(!; Æ) > "g) < � (33)

for all a > 0.

By Eq. (19) it follows that Eq. (33) holds if

Wx;a;N

�
f(a2N;!) 2 ~�(x) : m(!; Æ) > "g

�
< � for a2N � t0 : (34)

But for a;N as in Eq. (34) we have

Wx;a;N(f(a2N;!) : m(!; Æ) > "g) = Wx;1;N(f(N;!) : m(!; Æ) >
"

a
g)

� Wx;1;N(f(N;!) : m(!; Æ) >
"
p
Np
t0
g) : (35)

14



Hence, it suÆces to show, for given �; " > 0, that

Wx;1;N(f(N;!) : m(!; Æ) > "
p
Ng) < � ; (36)

if Æ is small enough. This is a well known result (see, e.g., [8] pp. 62-63). For later

refrence we briey recall the argument.

First, note that since paths contributing to (36) are linear on each interval [ i�1
N
; i
N
]

we have

mN(!; Æ) � max

�
j!( i

N
)� !(

j

N
)j : 0 � i; j � N; j i

N
� j

N
j < Æ

�
� 1

3
m(!; Æ)

for N � Æ�1. Note also that by uniform continuity of ! 2 
(x) the inequality (36)

is ful�lled for suÆciently small Æ for each individual N , so we need not worry about

small N . Hence we may replace m(!; Æ) in (36) by mN(!; Æ), and we may assume

Æ =M�1, where M 2 N and N �M .

Next, given N � M , we choose integers 0 = k0 < k1 < � � � < kM = N such

that any subinterval [ i
N
; j
N
] of [0; 1] of length � Æ is contained in one of the intervals

[kl
N
; kl+2

N
] and such that the latter intervals are all of length � 3Æ. It follows that

Wx;1;N

�
f(N;!) : m(!; Æ) > "

p
Ng
�

�
M�2X
l=0

Wx;1;N

��
(N;!) : max

kl�k�kl+2
j!( kl

N
)� !(

k

N
)j > "

6

p
N

��

�
M�2X
l=0

Wx;1;N

 (
(N;!) : max

kl�k�kl+2
j!( kl

N
)� !(

k

N
)j > Æ�

1

2 "

6
p
3

p
kl+2 � kl

)!
:

Due to statistical independence of the steps in ! and translation invariance, we have

Wx;1;N

��
(N;!) 2 ~�(x) : max

kl�k�kl+2
j!( kl

N
)� !(

k

N
)j > �

��
= W0;1;kl+2�kl

��
(kl+2 � kl; !) 2 ~�(0) : max

kl�k�kl+2
j!( k

kl+2 � kl
)j > �

��
for � > 0. Combining this with the previous inequality we conclude that it is

suÆcient to show for given � > 0 the existence of Æ > 0 such that for all N 2 N

Æ�1W0;1;N

��
(N;!) : maxfj!( i

N
)j j 0 � i � Ng > Æ�

1

2

p
N

��
< � :

This inequality is a consequence of the Chebychev inequality and the uniform bound-

edness in N of the moments of N� 1

2 j!(1)j with respect to the measure W0;1;N . The

details may be found in [8].
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Lemma 4.2. V 0
x;a; 0 < a < 1, is a tight family of measures on 
(x).

Proof. This is obtained by an argument similar to the one given above. First, apply-

ing the Arzela-Ascoli theorem one concludes that it is suÆcient to prove for given

�; " > 0 that

V 0
x;a(f! 2 
(x) : m(!; Æ) > "g) < � : (37)

for small enough Æ. Second, since the contribution of terms with a2N � t0 in (21) is

less than or equal to �
2
if t0 � �m2 log �

2
we conclude as above that it is suÆcient to

show the existence of a Æ > 0 such that for all N 2 N

V 0
x;1;N(f! 2 
(x) : m(!; Æ) > "

p
Ng) < � : (38)

The proof of this fact parallels the one for piecewise linear paths referred to above,

and uses only the statistical independence of the steps in a path together with the

uniform boundedness in N of the moments of N� 1

2 j!(1)j with respect to the measure

V 0
x;1;N . We omit the details of the argument.

Lemma 4.3. Wx;y;a; 0 < a < 1, is a tight family of measures on ~�(x; y) for x 6= y .

Proof. : By de�nition tightness of the family Wx;y;a; a > 0, means tightness of the

corresponding famify of normalized measures. Since, however, the volume of Wx;y;a

converges to the volume of 1
2
m2Wx;y as a ! 0, as noted previously, we need not

worry about normalisation.

We note �rst that the volume of Wx;y;a;N given by (29) is uniformly bounded

in a and N . Hence, in (25) the sum over N � s0a
�2 or over N � t0a

�2 can be

made arbitrarily small for suÆciently small s0 or suÆciently large t0, respectively.

By the same arguments as in the �rst part of the proof of Lemma 4.1 it is suÆcient

to demonstrate the existence of a Æ > 0 such that

Wx;y;a;N(f(a2N;!) 2 ~�(x; y) : m(!; Æ) > "g) < � for s0 � a2N � t0 ; (39)

for given �; �; s0; t0 > 0.

We may as before replace m(!; Æ) by mN (!; Æ). Assuming Æ < 1
3
and setting

N1 = [2
3
N ] + 1; N2 = [1

3
N ] (where [�] denotes the integer part of �), any subinterval

of [0; 1] of lenghth Æ is contained in either [0; N1=N ] or in [N2=N; 1]. Hence, we have

Wx;y;a;N(f(a2N;!) : mN (!; Æ) > "g) (40)

� Wx;y;a;N(f(a2N;!) : m1
N (!; Æ) > "g) +Wx;y;a;N(f(a2N;!) : m2

N(!; Æ) > "g) ;
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where we have set

m1
N (!; Æ) = maxfj!( i

N
)� !(

j

N
)j : 0 � i; j � N1; j i

N
� j

N
j < Æg

and

m2
N(!; Æ) = maxfj!( i

N
)� !(

j

N
)j : N2 � i; j � N; j i

N
� j

N
j < Æg :

By de�nition of Wx;y;a;N we have

Wx;y;a;N(f(a2N;!) : m1
N(!; Æ) > "g)

=

Z
Rd

duZa2(N�N1)
u;y Wx;u;a;N1

(f(a2N1; !) : mN1
(!; Æ) > "g) : (41)

Here a2(N �N1) � a2(1
3
N � 1) � 1

6
s0 (assuming N � 6) so

Za2(N�N1)
u;y � (

1

3
�s0)

� d
2 :

Using this estimate together with

dWx;a;N(a
2N;!) = d!(1)dWx;!(1);a;N(!) for ! 2 
(x)

in Eq. (41) we obtain

Wx;y;a;N(f(a2N;!) : m1
N (!; Æ) > "g)

� (
1

3
�s0)

� d
2Wx;a;N1

(f(a2N1; !) : mN1
(!; Æ) > "g) :

Finally, using a2N1 � 2
3
t0 we conclude from the proof of Lemma 4.1 that

Wx;a;N1
(f(a2N1; !) : mN1

(!; Æ) > "g) can be made arbitrarily small for a2N � t0

if Æ is chosen small enough.

The second term in (40) can be treated similarly, and the lemma is proven.

Lemma 4.4. V 0
x;y;a; 0 < a < 1, is a tight family of measures on 
(x; y) for x 6= y .

Proof. Only a few modi�cations of the previous proof are needed.

For the volume Zx;y;1;N of Wx;y;1;N we have the following result, which is rather

easily derived from its Fourier representation (see, e.g., [9] pp. 76-77]):

lim
N!1

�
(2�N=d)

d
2Zx;y;1;N � e�

jx�yj2

2N=d

�
= 0

17



uniformly in x� y 2 Z
d. For the volume Zx;y;a;N of Wx;y;a;N this means

lim
N!1

�
(2�a2N=d)

d
2Zx;y;a;N � e

�
jx�yj2

2Na2=d

�
= 0 (42)

uniformly in x� y 2 aZd and 0 < a < 1.

As a �rst consequence of (42) we note that Zx;y;a;N is uniformly bounded in a;N

for a2N � t0 for any given t0 > 0 large enough. It follows that in Eq. (25) the sum

over N � t0a
�2 can be made arbitrarily small (when applied to any Borel set in


(x; y)) by choosing t0 large enough.

A second consequence is that for any s0 > 0

(1� e�
1

2d
m2a2)

1X
a2N�s0

e�
1

2d
m2a2NZx;y;a;N

! m2

2d

Z 1

s0

Zt=d
x;y e

� 1

2d
m2tdt =

m2

2

Z 1

s0=d

Zt
x;ye

� 1

2
m2tdt

as a! 0. On the other hand, as we know from Section 2,

(1� e�
1

2d
m2a2)

1X
N=0

e�
1

2d
m2a2NZx;y;a;N ! m2

2
G(x; y) =

m2

2

Z 1

0

Zt
x;ye

� 1

2
m2tdt

as a! 0. Hence we conclude that the sum in Eq. (25) over a2N � s0 can be made

arbitrarily small for all a < a0 for some a0 > 0. Replacing s0 by minfs0; a20g we can
arrange that a0 = 1.

It now follows as in the previous proof that it suÆces to show for given �; "; s0; t0 >

0 that there exists Æ > 0 such that

V 0
x;y;a;N(f! : mN (!; Æ) > "g) < � for s0 < a2N < t0 :

Following the proof of Lemma 4.3 we have the estimate

V 0
x;y;a;N(f(a2N;!) : mN(!; Æ) > "g)

� V 0
x;y;a;N(f(!) : m1

N (!; Æ) > "g) + V 0
x;y;a;N(f(!) : m2

N (!; Æ) > "g) : (43)

By de�nition of V 0
x;y;a;N we can write

V 0
x;y;a;N(f(!) : m1

N(!; Æ) > "g
=
X
u2aZd

Zu;y;a;N�N1
V 0
x;u;a;N1

(f(!) : mN1
(!; Æ) > "g :
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From Eq. (42) and a2(N � N1) � 1
6
s0 it follows that Zu;y;a;N�N1

is uniformly

bounded in x; y; a; N for a2N � s0 and n � N0 for some N0 2 N . Letting C denote

such an upper bound, we have

V 0
x;y;a;N(f(!) : m1

N(!; Æ) > "g
� C

X
u2aZd

V 0
u;x;a;N1

((f(!)mN1
(!; Æ) > "g

= CV 0
x;a;N1

((f(!) : mN1
(!; Æ) > "g : (44)

From the proof of Lemma 4.2 it now follows as above that the right hand side of

(44) can be made arbitrarily small for a2N � t0 if Æ is chosen suÆciently small.

Estimating the second term in (43) similarly and noting again that the case N < N0

can be taken care of separately, the proof of the lemma is complete.

We are now ready to give proofs of the convergence theorems stated in Section

3. In view of the preceding lemmas and the remarks at the beginning of this section

it is suÆcient in each case to prove convergence on a measure determining class of

functions.

Proof of Theorem 3.1: For 0 < t1 < � � � < tn � 1 and s 2 R; �1; : : : ; �n 2 R
d we

de�ne the characteristic function pa;t1;:::;tn of Wx;a by

pa;t1;:::;tn(s; �1; : : : ; �n) =

Z
~�(x)

ei(st+�1�!(t1)+���+�n�!(tn))dWx;a(t; !) ; (45)

and similarly the characteristic function pt1;:::;tn of Wx. We claim it is suÆcient

to show that pa;t1;:::;tn ! m2

2
pt1;:::;tn pointwise as a ! 0, for arbitrary 0 < t1 <

� � � < tn � 1. In order to see this, it is enough to verify that the measure Wx on

~�(x) is determined by its characteristic functions. Let f be a smooth function on

R+�Rnd with compact support. Multiplying pt1;:::;tn by the Fourier transform of f at

(s; �1; : : : ; �n) and integrating over (s; �1; : : : ; �n) 2 R
nd+1 gives by Fubini's theoremR

~�(x)
f(t; !(t1); : : : ; !(tn))dWx;a(t; !). A simple limiting argument then shows that

measures of sets of the form f(t; !) : (t; !(t1); : : : ; !(tn)) 2 Cg, where C � R+ �R
nd

is closed, are determined by the characteristic functions. Since sets of this form

generate the Borel algebra in ~�(x) the claim follows.

Given N let 1 � N1 � � � � � Nn � N be such that ti 2]Ni�1
N

; Ni

N
] and set t0i =

Ni

N
.

By an explicit computation, replacing the intermediate times ti by t
0
i in the piecewise
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linear paths, one �ndsZ
~�(x)

ei(st+�1�!(t1)+���+�n�!(tn))dWx;a;N(t; !) = Ca;N pa
2N
t0
1
;:::;t0n

(s; �1; : : : ; �n):

The quantity Ca;N which depends on the time di�erences ti� t0i tends to 1 uniformly

in N as a ! 0. Using the expression (17) for ptt1;:::;tn(s; �1; : : : ; �n) it follows easily

that

pa;t1;:::;tn(s; �1; : : : ; �n) = (1� e�
1

2
m2a2)

1X
N=0

Ca;Ne
� 1

2
m2a2Neisa

2Npa
2N
t0
1
;:::;t0n

(s; �1; : : : ; �n)

! m2

2
pt1;:::;tn(s; �1; : : : ; �n)

as a! 0. 2

Proof of Theorem 3.2: We do this by proving the stronger result that V 0
x;a ! m2

2
V 0
x

as a! 0. It follows by the same argument as given in the beginning of the previous

proof that it is enough to prove convergence of the characteristic function

p0a;t1;:::;tn(�1; : : : ; �n) =

Z

(x)

ei(�1�!(t1)+���+�n�!(tn))dV 0
x;a(t; !)

= (1� e�
1

2
m2a2)

1X
N=0

e�
1

2
m2a2N

X
!2
a;N (x)

e��0Nei(�1 �!(t1)+���+�n�!(tn))

to m2

2
pt1;:::;tn as a ! 0 for arbitrary 0 < t1 < � � � < tn � 1. Furthermore, we can

assume x = 0, since translation by x only gives rise to a factor eix�(�1+���+�n) in the

characteristic functions. De�ning Ni and t0i as in the preceding proof we have

p0a;t1;:::;tn(�1; : : : ; �n)

= (1� e�
1

2d
m2a2)

1X
N=0

e�
1

2d
m2a2N

nY
i=1

�
1

d

dX
�=1

cos a(�i + � � �+ �n)�

�Ni�Ni�1

= (1� e�
1

2d
m2a2)

1X
N=0

e�
1

2d
m2a2N

nY
i=1

�
1

d

dX
�=1

cos a(�i + � � �+ �n)�

�(t0i�t
0
i�1)N

;

where � labels the components of the �-variables and N0 = 0. Finally, using�
1

d

dX
�=1

cos a(�i + � � �+ �n)�

� s
a2 ! e�

s
2d

(�i+���+�n)2

as a! 0, an application of the dominated convergence theorem shows that

p0a;t1;:::;tn(�1; : : : ; �n) ! m2

2

Z 1

0

dt e�
1

2
m2t exp

 
� t

2

nX
i=1

(ti � ti�1)(�i + � � �+ �n)
2

!
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as a! 0, which is the desired result. 2

Proof of Theorem 3.3: The convergence Wx;y;a ! Wx;y follows by essentially the

same proof as of Theorem 3.1. Similarly the convergence Vx;y;a ! Vx;y is obtained

by trivial modi�cations of the proof of Theorem 3.2. Details are left to the reader.

2

5 Cylinder sets

In this section we de�ne a class of sets of geometric paths which generate the Borel

algebra and play a role similar to the one played by cylinder sets in the theory of

parametrized paths. We will see in the next section that the measure of these sets

can be calculated in a particularly simple way.

A natural condition to put on a parametrized path ! is that the path be located

in a particular subset A of Rd at a given time t, i.e., !(t) 2 A. For geometric paths

a condition of this type is meningless but a similar one which has a well de�ned

meaning is the condition that a geometric path �! hit a set A. This means that

�! \ A 6= ;, i.e., if ! is a parametrization of �! then there is a time t such that

!(t) 2 A. More generally, we can require that a geometric path hit a number of sets

in a particular order and/or stay away from other sets. Below we de�ne a certain

class of sets de�ned by such conditions. Other de�nitions are possible but we �nd

this class simple to work with.

We consider paths with two �xed endpoints x and y. Let A1; : : : ; An be subsets

of Rd and let �! 2 �
(x; y) with parametrization ! : [0; 1]! R
d . De�ne

�1 = supft � 0 : !([0; t]) � A1g
�2 = supft � �1 : !([�1; t]) � A2g

...

�n = supft � �n�1 : !([�n�1; t]) � Ang;

where by convention sup ; = 1. We then de�ne Z(A1; : : : ; An) as the set of all

geometric paths �! 2 �
(x; y) such that

�1 < �2 < : : : < �n�1 < �n = 1:

This de�ning property is easily seen to be independent of the parametrization !

chosen for �!. In fact, �! 2 Z(A1; : : : ; An) exactly if it starts at x 2 A1, stays inside
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A1 until it leaves A1 at a point x1 = !(�1) 2 A2, then stays in A2 until it leaves at a

point x2 = !(�2) 2 A3 and so on until it leaves An�1 at a point xn�1 = !(�n�1) 2 An

and then �nally stays in An until it ends at y 2 �An. The values of the escape times

�i depend of course on the parametrization but their ordering and the points xi are

independent of parametrization.

Proposition 5.1. Let A1; : : : ; An � R
d be open sets such that x 2 A1 and y 2

An n �An�1. Furthermore, assume

Ai�1 \ @Ai \ Ai+1 = ; (46)

for i = 2; : : : ; n� 1. Then Z(A1; : : : ; An) is an open subset of �
(x; y).

Proof. Let �! 2 Z(A1; : : : ; An). Choose a parametrization ! for �!. Since the sets

Ai are open we can choose si < �i such that !([si; �i]) � Ai+1, see Fig. 1. By the

de�nition of the �i's it follows that !([si; si+1]) � Ai+1 for i = 0; 1; : : : ; n� 1, setting

s0 = 0.

�1 �2

x

y

A1
A2

A3

s1 s2

Figure 1: An illustration of the times si and �i in the case of n = 3.

Let ri > 0 be the distance from the compact set !([si; si+1]) to the boundary of

Ai+1, i = 0; 1; : : : ; n � 1, and set r = mini ri. Now take a geometric path �!0 at a

distance smaller than r from �!. Then there exists a parametrization !0 : [0; 1]! R
d

of �!0 such that

sup
t2[0;1]

j!(t)� !0(t)j < r:
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In particular it follows that

!0([si; si+1]) � Ai+1:

By the assumption (46) we may from the outset choose the si's such that !(si+1) =2
Ai. Choosing r smaller, if necessary, we can also assume that r is smaller than the

smallest of the distances from !(si+1) to Ai, i = 1; 2; : : : ; n. Hence, !0(si+1) =2 Ai.

On the other hand !0(si) 2 Ai so !0 leaves the set Ai at a time � 0i 2 [si; si+1]. It

follows that � 01 < � 02 < : : : � 0n = 1 so �!0 2 Z(A1; : : : ; An). 2

The condition (46) was essential in the above argument because otherwise the

paths might never enter the interior of Ai nAi�1 for some i. But (46) can be replaced

by a weaker condition as we now explain.

Let A be an open set in Rd . We say that a geometric path �! is tangent to the

boundary of A at x 2 @A if there is a parametrization ! of �! such that !(t0) = x

and there is an " > 0 such that !(t) 2 �A for 0 < jt � t0j < ". We claim that any

path in Z(A1; : : : ; An) which is nowhere tangent to any of the boundaries @Ai is an

interior point of the set Z(A1; : : : ; An). This can be seen as follows: In addition to

the si's, choose numbers s0i 2 [0; 1] such that �i < s0i < si and !(s0i) =2 �Ai. Now

choose r > 0 smaller than each of the distances from !(s0i) to �Ai. It then follows

that a path �!0 within a distance r from �! leaves Ai somewhere between si and s0i

and hence �!0 2 Z(A1; : : : ; An) as before.

It is not hard to see that if �! 2 Z(A1; : : : ; An) is tangent to one of the @Ai's

then �! 2 @Z(A1; : : : ; An), i.e., there are paths arbitrarily close to �! that are not in

Z(A1; : : : ; An), see Fig. 2.

We do not have a proof that the sets Z(A1; : : : ; An) are measurable for general

open sets A1; : : : ; An. We avoid this problem simply by taking the closures of these

sets. We denote the closures by �Z(A1; : : : An).

Proposition 5.2. The sets �Z(A1; : : : ; An) where the Ai's are open balls generate

the Borel algebra of geometric paths.

Proof. We will show that any open set in �
(x; y) can be written as a countable union

of �Z-sets. Given �! 2 �
(x; y) and " > 0 we show that there are open balls A1; : : : ; An

such that �! 2 �Z(A1; : : : ; An) and �Z(A1; : : : ; An) is contained in a ball in �
(x; y) of

radius " centered on �!. Moreover, the Ai's can be taken to have rational centers
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Figure 2: A path from x to y which is tangent to A2 at the point z. There are paths
arbitrarily close to this path which are not in Z(A1; A2; A3).

and radii. It follows then by a standard argument that the �Z-sets generate the Borel

algebra.

Let �! 2 U where U � �
(x; y) is open. Choose a rational number " so that

" < 1
2
�d(�!; @U). Let A1 be an open ball of radius " centered at x. If �! is not

contained in A1 let x1 2 R
d be the point where �! leaves A1 for the �rst time, i.e., if

! : [0; 1]! R
d is a parametrization of �!, then x1 = !(�1), where

�1 = supft 2 [0; 1] : !([0; t]) � A1g

as before. Take a point y1 with rational coordinates such that jx1 � y1j < "=3. Let

A2 be a ball of radius " cenetred at y1. If �! stays inside A2 after it leaves A1 at x1

the construction is �nished; otherwise let x2 be the point where �! leaves A2 for the

�rst time after it left A1 at x1 and de�ne y2 and A3 in a way analogous to the one

used to de�ne y1 and A2. The construction continues in this way until we obtain a

set An inside which �! stays after it leaves An�1. The construction has to end after

a �nite number of steps since any paramterization ! of �! is a uniformly continuous
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map.

From the above construction it is clear that �! 2 Z(A1; : : : ; An). Moreover, if

�!0 is another path in Z(A1; : : : ; An) then �d(�!; �!0) � 2" because we can choose a

parametrization !0 of �!0 such that the �i's coincide for ! and !0 and hence, for any

t 2 [0; 1], !(t) and !0(t) both belong to the same Aj, j = 1; : : : ; n. We conclude that

Z(A1; : : : ; An) and hence �Z(A1; : : : ; An) is contained in a closed ball in �
(x; y) of

radius 2" centered on �!. This ball is contained in U and the proof is complete. 2

We remark that the proof of the above result can of course be adapted to the

case where the sets Ai are boxes in R
d rather than balls.

6 Integrating over cylinder sets

In this section we show that the lattice approximation to the measure of the �Z-sets

converges and we derive some formulae for the measure of these sets in terms of

Dirichlet propagators.

Let A be a bounded set in R
d with a smooth boundary. Let x and y be two

di�erent points in the interior of A. We recall that the Dirichlet Green function for

1
2
(�� + m2) with data on @A, denoted GD

A(x; y), is given by the Wiener integral

over all paths from x to y that avoid @A. This fact is established in, e.g., [7] for the

corresponding heat kernel and hence follows for the propagator by integrating over

time.

In the following discussion the endpoints x and y will be kept �xed and for

simplicity we denote the measure Vx;y by �. Accordingly we can write

GD
A(x; y) =

Z
�Z(A)

d� = �( �Z(A)): (47)

We are interested in generalizing this formula to the case of �Z(A1; : : : ; An) with

n > 1 and showing that

lim
a!0

Vx;y;a( �Z(A1; : : : ; An)) = �( �Z(A1; : : : ; An)): (48)

In order to minimize technical complications let us assume that the sets Ai are boxes

so their boundaries are contained in hyperplanes.

Let us consider a family of boxes A1; : : : ; An in Rd with the propery that the in-

tersection of any two di�erent boundaries @Ai and @Aj has codimension 2 or greater,
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i.e., the boundaries never overlap. Let us de�ne O1 as the collection of all paths in

�
(x; y) that are somewhere tangent to one of the hyperplanes that make up the

boundaries of the Ai's. Let O2 be the collection of all paths in �
(x; y) that meet

one or more of the intersections @Ai \ @Aj , i 6= j. Put O = O1 [ O2. It can be

checked that the set of paths that are somewhere tangent to a given hyperplane is a

measurable set with measure zero. It has measure zero since the probability that a

Wiener path intersects a hyperplane exactly once in a time interval is zero, see, e.g.,

[10] Chapter 12. The set O2 is easily seen to be closed and hence measurable. Its

measure is zero since the codimension of the intersections @Ai \ @Aj is greater than

1. Thus, O is a measurable set with measure 0. The boundary of Z(A1; : : : ; An)

consists of paths for which either two of the �i's coincide or the path is tangent to

one of the boundaries @Ai. Hence, @ �Z(A1; : : : ; An) � @Z(A1; : : : ; An) � O. We can

therefore conclude from [8] Theorem 2.1 that the convergence (48) takes place for

boxes and the argument can be extended to the case of Ai's with piecewise smooth

boundaries.

Let us now turn to the calculation of the measure of the �Z-sets. Let A be as

before. Since GD
A(x; z) = 0 for z 2 @A we haveZ
@A

@

@n

�
GD
A(x; z)G(z; y)

�
dS =

Z
@A

@GD
A

@n
(x; z)G(z; y) dS (49)

where @
@n

is the normal derivative to @A with respect to z. Let YA be the collection

of all paths from x to y which hit the boundary @A. An application of the divergence

theorem and Eq. (47) lead to

�(YA) =

Z
@A

@GD
A

@n
(x; z)G(z; y) dS: (50)

More generally, it can be argued that

PA(z) =
@GD

A

@n
(x; z)G(z; y) (51)

is (up to the constant factor �(YA)) the conditional probability density that a path

from x to y which hits the boundary @A hits it for the �rst time at the point z 2 @A,

and PA(z) is given by an integral over all paths from x to y which hit the boundary

of A and hit it for the �rst time in z.

It is convenient to extend the Dirichlet Green functions GD
A to all of Rd such that

they are 0 outside A. Let us now consider the case x 2 A1, y 2 A2 nA1, A1\A2 6= ;.
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Then the measure of �Z(A1; A2) is the integral over all paths from x to y which leave

A1 for the �rst time at a point z 2 @A1 \A2 and stay in A2 after they leave A1. The

integral over these paths is obtained by analogy with Eq. (50) as

�( �Z(A1; A2)) =

Z
@A1

@GD
A1

@n
(x; z)GD

A2
(z; y) dS (52)

and

@GD
A1

@n
(x; z)

GD
A2
(z; y)

�( �Z(A1; A2)
(53)

is the conditional probability density that a path in �Z(A1; A2) leaves A1 for the �rst

time in the point z.

It is straightforward to generalize the above considerations to the case of arbitrary

n, i.e., �Z(A1; : : : ; An). By the Markov property of the Brownian paths we have

�( �Z(A1; : : : ; An)) =

Z
@A1

: : :

Z
@An�1

n�1Y
i=1

@GD
Ai

@ni
(zi�1; zi)G

D
An
(zn�1; y) dS1 : : : dSn�1;

(54)

where we have set z0 = x and @
@ni

denotes the normal derivative to @Ai with respect

to zi. In this integral formula zi is the point where the path �rst leaves Ai after

hitting A1; : : : ; Ai�1 in that order.

We note that for n = 1 the convergence (48), i.e., the convergence of the lattice

approximations to the Dirichlet propagators is well known for suÆciently nice sets

A. This convergence can also be proved directly without the use of measure theory.

We also note that all the integration formulae above have clear lattice analogues for

arbitrary n.

7 Conclusion

We have in this paper de�ned integration over geometric paths and studied natural

discretized measures on spaces of such paths. Two di�erent discretizations were

discussed, one with a metric degree of freedom and one without. We have proven

the convergence of the discretized measures and thereby in particular established the

convergence of the discrete approximations to the integrals over paths that one is

normally interested in for physics applications. We furthermore introduced, in the

case without a metric degree of freedom, a natural class of sets of geometric paths
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which play the role of cylinder sets and generate the Borel algebra and we have shown

how to calculate the measure of these sets in terms of Dirichlet propagators.

One, perhaps disappointing but not entirely unexpected, outcome of our analysis

is that no technical simpli�cations are obtained by considering only parametrization

independent quantities, i.e., by restricting to inherently physical degrees of freedom.

In particular, it is hard to get a technical handle on geometric paths without intro-

ducing parametrizations to calculate with as is usually done in theories with a local

gauge invariance.

One of the main motivations for this study was to obtain some insight into the

corresponding problem for random surfaces. The random surface case is far more

diÆcult than the one considered in this paper since the measures on parametrized

surfaces which correspond toWiener measure on paths are not well understood. Some

of the ideas we have discussed here can be carried over to embedded surfaces but

modi�cations would be needed since points on a geometric surface cannot be ordered

like the points on a geometric path. For nonimbedded surfaces a new approach is

required. In the absence of imbedding degrees of freedom, points on the surface have

to be identi�ed in terms of intrinsic geometric degrees of freedom like curvature. How

to do this in a systematic fashion is far from obvious.
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