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1 Introduction and main result

This paper is the first in a series of two papers on asymptotic completeness for (generalized)
three-body quantum systems with long-range interaction. The model to be studied is given in terms
of a finite family of subspace§X,|a € F} of a finite dimensional Euclidean spade By definition
amin, Amax € F are given byX, ., = X and X, __ = {0}, respectively, and fox andb different from
amin the “three-body” conditionX, N X, = {0} is imposed. The position and momentum operators on
the basic Hilbert spac& = L?(X) are denoted by andp, respectively. The orthogonal complement
of X, in X is denoted byX*. The corresponding componentsofandp are denoted by, p, and
% p*, respectively.

The basic Hamiltonian ori is

(11) H=3p?+V;V(a) = %V“(x“)
a€

where each “pair potentiall’® is assumed to be a real-valued smooth functionXhobeying for
someyx > 0 (independent of) and all multiindicess

1.2) 9Lva(a?) = o(w\—ﬂ—lﬁl).

Asymptotic completeness, henceforth denoted AC,Hois a characterization of the states in the
continuous subspace in terms of simplified evolutions (see below for an account of the notion AC).
It has been proved for three-body systems under the condition (1.2) ferv/3 — 1 first by Enss
([E]) and then by a different method in the context of many-body scattering by bDekeZ[D]), and
later for u € (%,\/§ — 1] under more conditions by &@ard and Wang ([G], [W]). The additional
conditions imposed by &ard are essentially spherical symmetry and a global virial condition. The
latter implies among other properties a negative upper bound near infinity for each pair potential. The
main result by Wang does not require spherical symmetry but essentially positivity near infinity for
each pair potential. Finally Yafaev ([Y1]) constructed counterexamples fomaem(o, %) in systems
of one-dimensional particles.

One may view the above results due téré&rd and Wang as supporting the conjecture that AC
for H holds assuming only (1.2) fqi € (%, V3 — 1]. We agree with a remark in [G] that indeed it
would be very difficult to prove this conjecture. Of course it could be wrong but we see no indication
of that. In view of Gerard’s result the remark in [D] motivated by examples from classical mechanics
with negative pair potentials near infinity, that> v/3 — 1 “seems to be optimal”, is disputable. On
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the other hand one may argue that the global virial condition of [G] is very restrictive even within
classes of such pair potentials.

The aim of this paper is threefold: 1) We give a proof of AC for the regime (3, v/3 — 1] under
weaker conditions than in [G], explicitly without the global virial condition but keeping the negative
upper bound near infinity. Consequently we provide further support for the above conjecture. 2) We
give proofs relying entirely on so-called weak propagation estimates hence providing a considerable
simplification compared to the extensive use of so-called strong propagation estimates in [G]. 3) We
prove a structure theorem for the regimec (0, %] constituting a basis for an AC result in this case.
The latter is finally proved in the other paper in the series [S] by a rather different method compared
to the approach fon > % of this paper. In addition [S] contains a result on AC for positive potentials
(at infinity) in the regimeu € (0, %] (essentially proved by techniques of the present paper).

1.1 Asymptotic completeness

As explained by Deregski in [D, Section 2] there are various equivalent notions of AC for many-
body models and hence in particular for the above three-body model. We shall here recall two of these
notions (specialized to our case). The first one relies on the concept of asymptotic velocity of [D],
DY(H) =5 —Co — Jim el =lye=H \We introduce fora € F the notation

a 1 a\2 a 1 2 a
H® = i(p )+ VY e = FPa + Io; I, = I (xa) = V(za) — V(0).
The notationEq (D) is used to denote the spectral projection corresponding to a Borél get
some (possibly) vector-valued operatorof commuting self-adjoint operators. Lét#?(H“) denote
the projection onto the pure point subspaceff. Let Z, = X,\(Uyz,X}), Where by definition
b Cas XbC X2,

Now we can consider the following first statement of existence of wave operators and AC: For

all @ # amax there exists

W H,= ranE”(H") @ ranEy, (D*(h,)) — ranEz, (D" (H)),
Wcji =s— lim *H (e_itHa & e_ith“).
t——4o0
Moreover
AC1 ranE?(H) & > @ranv =H.
aFamax

A more traditional statement of existence of wave operators and AC goes through the existence of
a smooth real-valued functiofy, (t,£,) on RT x Z, which for any compac® C Z, satisfies

ésu%\ag (VSa(ts€a) = t&a)| < Cpt' ™5 t > 1,
a€

1.
O1Sa(t €a) = 586 + La(VSa(t,&0)); &a € O, t > to.
The traditional statement reads: For alkt o, there exists
Wi ranEPP(H") @ L*(X,) — H,
Wt =s— lim " (e_itHa ® e_is‘l(t’p“)).
a2 t——4o0
Moreover
AC2 ranE”’(H) & Y @ranivh = H.

aFCmax

One virtue of AC1 is that this version of AC is invariant, while the virtue of AC2 is its content
of simplified evolutions (although not canonical). The latter may serve as a basis for studying the
scattering matrix. Henceforth the equivalent statements AC1 and AC2 are referred to as AC.



1.2 Main result

Two of our main results may be combined as follows:

Theorem 1.1Suppose in addition t(l.2)for someu € (0, /3 —1] (required for all pair potentials),
that for all « the potentiall’® is spherically symmetric and for two positive numbeend R

(13) V(2" < —cja|7", |2%] > R.
Leta = 2(2 + u)_l. Then for alla # amax, amin there exists the projection

(1.4)  PF=s— lim By jorg(|2°))e ™ Bz, (D*(H)),
——400
which is independent of all smadl > 0 .
For any ;. as above there exist the limit§ !, and

QY (I-P)Ez (DT (H))H — H,,

Q;’l =s5— lim (eitHﬂ ® eith”)e_itH.
t—+oo
FurthermoreW  H, = (I — Pf)Ez (DY (H))H, andQ} W = I on'H,.
Under the further condition: € (3,v/3 — 1]

(15) P =o.

In particular AC holds for this regime.

At a first glance the above result fore (0, %) may seem to contradict the counterexamples in [Y1]

(for which exceptional states ijﬁx“ € X2 < tz } are constructed), but of course the geometric
condition (1.3) is not compatible with these examples. Moreover we remark that (1.3) excludes the
existence of zero-energy bound states for subsystems. As a consequence (using decay of subsystem
bound states) one can give a simple direct proof of the existent€pfcf. [D, Theorem 2.6 (b)].

Although we shall not elaborate in this paper the lower bound (1.3) can be slightly relaxed (by
introducing a bigger: in this condition), and one can also add a fast decaying possibly locally
singular and non-spherical symmetric perturbation of each pair potential. Also we remark that for one-
dimensional pair potentials we dont need spherical symmetry. The core of our methods is essentially
one-dimensional, and for this reason we find it convenient to treat this case, or rather a simplified
one-dimensional model, in detail while we only sketch the proof of Theorem 1.1 starting here with
a discussion of a reduction procedure (see also the outline of the paper at the end of this section).
As it follows we analyse for fixed; the additional assumptions of Theorem 1.1 are only needed for
the a in question.

1.3 A reduction

We shall briefly recall the reduction for AC of [D] (see also [E], for example). It constitutes the
first step of the proof of the AC-statement of Theorem 1.1 (and for the general part as well). By an
application of the Mourre estimate

H =ranE™ (H) & Y @ranky, (DT(H)),

a5£amax

cf. [D, (4.17)]. To show AC1 we let any # amax, amin @nd ¢ € ‘H be given. We need to show
the existence of lim (e" @ ¢itha) e~ Eg (D*(H))¢ for any compact®, C Z,. Now using

t—-4o00

[D, Proposition 4.7] there exists] = tligl U,(t)"e""HEg (D% (H))¢, whereU,(t) is generated



by H* + 1p2 + J(%£)1.(x) with J an arbitraryC§° cutoff function supported iY, = X\ (UpzqX;)
and equal to one on a neighborhood@f, and with /,(z) = V(x) — V*(x®). Thus it remains to
show that there exists the limit

tl,ifloo (eitH“ . eitha) Ua (167

For that purpose we notice that there exists the asymptotic enéfdy = 11141{1 Ua() " HU,(t)

(understood in the strong resolvent sense). Next by another application of the Mourre estimate
[D, Lemma 4.10] and the exponential decay of negative-energy bound states it suffices to consider
oF € By (H*)H. Applying the chain rule again it suffices in fact to show the existence of the limit

(16) éc—i— = th? Ua(t)*LTa(t)(bja

whereU,(t) is generated by + §p2 + J(Z)I,(x,) and ¢ € Egoy (H ) H.

We have completed an outline of the reduction procedure for AC for the three-body model. (A
similar procedure would work for the existence 1f);.) We notice that the potential,(¢,z) =
J(%)1.(x) obeys
(1.7) 9lI(tz) = O(t‘”"ﬁ‘) uniformly in z.

Motivated by the above reduction we are going to suppress the varigblasd p,, for example
only derivatives w.r.t.z* (up to order one) will matter in (1.7). In fact in the bulk of this paper we
shall consider only simplified models given by omitting (or “freezing”) the variablesndyp, (cf.
[D]). Of course this procedure is justified as long as the various constructions (for example propagation
observables) to be considered are independent of the omitted variables.

1.4 ldeas and organization of proofs

Obviously this paper is to some extent dependent on [G]. However we would like stress that it
is completely self-contained and relying entirely on weak propagation estimates. The latter agrees
with most of the known proofs of AC for many-body systems for instance the one of [D] to which
we refer the reader for an accourfttbe history of AC (in particular for short-range systems which
is not mentioned in this introduction). The weak propagation estimates of this paper are established
in the standard fashion by constructing uniformly bounded families of observables whose Heisenberg
derivative has a sign up to an integrable error, see for example [D, Lemma A.1, (b)].

Moreover an important intermediate step of our approach is absence of propagation in the
region ¢ ¢ < |27 < t@=¢ (precisely this means thdrtE[tazW’ta—s](!Ia\)Ua(t)qb;fH — 0 for
o € E(H*Y)H), which follows from an entirely different method. (In [G] the global virial
condition is used to exclude the entire inner region.) Although this method is somewhat complicated
partly due to constructions needed to diminish impact of the uncertainty principle the basic idea is
simple: For a state in the indicated region the radial parof the momentunp® cannot be negative
(otherwise the wave packet would not propagate as fast as indicated). Moreover by an energy bound the
corresponding kinetic energ%,/(p,‘};)2 must be of size-V“(z®) (provided that the angular momentum
is small). Putting togetheﬁ\xa\ = pt =~ /—2Ve(z®) for a state in this region, which classically
is impossible since the equation is solved|b§| ~ ¢“. Our approach may be viewed as a quantum
version of a similar but simpler approach in the corresponding classical model.

Similarly the absence of propagation in the regjofi > ¢**¢ can be understood classically. (We
give a different proof than those in [D] and [G].) Thus we are left with the inner regitn< 1o’ nte
and the “classical regiont*—¢ < |z%| < t** (the latter supporting the above solution) . For each
of these separate regions quantum mechanics enters crucially in terms of certain wave operators (cf.
Subsection 1.3). For the classical region the existence of the corresponding wave operator is only
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shown in this paper fop, > 3,

that in fact B (H*") = 0.

As indicated above this paper concerns a zero-energy problem for a time-dependent Hamiltonian.
We refer to [N] and [Y2] for results on zero-energy problems for two-body time-independent long-
range potentials.

This paper is organized as follows: We treat the simplified one-dimensional model in detail in
Sections 2—-6. It is introduced in Section 2, where also various results similar to Theorem 1.1 are
stated and some preliminaries are given. In Sections 3—-6 we treat various regions separately, cf. the
discussion above: Those regions may be called the exterior, intermediate, classical and inner region,
respectively. The combination of Theorem 6.3 and Corollary 6.4 is the direct analogue of Theorem
1.1. In Section 7 we treat a simplified multi-dimensional model with a spherically symmetric potential.
Following the procedure of the previous sections we shall sketch a proof of Theorems 7.1 and 7.2
which in combination corresponds to Theorem 1.1.

in which case we conclude (under the conditions of Theorem 1.1)

We thank Andreas Hinz and Hubert Kalf for drawing our attention to the reference [O] for a result
on absence of a zero-energy bound state for one-dimensional Hamiltonians (which made an appendix
in a preliminary draft of this paper superfluous).

2 One-dimensional results and preliminaries

Let u € (0,4/3 — 1] be fixed. On the Hilbert spack =L?(R,.) we consider a time-dependent
Hamiltonian H(t) = H + I(t), H = Lp? + V(2), I(t) = I(t,x), t > 0, wherep = —i-L denotes the
momentum operatot(-) € C°(R4,C'(R,)) andV € C> with

k
|CZ‘U—kI(t, )| < Cpt "k k=01,
(2.1)

CZU—ZV(;U) - O(|a¢|_"’_k).

In addition (¢,z) andV(x) are real-valued.
We shall impose one or both of the following geometric conditions:

(22) V(z) < —clz|™™ = > R.
(23) V(z) < —clz|™; = < —R.

Here c and R are positive constants.
Throughout the paper the letteisand v are used to denote

24) o= ﬁ, v = 2_-/:7
Under the condition (2.1) we can consider the propagétay obeying (at least formally)

(2.5) QU(t) = HHU(L), UQ) = 1.

We refer to [DG, Appendix B.3] for an elaboration; it is known th&t) preserves the domain pf We
consider the corresponding asymptotic energy (the limit being understood in the strong resolvent sense)

(26) H* = lim U(t) HU(t).



Let ¢T € Eqgy (H+)H be arbitrarily given. We are aiming at completeness under (2.1) and the
geometric conditions (2.2) and (2.3), which (by definition) amounts to showing that there exist

t

B i [ (H+1I(s,0))ds i [ 1(s,0)ds
27) ot = lim e: ¢t(t) = lim e :

t—+o00 t—+4o00

¢F(t); 6T (1) = U)o

Notice that indeed if the first limit of (2.7) exists then the second also exists, and they are the same
and ¢ € ker (H). Consequently, cf. [O, Theorem 2.2 p. 196} = 0.

In this paper the existence of (2.7) will be shown foeE (3,3 — 1].
In general foru € (0,+/3 — 1] we shall show the following preliminary result: We introduce

Pt =Pr+ Pt
(8 B =5l UW) Byoeporq(@)U (0 Eg) (H7).
P =s— lim U()"Ej_pere—o=q(2)U(6) Egy (H); € >0,

where the limits will be shown to exist and be independent of (smaif) 0. Then we shall show
the existence of

B i [ 1(s,0)ds
(2.9) ot = 111? el Ut)(I—Pt)et.

We note that without the conditions (2.2) and (2.3) the statement (2.9) has counterexamples for
1 € (0,3), see [DG, Section 3.8.3].

Clearly the existence of (2.7) follows from the existence of (2.9¢1f = 0. The latter property
will be proved forp € (3,/3 — 1] in this paper.

Imposing only the additional condition (2.2) (not (2.3) here) we shall prove that foraany
Qep 1= a2,u

(2.10) lim [|F(t=% > YU~ PF)ot|| = 0.

Here we have used notation from the following list.

Definitons 2.1 For any ¢ > 0 the notation F(- >C), F(-<C)andF(-=C) is
k

used to denote smooth functions wiﬂff”“j?F(x) bounded for all £ and supported in
(1C, ), (—0,2C) and (3C,2C), respectively.

For ¢ < 0 the same notation is used with the meaning(— < —C),
F(—->—-C)andF(— = —C), respectively.

The notation/'(C;- > 1,Cy- < 1) is used to symbolize the product functiBfC';- > 1)F(Cy- < 1)
(for 0 < Cy < CY).

Let 71 denote the largest set af = F,
0<F<LF=4r>0Fcc((}2)F
which is stable under the mags — F™ and F’
functionsF_ = 1 — F whereF, e F,.

Fi(->1) = F(->1), such that (in addition)
)=0,F2)=1andVv1-F,VF,VF € C*,
1—(1—F)"; m € N. Let 7_ denote the set of

e
D= ||

The proof of (2.10) is divided into two parts: We show in Sections 3 and 4 that for ang

211) lim [IF(55% > 1)6* (0] = 0.



and
(2.12) tilﬂoHF(ﬁ > 1, 7% < 1)t (1)) = 0,

respectively.
Obviously (2.11) and (2.12) imply the existence Bf and (2.10).
For u € (3,V/3 — 1] the statemenf’" = 0 follows from

(213) lim [|F(55 > 1 g5 <)o) = 0;

the latter will be proved in Section 5.
The existence of (2.9) will be shown in Section 6 under the conditions (2.2) and (2.3).

In the remaining part of this section we don’t use (2.2) and (2.3).
We have the following elementary preliminary result.
Lemma 2.2Leta > 0 andx,t > 1. Then for allw € C

[N

1
3

(715 571 () = (14 uf?) .

(2.14) |[F(t% > 1)p(sH — )| < Cf

Proof Let ¢ € H with ||¢|| = 1. Then
Ipdl1? = =4 2K(H = V) 53 & = (5H — w) ™.

(Here and in the foIIowinqmw is used to denote the expectation valueAin a stateiy.) Next
we rewrite

(26(H = V) =2(H —w); +2(w — V)

and bound the first term on the right hand side as

2(kH — w>d~’ < 2|imw| L,

and the second as

K+ |wl

2w —rkV); <C imul?

uniformly w.r.t. .
Putting together yields to

(2.15) [Ipdll* < ks

w|?
Next we compute

1F (=% > 1)pd|[* < Crt > imw| ™ + 4(H = V)

(2.16) ¥

< Oyt ™| Imw|~2 + Cslimw| Y| HF(-)4)|.



But since (by (2.15))

HHF()QZH < Cy (z‘,_%‘“mw\_1 +t_5‘Hp12,|| + HF()H@H)

= (t_““mwrl (PGt — 0]+ Gl >>

[Imw| [Imuw|

(w)

[Imw|’

< Or (170 4+ 57

we obtain upon inserting into the right hand side of (2.16)

|1 (% > 1)pd|?

< Cot P imuw| =2 + CyCr (1= 4 1) 2
< (Y Imw| ™ + C3C7 (™ + & >y|me
< Coltr 41y )
< Gy T )|Imw|2

For our problems we may assume that
(2.17) I(t,x) = I(t,0) for |z| < ¢

for any given non—-negativé < p (cf. [E]). In Sections 3 and 4 we may take= 0, but in Section
5 we shall need a positivé < a.

Under the condition (2.17) for some fixede [0, o) we get using Lemma 2.2 (cf. [E]):
Lemma 2.3 Suppose for this

(2.18) pa < 6 < p(1+9).
Then witho™ (1) = U(t)¢"

(2.19) lim 511pt%(“+%”&_6>HF(!t‘SH’ > 1)o7t (t)]| < oo.

t—+o00

Proof We pick an almost analytic extensidn of F(|-| > 1) with
(2.20) y(éﬁ) ()| < Coplw) ™" "F|imuwl®; k& € N,

yielding the representation (cf. [DG, Appendix C.3])
iH (@), F(|H| > 1)]

(2.21) = —l/ (5F) (w)(kH — w)_li[l(t), gpQ] (kH — w)_ldudv;

7T
C

w=u+1i, K> 1



We compute
; F 2l — o+ +
Z[I(t)7 5P ] h,O(t )F(t& > 1)p+ h.c.,
which combined with (2.21), (2.14) and (2.20) yields to
[i[H(2), F(|=H| > 1)]]|

< kO~ (0 / | (5F) ()| [Imw|~2(w)? (t—ﬂd + Ii_l)gdudv
C

(2.22)

< ROyt (t_”&/ 24 n—%).

Since in the state)™(¢)

o0

(F(lH| > D)y = — / ds(i[H (s), F(|sH| > 1)]) yu (o) ds
1
we obtain from (2.22) that

(F(leH| > 1)) gy < //{Cls_(lﬂ‘) (s_”&/Q + ;{—%)ds
t
= Cort=WH&/2) 4 Cypsp,

Upon insertings = t° with 6 obeying (2.18) on the right hand side the resulting expression is
O(té—u—;td/Z). O

Lemma 2.4 Suppose the conditions of Lemma 2.3. Then with the notation= U(t)¢ for ¢ € H
(2.23) ift_1|<F(|t‘5H| ~ 1)) ldt < Cllol.

Proof Consider the uniformly bounded family of observables
D(t) = F_(|t5H|); t>1.
Similarly to (2.21) we can compute using (2.17) and Lemma 2.2 (cf. the proof of Lemma 2.3) the

Heisenberg derivative

DO(1) = %(I)(t) +[H(t), (1)

_ _%/ (éﬁ)(w)(télf—w)_l (5’t5—1H+i[l(t),t‘5%p2D

(2.24) C
-1
(t'SH — w) dudv
_ 4
~ dF
The second term on the right hand side is integrable. Consequently

o0

—/t_1<t6HG(t5H)>¢(t)dt < C||9|I%,

1
from which we obtain the lemma by using the freedom in chogihg O

= st HG(1H ) + O (- HmH8); () F_(|E)).
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3 Exterior bound

In this section we don’t use (2.2) and (2.3). The notatignis used to denote a number with
3.1) ay > «a.

Further constraints will be imposed in the statements that follow. Those are satisfiegl for.

Lemma 3.1 Suppose
(32) pag <6< (1+5)ag
Then

(3.3) ||F(12p* < DF(& > 1) F(t2p2 > 1)]| = O(t7),

t*0

B4) F(m > DEE* > 1)F (5 < )l = 0(t).
3.5) ||F(& > 1)F(t2p* > 1)F([PH| < 1)]| = O(t~).

t*0

Proof The statements (3.3) and (3.4) follow readily from the calculus of pseudodifferential
operators, cf. [H, Sections 18.5-6] and [DG, Appendix D.4-5], noticing that

(3.6) ag >y = Lo

(Notice that (3.6) leads to a calculus with “the Planck constart—®0".)
As for (3.5) we suppose

B.7) |IF(& > )F(p2 > 1)F(jH| < 1)]| = O(t™%),

t>0

for somes > 0 and all suchF”s. Then we shall show the better bouf{¢=~) with e = 2716 — v
(which is positive by (3.1), (3.2) and (3.6)). For that we compute with H given with ||| = 1 and

) = F1F3F3);
F = F(t% >1), = F(*p* > 1), B = F(|*H| < 1),

using the calculus and (3.4)

(2H); = (HF} + FH + 172 F| >F2F3w

- 2Re<F1F2(HF3)w,1Z'> + 2Re<0(ﬁ—a0<1+ﬂ>)F1F2F3w,qﬁ>
+ 720 F{ Py P |2 4+ O ()

< C(17N| BBy (£ HEy )yl + 0| By By Byl |19

+ 720 | F{ By s |2 + O (7).

(3.8)

Here the last ternO(¢~>°) is estimated uniformly w.r.t..), and Fy = Fi (% > 1) with Fy(- > 1)
equal to one on a neighbourhood of the supportiof > 1); and similarly for F5.
On the other hand by (3.3), (3.6) and (3.1)
(2H) ;= () ; +(2V);
(39) > Cul[d|P72 + O(+7%°) = Co || P
> Cy||| P42 + O(t7).
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Combining (3.2), (3.8) and (3.9) gives by reduction

00 (1 FF (1 HE Yol + Vol 191 + 1 FLFoF?)

(3.10) )
> |02+ O(t™),

whence by the induction hypothesis (3.1))|| < t=5~¢C|[¢|| = t=*~C.

Lemma 3.2 Suppose (2.18), (3.1) and (3.2). Then with) = U(t)¢ for any ¢ € ‘H
(3.11) lim ||F (% > 1) F-(*H)o(0)]| = 0.
Proof By Lemma 3.1
' - v 6 =
Jim (1P () P P (10 ) o (0)]] = 0,

so we need to show that

lim ||B(t,t°)é(t)|| = 0; B(t, k) = FyFyF;,
t—+4o00

(3.12)
E:&@ﬂ»&:ﬂ@ﬂ&:ﬂ@%&

For that we compute withi(t, k) = B(t, k)" B(t, k), t > to andx = t* (the latter considered
as fixed)

t
(3.13) (A(t, k) g1y = (Alto, ) 10) +J<DA(5”‘C)>¢(S)CZ&

where the Heisenberg derivative is decomposed as
DA(s, k) =T + Ty + T3,
2
Bm)ﬂzagmﬂﬁwg
Ty = F3(DFy)FEFyF3 + h.c.,
T3 = (DF3)Fy,F2FyF3 + h.c..

To handle the contribution from the terify we estimate (using the calculus of pseudodifferential
operators to handle the double commutator)

Fy(DFY)Fy = 27 Ry (pG2 (5 1) + G2 (7 2) p)
=k s R G (kT 2)H(s'p)G (k7 w) + 27 [[H(s7p), G(k™'2) ], G (k7 12)] } Py
< CrLsT (14 k726%);

L
2

G(x) = (FY)*(x), H(E) = EF-(471¢).

Upon inserting (3.15) into the integrand yields to

(3.15)

t
(316) f<T1>¢(3)dS S Cli_l<t1_’y+l€_2t1+’y>.
to

11



As for the contribution from the terril, we notice (cf. (2.24))

DF, = i[V, Fy)

L / (515‘_) (w)(s"p — w) ™" (’ysﬁ'_lp +i[I(s),s7p])(s"p — w) " dudv

™
C
(3.17) Ty H(sTp) + 0(37_(”“));
T = V. B, H( = ¢4 F-(©)
Since the form of the functiodf in (3.17) isH(¢) = F(¢2 > 1) and obviously
(3.18) Fy = F(s™™x>1)F
for some functionF'(- > 1), we can use Lemma 3.1 to conclude that

(3.19) Fyys 'H(s'p)FEFyF3 + h.c. = O(s™).

As for the termT in (3.17) we use (3.18) and Lemma 3.1 again, and the calculus of pseudodif-
ferential operators, to write

(3.20) F3TFFyF3+ h.c. = O(s™™).

Using finally for the third term in (3.17) that — » — 1 < —1 we conclude that

1 fe’e]
(3.21) f<T2)¢(S)ds <[ (T2) 4(s)ds < Cty* for somee > 0.

to to

For the contribution from the terr; we use (2.24) and (2.23). The contribution from the error
term in (2.24) is treated likg> in (3.21), while the first term on the right hand side of (2.24) needs to
be symmetrized before (2.23) can be applied: We wfitéG (t°H)F3 = —G*(t°H) and
(3.22) tTYWHG(H)F,F2FyFy = —t~'G(t*H)F,F?F,G(t°H) + R,
where by commutation (cf. (2.24) and Lemma 2.2)
(323) R = O(S§+'y—(u+1)ao—1) + K—lo(sé—%ao—l)‘

The contribution from the first term on the right hand side of (3.22) is by (2.23) of the form

0<t8) for tg — oo,

uniformly in ¢ > t.
As for the the termR we use that +~v — (1 + 1)ap — 1 < —1 to treat the first term in (3.23).
The second is estimated like
t
(3.24) fﬁ_lO(sé_%a0_1>ds < Crlpp—koo,
to

Now usingx = t*° in (3.16) and (3.24) we finally conclude from (3.13) that

(3.25) (A(t, 1)) 41y < (A(to, %))y, + 0(t]) + o(t°),

12



where the decay of the middle term is uniform w.r.t. {te> tg.
Obviously we get from (3.25) that

(3.26) (A(t,1°0)) 44y = o(t°)

by first chosing a largéy to bound the middle term and noticing that indeed the first term has the
form of the last term (for the fixed,).

We have proved (3.12). O

Clearly by combining Lemma 2.3 and Lemma 3.2 we obtain:
Corollary 3.3 Under the conditions of Lemma 3.2 and witfi(#) given as in Lemma 2.3

327) lm_|l6%(t) = F- (%) F- (i H) o+ ()] = 0.

Lemma 3.4 Under the conditions of Lemma 3.2 and with the notatioty = U(¢)¢ for ¢ € H,
(3.28) ?t‘H(F(t;io ~ 1)) o |t < ClIOI
Proof Consider the uniformly bounded family of observables
O(t) = F_F, (t%)F_; Fo=F_ (|t5H|).

As in the proof of Lemma 2.4 we compute the Heisenberg derivative. The contribution from the two
factors F_ is treated by (2.24) and (2.23) (by symmetrizing cf. (3.22) and (3.23)). So we need only
to consider the contribution from

(3:29) DFy (& > 1) = 1 — aomrr) F () + FL () (i — aogr).
For each term on the right hand side we insert
(3.30) I = Fy(tp%) + F_(t27p?)

to the left and to the right, respectively. The first term in (3.30) contributes by Lemma 3.1 by a term
of the form O(¢~>°). Moreover

1 P T T

—F_ <t27p2> Tan T Oéoa— F_/’_ o + h.c.

(3.31) 1 (t; t 0+1) (t 0)
/

< —agFZ (") °

1
5 —_—y— _1+ —
= o i (55 ) F2() + Cot 170 4 e,

Since—vy — ag < —1 and~y — ap < 0 we obtain (3.28) by integrating (3.31) and using Lemma 3.1

again. O

4 Intermediate bound

In this and the next section we impose (2.2). We shall consider two decreasing sequences of
positive numbergy;);° and ()" assumed to satisfy:

(41) 6 < aj + .

(42) 047 < (p+1)ay.

13



(4.3) w> > %aj_l.
(4.4) o > paj-1.
(45) aj+v < 1.

Hereay andé are chosen in agreement with the conditions (2.18), (3.1) and (3.2).
We shall be interested in the “limiting regionstyy ~ «a, 6 = pa, 7; = aj;1 anda; =
(See the proof of Lemma 4.6 below for precise requirements.)

0+
p+le

We have the following analogue of Lemma 3.1.
Lemma 4.1 Suppose (4.1)—(4.4). Then

(4.6) [P p?F(t25p* > 4)F (% > 1, mir < 1)F(1*27p? < 1)|| = O(t7>),
4.7) ||F(#& > 1)F(tPp? < 1)F(& < 1)l = 0(t™).
(4.8) ||[F(# > 1, == < )F(t2p* < 1)F(|t°H| < 1)|| = O(t™>).
Proof By the assumptions
o+ < pojor 475 < 0475 < aj(p+1),

and therefore by subtraction
(4.9) vio< Q.

Similarly to the proof of (3.3) and (3.4) we can use (4.9) to conclude (4.6) and (4.7).
As for (4.8) we can proceed as in the proof of (3.5):
Define

P F(t% >1, tffl < 1)F(t2%'p2 < 1)F(|t5H| < 1)¢ — R\ Fy Py,

Then

~ — 2 2 —2(1]' /2
~(2H); = <HF1 + F2H 4 7209 >F2F3w

(4100 < (0 B (1 HE )| + 0= 00| B B Fyl)) |19
+ 729 || F By |2 + O ().
On the other hand by (4.6) and (4.3)
(~2H); = (=2V); — (*);

(A11) = Colld|P = Collle2 + O(t)
> Col 0] 427+ 0(t7).

Combining (4.10), (4.11) and (4.4) gives the result by induction, cf. the proof of Lemmal3.1.

Lemma 4.2 Under the conditions (2.18), (3.1), (3.2) and (4.1)—(4.5), for af) = U(t)¢ and
J =1

H(1, ) [ ) it < il
1

14



[ee]

H(2,j) / T =pFE (=t7p)); ydt < Cllo]P,
1
where
0;(t) = Bi(t)o(t); B;(t) = (F¥)? (%)F_(ytém).
Proof Let

®;(t) = FAF3 Py FEFy FFy;

X X .
Fi=F, (ta ) Fy = F_( — ) Fy = Fo(tVp), Fy = F_(|t‘5H|).

(4.12)

We start by showingHd(1,1):

Consider the uniformly bounded family of observablgs Its Heisenberg derivative is decomposed
as

D@l(t) =T1+ T+ T35+ Ty;
T\ = FyF3 oD (FE) Py F3Fy,
“13) 7, B R(DR)F2FRFF + he.,
Ty = Fy(DF3)Fy F2FyF3Fy + h.c.,
Ty = (DFy)F3Fy F2Fy F3Fy + h.c..

By Lemmas 3.4, 4.1 and 2.4, respectively, and commutation (the latter yielding integrable errors)
(4.14) {I(Tk>¢<t)ldt < Cllol)% k = 2,3,4.

Notice that we also use the proof of Lemma 3.4 to treat the tBymNotice for treating the terr
that we use (2.24). The first term on the right hand side is symmetrized with an integrable error. This
can be shown by combining Lemma 2.2 and the fact that

4.15) § < (1+4)a;,

cf. (4.1) and (4.2).
As for the termT; we compute, cf. (3.29),

1/ p x T
DF? =+ —a;—— FQ’ I
416) = 2 (tal altaﬁl) (ta ) e
(PN (P t ayz (L
= (F}) (tcu) (tm alt‘““) (F) (tm)'
By commutation under use of the calculus of pseudodifferential operators, Lemma 4.1, (4.5) and
(4.9)

win Ty = By(t)"Fs (t% o HF_( '1 ))FgBl(t) +O()
4.17 ’
> %Bl(t)*t%F??Bl(t) +O0(t>).

From (4.17) it follows that

T
(4.18) f2 W (1)), ot < [ (T gyt + o]
1
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for C' independent ofl” > 1.
Combining (4.14) and (4.18) yields td(1,1).
Suppose nowH (1,j). We need to show{(1,; + 1):

We proceed by considering; 1 (¢) given in (4.12). Its Heisenberg derivative is decomposed as in
(4.13). We claim that the analogue of (4.14) holds true: For the terme useH (1, ;) and the fact
that 7,1 < ;. (The latter allows for inserting”.(t"p).) For the termsls and 7, we use Lemma
4.1, and Lemma 2.4 and (4.15), respectively.

By the same arguments used for (4.17) we get a complete analogue statement and therefore also
the following analogue of (4.18)

T

(4.19) fg 1t—a1+1<pF2(t%+1p)> < [T gyt + Cllol)%,
1

J+1

yielding H(1,5 + 1).
Next we showH (2,1):
We consider

®(t) = FyF3FyFEFy F3Fy;

(4.20) p _ F+(t§) Py = F_( ) Fy = Fy(—t"p), Fy = F_(\t‘SH\)

Commuting as in (4.13) and arguing as before we obtain the complete analogue of (4.14). The
analogue of (4.17) is

Ti = Bi(1) Fg(tT—altaiLlF (4— ))FgBl()

(4.21) + o( 4n—an)N ) +O(t7)
< B; (t)*tTngQBl(t) +O0(t7).

Upon integrating (4.17)

T
(4.22) {t_”(—pr_(t”lp))J)l(t)dt < = [{T1) g dt + Cllo|.

Clearly H(2,1) follows from (4.22) and the analogue of (4.14).

The verification ofH (2, j+1) given H(2, j) follows the same pattern using the hypoth€gig, j),
and for the termil; a treatment similar to (4.21). O

Lemma 4.3 Under the conditions of Lemma 4.3

(4.23) tii?ooHF(t;ij > 1, =i < 1) F_(tp)F_([t°H|)o(t)|| = 0.
Proof By Lemma 4.1 it suffices to show that

(4.24)  lim |F (% > 1, == < 1) Fy(=tip)F_([t° H|) p(t)|| = 0.

We prove (4.24) by mimicking the proof of Lemma 3.2:
We introduce fork > 1

B(t, k) = F1FyF3Fy, A(t,x) = B(t, k)" B(t, k);

)
4.25 .
(4.25) Fy=Fy(s7'a), = F—(tax,l)’ Fy = Fy(=tVp), Fy = F_(|t5H|).

16



Then (3.13) holds with

DA(t,k) =Ty + Ty + T3 + 1y;

T\ = FyF3 D (FY) Py F3Fy,
(4.26) Ty = FyF3(DFy)FEFyF3Fy + h.c.,

T3 = Fy(DF3)Fy F2Fy F3sFy + h.c.,

Ty = (DFy) F3Fy F2FyF3Fy + h.c..

We letk = t% and need to show the analogue of (3.25). The contributions to the integral from
the termsTs and Ty are handled using Lemmas 4.1 and 2.4, respectively, and the onelfrarsing
H(2,j —1) of Lemma 4.2 (forj > 1) or Lemma 3.4 (forj = 1), cf. the proof of Lemma 4.2.

As for Ty the proof of (4.17) shows that

Ty = Bj(t,s) Fy(=sYp)t =% pF,(—s"p)Bj(t,s)
(427) +0(smN) 4 o(s7)
<O(s7),

where we have used the notation

Bj(t,s) = (Fi’)%(i)F_( a )F_(|55H|), 1>s5> 1.

£ §%-1

Clearly (4.27) implies the estimate
t
to

The above treatment of the the terfhis 75 and 1, combined with (4.28) yields to the analogue
of (3.25) and therefore to (4.24). O

Lemma 4.4 Under the conditions of Lemma 4.2 there exists

(4.29) Pfo = lim U F (1 H)F} () F2 (k) F- (1t H])o(t).

-1
Proof By Lemma 4.3 it suffices to show the existence of
. *
Jim U(6)*®;(1)6(0),

where®;(t) is given in (4.12). But by usindi(1,;) andH (1, j — 1) (the latter forj > 1; otherwise
by Lemma 3.4) as well as the proof of these statements yields to this existence result. O

Lemma 4.5 Under the conditions of Lemma 4.2
(430) P =10;j > 2.

Proof Define

(4.31) K(x) = { }Z

(—2V(y))_%(ly; x> R,
0; r < R,

17



with R given by the assumption (2.2). Obviously
(4.32) K(x) < Clz|'t5.
Let for x > 1
A(t,k) = B(t, k)" B(t, ), B(t, k) = FoF | Fy F3F)y;
4.33) Fo=Fi(x7Ht = K(2)]),

e n () B r (g

tei-1

), Fy= Fy(tp), Fy = F_(|t‘5H|).
We pick 3; € (0,1) such that

(4.34) fB; — paj_q + min (6, (p+ 1)aj — Laj_q) > 1.

Notice that adding (4.3) and (4.4) in conjunction with (4.2) yields to

(4.35) 3paj_1 < (p+1)aj,

and also that by (4.4)uaj—1 < 6.

We shall again follow the scheme of the proof of Lemma 3.2. We use (3.13) for the aljove
with x = 7%,

The Heisenberg derivative is decomposed into five terms. Only the contribution from the term

(4.36) Ty = S*(DF})S; S = FiFyF3Fy,

needs careful consideration. The remaining terms are treated by methods used before in this section.
We natice though that symmetrizing the contribution from the first term on the right hand side of (2.24)
in treating the Heisenberg derivative 6 leads to the requirement

(4.37) 0 < ﬂj - ‘%(Ozj_l - Ozj),

(to commute throughfp).

The condition (4.37) is fulfilled for3; close to one since by (4.3), (4.5) and (4.15) (used in the
indicated order)

1 1 1 :
1—§(aj_1—a/j) >1—’yj+§aj > (1+§)Ozj > 0.
We compute
/{_1 1\ ~
DF? = 7{ (1 _ p(—QV)‘E)F n h.c.};
(4.38) ]
F = F(/{_1|t — K(2)]), F(s) = d—F_IZ_(|s|)
S

Moreover, putting
G = pFy (4177p)

1 T 1 T 1
e () () + 1 () ().

18



by a commutation (cf. the proof of (4.6))
5* (1 —p(—zvr%)ﬁs
— 5 (p - (—2V)%)GG—1(—2V>—%F5

(4.39)
= =5 (p— (=20)7) (p+ (=2V)7) G~ (=2V) T ES + O ()

= (2H - i(—m/)—%v’)G—lﬁ(—QV)‘%S +0(t).
But

l(=2v) 28] = O(¢5-1),
(440) |lG!| = O(t5),
HS*(_QV)_%V’H = O(t%%‘—l—(ﬂﬂ)a]‘) .

Combining (4.38)—(4.40) and Lemmas 2.2, 4.1 and 4.2 (the lemmas to confinirtg4.39) to
the left) yields to

t . ®
(4.41) [ (To)45)ds = O(tl‘ﬁfﬂ‘a]‘*l—mm (‘57(/‘“)%‘—5%*1)),

to

which by (4.34) iso(t").
In conclusion

1B (4% )o(0)l| = o(t").

Moreover since by (4.5) and (4.3)

(442) a; <o <1-5ay < a,

we readily obtain in combination with (4.32) that fgr> 2
F_ (t_ﬂf|t — K(x)|)F2 = 0 for larget.

Putting together it follows that foj > 2

+ 1 2 _
(PF), = Jm_liso* =0

We can now prove (2.12).
Proposition 4.6 For anye > 0

(443) lim ||F (st > 1 < 1)6* (0] = 0.

Proof We shall use Lemmas 2.3 and 4.5 using the freedom in chosing our parameters obeying
(2.18), (3.1), (3.2) and (4.1)—(4.5):
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As for the latter we define for sufficiently smatl > 0:
o
ag=a + —,
I

0 = pa+ 20,
(4.44) v = %aj—l +o0.
a1 = 1- " — 0o,
aj=(u+ 1) (647 +0);>2
Then clearly the relations (2.18), (3.1) and (3.2) hold. Clearly (4.4) holdg fo10 and hence in
general (provideda; ), is decreasing, see below). By definition the relation (4.3) is true. Obviously
(4.1) and (4.5) hold forj = 1, and (4.2) forj > 2. Moreover
(4.45) (u+1) "6+ +0) < o

(again for smallr). Consequently (4.2) holds fgr= 1 as well. We also have that; < a.
Forj; > 2

(4.46) aj = (u+ 1) (6 + Laj_1 +20),

which yields to the existence ef = lim «,. Upon substituting in (4.46) we obtain

_ -1 Jad

Qoo = (1 +1) (6+ ano+20)7

which is solved by
Qoo = apax + 40).

Since by (4.45)
ag = (u+ 1)‘1(5 + %al + 20)
-1 H . -1

< (p+1) (6+§a0+20) =pu+1)  (0+m+0)<a

o0

it follows that indeed the sequence;),” is decreasing. Then by the definition the same holds for
(7;);"- In particular (4.5) hold forj > 2 as well.

It remains to show (4.1) foj > 2: But
g+ > (1+%)aoo+a>ua+50> 0.
Givene > 0 we fix o > 0 so small that in addition to the above requirements
(4.47) e +€ > aso anda — e < ay.
Then forj = J large enough

(4.48) a. + € > ay.
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Now using Lemma 2.3, (4.47) and (4.48) the proposition obviously follows if we can prove

lim ||F+(%)F_(%)F_ (t5|H|)¢+(t)|| —0.

t—+4o00

For that we insert repeatedly
I:F+(tai_) +F_(t"%); 2<j< -1,

to the left and invoke Lemma 4.5. O

For a similar application in Section 6 we state the following result which readily follows from
the methods of this section.

Lemma 4.7 Under the conditions of Lemma 4.2 there exists for 1
(4.49) Qf¢ = lim U()"F-(|t"H|)F2(75) F- (|t H|) 6(t).
Proof Notice the following consequence of Lemmas 4.2 and 4.1:

@50) 57 ((F) () ot < ClIAP

The contribution to the Heisenberg derivative from each of the fadtart° H|) is treated by
Lemma 2.4.

We compute

(451) DF2(#) = §(# — a1 ) P2 () + he.

= J

Using (4.5) and (4.50) it remains to treat the contribution

r () (5 r2 () + e ) r- (101,

For that we substitute
I =Fy(tp)+ F_(t25p?) + Fy(—tVp).

The middle term and the other terms contribute (after symmetrizing) by integrable terms due to Lemmas
4.1 and 4.2, respectively. O

5 Bound for the classical region

In this section we shall show that for> % P}t = 0 with this operator being defined in Lemma 4.4.
Notice that it is independent of the particular choice of parameters obeying the conditions of Lemma 4.2
(by the results of Sections 3 and 4). In agreement with Section 2 we may use the néatien’;".

Clearly, by symmetry, we may show under the condition (2.3) fPfat: 0if pu> % So we shall
here only assume the condition (2.2) (as in the previous sections).

We define

(5.1) Io(t,x) = I(t,x)Fy (474 ) + I(t,0)F_(4:%),
(5.2) Ho(t) = H + Io(t,z),

and corresponding propagatdp(t)

(5.3) 9 Uo(t) = Ho(t)Uo(t), Un(1) = I.
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Lemma 5.1 Under the conditions of Lemma 4.2 there exists

(5.4)  Ploe = lim Uy(t)" F- (1 H)F} (75) F2 (55) F- (|t H]) o(1)-

Proof Since
2( L\ _p2( L _
Io(t,2)F? (=) = F3 (5 ) 1(t.2) = 0.
the proof of Lemma 4.7 carries over. O

A consequence of Lemma 5.1 is that we can assumdthas defined by (4.29) wittt/ (¢) replaced
by Us(t). In other words, keeping the original notation, we can proceed by shoiing- 0 under
the assumption (2.17) for any giveh< «a; (or & < a by adjustinga;, cf. the proof of Proposition
4.6). Moreover, corresponding to the néwwe can assumé is arbitrarily close '[Qu(l + 2‘1d), cf.
Lemma 2.3. In this section we need the requirements (2.18), (3.1), (3.2) and (4.1)—(4.5) but the latter
only for j = 1. To be specific we define for sufficiently small> 0 (cf. the proof of Proposition 4.6):

o
CYO:O[—’——,
I
Eao + 43
:—a — —
M 50 o=7 20,
5
(5.5) alzl—’yl—aza—ia,
1
0=-+—aq,
+2a
1
[}1254-%0[-1-20'.

Then all of the above requirements as well as (4.34) and (4.37) are fulfilled.

We shall proceed from here by using the proof of Lemma 4.5 (with= 1) to obtain the
representation

Ph=s-— tligloo Ut) " ®(t)U(t),

5.6
&9 q>(t>:s*FE(t—ﬂlyt—K(x)\)s,

where S = S(t) is given by (4.36).

We shall use the functio of (4.31). Its inverse is denoted by = L,.. It is characterized as
the solution of the initial value problem

(5.7) LL(t) = \/-2V(L(t)), L(0) = R; t > 0.
Using the upper bound in (4.32) we obtain putting= L(¢) that
(5.8) Ct* < L(t); t > 0.

We define the propagator
t
U, (t) = exp (z/ (H + I(&L(s)))ds).
1
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We want to prove that there exists

(59) Pf. =5 — lim U.() (U (1),

where ®(t) is specified in (5.6). Since obviously the-independent potentidl(¢, L(¢)) fulfills (2.1)
we can use the previously established estimates for the full propagator also for the above auxiliary
propagator. Therefore in proving the integrability when differentiating wey it suffices to verify that

It L(t) = (1) F2 (7]t = K (2)])

is integrable:
By (2.1), (5.7) and (5.8)

I(t, L(t) = I(t.2) = O(t ") |L(t) — L(K ()]

<Ot Ht— K(x)| sup =2V (L(s))
s€[t,K(z)]

< O(f/_'u'_ljl_ﬁl) sup S—%a < Ct_“_l_{_ﬂl_%a,
s€lt,K(z)]

where we in the last step used that < 1. Sincep > % clearly #; < p + 5a, and therefore we

have verified the existence of (5.9).

From the existence oP/’ it follows readily that indeed”. = 0. As a consequenc®" = 0,
completing the proof.

In conclusion:
Theorem 5.2 Under the conditions (2.1) and (2.2) for > %

P =o.

6 Simplification for the inner region

We impose the conditions (2.2) and (2.3). Under the conditions of Lemma 4.2 the statement (2.10)
and Lemma 2.3 lead to

(6.1) QFot = (I-PFo*;j>1,

with Q7 given in Lemma 4.7.
We define

(6.2) Ij(t’ x) = 1(t, ‘T)F_<t] 1>+I(t 0>F+(t] 1)
(6.3) Hj(lf) = H + Ij(t,x),

and corresponding propagator; ()

(6.4) 0U;(t) = H;()U;(t), U;(1) = I.

Lemma 6.1 Under the conditions of Lemma 4.2 there exists for 1

(65) Q0= lim Uj(t)"F-(t"H|)F2 () F- (|t H|)6(t).
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Proof We mimic the proof of Lemma 5.1. O

We shall be interested in the sequeriag);” constructed in the proof of Proposition 4.6 with input
e > 0 such thata., + ¢ < u. We fix 7 = J such that (4.48) holds.

We define
(6.6) I'(t,x) = I(t,x)Fr(—7%) + I(t,0)F_(— 7).
(6.7) H\(t) = H + I'(t,2),
and corresponding propagatof (t)
(6.8) ,U'(t) = H\(t)U(t), U(1) = I.

Sinceay < p and

I (t.2) = Ly (t,2)| < Ot (FDes,

it follows that there exists the limit

. . l *
s— lim U(t) Usa(?),

cf. the argument leading to (2.17) or (5.9).
Combining this fact, (6.1) and (6.5) fgr= .J + 1 we obtain the following result.
Proposition 6.2 Under the condition (2.2) there exists the limit

(6.9) ¢ = lim U'(H)UM(I - P)ot.

If we also impose the condition (2.3) the previous analysis can be repeated to the left (we may
argue by a symmetry argument). But the analogue construction of (6.2) leads to

(6.10) I(t,x) = I'(t,2)F_(— =) + I'(t,0)Fy (— =i ) = I(t,0),

providedj > .J + 2.
Combining Proposition 6.2, (6.10) and an analogue of Lemma 6.1 leads to the existence of (2.9)
(for the last conclusion we use [O, Theorem 2.2 p. 196]):

Theorem 6.3 Under the conditions (2.1)—(2.3) there exist the limits

i [ (H+I(s,0))ds

ot = Jim e Ut)(I—P)o*
(6.11) [
if[(s,O)ds
= tiigloo el Ul(t) <I - P+)<Z)+

(with P* = P* + P7F). In particular ¢+ = 0.

In combination with Section 5 we obtain:
Corollary 6.4 Under the conditions (2.1)—(2.3) witta > %

(6.12) E{0}<H+) = 0.
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7 Multi-dimensional spherically symmetric case

In this section we shall consider the-dimensional case assuming that the poteritial) is a
function of |z| only (andn > 2). We shall impose the condition (2.1) with derivatives replaced by
partial derivatives; for (¢) up to order one and fo¥” to all orders. Agair. is a given fixed number
in (0,v3 — 1].

We shall impose the following modification of (2.2) and (2.3):
(7.1) V(x) < —c|z|™, |z| > R.

We defineH, H(t), U(t) and the asymptotic energy* as in Section 2 except that the underlying
Hilbert space now isH = L*(R").
We introduce

(7.2) Pt =s— lim Ut) Epe o org(|2])U() Eggy (H),

t—+o00

which as in the one-dimensional case can be shown to be well-defined and independent efsmall
The analogues of Theorem 6.3 and Corollary 6.4 are the following results.

Theorem 7.1Under the conditions (2.1) (modified) and (7.1) there exist the limits

t

i [(H+1(s,0))ds
s— lim eo° Ut)(I — PT)Egy (HT)
(7.3) e
. i [ 1(s,0)ds . )
=s— lim eo U(t)(I — P*)Ey (H) = 0.

Theorem 7.2Under the conditions (2.1) (modified) and (7.1) for> %

Pt =0.

We shall embark upon sketching the proofs of the above statements following closely the procedure
of the previous sections for the one-dimensional case. At most points only minor modifications are
needed.

We write the (minus) Laplacian of{ as

2
(7.4) p? :4_1(|f£—'|-p—|—p-|§—‘) + || 722 + a3y 72,

where the Laplace—Beltrami operatbf = > L7, Lij = wipj — @;pi.
i>j
Motivated by (7.4) we introduce

pe =3 p i), 2=V v = Fy(la])le]

Due to the spherical symmetry the operafdr tends to be “preserved”. Hence we may write
H =~ 272 + V(z) in various spherical shells which are analogous to the intervals considered in
Section 4. Heuristically, this indicates why the one-dimensional procedure to a large extent works.

We pick a statest € Eyq, (HT)H. The results Lemmas 2.2— 2.4 carry over with almost identical
proofs. The same can be said about all results in Section 3. The rule for translating the statements
is the following: Replace: by » andp by p,.. Notice for Lemma 3.1 that we use the non-negativity
of L? and (7.4) to obtain the analogue of (3.9).
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To generalize the results of Section 4 we need more refined modifications. We shall assume that
(Aj)]" is a decreasing sequences of positive numbers satisfying

(7.5) )\j < o — %a/]‘_l,
and

(7.6) )\j > -1 — M.

Now, Lemma 4.1 needs to be replaced by the following result.
Lemma 7.3 Suppose (4.1)—(4.4) and (7.5). Then

WEHYF(— > 1, —— < 1) F (22 < 1) F_ (=M L2 P (19 H| < 1)|
tos e

(7.7)
=0(t™).

The proof follows that of Lemma 4.1.
We shall need the following two results (with no parallels in Section 4).

Lemma 7.4 Suppose (7.6), and the following condition on the potertialx) for someJ € N
(7.8) I(t,x) = I(t,0) forr > 2t*7-1.
Then for anyp(t) = U(t)¢
(7.9)  lim [[F4 (7 L2)o(0)]| = 0.
Proof We use the familiar scheme of the proof of Lemma 3.2 under use of
(7.10) [I(t,x), Lyj] = O(t~r=tHer=),

and (7.6) forj = J. O
Lemma 7.5 Under the conditions of Lemma 7.4, for apny< J and ¢(t) = U(t)¢

at < C|l¢||?.

(7.11) {t—1\<F(t—2AjL2 ~ 1)),

Proof We mimic the proof of Lemma 2.4 under use of (7.10). O

The analogue of Lemma 4.2 reads:

Lemma 7.6 Under the conditions (2.18) (withh = 0), (3.1), (3.2), (4.1)-(4.5), (7.5), (7.6) and
(7.8), for anyo(t) = U(t)p andj < J

o0

H(LJ) [ e FR )t < ClolP
1
H(.) [ P o) e < ClielP,
1
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where
6j(t) = Bj(t)o(t); Bj(t) = (F}) : (ﬁ%) F_ (t—% L2) F_ (ytéHy) .

Proof We mimic the proof of Lemma 4.2 proceeding by induction frgmra= 1 to j = J. The
propagation observable in (4.12) needs to be modified in agreement with the rule mentioned above
and in addition be multiplied twice by the factét_ (t‘“J‘LZ), one from the left and one form the
right (for example). The contribution from its Heisenberg derivative is handled by Lemma 7.5, and
the substitute for Lemma 4.1 is Lemma 7.3. O

The analogue of Lemma 4.3 reads:
Lemma 7.7 Under the conditions of Lemma 7.6

(7.12) lim [|F (75 > 1, = < 1) F_(tip, ) F_ (|t H|) 6(t)|| = 0.

Proof Using Lemmas 7.4 and 7.3 it suffices to show that

lim HF(L_ >1,—— < 1) Fo(—t5p,)F_ (t—%‘L?) F_(\téH\)qb(t)H —0
t—+o00 1% -1
for which we mimic the proof of Lemma 4.3. O

The next result in Section 4, Lemma 4.4, is modified similarly with obvious proof.

As for Lemma 4.5 the corresponding analogue holds true, but the proof needs a comment: Of
course we need to multiply by the factér (1% L?) to get the correct objedB(t, ») in (4.33). The

proof relies on the factorizationH = p? + 2V (r) ~ (pr - (—2V)%) (pr + (—ZV)% , cf. (4.39).
Here the last two terms on the right hand side of (7.4) are treated as errors, which is justified if their
contributions are integrable. By inspection we need for the latter the condition

(7.13) Bj — poj—1 + 2(aj — Aj) > 1

in addition to (4.34).

By (7.5) the above conditions are fulfilled fgf close to one (but smaller). Consequently the rest
of the proof of Lemma 4.5 carries over to the present context.

The last result in Section 4, Lemma 4.7, has an obvious analogue with obvious proof.

It remains to prove a statement corresponding to Proposition 4.6. (In the process of doing that
we prove Theorem 7.1!) We shall proceed differently verifying inductively the condition (7.8) for a
sequence of modified propagators, the latter defined as in Section 6. Precisely we definend U;
by (6.2), (6.3) and (6.4), respectively (withreplaced byr in (6.2)).

Then by the analogues of Corollary 3.3 and Lemmas 2.4 and 3.4 there exists the limit
of = lim Ui(t)U(t)o™.

(RememberH ¢+ = 0.)

For U, the statement (7.8) holds fdr= 1. Consequently we can define the corresponding operator
PF. Next we puty]” = (I — Pt)¢}. By the definition of P} we can writey) = Q4] where
Qfl is given as in (6.5). Equivalently we can write

(7.14) vf(t) = Ui(t)f = F2(F)vf(t).
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Obviously we may assume thah(¢,z) — I;(t,2)) F2 () = 0 (by using the freedom in defining).

te1

Using (7.14) and the modified results of Section 4 discussed above we then get the existence of

v = lim Us(t)" v ().

t——+o00

Since the statement (7.8) fék holds for.J = 2 we obtain for the corresponding operafbj that
it is zero (by the analogue of Lemma 4.5). But this implies that

UFE) ~ U () = Ua(hef ~ F2 (0 )uf (o)
Repeating the procedure yields
(7.15) o (t) ~ w;’(f) = Uj(lt)lbjr ~ Fz(t;%)wf(t)ﬂ
where by definition
v = dim U079, (0); 5 > 2.

For a; < 1 we conclude from (7.15) and by an argument in Section 6 that

—i [ (H+1(s,0)ds _
Ui =ef(t) me ot

By [O, Theorem 2.2 p. 196] it then follows that™ = 0.

It remains to show that indeed we can choose our parameters to obey (2.18) (with, (3.1),
(3.2), (4.1)—(4.5) (7.5) and (7.6) (and the used conditign< ;. for j large enough). For that we
mimic the construction in the proof of Proposition 4.6: We keep the first four definitions in (4.44),
while the last one is replaced by

(7.16) a; = max ((;4 + 1)_1((5 + v +0), (1 + %)aj_l —u+ 0); j> 2.

Then by the proof of Proposition 4.6 the conditions (2.18), (3.1), (3.2) and (4.1)-(4.5) are fulfilled.
Notice in particular thatve < a1, and therefore that

(7.17) «o; = max ((/L + 1)_1(6 +Laj_1+20), (1+8)aj_1 —p+ 0); j > 2,

defines a decreasing sequence with the same timit< ;. as before.
Next we need to choosk;: By the definition (7.17) (forj > 2 and (4.44) forj = 1)

(7.18) a; — %Ozj_l > 1 — [

We defineJ as the largest natural number for whigh_; — 1 > 0. Then it follows from (7.18) that
(7.5) and (7.6) are fulfilled foj < J by the construction

)‘j = 1 —,u+0'; 7 <, o' >0 small.

Notice that the finite sequence it positive and decreasing. We need to supplement by a decreasing
sequence of positive’s with index larger thar/. For that we notice that < a; — 5,1, cf. (4.35).

So clearly (7.5) can be fulfilled for a decreasing sequence of posits&szemaller than\ ;. Since (7.6)

is trivial for j > .J for the (combined) constructed infinite sequence we finally conclude (7.5) and (7.6).

This completes an outline of the proof of Theorem 7.1.
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As for the proof of Theorem 7.2 we mimic Section 5: In addition to (5.5) we define

1
A =a—=-—30.
2

Then (7.5), (7.6) and (7.13) (and previous conditions) are fulfilledjfer 1. Moreover with

W(t) = exp ( / (324 via)+ I(sw(s)j))ds),

where L(t) is given by (5.7), one can define (cf. (5.9))

_|._ _ _ . *
Py =s tl;?oo W(t)" ®(t)U(t),
where®(t) is given by a similar construction as in (5.6) (including two factorgoft 2" L?)). Here

we use various propagation estimates and that the last two terms on the right hand side of (7.4) are
integrable, the latter due to the localization propertie®@f and the fact tha2(\; — ;) < —1. Next

we notice that(3p? + V/(|z])) P;t, = 0 yielding to the conclusion that indegd’;,, = 0.
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