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1 Introduction and main result

This paper is the first in a series of two papers on asymptotic completeness for (generalized)
three-body quantum systems with long-range interaction. The model to be studied is given in terms
of a finite family of subspacesfXaja 2 Fg of a finite dimensional Euclidean spaceX. By definition
amin; amax 2 F are given byXamin

= X andXamax = f0g, respectively, and fora andb different from
amin the “three-body” conditionXa\Xb = f0g is imposed. The position and momentum operators on
the basic Hilbert spaceH = L2(X) are denoted byx andp, respectively. The orthogonal complement
of Xa in X is denoted byXa. The corresponding components ofx andp are denoted byxa; pa and
xa; pa, respectively.

The basic Hamiltonian onH is

(1.1) H = 1

2
p2 + V ; V (x) =

P
a2F

V a(xa);

where each “pair potential”V a is assumed to be a real-valued smooth function onXa obeying for
some� > 0 (independent ofa) and all multiindices�

(1.2) @
�
xaV

a(xa) = O
�
jxaj���j�j

�
:

Asymptotic completeness, henceforth denoted AC, forH is a characterization of the states in the
continuous subspace in terms of simplified evolutions (see below for an account of the notion AC).
It has been proved for three-body systems under the condition (1.2) for� >

p
3 � 1 first by Enss

([E]) and then by a different method in the context of many-body scattering by Dereziński ([D]), and
later for � 2 (1

2
;
p
3 � 1] under more conditions by G´erard and Wang ([G], [W]). The additional

conditions imposed by G´erard are essentially spherical symmetry and a global virial condition. The
latter implies among other properties a negative upper bound near infinity for each pair potential. The
main result by Wang does not require spherical symmetry but essentially positivity near infinity for
each pair potential. Finally Yafaev ([Y1]) constructed counterexamples for any� 2

�
0; 1

2

�
in systems

of one-dimensional particles.

One may view the above results due to Gérard and Wang as supporting the conjecture that AC
for H holds assuming only (1.2) for� 2 (1

2
;
p
3 � 1]. We agree with a remark in [G] that indeed it

would be very difficult to prove this conjecture. Of course it could be wrong but we see no indication
of that. In view of Ǵerard’s result the remark in [D] motivated by examples from classical mechanics
with negative pair potentials near infinity, that� >

p
3� 1 “seems to be optimal”, is disputable. On
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the other hand one may argue that the global virial condition of [G] is very restrictive even within
classes of such pair potentials.

The aim of this paper is threefold: 1) We give a proof of AC for the regime� 2 (1
2
;
p
3�1] under

weaker conditions than in [G], explicitly without the global virial condition but keeping the negative
upper bound near infinity. Consequently we provide further support for the above conjecture. 2) We
give proofs relying entirely on so-called weak propagation estimates hence providing a considerable
simplification compared to the extensive use of so-called strong propagation estimates in [G]. 3) We
prove a structure theorem for the regime� 2 (0; 1

2
] constituting a basis for an AC result in this case.

The latter is finally proved in the other paper in the series [S] by a rather different method compared
to the approach for� > 1

2
of this paper. In addition [S] contains a result on AC for positive potentials

(at infinity) in the regime� 2 (0; 1
2
] (essentially proved by techniques of the present paper).

1.1 Asymptotic completeness
As explained by Dereziński in [D, Section 2] there are various equivalent notions of AC for many-

body models and hence in particular for the above three-body model. We shall here recall two of these
notions (specialized to our case). The first one relies on the concept of asymptotic velocity of [D],
D+(H) = s � C1 � lim

t!+1
eitHt�1xe�itH : We introduce fora 2 F the notation

Ha =
1

2
(pa)2 + V a; ha =

1

2
p2a + Ia; Ia = Ia(xa) = V (xa)� V a(0):

The notationE
(D) is used to denote the spectral projection corresponding to a Borel set
 for
some (possibly) vector-valued operatorD of commuting self-adjoint operators. LetEpp(Ha) denote
the projection onto the pure point subspace ofHa. Let Za = Xan

�[b6�aXb

�
, where by definition

b � a , Xb � Xa.

Now we can consider the following first statement of existence of wave operators and AC: For
all a 6= amax there exists

W+
a1 : Ha = ranEpp(Ha)
 ranEZa

�
D+(ha)

�
! ranEZa

�
D+(H)

�
;

W+

a1 = s� lim
t!+1

eitH
�
e�itH

a


 e�itha
�
:

Moreover

AC1 ranEpp(H)�
X

a 6=amax

� ranW+

a1 = H:

A more traditional statement of existence of wave operators and AC goes through the existence of
a smooth real-valued functionSa(t; �a) onR+ � Za which for any compact� � Za satisfies

sup
�a2�

j@��a(rSa(t; �a)� t�a)j � C�t
1��; t � 1;

@tSa(t; �a) =
1

2
�2a + Ia(rSa(t; �a)); �a 2 �; t � t�:

The traditional statement reads: For alla 6= amax there exists

W+
a2 : ranEpp(Ha)
 L2(Xa)! H;

W+
a2 = s� lim

t!+1
eitH
�
e�itH

a


 e�iSa(t;pa)
�
:

Moreover

AC2 ranEpp(H)�
X

a 6=amax

� ranW+

a2
= H:

One virtue of AC1 is that this version of AC is invariant, while the virtue of AC2 is its content
of simplified evolutions (although not canonical). The latter may serve as a basis for studying the
scattering matrix. Henceforth the equivalent statements AC1 and AC2 are referred to as AC.
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1.2 Main result
Two of our main results may be combined as follows:

Theorem 1.1Suppose in addition to(1.2) for some� 2 (0;
p
3�1] (required for all pair potentials),

that for all a the potentialV a is spherically symmetric and for two positive numbersc andR

(1.3) V a(xa) � �cjxaj��; jxaj � R:

Let � = 2(2 + �)�1. Then for alla 6= amax; amin there exists the projection

(1.4) P+
a = s � lim

t!+1
eitHE[t���;t�+�](jxaj)e�itHEZa

�
D+(H)

�
;

which is independent of all small� > 0 .

For any � as above there exist the limitsW+
a1 and


+
a1 :

�
I � P+

a

�
EZa

�
D+(H)

�H ! Ha;


+
a1 = s� lim

t!+1

�
eitH

a 
 eitha
�
e�itH :

FurthermoreW+
a1Ha =

�
I � P+

a

�
EZa

�
D+(H)

�H, and
+
a1W

+
a1 = I onHa.

Under the further condition� 2 (12 ;
p
3 � 1]

(1.5) P+
a = 0:

In particular AC holds for this regime.

At a first glance the above result for� 2 (0; 12) may seem to contradict the counterexamples in [Y1]

(for which exceptional states in
n
xa 2 Xaj jxaj � t

1

2

o
are constructed), but of course the geometric

condition (1.3) is not compatible with these examples. Moreover we remark that (1.3) excludes the
existence of zero-energy bound states for subsystems. As a consequence (using decay of subsystem
bound states) one can give a simple direct proof of the existence ofW+

a1
, cf. [D, Theorem 2.6 (b)].

Although we shall not elaborate in this paper the lower bound (1.3) can be slightly relaxed (by
introducing a bigger� in this condition), and one can also add a fast decaying possibly locally
singular and non-spherical symmetric perturbation of each pair potential. Also we remark that for one-
dimensional pair potentials we dont need spherical symmetry. The core of our methods is essentially
one-dimensional, and for this reason we find it convenient to treat this case, or rather a simplified
one-dimensional model, in detail while we only sketch the proof of Theorem 1.1 starting here with
a discussion of a reduction procedure (see also the outline of the paper at the end of this section).
As it follows we analyse for fixeda; the additional assumptions of Theorem 1.1 are only needed for
the a in question.

1.3 A reduction
We shall briefly recall the reduction for AC of [D] (see also [E], for example). It constitutes the

first step of the proof of the AC-statement of Theorem 1.1 (and for the general part as well). By an
application of the Mourre estimate

H =ranEpp(H)�
X

a6=amax

� ranEZa

�
D+(H)

�
;

cf. [D, (4.17)]. To show AC1 we let anya 6= amax; amin and � 2 H be given. We need to show
the existence of lim

t!+1

�
eitH

a


 eitha
�
e�itHE�a

�
D+(H)

�
� for any compact�a � Za. Now using

[D, Proposition 4.7] there exists�+a = lim
t!+1

Ua(t)
�

e�itHE�a

�
D+(H)

�
�, whereUa(t) is generated
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by Ha + 1

2
p2
a
+ J

�
x
t

�
Ia(x) with J an arbitraryC10 cutoff function supported inYa = Xn

�
[b6�aXb

�
and equal to one on a neighborhood of�a, and with Ia(x) = V (x) � V a(xa). Thus it remains to
show that there exists the limit

lim
t!+1

�
eitH

a


 eitha
�
Ua(t)�

+
a :

For that purpose we notice that there exists the asymptotic energyHa+ = lim
t!+1

Ua(t)
�
HaUa(t)

(understood in the strong resolvent sense). Next by another application of the Mourre estimate
[D, Lemma 4.10] and the exponential decay of negative-energy bound states it suffices to consider
�+a 2 Ef0g

�
Ha+

�
H. Applying the chain rule again it suffices in fact to show the existence of the limit

(1.6) ~�+a = lim
t!+1

~Ua(t)
�
Ua(t)�

+
a ;

where ~Ua(t) is generated byHa + 1

2
p2a + J

�
xa
t

�
Ia(xa) and�+a 2 Ef0g

�
Ha+

�
H.

We have completed an outline of the reduction procedure for AC for the three-body model. (A
similar procedure would work for the existence ofW+

a1.) We notice that the potentialIa(t; x) =
J
�
x
t

�
Ia(x) obeys

(1.7) @
�
x Ia(t; x) = O

�
t���j�j

�
uniformly in x:

Motivated by the above reduction we are going to suppress the variablesxa andpa, for example
only derivatives w.r.t.xa (up to order one) will matter in (1.7). In fact in the bulk of this paper we
shall consider only simplified models given by omitting (or “freezing”) the variablesxa andpa (cf.
[D]). Of course this procedure is justified as long as the various constructions (for example propagation
observables) to be considered are independent of the omitted variables.

1.4 Ideas and organization of proofs
Obviously this paper is to some extent dependent on [G]. However we would like stress that it

is completely self-contained and relying entirely on weak propagation estimates. The latter agrees
with most of the known proofs of AC for many-body systems for instance the one of [D] to which
we refer the reader for an account of the history of AC (in particular for short-range systems which
is not mentioned in this introduction). The weak propagation estimates of this paper are established
in the standard fashion by constructing uniformly bounded families of observables whose Heisenberg
derivative has a sign up to an integrable error, see for example [D, Lemma A.1, (b)].

Moreover an important intermediate step of our approach is absence of propagation in the
region t�

2�+� � jxaj � t��� (precisely this means thatjjE[t�2�+�;t���](jx
aj)Ua(t)�

+
a jj ! 0 for

�+a 2 Ef0g

�
Ha+

�
H), which follows from an entirely different method. (In [G] the global virial

condition is used to exclude the entire inner region.) Although this method is somewhat complicated
partly due to constructions needed to diminish impact of the uncertainty principle the basic idea is
simple: For a state in the indicated region the radial partpar of the momentumpa cannot be negative
(otherwise the wave packet would not propagate as fast as indicated). Moreover by an energy bound the
corresponding kinetic energy1

2
(par)

2 must be of size�V a(xa) (provided that the angular momentum
is small). Putting togetherddt jx

aj = par �
p
�2V a(xa) for a state in this region, which classically

is impossible since the equation is solved byjxaj � t�. Our approach may be viewed as a quantum
version of a similar but simpler approach in the corresponding classical model.

Similarly the absence of propagation in the regionjxaj � t�+� can be understood classically. (We
give a different proof than those in [D] and [G].) Thus we are left with the inner regionjxaj � t�

2�+�

and the “classical region”t��� � jxaj � t�+� (the latter supporting the above solution) . For each
of these separate regions quantum mechanics enters crucially in terms of certain wave operators (cf.
Subsection 1.3). For the classical region the existence of the corresponding wave operator is only
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shown in this paper for� > 1

2
, in which case we conclude (under the conditions of Theorem 1.1)

that in factEf0g
�
Ha+

�
= 0.

As indicated above this paper concerns a zero-energy problem for a time-dependent Hamiltonian.
We refer to [N] and [Y2] for results on zero-energy problems for two-body time-independent long-
range potentials.

This paper is organized as follows: We treat the simplified one-dimensional model in detail in
Sections 2–6. It is introduced in Section 2, where also various results similar to Theorem 1.1 are
stated and some preliminaries are given. In Sections 3–6 we treat various regions separately, cf. the
discussion above: Those regions may be called the exterior, intermediate, classical and inner region,
respectively. The combination of Theorem 6.3 and Corollary 6.4 is the direct analogue of Theorem
1.1. In Section 7 we treat a simplified multi-dimensional model with a spherically symmetric potential.
Following the procedure of the previous sections we shall sketch a proof of Theorems 7.1 and 7.2
which in combination corresponds to Theorem 1.1.

We thank Andreas Hinz and Hubert Kalf for drawing our attention to the reference [O] for a result
on absence of a zero-energy bound state for one-dimensional Hamiltonians (which made an appendix
in a preliminary draft of this paper superfluous).

2 One-dimensional results and preliminaries

Let � 2 (0;
p
3 � 1] be fixed. On the Hilbert spaceH =L2(Rx) we consider a time-dependent

HamiltonianH(t) = H + I(t); H = 1

2
p2 + V (x); I(t) = I(t; x), t > 0, wherep = �i d

dx denotes the
momentum operator,I(�) 2 C0

�
R+; C

1(Rx)
�

andV 2 C1 with

(2.1)
j d

k

dxk
I(t; x)j � Ckt

���k; k = 0; 1;

dk

dxk
V (x) = O

�
jxj���k

�
:

In addition I(t; x) andV (x) are real-valued.

We shall impose one or both of the following geometric conditions:

(2.2) V (x) � �cjxj��; x � R:

(2.3) V (x) � �cjxj��; x � �R:

Here c andR are positive constants.

Throughout the paper the letters� and 
 are used to denote

(2.4) � = 2

2+�
; 
 = �

2+�
:

Under the condition (2.1) we can consider the propagatorU(t) obeying (at least formally)

(2.5) i@tU(t) = H(t)U(t); U(1) = I:

We refer to [DG, Appendix B.3] for an elaboration; it is known thatU(t) preserves the domain ofp. We
consider the corresponding asymptotic energy (the limit being understood in the strong resolvent sense)

(2.6) H+ = lim
t!+1

U(t)�HU(t):
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Let �+ 2 Ef0g
�
H+

�H be arbitrarily given. We are aiming at completeness under (2.1) and the
geometric conditions (2.2) and (2.3), which (by definition) amounts to showing that there exist

(2.7) ~�+ = lim
t!+1

e

i

tR

1

(H+I(s;0))ds

�+(t) = lim
t!+1

e

i

tR

1

I(s;0)ds

�+(t); �+(t) = U(t)�+:

Notice that indeed if the first limit of (2.7) exists then the second also exists, and they are the same
and ~�+ 2 ker (H): Consequently, cf. [O, Theorem 2.2 p. 196],�+ = 0.

In this paper the existence of (2.7) will be shown for� 2 (12 ;
p
3 � 1].

In general for� 2 (0;
p
3� 1] we shall show the following preliminary result: We introduce

(2.8)

P+ = P+
r + P+

l
;

P+
r = s� lim

t!+1
U(t)�E[t���;t�+�](x)U(t)Ef0g

�
H+

�
;

P+
l

= s� lim
t!+1

U(t)�E[�t�+�;�t���](x)U (t)Ef0g
�
H+

�
; � > 0;

where the limits will be shown to exist and be independent of (small)� > 0. Then we shall show
the existence of

(2.9) ~�+ = lim
t!+1

e

i

tR

1

I(s;0)ds

U(t)
�
I � P+

�
�+:

We note that without the conditions (2.2) and (2.3) the statement (2.9) has counterexamples for
� 2 (0; 12), see [DG, Section 3.8.3].

Clearly the existence of (2.7) follows from the existence of (2.9) ifP+ = 0. The latter property
will be proved for� 2 (12 ;

p
3 � 1] in this paper.

Imposing only the additional condition (2.2) (not (2.3) here) we shall prove that for any~� >

�cr := �2�

(2.10) lim
t!+1

jjF�
t�~�x > 1

�
U(t)

�
I � P+

r

�
�+jj = 0:

Here we have used notation from the following list.

Definitions 2.1 For any C > 0 the notation F (� > C); F (� < C) andF (� � C) is
used to denote smooth functions withxk d

k

dxk
F (x) bounded for all k and supported in�

1

2
C;1�

; (�1; 2C) and
�
1

2
C; 2C

�
, respectively.

For C < 0 the same notation is used with the meaningF (�� < �C),
F (�� > �C) andF (�� � �C), respectively.

The notationF (C1� > 1; C2� < 1) is used to symbolize the product functionF (C1� > 1)F (C2� < 1)
(for 0 < C2 < C1).

Let F+ denote the largest set ofF = F+ = F+(� > 1) = F (� > 1), such that (in addition)
0 � F � 1, F 0 = d

dx
F � 0; F 0 2 C1

0

��
1

2
; 2
��

,F
�
1

2

�
= 0; F (2) = 1 and

p
1� F;

p
F;
p
F 0 2 C1,

which is stable under the mapsF ! Fm andF ! 1 � (1� F )m; m 2 N: Let F� denote the set of
functionsF� = 1 � F+ whereF+2 F+.

The proof of (2.10) is divided into two parts: We show in Sections 3 and 4 that for any� > 0

(2.11) lim
t!+1

jjF
�

x

t�+�
> 1

�
�+(t)jj = 0;
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and

(2.12) lim
t!+1

jjF�
x

t�cr+�
> 1; x

t���
< 1)

�
�+(t)jj = 0;

respectively.

Obviously (2.11) and (2.12) imply the existence ofP+
r

and (2.10).

For � 2 (1
2
;
p
3 � 1] the statementP+

r
= 0 follows from

(2.13) lim
t!+1

jjF�
x

t���
> 1; x

t�+�
< 1

�
�+(t)jj = 0;

the latter will be proved in Section 5.

The existence of (2.9) will be shown in Section 6 under the conditions (2.2) and (2.3).

In the remaining part of this section we don’t use (2.2) and (2.3).

We have the following elementary preliminary result.

Lemma 2.2 Let ~� � 0 and�; t � 1. Then for allw 2 C

(2.14) jjF
�
t�~�x > 1

�
p(�H � w)�1jj � C

hwi
1

2

jImwj

�
t��~� + ��1

� 1

2 ; hwi =
�
1 + jwj2

�1

2 :

Proof Let  2 H with jj jj = 1: Then

jjp ~ jj2 = ��1h2�(H � V )i ~ ;
~ = (�H � w)�1

 :

(Here and in the followinghAi is used to denote the expectation value ofA in a state .) Next
we rewrite

h2�(H � V )i ~ = 2h�H � wi ~ + 2hw � �V i ~ 

and bound the first term on the right hand side as

2h�H � wi ~ � 2jImwj�1;

and the second as

2hw � �V i ~ � C
� + jwj

jImwj2

uniformly w.r.t.  .

Putting together yields to

(2.15) jjp ~ jj2 � C
hwi

jImwj2
:

Next we compute

(2.16)
jjF

�
t�~�x > 1

�
p ~ jj2 � C1t

�2~�jImwj�2 + 4hH � V i
F (�) ~ 

� C2t
��~�jImwj�2 + C3jImwj

�1jjHF (�) ~ jj:
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But since (by (2.15))

jjHF (�) ~ jj � C4

�
t�2~�jImwj�1 + t�~�jjp ~ jj+ jjF (�)H ~ jj

�

� C5

 
t�2~�jImwj�1 + t�~� hwi

1

2

jImwj
+ ��1

�
jjF (�)(�H � w) ~ jj+ C6

jwj

jImwj

�!

� C7

�
t�~� + ��1

� hwi

jImwj
;

we obtain upon inserting into the right hand side of (2.16)

jjF
�
t�~�x > 1

�
p ~ jj2

� C2t
��~�jImwj�2 + C3C7

�
t�~� + ��1

� hwi

jImwj2

� C8

�
t��~� + ��1

� hwi

jImwj2
:

For our problems we may assume that

(2.17) I(t; x) = I(t; 0) for jxj < t��

for any given non–negative�� < � (cf. [E]). In Sections 3 and 4 we may take�� = 0, but in Section
5 we shall need a positive�� < �.

Under the condition (2.17) for some fixed�� 2 [0; �) we get using Lemma 2.2 (cf. [E]):

Lemma 2.3 Suppose for this��

(2.18) ��� � � < �
�
1 + ��

2

�
:

Then with�+(t) = U(t)�+

(2.19) lim sup
t!+1

t
1

2
(�+ 1

2
�����)jjF

�
jt�Hj > 1

�
�+(t)jj < 1:

Proof We pick an almost analytic extension~F of F (j � j > 1) with

(2.20) j
�
�@ ~F

�
(w)j � Ckhwi

�1�kjImwjk; k 2 N;

yielding the representation (cf. [DG, Appendix C.3])

(2.21)

i[H(t); F (j�Hj > 1)]

= �
1

�

Z

C

�
�@ ~F

�
(w)(�H � w)�1i

h
I(t);

�

2
p2
i
(�H � w)�1dudv;

w = u+ iv; � � 1:
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We compute

i
h
I(t);

�

2
p2
i
= �O

�
t�(1+�)

�
F
� x

t��
> 1

�
p+ h:c:;

which combined with (2.21), (2.14) and (2.20) yields to

(2.22)

jji[H(t); F (j�Hj > 1)]jj

� �C1t
�(1+�)

Z

C

j
�
�@ ~F

�
(w)j jImwj�2hwi

1

2

�
t���� + ��1

� 1

2

dudv

� �C2t
�(1+�)

�
t����=2 + ��

1

2

�
:

Since in the state�+(t)

hF (j�Hj > 1)i�+(t) = �

1Z

t

dshi[H(s); F (j�Hj > 1)]i�+(s)ds

we obtain from (2.22) that

hF (j�Hj > 1)i�+(t) �

1Z

t

�C1s
�(1+�)

�
s����=2 + ��

1

2

�
ds

= C2�t
�(�+���=2) + C3�

1

2 t��:

Upon inserting� = t� with � obeying (2.18) on the right hand side the resulting expression is

O
�
t�������=2

�
.

Lemma 2.4 Suppose the conditions of Lemma 2.3. Then with the notation�(t) = U(t)� for � 2 H

(2.23)
1R
1

t�1j


F
�
jt�Hj � 1

��
�(t)
jdt � Cjj�jj2:

Proof Consider the uniformly bounded family of observables

�(t) = F�

�
jt�Hj

�
; t � 1:

Similarly to (2.21) we can compute using (2.17) and Lemma 2.2 (cf. the proof of Lemma 2.3) the
Heisenberg derivative

(2.24)

D�(t) :=
d

dt
�(t) + i[H(t);�(t)]

= �
1

�

Z

C

�
�@ ~F
�
(w)

�
t�H � w

�
�1
�
�t��1H + i

�
I(t); t�

1

2
p2
��

�
t�H � w

�
�1
dudv

= �t�1t�HG
�
t�H

�
+ O

�
t�(�+1)+��1

2
���
�
; G(E) =

d

dE
F
�

(jEj):

The second term on the right hand side is integrable. Consequently

�

1Z
1

t�1
D
t�HG

�
t�H

�E
�(t)

dt � Cjj�jj2;

from which we obtain the lemma by using the freedom in chosingF�.
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3 Exterior bound

In this section we don’t use (2.2) and (2.3). The notation�0 is used to denote a number with

(3.1) �0 > �:

Further constraints will be imposed in the statements that follow. Those are satisfied for�0 � �.

Lemma 3.1 Suppose

(3.2) ��0 � � <
�
1 +

�
2

�
�0:

Then

(3.3) jjF
�
t2
p2 < 1

4

�
F
�

x
t�0 > 1

�
F
�
t2
p2 > 1

�
jj = O

�
t�1

�
;

(3.4) jjF
�

x
t�0 > 1

�
F
�
t2
p2 > 1

�
F
�

x
t�0 <

1

4

�
jj = O

�
t�1

�
;

(3.5) jjF
�

x
t�0

> 1
�
F
�
t2
p2 > 1

�
F
�
jt�Hj < 1

�
jj = O

�
t�1

�
:

Proof The statements (3.3) and (3.4) follow readily from the calculus of pseudodifferential
operators, cf. [H, Sections 18.5–6] and [DG, Appendix D.4–5], noticing that

(3.6) �0 > 
 =
�
2
�:

(Notice that (3.6) leads to a calculus with “the Planck constant= t
��0”.)

As for (3.5) we suppose

(3.7) jjF
�

x
t�0

> 1
�
F
�
t2
p2 > 1

�
F
�
jt�Hj < 1

�
jj = O

�
t�s

�
;

for somes � 0 and all suchF ’s. Then we shall show the better boundO
�
t�s��

�
with � = 2

�1� � 


(which is positive by (3.1), (3.2) and (3.6)). For that we compute with 2 H given with jj jj = 1 and
~ = F1F3F3 ;

F1 = F
� x

t�0
> 1

�
; F2 = F

�
t2
p2 > 1

�
; F3 = F

�
jt�Hj < 1

�
;

using the calculus and (3.4)

(3.8)

h2Hi ~ =
D
HF 2

1 + F 2
1H + t�2�0F 0

2

1

E
F2F3 

= 2Re
D
F1F2(HF3) ; ~ 

E
+ 2Re

D
O
�
t
��0(1+�)

�
~F1 ~F2F3 ; ~ 

E

+ t�2�0jjF 01F2F3 jj
2 +O

�
t�1

�

� C
�
t��jjF1F2

�
t�HF3

�
 jj+ t
��0(1+�)jj ~F1 ~F2F3 jj

�
jj ~ jj

+ t�2�0jjF 01F2F3 jj
2 +O

�
t�1

�
:

Here the last termO
�
t�1

�
is estimated uniformly w.r.t. , and ~F1 = ~F1

�
x
t�0

> 1
�

with ~F1(� > 1)

equal to one on a neighbourhood of the support ofF1(� > 1); and similarly for ~F2.

On the other hand by (3.3), (3.6) and (3.1)

(3.9)

h2Hi ~ =


p2
�
~ 
+ h2V i ~ 

� C1jj ~ jj
2t�2
 +O

�
t�1

�
� C2jj ~ jj

2t���0

� C3jj ~ jj
2t�2
 +O

�
t�1

�
:
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Combining (3.2), (3.8) and (3.9) gives by reduction

(3.10)
t2
��C

��
jjF1F2

�
t�HF3

�
 jj+ jj ~F1 ~F2F3 jj

�
jj ~ jj+ jjF 01F2F3 jj

2

�

� jj ~ jj2 +O
�
t�1

�
;

whence by the induction hypothesis (3.7),jj ~ jj � t�s��Cjj jj = t�s��C.

Lemma 3.2 Suppose (2.18), (3.1) and (3.2). Then with�(t) = U(t)� for any� 2 H

(3.11) lim
t!+1

jjF
�

x
t�0 > 1

�
F�

�
jt�Hj

�
�(t)jj = 0:

Proof By Lemma 3.1

lim
t!+1

jjF+

� x

t�0

�
F+(pt


)F�

�
jt�Hj

�
�(t)jj = 0;

so we need to show that

(3.12)

lim
t!+1

jjB(t; t�0)�(t)jj = 0; B(t; �) = F1F2F3;

F1 = F+

�
��1x

�
; F2 = F

�

(pt
); F3 = F
�

�
jt�Hj

�
:

For that we compute withA(t; �) = B(t; �)�B(t; �), t � t0 and � = t�0 (the latter considered
as fixed)

(3.13) hA(t; �)i�(t) = hA(t0; �)i�(t0) +
tR
t0

hDA(s; �)i�(s)ds;

where the Heisenberg derivative is decomposed as

(3.14)

DA(s; �) = T1 + T2 + T3;

T1 = F3F2

�
DF 2

1

�
F2F3;

T2 = F3(DF2)F
2
1F2F3 + h:c:;

T3 = (DF3)F2F
2
1F2F3 + h:c::

To handle the contribution from the termT1 we estimate (using the calculus of pseudodifferential
operators to handle the double commutator)

(3.15)

F2

�
DF 2

1

�
F2 = 2�1��1F2

�
pG2

�
��1x

�
+G2

�
��1x

�
p
�
F2

= ��1s�
F2

�
G
�
��1x

�
H(s
p)G

�
��1x

�
+ 2�1

��
H(s
p); G

�
��1x

��
; G

�
��1x

��	
F2

� C��1s�

�
1 + ��2s2


�
;

G(x) =
�
F 20
+

�1

2 (x); H(�) = �F�

�
4�1�

�
:

Upon inserting (3.15) into the integrand yields to

(3.16)
tR
t0

hT1i�(s)ds � C��1
�
t1�
 + ��2t1+


�
:
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As for the contribution from the termT2 we notice (cf. (2.24))

(3.17)

DF2 = i[V; F2]

�

1

�

Z

C

�
�@ ~F
�

�
(w)(s
p� w)�1

�

s
�1p + i[I(s); s
p]

�
(s
p� w)�1dudv

= T + 
s�1H(s
p) +O
�
s
�(�+1)

�
;

T = i[V; F2]; H(�) = �
d

d�
F
�

(�):

Since the form of the functionH in (3.17) isH(�) = F
�
�2 > 1

�
and obviously

(3.18) F1 = F
�
s��0x > 1

�
F1

for some functionF (� > 1), we can use Lemma 3.1 to conclude that

(3.19) F3
s
�1H(s
p)F 2

1F2F3 + h:c: = O
�
s�1

�
:

As for the termT in (3.17) we use (3.18) and Lemma 3.1 again, and the calculus of pseudodif-
ferential operators, to write

(3.20) F3TF
2
1F2F3 + h:c: = O

�
s�1

�
:

Using finally for the third term in (3.17) that
 � �� 1 < �1 we conclude that

(3.21)
tR

t0

hT2i�(s)ds �
1R
t0

hT2i�(s)ds � Ct��0 for some� > 0:

For the contribution from the termT3 we use (2.24) and (2.23). The contribution from the error
term in (2.24) is treated likeT2 in (3.21), while the first term on the right hand side of (2.24) needs to
be symmetrized before (2.23) can be applied: We writet�HG

�
t�H

�
F3 = � ~G2

�
t�H

�
and

(3.22) t�1t�HG
�
t�H

�
F2F

2
1F2F3 = �t�1 ~G

�
t�H

�
F2F

2
1F2

~G
�
t�H

�
+ R;

where by commutation (cf. (2.24) and Lemma 2.2)

(3.23) R = O
�
s�+
�(�+1)�0�1

�
+ ��1O

�
s��

�

2
�0�1

�
:

The contribution from the first term on the right hand side of (3.22) is by (2.23) of the form

o
�
t00
�

for t0 !1;

uniformly in t � t0.

As for the the termR we use that� + 
 � (�+ 1)�0 � 1 < �1 to treat the first term in (3.23).
The second is estimated like

(3.24)
tR
t0

��1O
�
s��

�

2
�0�1

�
ds � C��1t��

�

2
�0:

Now using� = t�0 in (3.16) and (3.24) we finally conclude from (3.13) that

(3.25) hA(t; t�0)i�(t) � hA(t0; t
�0)i�(t0) + o

�
t00
�
+ o

�
t0
�
;
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where the decay of the middle term is uniform w.r.t. tot � t0.

Obviously we get from (3.25) that

(3.26) hA(t; t�0)i�(t) = o
�
t0
�

by first chosing a larget0 to bound the middle term and noticing that indeed the first term has the
form of the last term (for the fixedt0).

We have proved (3.12).

Clearly by combining Lemma 2.3 and Lemma 3.2 we obtain:

Corollary 3.3 Under the conditions of Lemma 3.2 and with�+(t) given as in Lemma 2.3

(3.27) lim
t!+1

jj�+(t) � F�
�

x
t�0

�
F�

�
jt�Hj

�
�+(t)jj = 0:

Lemma 3.4 Under the conditions of Lemma 3.2 and with the notation�(t) = U(t)� for � 2 H,

(3.28)
1R

1

t�1j


F
�

x
t�0

� 1
��

F
�

(jt�Hj)�(t)
jdt � Cjj�jj2:

Proof Consider the uniformly bounded family of observables

�(t) = F�F+

� x

t�0

�
F�; F� = F�

�
jt�Hj

�
:

As in the proof of Lemma 2.4 we compute the Heisenberg derivative. The contribution from the two
factorsF� is treated by (2.24) and (2.23) (by symmetrizing cf. (3.22) and (3.23)). So we need only
to consider the contribution from

(3.29) DF+

�
x
t�0

> 1
�
= 1

2

�
p
t�0

� �0
x

t�0+1

�
F 0
+

�
x
t�0

�
+ F 0

+

�
x
t�0

�
1
2

�
p
t�0

� �0
x

t�0+1

�
:

For each term on the right hand side we insert

(3.30) I = F+

�
t2
p2

�
+ F�

�
t2
p2

�

to the left and to the right, respectively. The first term in (3.30) contributes by Lemma 3.1 by a term
of the form O

�
t�1

�
. Moreover

(3.31)

1

2
F
�

�
t2
p2

�� p

t�0

� �0
x

t�0+1

�
F 0+

� x

t�0

�
+ h:c:

� ��0F
1

2

�
(�)

x

t�0+1
F 0+

� x

t�0

�
F

1

2

�
(�) + C1t

�
��0 + C2t
�1+
��0:

Since�
��0 < �1 and
��0 < 0 we obtain (3.28) by integrating (3.31) and using Lemma 3.1
again.

4 Intermediate bound

In this and the next section we impose (2.2). We shall consider two decreasing sequences of
positive numbers(
j)

1

1
and (�j)

1

0
assumed to satisfy:

(4.1) � < �j + 
j:

(4.2) � + 
j < (�+ 1)�j :
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(4.3) � > 
j >
�
2
�j�1:

(4.4) � > ��j�1:

(4.5) �j + 
j < 1:

Here�0 and� are chosen in agreement with the conditions (2.18), (3.1) and (3.2).

We shall be interested in the “limiting regions”:�0 � �, � � ��, 
j � �
2
�j�1 and�j � �+
j

�+1
.

(See the proof of Lemma 4.6 below for precise requirements.)

We have the following analogue of Lemma 3.1.

Lemma 4.1 Suppose (4.1)–(4.4). Then

(4.6) jjt2
jp2F
�
t2
jp2 > 4

�
F
�

x
t�j

> 1; x
t�j�1

< 1
�
F
�
t2
jp2 < 1

�
jj = O

�
t�1

�
;

(4.7) jjF
�

x
t�j

> 1
�
F
�
t2
jp2 < 1

�
F
�

x
t�j

< 1

4

�
jj = O

�
t�1

�
;

(4.8) jjF
�

x
t�j

> 1; x
t�j�1

< 1
�
F
�
t2
jp2 < 1

�
F
�
jt�Hj < 1

�
jj = O

�
t�1

�
:

Proof By the assumptions

��j + 
j < ��j�1 + 
j < � + 
j < �j(�+ 1);

and therefore by subtraction

(4.9) 
j < �j:

Similarly to the proof of (3.3) and (3.4) we can use (4.9) to conclude (4.6) and (4.7).

As for (4.8) we can proceed as in the proof of (3.5):

Define

~ = F
� x

t�j
> 1;

x

t�j�1
< 1

�
F
�
t2
jp2 < 1

�
F
�
jt�Hj < 1

�
 = F1F2F3 :

Then

(4.10)

� h2Hi ~ =
D
HF 2

1 + F 2
1H + t�2�jF 0

2

1

E
F2F3 

� C
�
t��jjF1F2

�
t�HF3

�
 jj+ t
j��j(1+�)jj ~F1 ~F2F3 jj

�
jj ~ jj

+ t�2�j jjF 01F2F3 jj
2
+O

�
t�1

�
:

On the other hand by (4.6) and (4.3)

(4.11)

h�2Hi ~ = h�2V i ~ �


p2
�
~ 

� C1jj ~ jj
2t���j�1 � C2jj ~ jj

2t�2
j + O
�
t�1

�

� C3jj ~ jj
2t���j�1 + O

�
t�1

�
:

Combining (4.10), (4.11) and (4.4) gives the result by induction, cf. the proof of Lemma 3.1.

Lemma 4.2 Under the conditions (2.18), (3.1), (3.2) and (4.1)–(4.5), for any�(t) = U(t)� and
j � 1

H(1; j)

1Z

1

t��j


pF 2

+(t

jp)

�
~�j(t)

dt � Cjj�jj2;
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H(2; j)

1Z

1

t��j


�pF 2

+(�t

jp)

�
~�j(t)

dt � Cjj�jj2;

where

~�j(t) = Bj(t)�(t); Bj(t) =
�
F 20
+

� 1

2

� x

t�j

�
F�

�
jt�Hj

�
:

Proof Let

(4.12)
�j(t) = F4F3F2F

2
1F2F3F4;

F1 = F+

� x

t�j

�
; F2 = F

�

� x

t�j�1

�
; F3 = F+(t


jp); F4 = F
�

�
jt�Hj

�
:

We start by showingH(1; 1):

Consider the uniformly bounded family of observables�1. Its Heisenberg derivative is decomposed
as

(4.13)

D�1(t) = T1 + T2 + T3 + T4;

T1 = F4F3F2D
�
F 2
1

�
F2F3F4;

T2 = F4F3(DF2)F
2
1F2F3F4 + h:c:;

T3 = F4(DF3)F2F
2
1F2F3F4 + h:c:;

T4 = (DF4)F3F2F
2
1F2F3F4 + h:c::

By Lemmas 3.4, 4.1 and 2.4, respectively, and commutation (the latter yielding integrable errors)

(4.14)
1R
1

jhTki�(t)jdt � Cjj�jj2; k = 2; 3; 4:

Notice that we also use the proof of Lemma 3.4 to treat the termT2. Notice for treating the termT4
that we use (2.24). The first term on the right hand side is symmetrized with an integrable error. This
can be shown by combining Lemma 2.2 and the fact that

(4.15) � <
�
1 + �

2

�
�j;

cf. (4.1) and (4.2).

As for the termT1 we compute, cf. (3.29),

(4.16)
DF 2

1 =
1

2

� p

t�1
� �1

x

t�1+1

�
F 20
+

� x

t�1

�
+ h:c:

=
�
F 20
+

�1

2

� x

t�1

�� p

t�1

� �1
x

t�1+1

��
F 20
+

� 1

2

� x

t�1

�
:

By commutation under use of the calculus of pseudodifferential operators, Lemma 4.1, (4.5) and
(4.9)

(4.17)
T1 = B1(t)

?
F3

� p

t�1

� �1
x

t�1+1
F�

�
4�1

x

t�1

��
F3B1(t) + O

�
t�1

�

�
1

2
B1(t)

? p

t�1

F 2
3B1(t) +O

�
t�1

�
:

From (4.17) it follows that

(4.18)
TR
1

2�1t��1



pF 2

+(t

1p)

�
~�1(t)

dt �
TR
1

hT1i�(t)dt + Cjj�jj2
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for C independent ofT > 1.

Combining (4.14) and (4.18) yields toH(1; 1).

Suppose nowH(1; j). We need to showH(1; j + 1):

We proceed by considering�j+1(t) given in (4.12). Its Heisenberg derivative is decomposed as in
(4.13). We claim that the analogue of (4.14) holds true: For the termT2 we useH(1; j) and the fact
that 
j+1 < 
j . (The latter allows for insertingF+(t


jp).) For the termsT3 andT4 we use Lemma
4.1, and Lemma 2.4 and (4.15), respectively.

By the same arguments used for (4.17) we get a complete analogue statement and therefore also
the following analogue of (4.18)

(4.19)
TR
1

2�1t��j+1


pF 2

+(t

j+1p)

�
~�j+1(t)

dt �
TR
1

hT1i�(t)dt + Cjj�jj2;

yielding H(1; j + 1).

Next we showH(2; 1):

We consider

(4.20)
�(t) = F4F3F2F

2
1F2F3F4;

F1 = F+

� x

t�1

�
; F2 = F

�

� x

t�0

�
; F3 = F+(�t


1p); F4 = F
�

�
jt�Hj

�
:

Commuting as in (4.13) and arguing as before we obtain the complete analogue of (4.14). The
analogue of (4.17) is

(4.21)

T1 = B1(t)
�

F3

� p

t�1
� �1

x

t�1+1
F�

�
4�1

x

t�1

��
F3B1(t)

+ O
�
t(
1��1)N

�
+O

�
t�1

�

� B1(t)
? p

t�1
F 2
3B1(t) +O

�
t�1

�
:

Upon integrating (4.17)

(4.22)
TR
1

t��1


�pF 2

+(t

1p)

�
~�1(t)

dt � �
TR
1

hT1i�(t)dt + Cjj�jj2:

Clearly H(2; 1) follows from (4.22) and the analogue of (4.14).

The verification ofH(2; j+1) givenH(2; j) follows the same pattern using the hypothesisH(2; j),
and for the termT1 a treatment similar to (4.21).

Lemma 4.3 Under the conditions of Lemma 4.3

(4.23) lim
t!+1

jjF
�

x
t�j

> 1; x
t�j�1

< 1
�
F�(t


jp)F�
�
jt�Hj

�
�(t)jj = 0:

Proof By Lemma 4.1 it suffices to show that

(4.24) lim
t!+1

jjF
�

x
t�j

> 1; x
t�j�1

< 1
�
F+(�t


jp)F�
�
jt�Hj

�
�(t)jj = 0:

We prove (4.24) by mimicking the proof of Lemma 3.2:

We introduce for� > 1

(4.25)
B(t; �) = F1F2F3F4; A(t; �) = B(t; �)�B(t; �);

F1 = F+
�
��1x

�
; F2 = F�

� x

t�j�1

�
; F3 = F+(�t


jp); F4 = F�

�
jt�Hj

�
:
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Then (3.13) holds with

(4.26)

DA(t; �) = T1 + T2 + T3 + T4;

T1 = F4F3F2D
�
F 2
1

�
F2F3F4;

T2 = F4F3(DF2)F
2
1F2F3F4 + h:c:;

T3 = F4(DF3)F2F
2
1F2F3F4 + h:c:;

T4 = (DF4)F3F2F
2
1F2F3F4 + h:c::

We let � = t�j and need to show the analogue of (3.25). The contributions to the integral from
the termsT3 andT4 are handled using Lemmas 4.1 and 2.4, respectively, and the one fromT2 using
H(2; j � 1) of Lemma 4.2 (forj > 1) or Lemma 3.4 (forj = 1), cf. the proof of Lemma 4.2.

As for T1 the proof of (4.17) shows that

(4.27)

T1 = Bj(t; s)
�
F+(�s


jp)t��jpF+(�s

jp)Bj(t; s)

+ O
�
s(
j��j)N

�
+O

�
s�1

�

� O
�
s�1

�
;

where we have used the notation

Bj(t; s) =
�
F 20
+

� 1

2

� x

t�j

�
F�

� x

s�j�1

�
F�

�
js�Hj

�
; t � s � 1:

Clearly (4.27) implies the estimate

(4.28)
tR

t0

hT1i�(s)ds � O
�
t�10

�
:

The above treatment of the the termsT2; T3 andT4 combined with (4.28) yields to the analogue
of (3.25) and therefore to (4.24).

Lemma 4.4 Under the conditions of Lemma 4.2 there exists

(4.29) P+
j � = lim

t!+1
U(t)�F�

�
jt�Hj

�
F 2
+

�
x
t�j

�
F 2
�

�
x

t�j�1

�
F
�

�
jt�Hj

�
�(t):

Proof By Lemma 4.3 it suffices to show the existence of

lim
t!+1

U(t)��j(t)�(t);

where�j(t) is given in (4.12). But by usingH(1; j) andH(1; j � 1) (the latter forj > 1; otherwise
by Lemma 3.4) as well as the proof of these statements yields to this existence result.

Lemma 4.5 Under the conditions of Lemma 4.2

(4.30) P+j = 0; j � 2:

Proof Define

(4.31) K(x) =

( xZ
R

(�2V (y))�
1

2dy; x � R;

0; x < R;

17



with R given by the assumption (2.2). Obviously

(4.32) K(x) � Cjxj1+
�

2 :

Let for � > 1

(4.33)

A(t; �) = B(t; �)?B(t; �); B(t; �) = F0F1F2F3F4;

F0 = F+
�
��1jt�K(x)j

�
;

F1 = F+

� x

t�j

�
; F2 = F

�

� x

t�j�1

�
; F3 = F+(t


jp); F4 = F
�

�
jt�Hj

�
:

We pick �j 2 (0; 1) such that

(4.34) �j � ��j�1 + min
�
�; (�+ 1)�j �

�
2
�j�1

�
> 1:

Notice that adding (4.3) and (4.4) in conjunction with (4.2) yields to

(4.35) 3

2
��j�1 < (�+ 1)�j ;

and also that by (4.4),��j�1 < �.

We shall again follow the scheme of the proof of Lemma 3.2. We use (3.13) for the aboveA(t; �)
with � = t�j .

The Heisenberg derivative is decomposed into five terms. Only the contribution from the term

(4.36) T0 = S�
�
DF 2

0

�
S; S = F1F2F3F4;

needs careful consideration. The remaining terms are treated by methods used before in this section.
We notice though that symmetrizing the contribution from the first term on the right hand side of (2.24)
in treating the Heisenberg derivative ofF4 leads to the requirement

(4.37) � < �j �
�
2
(�j�1 � �j);

(to commute throughF0).

The condition (4.37) is fulfilled for�j close to one since by (4.3), (4.5) and (4.15) (used in the
indicated order)

1�
�

2
(�j�1 � �j) > 1� 
j +

�

2
�j >

�
1 +

�

2

�
�j > �:

We compute

(4.38)
DF 2

0 =
��1

2

n�
I � p(�2V )�

1

2

�
~F + h:c:

o
;

~F = F
�
��1jt�K(x)j

�
; F (s) =

d

ds
F 2
+(jsj):

Moreover, putting

G = pF+(4t

jp)

+ (�2V )
1

2F+

�
4
x

t�j

�
F
�

�
4
�1 x

t�j�1

�
+ I � F+

�
4

x

t�j

�
F
�

�
4
�1 x

t�j�1

�
;
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by a commutation (cf. the proof of (4.6))

(4.39)

S�
�
I � p(�2V )�

1

2

�
~FS

= �S�
�
p� (�2V )

1

2

�
GG�1(�2V )�

1

2 ~FS

= �S�
�
p� (�2V )

1

2

��
p+ (�2V )

1

2

�
G�1(�2V )�

1

2 ~FS +O
�
t�1

�

= �S�
�
2H � i(�2V )�

1

2V 0

�
G�1 ~F (�2V )�

1

2S +O
�
t�1

�
:

But

(4.40)

jj(�2V )�
1

2Sjj = O
�
t
�

2
�j�1

�
;

jjG�1jj = O
�
t
�

2
�j�1

�
;

jjS�(�2V )�
1

2V 0jj = O
�
t
�

2
�j�1�(�+1)�j

�
:

Combining (4.38)–(4.40) and Lemmas 2.2, 4.1 and 4.2 (the lemmas to commuteH in (4.39) to
the left) yields to

(4.41)
tR

t0

hT0i�(s)ds = O
�
t1��j+��j�1�min (�;(�+1)�j�

�

2
�j�1)

�
;

which by (4.34) iso
�
t0
�
.

In conclusion

jjB
�
t; t�j

�
�(t)jj = o

�
t0
�
:

Moreover since by (4.5) and (4.3)

(4.42) �j � �1 < 1 � �
2
�0 < �;

we readily obtain in combination with (4.32) that forj � 2

F
�

�
t��j jt�K(x)j

�
F2 = 0 for large t:

Putting together it follows that forj � 2

D
P+

j

E
�
= lim

t!+1
jjS�(t)jj2 = 0:

We can now prove (2.12).

Proposition 4.6 For any � > 0

(4.43) lim
t!+1

jjF
�

x
t�cr+� > 1; x

t���
< 1)

�
�+(t)jj = 0:

Proof We shall use Lemmas 2.3 and 4.5 using the freedom in chosing our parameters obeying
(2.18), (3.1), (3.2) and (4.1)–(4.5):
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As for the latter we define for sufficiently small� > 0:

(4.44)

�0 = � +
�

�
;

� = ��+ 2�;


j =
�

2
�j�1 + �;

�1 = 1� 
1 � �;

�j = (�+ 1)�1(� + 
j + �); j � 2:

Then clearly the relations (2.18), (3.1) and (3.2) hold. Clearly (4.4) holds forj = 0 and hence in
general (provided(�j)

1

0
is decreasing, see below). By definition the relation (4.3) is true. Obviously

(4.1) and (4.5) hold forj = 1, and (4.2) forj � 2. Moreover

(4.45) (�+ 1)�1(� + 
1 + �) < �1

(again for small�). Consequently (4.2) holds forj = 1 as well. We also have that�1 < �.

For j � 2

(4.46) �j = (�+ 1)�1
�
� + �

2
�j�1 + 2�

�
;

which yields to the existence of�1 = lim
n!1

�n: Upon substituting in (4.46) we obtain

�1 = (�+ 1)�1
�
� +

�

2
�1 + 2�

�
;

which is solved by

�1 = �(�� + 4�):

Since by (4.45)

�2 = (�+ 1)�1
�
� +

�

2
�1 + 2�

�

< (�+ 1)�1
�
� +

�

2
�0 + 2�

�
= (�+ 1)�1(� + 
1 + �) < �1

it follows that indeed the sequence(�j)
1

0
is decreasing. Then by the definition the same holds for

(
j)
1

1
. In particular (4.5) hold forj � 2 as well.

It remains to show (4.1) forj � 2: But

�j + 
j >
�
1 +

�

2

�
�1 + � > ��+ 5� > �:

Given � > 0 we fix � > 0 so small that in addition to the above requirements

(4.47) �cr + � > �1 and� � � � �1:

Then for j = J large enough

(4.48) �cr + � � �J :
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Now using Lemma 2.3, (4.47) and (4.48) the proposition obviously follows if we can prove

lim
t!+1

jjF+

� x

t�J

�
F
�

� x

t�1

�
F�

�
t�jHj

�
�+(t)jj = 0:

For that we insert repeatedly

I = F+

� x

t�j

�
+ F�

� x

t�j

�
; 2 � j � J � 1;

to the left and invoke Lemma 4.5.

For a similar application in Section 6 we state the following result which readily follows from
the methods of this section.

Lemma 4.7 Under the conditions of Lemma 4.2 there exists forj � 1

(4.49) Q+j � = lim
t!+1

U(t)�F�
�
jt�Hj

�
F 2
�

�
x
t�j

�
F�

�
jt�Hj

�
�(t):

Proof Notice the following consequence of Lemmas 4.2 and 4.1:

(4.50)
1R
1

t��j�
j

�
F 20
+

��
x
t�j

��
F
�

(jt�Hj)�
dt � Cjj�jj2:

The contribution to the Heisenberg derivative from each of the factorsF�

�
jt�Hj

�
is treated by

Lemma 2.4.

We compute

(4.51) DF 2
�

�
x
t
�j

�
=

1
2

�
p
t
�j � �1

x

t�j+1

�
F 20
�

�
x
t
�j

�
+ h:c:

Using (4.5) and (4.50) it remains to treat the contribution

F�

�
jt�Hj

��
1

2

p

t�j
F 20
�

� x

t�j

�
+ h:c:

�
F�

�
jt�Hj

�
:

For that we substitute

I = F+(t

jp) + F

�

�
t2
jp2

�
+ F+(�t


jp):

The middle term and the other terms contribute (after symmetrizing) by integrable terms due to Lemmas
4.1 and 4.2, respectively.

5 Bound for the classical region

In this section we shall show that for� > 1

2
, P+

1
= 0 with this operator being defined in Lemma 4.4.

Notice that it is independent of the particular choice of parameters obeying the conditions of Lemma 4.2
(by the results of Sections 3 and 4). In agreement with Section 2 we may use the notationP+

r = P+

1
.

Clearly, by symmetry, we may show under the condition (2.3) thatP+

l = 0 if � > 1

2
. So we shall

here only assume the condition (2.2) (as in the previous sections).

We define

(5.1) I0(t; x) = I(t; x)F+
�
4 x
t�1

�
+ I(t; 0)F

�

�
4 x
t�1

�
;

(5.2) H0(t) = H + I0(t; x);

and corresponding propagatorU0(t)

(5.3) i@tU0(t) = H0(t)U0(t); U0(1) = I:
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Lemma 5.1 Under the conditions of Lemma 4.2 there exists

(5.4) P+
1;0� = lim

t!+1
U0(t)

�

F�
�
jt�Hj

�
F 2
+

�
x
t�1

�
F 2
�

�
x
t�0

�
F�

�
jt�Hj

�
�(t):

Proof Since

I0(t; x)F
2
+

� x

t�1

�
� F 2

+

� x

t�1

�
I(t; x) = 0;

the proof of Lemma 4.7 carries over.

A consequence of Lemma 5.1 is that we can assume thatP+

1
is defined by (4.29) withU(t) replaced

by U0(t). In other words, keeping the original notation, we can proceed by showingP+

1
= 0 under

the assumption (2.17) for any given�� < �1 (or �� < � by adjusting�1, cf. the proof of Proposition
4.6). Moreover, corresponding to the new��, we can assume� is arbitrarily close to�

�
1 + 2�1��

�
, cf.

Lemma 2.3. In this section we need the requirements (2.18), (3.1), (3.2) and (4.1)–(4.5) but the latter
only for j = 1. To be specific we define for sufficiently small� > 0 (cf. the proof of Proposition 4.6):

(5.5)

�0 = � +
�

�
;


1 =
�

2
�0 + � = 
 +

3

2
�;

�1 = 1� 
1 � � = ��
5

2
�;

� =
1

2
+
�

2
�;

�1 =
1

2
+
�

2
� + 2�:

Then all of the above requirements as well as (4.34) and (4.37) are fulfilled.

We shall proceed from here by using the proof of Lemma 4.5 (withj = 1) to obtain the
representation

(5.6)
P+

1
= s� lim

t!+1
U(t)��(t)U(t);

�(t) = S�F 2
�

�
t��1jt�K(x)j

�
S;

whereS = S(t) is given by (4.36).

We shall use the functionK of (4.31). Its inverse is denoted byL = Lr. It is characterized as
the solution of the initial value problem

(5.7) d
dt
L(t) =

p
�2V (L(t)); L(0) = R; t � 0:

Using the upper bound in (4.32) we obtain puttingx = L(t) that

(5.8) Ct� � L(t); t � 0:

We define the propagator

Ur(t) = exp

0
@�i

tZ

1

(H + I(s; L(s)))ds

1
A:
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We want to prove that there exists

(5.9) P+1;r = s � lim
t!+1

Ur(t)
��(t)U(t);

where�(t) is specified in (5.6). Since obviously thex–independent potentialI(t; L(t)) fulfills (2.1)
we can use the previously established estimates for the full propagator also for the above auxiliary
propagator. Therefore in proving the integrability when differentiating w.r.t.t, it suffices to verify that

jj(I(t; L(t))� I(t; x))F 2
�

�
t��1jt�K(x)j

�
jj

is integrable:

By (2.1), (5.7) and (5.8)

I(t; L(t))� I(t; x) = O
�
t���1

�
jL(t)� L(K(x))j

� O
�
t���1

�
jt�K(x)j sup

s2[t;K(x)]

p
�2V (L(s))

� O
�
t���1+�1

�
sup

s2[t;K(x)]
s�

�

2
� � Ct���1+�1�

�

2
�;

where we in the last step used that�1 < 1. Since� > 1
2 clearly �1 < � + �

2�, and therefore we
have verified the existence of (5.9).

From the existence ofP+
1;r it follows readily that indeedP+

1;r = 0. As a consequenceP+
1 = 0,

completing the proof.

In conclusion:

Theorem 5.2Under the conditions (2.1) and (2.2) for� > 1

2

P+

1
= 0:

6 Simplification for the inner region

We impose the conditions (2.2) and (2.3). Under the conditions of Lemma 4.2 the statement (2.10)
and Lemma 2.3 lead to

(6.1) Q+

j �
+ =

�
I � P+

r

�
�+; j � 1;

with Q+

j given in Lemma 4.7.

We define

(6.2) Ij(t; x) = I(t; x)F
�

�
x

t
�j�1

�
+ I(t; 0)F+

�
x

t
�j�1

�
;

(6.3) Hj(t) = H + Ij(t; x);

and corresponding propagatorUj(t)

(6.4) i@tUj(t) = Hj(t)Uj(t); Uj(1) = I:

Lemma 6.1 Under the conditions of Lemma 4.2 there exists forj � 1

(6.5) Q+j;j� = lim
t!+1

Uj(t)
�

F�
�
jt�Hj

�
F 2
�

�
x
t
�j

�
F�

�
jt�Hj

�
�(t):
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Proof We mimic the proof of Lemma 5.1.

We shall be interested in the sequence(�j)
1

1 constructed in the proof of Proposition 4.6 with input
� > 0 such that�cr + � < �. We fix j = J such that (4.48) holds.

We define

(6.6) I l(t; x) = I(t; x)F+

�
�

x
t�J

�
+ I(t; 0)F�

�
�

x
t�J

�
;

(6.7) H l(t) = H + I l(t; x);

and corresponding propagatorU l(t)

(6.8) i@tU
l(t) = H l(t)U l(t); U l(1) = I:

Since�J < � and

jI l(t; x)� IJ+1(t; x)j � Ct�(�+1)+�J ;

it follows that there exists the limit

s� lim
t!+1

U l(t)�UJ+1(t);

cf. the argument leading to (2.17) or (5.9).

Combining this fact, (6.1) and (6.5) forj = J + 1 we obtain the following result.

Proposition 6.2 Under the condition (2.2) there exists the limit

(6.9) �l = lim
t!+1

U l(t)�U (t)
�
I � P+

r

�
�+:

If we also impose the condition (2.3) the previous analysis can be repeated to the left (we may
argue by a symmetry argument). But the analogue construction of (6.2) leads to

(6.10) Ij(t; x) = I l(t; x)F�
�
� x

t�j�1

�
+ I l(t; 0)F+

�
�

x
t
�j�1

�
= I(t; 0);

provided j � J + 2.

Combining Proposition 6.2, (6.10) and an analogue of Lemma 6.1 leads to the existence of (2.9)
(for the last conclusion we use [O, Theorem 2.2 p. 196]):

Theorem 6.3Under the conditions (2.1)–(2.3) there exist the limits

(6.11)

~�+ = lim
t!+1

e

i

tR

1

(H+I(s;0))ds

U(t)
�
I � P+

�
�+

= lim
t!+1

e

i

tR

1

I(s;0)ds

U(t)
�
I � P+

�
�+

(with P+ = P+
l

+ P+
r ). In particular ~�+ = 0.

In combination with Section 5 we obtain:

Corollary 6.4 Under the conditions (2.1)–(2.3) with� > 1

2

(6.12) Ef0g

�
H

+
�
= 0:
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7 Multi-dimensional spherically symmetric case

In this section we shall consider then–dimensional case assuming that the potentialV (x) is a
function of jxj only (andn � 2). We shall impose the condition (2.1) with derivatives replaced by
partial derivatives; forI(t) up to order one and forV to all orders. Again� is a given fixed number
in (0;

p
3 � 1].

We shall impose the following modification of (2.2) and (2.3):

(7.1) V (x) � �cjxj��; jxj � R:

We defineH; H(t); U(t) and the asymptotic energyH+ as in Section 2 except that the underlying
Hilbert space now isH = L2(Rn

x).

We introduce

(7.2) P+ = s � lim
t!+1

U(t)�E[t���;t�+�](jxj)U(t)Ef0g
�
H+

�
;

which as in the one-dimensional case can be shown to be well-defined and independent of small� > 0.

The analogues of Theorem 6.3 and Corollary 6.4 are the following results.

Theorem 7.1Under the conditions (2.1) (modified) and (7.1) there exist the limits

(7.3)
s� lim

t!+1
e

i

tR
0

(H+I(s;0))ds

U(t)
�
I � P+

�
Ef0g

�
H+

�

= s� lim
t!+1

e

i

tR
0

I(s;0)ds

U(t)
�
I � P+

�
Ef0g

�
H+

�
= 0:

Theorem 7.2Under the conditions (2.1) (modified) and (7.1) for� > 1
2

P+ = 0:

We shall embark upon sketching the proofs of the above statements following closely the procedure
of the previous sections for the one-dimensional case. At most points only minor modifications are
needed.

We write the (minus) Laplacian onH as

(7.4) p2 = 4�1
�

x
jxj � p+ p � x

jxj

�2
+ jxj�2L2 + n�1

2

n�3
2

jxj�2;

where the Laplace–Beltrami operatorL2 =
P

i>j

L2
ij; Lij = xipj � xjpi.

Motivated by (7.4) we introduce

pr =
1

2
(x̂ � p+ p � x̂); x̂ = rr; r = F+(jxj)jxj:

Due to the spherical symmetry the operatorL2 tends to be “preserved”. Hence we may write
H � 2�1p2r + V (x) in various spherical shells which are analogous to the intervals considered in
Section 4. Heuristically, this indicates why the one-dimensional procedure to a large extent works.

We pick a state�+ 2 Ef0g

�
H+

�
H. The results Lemmas 2.2– 2.4 carry over with almost identical

proofs. The same can be said about all results in Section 3. The rule for translating the statements
is the following: Replacex by r andp by pr. Notice for Lemma 3.1 that we use the non-negativity
of L2 and (7.4) to obtain the analogue of (3.9).
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To generalize the results of Section 4 we need more refined modifications. We shall assume that
(�j)

1

1
is a decreasing sequences of positive numbers satisfying

(7.5) �j < �j �
�
2
�j�1;

and

(7.6) �j > �j�1 � �:

Now, Lemma 4.1 needs to be replaced by the following result.

Lemma 7.3 Suppose (4.1)–(4.4) and (7.5). Then

(7.7)
jj
D
t�H

E
F
� r

t�j
> 1;

r

t�j�1
< 1

�
F
�
t2
jp2 < 1

�
F�

�
t�2�jL2

�
F
�
jt�Hj < 1

�
jj

= O
�
t�1

�
:

The proof follows that of Lemma 4.1.

We shall need the following two results (with no parallels in Section 4).

Lemma 7.4 Suppose (7.6), and the following condition on the potentialI(t; x) for someJ 2 N

(7.8) I(t; x) = I(t; 0) for r � 2t�J�1 :

Then for any�(t) = U(t)�

(7.9) lim
t!+1

jjF+
�
t�2�JL2

�
�(t)jj = 0:

Proof We use the familiar scheme of the proof of Lemma 3.2 under use of

(7.10) [I(t; x); Lij] = O
�
t���1+�J�1

�
;

and (7.6) forj = J .

Lemma 7.5 Under the conditions of Lemma 7.4, for anyj � J and�(t) = U(t)�

(7.11)
1R

1

t�1j


F
�
t�2�jL2 � 1

��
�(t)

jdt � Cjj�jj2:

Proof We mimic the proof of Lemma 2.4 under use of (7.10).

The analogue of Lemma 4.2 reads:

Lemma 7.6 Under the conditions (2.18) (with�� = 0), (3.1), (3.2), (4.1)–(4.5), (7.5), (7.6) and
(7.8), for any�(t) = U(t)� and j � J

H(1; j)

1Z

1

t��j


prF

2
+(t
jpr)

�
~�j(t)

dt � Cjj�jj2;

H(2; j)

1Z

1

t��j


�prF

2
+(�t


jpr)
�
~�j(t)

dt � Cjj�jj2;
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where

~�j(t) = Bj(t)�(t); Bj(t) =
�
F 20
+

� 1

2

� r

t�j

�
F�

�
t�2�jL2

�
F�

�
jt�Hj

�
:

Proof We mimic the proof of Lemma 4.2 proceeding by induction fromj = 1 to j = J . The
propagation observable in (4.12) needs to be modified in agreement with the rule mentioned above
and in addition be multiplied twice by the factorF�

�
t�2�jL2

�
, one from the left and one form the

right (for example). The contribution from its Heisenberg derivative is handled by Lemma 7.5, and
the substitute for Lemma 4.1 is Lemma 7.3.

The analogue of Lemma 4.3 reads:

Lemma 7.7 Under the conditions of Lemma 7.6

(7.12) lim
t!+1

jjF
�

r
t�j

> 1; r
t�j�1

< 1
�
F�(t


jpr)F�
�
jt�Hj

�
�(t)jj = 0:

Proof Using Lemmas 7.4 and 7.3 it suffices to show that

lim
t!+1

jjF
� r

t�j
> 1;

r

t�j�1
< 1

�
F+(�t


jpr)F�

�
t�2�jL2

�
F�

�
jt�Hj

�
�(t)jj = 0

for which we mimic the proof of Lemma 4.3.

The next result in Section 4, Lemma 4.4, is modified similarly with obvious proof.

As for Lemma 4.5 the corresponding analogue holds true, but the proof needs a comment: Of
course we need to multiply by the factorF�

�
t�2�jL2

�
to get the correct objectB(t; �) in (4.33). The

proof relies on the factorization2H � p2r + 2V (r) �
�
pr � (�2V )

1

2

��
pr + (�2V )

1

2

�
, cf. (4.39).

Here the last two terms on the right hand side of (7.4) are treated as errors, which is justified if their
contributions are integrable. By inspection we need for the latter the condition

(7.13) �j � ��j�1 + 2(�j � �j) > 1

in addition to (4.34).

By (7.5) the above conditions are fulfilled for�j close to one (but smaller). Consequently the rest
of the proof of Lemma 4.5 carries over to the present context.

The last result in Section 4, Lemma 4.7, has an obvious analogue with obvious proof.

It remains to prove a statement corresponding to Proposition 4.6. (In the process of doing that
we prove Theorem 7.1!) We shall proceed differently verifying inductively the condition (7.8) for a
sequence of modified propagators, the latter defined as in Section 6. Precisely we defineIj; Hj andUj

by (6.2), (6.3) and (6.4), respectively (withx replaced byr in (6.2)).

Then by the analogues of Corollary 3.3 and Lemmas 2.4 and 3.4 there exists the limit

�+
1
= lim

t!+1
U1(t)

�

U(t)�+:

(RememberH+�+ = 0.)

ForU1 the statement (7.8) holds forJ = 1. Consequently we can define the corresponding operator
P+

1
. Next we put +

1
=

�
I � P+

1

�
�+
1

. By the definition ofP+

1
we can write +

1
= Q+

1;1�
+

1
, where

Q+

1;1 is given as in (6.5). Equivalently we can write

(7.14)  +
1
(t) = U1(t) 

+

1
� F 2

�

�
r

t�1

�
 +
1
(t):
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Obviously we may assume that(I2(t; x)� I1(t; x))F
2
�

�
r
t�1

�
= 0 (by using the freedom in definingI2).

Using (7.14) and the modified results of Section 4 discussed above we then get the existence of

 +
2 = lim

t!+1
U2(t)

�
 +
1 (t):

Since the statement (7.8) forU2 holds forJ = 2 we obtain for the corresponding operatorP+
2 that

it is zero (by the analogue of Lemma 4.5). But this implies that

 +
1 (t) �  +

2 (t) = U2(t) 
+
2 � F 2

�

� r

t�2

�
 +
2 (t):

Repeating the procedure yields

(7.15)  +
1 (t) �  +

j (t) = Uj(t) 
+
j � F 2

�

�
r
t�j

�
 +
j (t);

where by definition

 +
j = lim

t!+1
Uj(t)

�
 +
j�1(t); j � 2:

For �j < � we conclude from (7.15) and by an argument in Section 6 that

 +
1 (t) �  +

j (t) � e

�i

tR
1

(H+I(s;0))ds
~ +:

By [O, Theorem 2.2 p. 196] it then follows that~ + = 0.

It remains to show that indeed we can choose our parameters to obey (2.18) (with�� = 0), (3.1),
(3.2), (4.1)–(4.5) (7.5) and (7.6) (and the used condition�j < � for j large enough). For that we
mimic the construction in the proof of Proposition 4.6: We keep the first four definitions in (4.44),
while the last one is replaced by

(7.16) �j = max
�
(�+ 1)�1(� + 
j + �);

�
1 + �

2

�
�j�1 � �+ �

�
; j � 2:

Then by the proof of Proposition 4.6 the conditions (2.18), (3.1), (3.2) and (4.1)–(4.5) are fulfilled.
Notice in particular that�2 < �1, and therefore that

(7.17) �j = max
�
(�+ 1)�1

�
� + �

2�j�1 + 2�
�
;
�
1 + �

2

�
�j�1 � �+ �

�
; j � 2;

defines a decreasing sequence with the same limit�1 < � as before.

Next we need to choose�j: By the definition (7.17) (forj � 2 and (4.44) forj = 1)

(7.18) �j �
�
2�j�1 > �j�1 � �:

We defineJ as the largest natural number for which�J�1 � � � 0. Then it follows from (7.18) that
(7.5) and (7.6) are fulfilled forj � J by the construction

�j = �j�1 � �+ �0; j � J; �0 > 0 small.

Notice that the finite sequence it positive and decreasing. We need to supplement by a decreasing
sequence of positive�’s with index larger thanJ . For that we notice that0 < �j �

�
2
�j�1, cf. (4.35).

So clearly (7.5) can be fulfilled for a decreasing sequence of positive�’s smaller than�J . Since (7.6)
is trivial for j > J for the (combined) constructed infinite sequence we finally conclude (7.5) and (7.6).

This completes an outline of the proof of Theorem 7.1.
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As for the proof of Theorem 7.2 we mimic Section 5: In addition to (5.5) we define

�1 = ��
1

2
� 3�:

Then (7.5), (7.6) and (7.13) (and previous conditions) are fulfilled forj = 1. Moreover with

W (t) = exp

0
@
�i

tZ
1

�
1

2
p2r + V (jxj) + I

�
s; L(s)

x

jxj

��
ds

1
A;

whereL(t) is given by (5.7), one can define (cf. (5.9))

P+

1;W = s� lim
t!+1

W (t)��(t)U(t);

where�(t) is given by a similar construction as in (5.6) (including two factors ofF�
�
t�2�1L2

�
). Here

we use various propagation estimates and that the last two terms on the right hand side of (7.4) are
integrable, the latter due to the localization properties of�(t) and the fact that2(�1 � �1) < �1. Next
we notice that

�
1

2
p2r + V (jxj)

�
P+

1;W = 0 yielding to the conclusion that indeedP+

1;W = 0.
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