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Abstract

Markov chain Monte Carlo methods are useful in connection with inference and
prediction for spatial generalized linear mixed models, where the unobserved random
effects constitute a spatially correlated Gaussian random field. We point out that
so-called Langevin-type updates are useful for Metropolis-Hastings simulation of the
posterior distribution of the random effects given the data. Furthermore, we discuss
the use of improper priors in Bayesian analysis of spatial generalized linear mixed
models with particular emphasis on the so-called Poisson-log normal model. For this
and certain other models non-parametric estimation of the covariance function of the
Gaussian field is also studied. The methods are applied to various data sets including
counts of weed plants on a field.

Keywords: Bayesian statistics; generalized linear mixed model; geostatistics; improper
prior; Langevin-Hastings update; Markov chain Monte Carlo; Metropolis-adjusted Langevin
algorithm; non-parametric covariance estimate; Poisson-log normal distribution; spatial
statistics.

1 Introduction

Conventional geostatistical methods such as kriging and trans-Gaussian kriging (Cressie,
1993; Stein, 1999) solve the problem of estimation and prediction for a random field pro-
vided it is Gaussian (possibly after transformation). This assumption clearly fails in many
practical applications. For example, if the data are binary or counts, normality cannot be
obtained by means of transformation. Then generalized linear mixed models (GLMMs)
with spatially correlated random effects become useful.
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This paper partly follows up and expands the work in Diggle et al. (1998) on model-
based geostatistics using spatial GLMMs and Markov chain Monte Carlo (MCMC) meth-
ods. In particular, we focus on the following four points:

(I) Diggle et al. (1998) considered Bayesian inference using ordinary single-site Metropolis-
Hastings algorithms. We advocate the use of Langevin-Hastings (or Metropolis-adjusted
Langevin) updates which are simultaneous updates based on gradient information. The
Langevin-Hastings algorithm was introduced in the statistical community by Besag (1994)
and earlier in the physics literature by Rossky et al. (1978). The Langevin-Hastings algo-
rithm is further studied in Roberts and Tweedie (1996), Roberts and Rosenthal (1998b),
Mgller et al. (1998), and Christensen et al. (2000).

(IT) It may sometimes be appealing to use flat improper priors for some model param-
eters in a Bayesian analysis of a spatial GLMM. We discuss to what extend flat priors can
be used while maintaining posterior propriety.

(III) Diggle et al. (1998) discuss the empirical variogram of the observed random field.
For the Poisson-log normal model (Aitchison and Ho, 1989) and other spatial GLMMs
with a logarithmic link function we present alternatively a non-parametric estimate of the
covariance function of the unobserved random effects.

(IV) We investigate the Bayesian approach to inference for spatial GLMMs by consid-
ering the analysis of weed count data with covariate information and the Rongelap data
studied in Diggle et al. (1998).

The paper is organized as follows. Section 2 surveys spatial GLMMs and discusses the
use of improper priors in Bayesian inference for spatial GLMMs. Section 3 considers hybrid
MCMC algorithms with Langevin-Hastings updates. The non-parametric estimate of the
random effects covariance function is presented in Section 4. Section 5 contains analyses
of count data sets and numerical examples. Finally, Section 6 contains some concluding
remarks.

2 Generalized linear mixed models with spatially cor-
related random effects

Sections 2.1 and 2.2 survey spatial GLMMs and various approaches to inference for spatial
GLMMs. The question of posterior propriety when flat improper priors are used in Bayesian
inference is discussed in Section 2.3.

2.1 Setup

Generalized linear mixed models (GLMMs) (Breslow and Clayton, 1993; Lee and Nelder,
1996) are extensions of generalized linear models (GLMs) (McCullagh and Nelder, 1989)



that allow additional sources of variability due to unobservable random effects. In this
article we consider spatial GLMMs where the random effects are modelled by a spatial
Gaussian field. Such models and the notation used throughout this paper are briefly
described below.

Let S = {S(z) : z € I} denote a Gaussian field of random effects with mean 0 and index
set I C R?. We assume that conditionally on S, the random variables Y = {Y'(z) : = € I},
are mutually independent, and the error distribution Y (z)|S has a density f(-; M (x)) which
only depends on the conditional mean M (x) = E[Y (x)|S(z)]. We restrict attention to the
case where the density f(-; ) is with respect to counting or Lebesgue measure, and it is of
an exponential family form

f(z; 1) = exp (29:(1) +b(z) — alge(p))), 2 € L, (1)

where {2 C R is the support of the density, p is the mean parameter, and a, b, g. are real
functions; g, is called the canonical link function.

The conditional mean M(z) is assumed to be related to S(z) by a link function g so
that

g(M(z)) = S(z) + d(z)" B, (2)

where d(z) € RP is a vector of covariates associated with the location z and § € RP
is a vector of regression parameters. The superscript T denotes transposition of vectors
and matrices. The link function is assumed to be continuous differentiable and strictly
increasing; these conditions are satisfied in the special case where ¢ = g.. By (2) we
cannot choose an arbitrary link function as the range of g(M(z)) must be the entire real
line. The mean parameter space is the open interval M = ¢g7!(R).

We focus on the Poisson-log normal model where

f(z; 1) = exp (zlog p —log(2!) — ), 2=0,1,..., (3)

is a Poisson density, M =|0;0c[, and g(u) = g.(1) = log i1 is the canonical log-link. In
Christensen et al. (2000) and in the Appendix we consider two other examples: the binomial
density with the canonical logit-link, g(u) = log(u/(N — 1)); and the exponential density,
with log-link g(u) = log i (g = g. is not valid for the exponential density since the range
of g.(u) = —1/p is strictly contained in R).

Suppose that we have observed ) at distinct locations x; € I, ¢ =1,...,n, so the data
y = (y1,---,Yyn) is a realization of Y = (V1,...,Y,), where YV; = Y(z;) fori = 1,...,n.
We set S; = S(z;), d} = d(z;)", M; = g7*(S; + df'B), and let D = (d;...d,)" denote
the design matrix of covariates at the locations where we have observations. Then the
conditional density of Y given & depends only on S through S = (S,...,S,), and it is
given by

fylS) = Hf(yi;Mz‘)- (4)



Finally, the Gaussian field S is assumed to be isotropic and stationary, i.e., the covari-
ance function

C(u) = E[S(x)S()]

depends only on the distance u = ||z — z'|| between locations z,z’ € I (most of the
ideas and results presented easily extend to the anisotropic case). The covariance function
is modelled using a positive semi-definite function as in traditional geostatistics, see e.g.
Cressie (1993). We consider parametric models

C(u) =o*p(u/a), u>0, (5)

where p is a known correlation function and the parameter (o, ) €]0;00[? is unknown; «
is a correlation scale parameter and o2 is the variance. For example, correlation functions
of the form

p(u) = exp(—u’), (6)

where 0 < ¢ < 2, includes the exponential correlation function (6 = 1) and the Gaussian
correlation function (§ = 2). Indeed many other correlation functions than (6) may be of
relevance in applications, cf. the discussion in Diggle et al. (1998).

An alternative would be to model & by a conditional autoregression (Besag, 1974,
Besag and Kooperberg, 1995). This requires the index set I to be countable and equipped
with a neighbourhood structure and further introduces problems with edge-effects; see the
discussion in Besag and Kooperberg (1995), Besag and Higdon (1999), and Mgller and
Waagepetersen (1999).

There are of course alternatives to the use of Gaussian random effects. For example,
smoothed gamma-random fields are used to model correlation in spatial point patterns and
spatial count data in Wolpert and Ickstadt (1998) and Best et al. (1998).

2.2 Inference for spatial GLMMs

Several possibilities are available for inference in GLMMs. The most frequently used meth-
ods are either pseudo-likelihood (also called penalized quasi-likelihood or h-likelihood) esti-
mation (Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993; Lee and Nelder, 1996)
or Bayesian inference (Zeger and Karim, 1991; Diggle et al., 1998). These and two other
methods are briefly discussed below.

Pseudo-likelihood has the advantage of being fast since it is not required to integrate
out the unobserved random effects. The random effects are instead treated as unknown
parameters, which together with the regression and covariance parameters are estimated
by maximizing the joint density of observations and random effects. Lee and Nelder (1996)
establish consistency and asymptotic normality, but their setup does not cover our situation
where there is only one observation for each random effect and the random effects are
correlated.



In the Bayesian framework it is easy to account for uncertainty of parameter estimates in
the calculation of variance of predictors for unobserved spatial variables. The drawback of
the Bayesian approach is that it may on one hand be difficult to elicit informative priors,
and the use of flat improper priors may on the other hand lead to improper posterior
distributions, see Section 2.3. We discuss Bayesian inference in more detail in Sections 2.3
and 5.

Maximum likelihood estimates for GLMMs may be obtained using Monte Carlo Newton-
Raphson, Monte Carlo EM (McCulloch, 1997; Booth and Hobert, 1999) or by Monte Carlo
estimation of the likelihood (Geyer and Thompson, 1992; McCulloch, 1997). However,
parametric models as in (5) typically lead to a complicated curved exponential family
model for S. This makes computations more complex than in the examples in the above-
mentioned references, since samples of S cannot be reduced to samples of low dimensional
sufficient statistics. It seems not known whether asymptotic normality of the maximum
likelihood estimate is valid in the context of spatial GLMMs.

Conditional simulation of S|Y = y is relevant in connection with Bayesian inference,
including prediction of a functional of the random effects, as well as with Monte Carlo
maximum likelihood estimation. MCMC algorithms for conditional simulation of S|Y =y
are discussed in Section 3.

In certain cases the covariance function of S can be expressed in terms of the first and
second order moments of the data Y whereby a non-parametric estimate of the covariance
function can be constructed. The non-parametric estimate may be useful for choosing an
appropriate parametric model as in (5), and the parameters o and o can be estimated by
a minimum contrast method; see Section 4.

2.3 Flat priors in Bayesian inference for spatial GLMMs

Flat priors should be used with caution in Bayesian analysis of GLMMs as demonstrated
in Natarajan and McCulloch (1995). They show that the use of an improper prior on
the variance for the random effects may lead to an improper posterior. The problem is
even more significant for spatial GLMMSs, since an improper prior on the correlation scale
parameter « in (5) will in general result in an improper posterior as exemplified below.

Suppose for the moment that 8 = 0, (5) holds with o = 1, and « has prior density 7.
Then posterior propriety is equivalent to

/0 B[ (4]S)]ma () der < oo,

The assumptions in Section 2.1 imply that f(y|-) is a continuous function, and in many ap-
plications, including the example (3), f(y|-) is bounded. Typically, S converges in distribu-
tion to a multivariate standard normal distribution as & — 0, and to a vector (U, U, ..., U)
as a — 0o, where U is univariate standard normal. These properties taken together im-
ply that lim, o Eo[f(y]S)] and lim, o Eo[f(y|S)] exist and are strictly positive. Thereby
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the tail-behaviour of the posterior for « is determined by the tails of the prior (a related
observation is made by Stein, 1998, concerning the prior for 1/« used in Diggle et al.,
1998). Thus posterior propriety in general requires propriety of m,. Note that the poste-
rior variance for o can be made arbitrarily large by choosing a sufficiently diffuse proper
prior.

Conditions for proper posteriors in Bayesian analysis of GLMMs with a known singular
correlation matrix for the random effects are given in Sun et al. (1999), while general condi-
tions for posterior propriety with an improper prior for 5 in a GLM are studied in Gelfand
and Sahu (1999). These results do not cover cases like the Bayesian analysis described
in Section 5.1, where we use the Poisson-log normal model with exponential correlation
function p(u) = exp(—u) and the following independent priors for the parameters:

To(@) oc 1/, log v € [ar; as); m(B) x 1, B € R®; m (o) x o texp(—n/o),o >0. (7)

That is, a log-uniform prior for « on a finite interval [a;; as], an improper uniform prior
for 5, and an improper inverse gamma prior for 0. Box and Tiao (1992) suggest to use a
flat prior for logo; in Section 5.1 the parameter n > 0 is chosen so that the prior of logo
is essentially flat on |0; co[. The posterior is proper according to the following proposition,
which is verified in the Appendix.

Proposition 1. Consider a realization y = (y1,...,Yyn) of the Poisson-log normal model
(3), and assume thatyy, . .., Yy, are positive and Ypm 1, - - -, Y, are zero. Let k. () denote the
correlation matriz of Sy = (Si1,...,Sn) and Dy = (d;...dy,)T the corresponding m x p

design matriz. Suppose that «, 5, o are a priori independent with densities T,, Ty, T,
where my(B) x 1 for all B € RP. Then the posterior is proper if

1. D, has rank p,

2. ky(«) is invertible for all a € supp 7,

8. (IDYTkHa)Dyllky(a))~Y2m, () is integrable on ]0; ool
4. [ 0P M me(0)do < oo

Other conditions may be relevant for other models in order to establish posterior pro-
priety; see the discussion in the Appendix. The condition 3 is trivially satisfied if supp 7,
is compact and the mapping a — k. («) is continuous, but the condition is in general not
easy to verify when supp 7, is unbounded.

To shed some light on condition 3, consider the case where 7, is proper and S, consists
of evenly spaced Gaussian random variables on the line with the exponential correlation
structure. Then k(o) converges to the identity matrix as o — 0, so it suffices to consider
the case @ — oo. The precision matrix x(a)~! has a simple tridiagonal structure and
we can verify that |k, (a)|~'/% is O(a!™1/2). Assuming e.g. D, = (1,...,1), then
DYk @)Dy |72 is O(a~Y?) and therefore | DTk ' () Dy | ™12 |k ()| 72 is O(a™/?71).
The condition 3 thus holds if the tail of 7, () decreases as a polynomial of order less than
—-m/2.



3 Posterior simulation using Langevin-Hastings up-
dates

In this section we discuss MCMC algorithms for posterior simulation in a spatial GLMM.

Recall that S = (S(z1),...,S(z,)) is the vector of random effects associated with the
n locations where we have observations. Suppose that S* = (S(%n11),...,S(Tntq)) are
g > 0 additional locations of interest for prediction.

Diggle et al. (1998) use a fixed scan hybrid algorithm (in the terminology of Roberts
and Rosenthal, 1997) where the covariance parameters, the regression parameters, and
each of the random effects Si,..., Sy, are updated in turn in each scan. The update of
a random effect S; is computationally demanding, since it involves the calculation of the
conditional variance given the n + ¢ — 1 other random effects.

We instead consider a fixed scan hybrid algorithm where the random effects are updated
simultaneously using either random walk Metropolis or Langevin-Hastings updates. These
two types of updates are discussed in Section 3.1 in the context of posterior simulation of
the random effects for fixed values of the model parameters. In Section 3.2 we describe the
hybrid MCMC algorithm used in the Bayesian analysis in Section 5.1. Finally, Section 3.3
deals with some computational issues. For background material on MCMC we refer the
reader to Besag et al. (1995).

3.1 Posterior simulation of random effects

In the following we discuss posterior simulation of the random effects (S,S*) for fixed
values of the model parameters.

Let ¥ denote the covariance matrix of (S, S*) and let X2 be a (n + ¢) x d ‘square
root’ of ¥ so that ¥ = L/2(X1/2)T — in Section 3.3 we present two different methods for
constructing ¥'/2, where in one case d = n + ¢ while d > n + ¢ in the other case. We
can assume that (S, S*)T = ¥/2T", where T follows a d-dimensional standard multivariate
Gaussian distribution. By (4), the log density of I' given Y =y is

log f(1ly) = const(y) — 571 + 3" log £ us; ) ®)
i=1
with
pi = pi(y) = g~ (s + d; B) (9)

where (s1,...,5,)" = Qv and @ denotes the upper n x d submatrix of X!/2.

Posterior simulations of (S, S*) can be obtained by transforming MCMC samples of
the conditional distribution of I' given Y = y. This is obviously advantageous when X
is not, positive definite. For the Langevin-Hastings algorithm considered in Mgller et al.



(1998) for the case of log Gaussian Cox processes, samples of (S, S*) given by transforming
conditional samples of I' given Y = y were less auto-correlated than when the algorithm
was applied directly to (S, S*). This may be explained by the fact that the algorithm
uses uncorrelated proposals whose correlation structure is in better accordance with the
marginal distribution of I' than that of (S, S*).

3.1.1 Gaussian random walk Metropolis

The Gaussian random walk Metropolis update is given by two steps. First a proposal ' is
generated from a multivariate normal distribution with mean vector 7 equal to the current
state and covariance matrix hl, where h > 0 is a user-specified parameter. Secondly we
return ' with probability

a(y,7) =1A

otherwise the state v is retained.

3.1.2 Langevin-Hastings algorithm

More efficient algorithms can be obtained by adapting the proposal kernel to the target
distribution of interest. Let

V) = 5o f0l) = =1+ Q" { - S} (10

denote the gradient of the log target density. In the Langevin-Hastings update the proposal
distribution is a multivariate normal distribution with mean vector () = v+ (h/2)V(7)
and covariance matrix hl, h > 0, and the acceptance probability is

F('ly) exp(—2 Iy = €0NIIP)
FOrly) exp(—=% Iy = EIP)

(11)

aly,y)=1A

Using the gradient to adapt the proposal kernel to the target density may lead to much
better convergence and mixing properties than for an ordinary random walk Metropolis
chain. By Roberts et al. (1997) and Roberts and Rosenthal (1998b), the number of itera-
tions required to obtain convergence is O(d~') for the random walk algorithm and O(d~/?)
for the Langevin-Hastings algorithm, so the benefit of using Langevin-Hastings increases
as the dimension increases.

3.1.3 Geometric ergodicity

Geometric ergodicity of MCMC-algorithms is a desirable property which ensures the va-
lidity of central limit theorems for the Monte Carlo estimates, and justifies assessment of
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the precision of a Monte Carlo estimate by estimation of the asymptotic variance in the
limiting normal distribution (see e.g. Roberts and Rosenthal, 1998a).

It is verified in Christensen et al. (2000) that the random walk Metropolis algorithm is
geometrically ergodic for the model (3) and several other GLMMs. The Langevin-Hastings
algorithm is not geometrically ergodic for the model (3) (Proposition 1 in Christensen
et al., 2000). The problem is that ||V(7)|| increases very fast when ||v|| — oo in some
directions. If one replaces V() in the Langevin-Hastings proposal kernel with a “trun-
cated” gradient V(7)™ then a geometrically ergodic algorithm is obtained for all spatial
GLMMs (Theorem 2 in Christensen et al., 2000). For model (3) the gradient is of a simple
form

V() = =7+ Q" {yi — i}y, (12)
and one may take
V()™ =y + QT {yi — i AHY,
where 0 < H < o0 is a truncation constant.

Christensen et al. (2000) consider a numerical study where the truncated Langevin-
Hastings algorithm performs much better than the random walk Metropolis algorithm,
when performance is measured in terms of asymptotic variances of Monte Carlo estimates
of the random effects. The practical importance of using truncation is also discussed in
Christensen et al. (2000).

3.2 Extension with updates of model parameters

For the Bayesian analysis in Section 5.1 we apply a Poisson-log normal model and priors as
in (7). The MCMC computations are carried out using a fixed scan hybrid algorithm where
v, B, o, and log a are updated in turn in each scan. As the advantage of using Langevin-
Hastings updates is most significant in high dimensions, we just use Gaussian random
walk updates when updating the one-dimensional parameters ¢ and log o while truncated
Langevin-Hastings updates are used for the eight-dimensional regression parameter 5 and
the high-dimensional vector . The truncated gradient for f is

0 n
5 log f(y|v; B,0,0) = DT {y; — s NHY. | .

We do not know whether the resulting Markov chain is geometrically ergodic. Geometric
ergodicity for hybrid algorithms is studied in Roberts and Rosenthal (1997), but their
results are not easily applicable in our situation.

3.3 Calculation of a square root of the covariance matrix

In general the calculation of ¥'/2 and the transformation of I' into (.S, S*) is time-consuming
when n + ¢ is large. The Cholesky factorization of ¥ requires O(d®) operations, where
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d = n + q. The complexity of this factorization may not be a problem if it is needed
only once, but in a fully Bayesian analysis (like in Section 5) ¥'/2 must be calculated for
each step of the Markov chain. The complexity of transforming I" into (S, S*) is in this
connection a minor problem, as it only requires O(d?) operations.

An alternative approach is based on the two-dimensional discrete fast Fourier transform
(FFT). Suppose that the locations (21, ..., Zntq) can be embedded in a rectangular M x N
grid. Then ¥, is a certain extension of 3, defined on a M,;; X Ng.; grid chosen sufficient
large so that Y., becomes positive semi-definite, where My > 2(M — 1) and Ney >
2(N — 1) are powers of 2 (or 3 or 4); see Dietrich and Newsam (1993) and Wood and
Chan (1994) for details. The FFT is first used to obtain a ‘square root’ Eiﬁ, where now
d = NeyyM,y;. Letting S** be the auxiliary variables associated with the extra locations
on the extended grid,

(S,5%, 5" = xl°r
is normally distributed with mean 0 and covariance matrix ¥.,; — this transformation is
also computed using the FFT. In particular the subvector (S,S*) is normally distributed
with mean 0 and covariance matrix 3 (so we can let $'/2 be the upper (n-+q) X d submatrix

of $1/2). The FFT requires O(dlog, d) operations.

ext

4 Non-parametric estimation of the covariance func-
tion

In this section we consider non-parametric estimation of the covariance function for the
Poisson-log normal model and other spatial GLMMs where the link function is g(ux) = log p.

4.1 Derivation of the non-parametric estimate

Similarly to ideas used in Aitchison and Ho (1989) and Mgller et al. (1998), we use below
certain mean value relations to obtain an estimator for the covariance function C.

For any distinct locations "), ..., (™) we have using g(u) = log u that
M M M M
EJ]Y(@®) =exp (M02/2 +) 0> (= - 29 + Zd(x(’))T,B> . (13)
i=1 i=1 j=i+1 i=1
Thereby
E[Y;Y]]
Clllss =) =108 gy g3 )+ % 25 (149)

Furthermore, it follows that in the special case where the error distribution is Poisson,

E[Y;(Y; — 1)] = exp(20° + 24} )
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and so by (13),
" o (FY- 1)
0” =log <—)2) . (15)

(EY;
Now, assume that d} 3 is known (or estimated) for all i = 1,... n; or at least that each
term
i =di = Bo

is known, where [ is a common parameter (intercept) for the mean in the error distribu-
tion. Note that if 62 denotes an estimator for the variance, we obtain by (13) an estimator

for B()a
6_2
= log g Yiexp(—) | — o

The first order moments E[Y; exp(—wi)], i = 1,...,n are all equal; similarly for the
second order moments E[Y; exp(—1;)Y;exp(—1;)]. This suggests to rewrite the ratio of
mean values in (14) as

EYYj] _  E[Yiexp(—v:)Y; exp(—¢;)]
EY,EY;  E[Yiexp(—¢:)]E[Y; exp(—¢;)]

Hence we may estimate C'(u) by
A W) Digews Yiexp(—1i)Y] exp(—v)
C(u) =log (Card(W"A) (I’J)EV:“A ; 2, us>o,
(E > Y eXP(_%))

(16)

where
W2 ={(i,5) 14,7 € {1,...,n}, ||z — 3|l € [u— A;u+ A}

Uu

and 0 < A < u. Similarly, for the Poisson case an estimate of the variance is obtained
from (15),

&2:10g<%z;;1ne><p< ) (¥ — 1) exp(~ wz-))_ an

(% > Y eXP(‘d’i))
The non-parametric estimate C is not necessarily positive semi-definite. A formal

approach for fitting a valid parametric covariance function to C would be minimum contrast
estimation described in Mgller et al. (1998).

The performance of C as an exploratory and diagnostic tool is studied on simulated
and real data in Section 4.2 and Section 5.3.

4.2 Simulation experiment
In order to study the performance of C we made simulations on a square 21 x 21 grid with

spacing 0.05 under the Poisson-log normal model with all ¥; = 0, using exponential and
Gaussian covariance functions with different values of («, £y, 0).
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Figure 1 illustrates our general conclusion that C' (u) is biased downwards with a rather
symmetric distribution. The variation of C (u) becomes large when u > 0.7, which is about
half the maximal distance on the square grid. In Figure 1, the exponential covariance
function and the values (o, 5y,0) = (0.1, —1,1) are used. This value of §, gives a large
proportion of simulated observations equal to zero. The estimates C (u) are calculated
for (A,u) = (0,0), (A,u) = (0,0.05) (corresponding to nearest horizontal/vertical grid
points), (A,u) = (0,v/2 x 0.05) (corresponding to nearest diagonal grid points), and for
A =0.025 and v = 0.10,0.15, ..., 1.
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Figure 1: Simulation study when using the exponential covariance function (solid line) and param-
eters (a, fo,0) = (0.1,—1,1). Left: four independent simulated estimates of C'(u) (dots). Right:
means, medians, and 2.5 % and 97.5 % quantiles for C'(u) estimated from 10000 simulations.

In the simulation experiment C performs rather well and would be useful for suggesting
a parametric model for the covariance and suitable values for the covariance parameters.
In Section 5.3 we consider models where the sampling distribution of C is more dispersed
and C consequently less useful.

5 Examples

Section 5 concerns Bayesian inference and computational aspects. In Section 5.1 we con-
sider a data set with counts of weed plants which was collected in a Danish project on
precision farming. At many locations the counts equal zero, so assuming a normal dis-
tribution would certainly be inappropriate here, even for transformed data. Section 5.2
briefly considers the radionuclide concentration data set studied in Diggle et al. (1998). In
Section 5.3 the non-parametric estimate of the covariance is used for model validation in
connection with the data sets in Sections 5.1 and 5.2.
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5.1 Bayesian analysis of weed count data

In a Danish project on precision farming counts of weed plants on a field are recorded in
1993, 1994 and 1995; the data are partly presented and analyzed in Walter et al. (1997).
One objective of the project was to investigate whether weed occurrence could be predicted
from observations of soil texture and soil chemical properties. Here we model the relation
between counts of the specie Viola arvensis in year 1994 and certain soil properties using
a Poisson-log normal model (3), an exponential correlation function as in (6) with § =
1, and a prior for (a, 3,0) given by (7) with [a1;as] = [-6.91;—0.29] and n = 107°.
Section 5.1.1 provides a short description of the data and Sections 5.1.2-5.1.3 are concerned
with computational issues. The posterior analysis and model assumptions are discussed in
Sections 5.1.4-5.1.6.

5.1.1 Description of data

The weed counts are displayed in Figure 2, using the actual values and gray scales. The
horizontal axis in Figure 2 corresponds to the ploughing direction, and the counts are
observed within 0.25 m? circular frames with spacing 20 m. Except for some missing sites
in the first row, the centers of the frames form a rectangular grid, which in the computations
was scaled to a rectangle of sidelength 1 x 0.7.

o
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ol 33111 0/2 27 46 4 *83 1 *00
3 |
N012510026.362101204O
2703 + 1 2B 0 * * 1002 0 3 00 000
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Figure 2: Counts of weed plants.

For most of the locations/centers we have additional information about eleven explana-
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tory variables: 1-2) the two coordinates of the location, 3) organic matter, 4) clay, 5) silt,
6) coarse sand, 7) medium coarse sand, 8) coarse silt, 9) reaction number (pH), 10) content
of phosphorus and 11) content of potassium. Observations at locations with missing ex-
planatory variables (indicated with * in Figure 2) are excluded in the analysis below. The
five contiguous locations with missing explanatory variables belong to a peatbog where the
amount of organic matter is extraordinarily high, and where the texture variables 4-8) have
not been measured. The six texture variables 3-8), whose sum equals 100, have been trans-
formed using the generalized logit-transform (Aitchison, 1986) so that the ith transformed
texture variable (i = 3,...,7) is given by the log ratio between the ith texture variable and
the last texture variable (coarse silt). All explanatory variables are further standardized by
first substracting the mean and secondly scaling to have the maximal absolute value equal

to one. Thereby only ten explanatory variables d;i,...,d;;o are obtained for a location
r;. We include an intercept 3y in the regression parameter 3 = (3o, 51, -..,0510)" so that
d;i = (1,d;1,...,ds0)7T is the covariate vector associated to ;.

5.1.2 Computations

For the posterior simulations we used 500,000 scans of the hybrid algorithm in Section 3.2
with Cholesky decomposition of the covariance matrix, see Section 3.3. The output was
studied by plotting time series and autocorrelations for different statistics. Some represen-
tative time series are shown in Figure 3. One may note that equilibrium is reached quickly
and that o has a heavy-tailed posterior distribution.

Theoretical results in Roberts et al. (1997), Roberts and Rosenthal (1998b), and Breyer
and Roberts (2000) suggest that one should tune the proposal variances to obtain accep-
tance rates around 0.23 for random walk updates and 0.57 for Langevin-Hastings updates.
The overall acceptance rates for the updates of v, 3, ¢ and loga were 0.57, 0.56, 0.23,
and 0.27, respectively. We observed that the acceptance probability for updates of v de-
creased when « increased. As discussed in Sections 3.1.3 and 3.2 it may be advantageous
to truncate the conditional means in the gradients for v and f3; we used H = 50 (see also
Christensen et al., 2000).

5.1.3 Comparison of algorithms

As an alternative to the hybrid Langevin-Hastings/random walk (LH/RW) algorithm ap-
plied in Section 5.1 we considered another hybrid algorithm (RW) where random walk
Metropolis updates are used for both =, 8, o, and log @ (with acceptance rates 0.23, 0.22,
0.23, and 0.29 respectively). Figure 4 shows estimated autocorrelations for various param-
eters and the two algorithms. The autocorrelations decrease much faster when Langevin
updates are used for v and S instead of random walk updates.

The computing times on a 400 Mhz workstation for generating 1000 scans are 146
CPU seconds for the LH/RW-hybrid algorithm and 141 for the RW-hybrid algorithm. If
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Figure 3: From top to bottom: time series (each 100th scan) for £y, S; with z; = (200, 140), o,
and log .

one applies the FFT factorization, then an extended grid of size 128 x 128 is required in
order to obtain a positive definite extended covariance matrix for all values of loga in
[—6.91, —0.29]. When using the FFT implementation, the computing time for 1000 scans
from the LH/RW-hybrid algorithm is 161 CPU seconds.

5.1.4 Posterior distributions

Posterior histograms for the intercept and the covariance parameters are shown in Figure 5.
The rightmost plot shows the posterior distribution for log a obtained with the type of prior
used in Diggle et al. (1998), i.e. when 7(a) oc 1/a?, loga € [—6.91; —0.29]. Note that the
posterior distribution of log « is heavily influenced by both the shape of the prior and the
chosen lower limit for the support of the prior. The other parameters and the random effects
have nearly symmetrical posteriors with well-defined modes and supports of moderate size
(plots omitted). Posterior means of fy, ..., B9, 0, and log « are given in Table 1 together
with the posterior probabilities for being less than zero. The weed counts seem to depend
significantly on the second spatial coordinate () and on the organic matter explanatory
variable (/).
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Figure 4: Estimated autocorrelations for various parameters using each 10th scan and either
the LH/RW-hybrid algorithm (left) or the RW-hybrid algorithm (right). From top to bottom:
parameters Sy, B3, o, and log a.

£ Il“ll I|‘|| 8 |“| m ‘||I I
- . | | ] m Il-_ - IIIIIII II, - IIII Il_
R = =

=T

05
1

05

1

{1}

015
[10] 05
015

0
0

0%
0

0

o6 08 10 1.2 1.4 16 18 z.o0

Figure 5: Left to right: marginal posterior distributions for the intercept fy, o, log a (with prior
given in (7)), and log a (with prior as in Diggle et al., 1998).

5.1.5 Comparison with GLIMMIX

As discussed in Section 2.2, an alternative to the Bayesian analysis is to use pseudo-
likelihood estimation which is implemented in the SAS macro GLIMMIX. Table 1 shows
that the posterior means from the Bayesian analysis and the GLIMMIX estimates are
rather similar, and 0 is an extreme value in the posterior distributions for exactly those
parameters which are significant at level 5 % according to the Wald-tests from GLIMMIX.
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Parameter Bo B1 B2 B3 B4 Bs PBe  Pr Bs Bo  Bio o loga
Post. mean -1.09 -0.20 2.00 1.70 -0.29 -0.49 0.37 0.19 -0.39 -0.68 0.04 0.99 -3.76

Post. prob. 1.00 0.76 0.00 0.01 0.75 0.81 0.27 0.34 0.83 0.74 048
GLIMMIX | —0.756* -0.18 1.83* 1.50* -0.27 -0.38 0.35 0.15 -0.37 -0.53 0.06 0.87 -3.21

Table 1: Monte Carlo posterior means and GLIMMIX estimates. The middle row contains the
posterior probabilities that the different parameters are less than 0. A * in the third row indicates
that the corresponding variable is significant according to the Wald test computed by GLIMMIX
(no test is made for o and log ).

The posterior mean of the random effects and the GLIMMIX estimate of the random effects
are also quite similar, see the left plot in Figure 6. Pseudo-likelihood is computationally
much less demanding than the Bayesian/MCMC approach, but is in general considered as
less reliable (see the discussion in Lee and Nelder, 1996).

5.1.6 Model validation

If we predict a new observation of ¥; by the fitted value \; = E(exp(d]' 8 + S)|Y = y),

we obtain a residual r; = (y; — 5\1) / \/5\7 The residuals versus fitted values are given in
the middle plot in Figure 6. The residuals are positively biased when the values of \; are
large. A histogram of the posterior means of the random effects is given in the right plot
in Figure 6. At present we are not sure what to conclude from the middle and right plot in
Figure 6, since we have no knowledge concerning the distribution of the residuals and the
posterior means under the assumed Poisson-log normal model. Simulation studies seem to
be required to obtain such knowledge.

Another approach, which is more in the spirit of Bayesian inference, is to consider
posterior predictive distributions (Rubin, 1984; Gelman et al., 1996). If we condition on
B and S; and let \; = exp(dfS + S;), then the magnitude of a standardized residual
(y; — \i)/+v/A; may be assessed by considering the p-value

Pi(B,8:) = P ((Yi = X)*/Xi > (yi — X)*/ Nl B, Si) - (18)

The idea is then to average over the posterior distribution of the unknown S and g given
Y =y, whereby posterior predictive p-values p; = E(P;(5,5;)|Y = y) are obtained (Gel-
man et al., 1996). The p;’s can easily be calculated along with the other posterior charac-
teristics. For the weed count data the minimum value of p; is 0.10.

5.2 Radionuclide concentrations on Rongelap Island

The radionuclide concentration data set studied in Diggle et al. (1998) consists of mea-
surements of y-ray counts at n = 157 locations. Diggle et al. (1998) assume a Poisson-log
normal model (3) with d(z;)"3 = By +log 7;, where 7; is the length of the recording period
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Figure 6: Left: posterior mean of random effects vs. GLIMMIX estimates. Middle: residuals vs.
fitted values. Right: histogram for posterior means of random effects.

at location z;. Furthermore, the correlation function is assumed to be of the form (6),
where uniform priors on bounded intervals are imposed on the parameters o2, 1/, d, and
Bo (note that ¢ was fixed in the previous sections).

We extend the LH/RW-hybrid algorithm with random walk updates of 6 and generate
MCMC samples from the posterior model considered in Diggle et al. (1998). The algorithm
does not mix so well as the algorithm in Section 5.1.2 due to high posterior correlation
between the model parameters. Estimated posterior means for 3y, 02, 6702/«, and § based
on 5 million scans are 1.84, 0.31, 61.90, 0.84, respectively. These estimates differ from the
values 1.7, 0.65, 22.8, 0.7 obtained by Diggle et al. (1998) who only employed 50,000 scans
of a Metropolis-Hastings chain with single-site updating of the random effects. In order to
study this difference one would need to take into account the Monte Carlo error. A formal
justification for calculating asymptotic variances is however missing as we do not know if
the two algorithms are geometrically ergodic.

5.3 Model validation based on the nonparametric estimator for
the covariance function

In this section we supplement the simulation study in Section 4.2 with a discussion on
the performance of the non-parametric estimator for the covariance function (Section 4.1)
when applied to the weed count data and the radionuclide concentration data.

We consider first the model in Section 5.2. In order to check the chosen covariance
structure for S it would be desirable to compare the observed C' with the sampling distri-
bution D(C'|By, 0, cr,0) of C given the model parameters. Note that this is partly different
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from the situation considered in (18) where we condition on S also. Figure 7 shows the ob-
served C' together with Monte Carlo estimates of the mean and the 5% and 95% quantiles
for the sampling distribution of C‘, when the unknown model parameters are replaced by
the posterior means. The value C (0) is below the 5% quantile and it is actually less than
the minimal simulated value of C(0) for the 10,000 independent simulated realizations used
for the Monte Carlo estimates of the mean and quantiles in Figure 7. This shows a lack of
fit of the used model; several possibilities for modification of the model are mentioned in
the discussion part of Diggle et al. (1998).
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covariance

0.0
1000 1500 2000 2500 3000

-0.2
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0
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Figure 7: Left: C based on the radionuclide concentration data (dots), estimated mean (dotted
line), 5% quantiles, and 95% quantiles for the sampling distribution of C' (dotted and dashed

lines), and the parametric covariance function with parameters equal to the posterior means
(solid line). Right: The simulated distribution of C'(0) and the estimated value of C'(0) (dot).

We have also simulated the sampling distribution of C with (Bo, 0,log a, §) estimated by
the posterior mean found in Diggle et al. (1998). Similar to Section 5.1.6 another approach
is to consider the posterior predictive distribution of C , but now obtained by averaging
D(C’\BO, o, a,0) over the posterior distribution of the model parameters given Y = y. The
results obtained with the posterior means in Diggle et al. (1998) and with the posterior
predictive distribution are qualitatively similar to Figure 7.

By comparing the curves in Figure 7 for the estimated parametric covariance function
and the mean of C'(u), we see that C'(u) is biased downwards. This is in accordance with
the experience in Section 4.2.

We also applied the non-parametric estimate in a similar way for checking the appro-
priateness of a stationary model 5; = ... = 7 = 0 for the weed count data in Section 5.1.
From this analysis we were not able to reject the fitted stationary model with remaining
parameters given by estimated posterior means. This is possibly due to strong correlation
in the fitted model which lead to a very dispersed sampling distribution of C.
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6 Discussion

6.1 Inference

The discussion in Section 2.3 concerning the posterior for the correlation parameter o and
the results in Section 5.1.4 raise some questions concerning the use of Bayesian inference for
a. The posterior of « is heavily sensitive to the choice of prior and the posterior variance
can in fact be arbitrary large by choosing the prior diffuse enough. In the absence of prior
knowledge for o we can therefore not rely on using a very diffuse prior. It would be inter-
esting to compare the Bayesian inference with results obtained using maximum likelihood
estimation. We believe that the Langevin-Hastings algorithm discussed in Section 3.1.2
would be useful as the simulation component of a procedure for obtaining Monte Carlo
maximum likelihood estimates.

In the example in Section 5.1 we have not considered prediction of unobserved weed
counts. This is straightforward using our MCMC algorithm if the explanatory variables
are available at the locations where predictions are required. If this is not the case, one
could in principle include Gaussian random field models for the continuous explanatory
variables and extend the MCMC algorithm with conditional simulations of the unobserved
explanatory variables.

Further studies on simulated and real data seem required to assess the usefulness of
the residuals r; and the non-parametric estimate C' for model validation. Crossvalidation
is another but computationally intensive possibility for model checking.

6.2 Algorithms and computations

We have demonstrated the advantages of using Langevin updates over random walk up-
dates. The proposal kernel in Section 3.1.2 is based on the Euler-discretization of the
Langevin diffusion for f(- | y), see Roberts and Tweedie (1996). An alternative is to con-
struct proposal kernels based on more refined discretizations of the Langevin diffusion as
suggested in Stramer and Tweedie (1999) and further studied in the multidimensional case
in Roberts and Stramer (2000).

As in Section 3.1.2, let V(vy) denote the gradient of the log posterior density. Further, let
J(7) be the second derivative of the log posterior density. The so-called local linearization
scheme (Ozaki, 1992; Shoji and Ozaki, 1998; Stramer and Tweedie, 1999) applied to the
Langevin diffusion gives rise to a proposal kernel of the form N(u.,, K,) where

py =7+ J(7) Hexp(hJ(7)/2) = 1)V (7)

and
K, = J(y) " (exp(hJ(y)) = I).
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The examples studied in Stramer and Tweedie (1999) and Roberts and Stramer (2000)
show that much faster convergence to the equilibrium distribution may be obtained when
using an algorithm based on local linearization instead of the simple Euler-discretization.
However, in the context of this paper, the evaluation of J(y)~! and the matrix exponential
exp(hJ(y)/2) is computationally very demanding.

Considering the hybrid algorithm in Section 3.2 we believe that further development is
needed. The Langevin-Hastings algorithm works very well for fixed model parameters but
the use of Langevin-Hastings updates in the hybrid algorithm does not necessarily solve
mixing problems due to high posterior correlation between model parameters. It is also
important to investigate the geometric ergodicity properties of the hybrid algorithm (or an
improved version of it).
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Appendix: proof of posterior propriety

We start by verifying Proposition 1.
Set
1,0.0) = [ Bos £(01S)) a5
RP

and

I(y) = /0 h /0 " Iy, 0, 0)ma(0) () dado:

Since m,(3) is constant, the posterior is proper if I(y) < oo.

Let py(+; 0, 8,0) denote the density of the multivariate normal distribution with mean
D, f and covariance matrix 0%, (). Recalling (2) and (4) and considering the model (3),
we obtain that

T,00) < [ [ TLHw07 (5000510, 8.0)dBds,.
P i=1

Letting B(sy) = (DTk3'(a)D;) ' DTk7'(a)s, be the maximum likelihood estimate of 3
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based on s, when («, o) is fixed, it is well-known that

pi(s4;0,6,0) =py(s;a, B(S+),U) €xp <—%(5 - B(3+))TD$"€11( VD (B — B(&L))) .

Since (27r)"™2|0%k, ()| 7'/? is an upper bound on the density p,, we obtain that

DTK,_I Q 1/20.;0 m
I(y,Od,O') S ‘( i ( ) ‘ / Hf Yi; 9 S—H )d8+,

[y (@)[/2(2m)m-)/2

where the latter integral is finite. Thereby I(y) < oo, so the posterior is proper as asserted.
O

Next we investigate to what extend the conditions in Proposition 1 are needed.

(I) The proof of Proposition 1 relies on f(y;; g~ *(s4:)) being integrable as a function of
s; for i = 1,...,m. Therefore Proposition 1 also holds with m = n when the conditional
density is exponential and the log-link is used. For the binomial distribution with N > 1
and the logit-link, Proposition 1 holds with y1, ...,y & {0, N} and ypmi1, .-, yn € {0, N}.
The case N =1 is not covered by the results of Proposition 1.

IT) We can verify that oP~™Mr.(0)do < oo is necessary, but not that ! oP™"r.(0)do <
1 0
o0 is necessary.

(III) We have also considered situations where the prior for § is proper and estab-
lished posterior propriety under various conditions; we omit these details as the relevant
conditions can be rather problem specific.
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