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Abstract

We study embedded eigenvalues of automorphic Laplacians A(Γ̄0(N), χ), for
Hecke groups with primitive character χ and develop the corresponding Hecke
theory for cusp forms. We prove that A(Γ̄0(N), χ) with the Hecke operators T (p),
p - N , determine common eigenfunctions uniquely (multiplicity one theorem). The
Hecke operators U(q), q |N , are proved to be unitary with eigenvalues ±1, and
the continuous spectrum equals the unit circle. From this follows the analogue of
Selberg’s small eigenvalue conjecture for the exceptional Hecke operators. Utilizing
this theory we prove that for a large class of regular character perturbations defined
by holomorphic Eisenstein series of weight 2, at least one eigenfunction from each
odd eigenspace becomes a resonance function except for possible eigenvalues of the
form

λn =
1
4

+ r2
n, rn = n

π

log q
, n ∈ Z, q is a prime, q |N.

This indicates that the Phillips-Sarnak conjecture about violation of the Weyl law
holds true, provided the dimensions of eigenspaces remain bounded.

∗Centre for Mathematical Physics and Stochastics, funded by a grant from the Danish National Re-
search Foundation
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Introduction

It was proved by [Se1] that the Laplacian A(Γ) for congruence subgroups Γ of the modular

group ΓZ has an infinite sequence of embedded eigenvalues {λi} satisfying a Weyl law

# {λi ≤ λ} ∼ |F |
4π
λ for λ→∞. Here |F | is the area of the fundamental domain F of the

group Γ, and the eigenvalues λi are counted according to multiplicity. The same holds

true for the Laplacian A(Γ;χ), where χ is a character on Γ and A(Γ;χ) is associated with

a congruence subgroup Γ1 of Γ. It is an important question whether this is a characteristic

of congruence groups or it may hold also for some non-congruence subgroups of ΓZ. To

investigate this problem Phillips and Sarnak studied perturbation theory for Laplacians

A(Γ) with regular perturbations derived from modular forms of weight 4 [P-Sa1] and

singular perturbations by characters derived from modular forms of weight 2 [P-Sa2].

Their work on singular perturbations was inspired by work of Wolpert [W1], [W2]. See

also [DIPS] for a short version of these ideas and related conjectures. Central to their

approach was the application of perturbation theory and in that connection the evaluation

of the integral of the product of the Eisenstein series Ek(sj) at an eigenvalue λj = sj(1−sj)

with the first order perturbation M applied to the eigenfunction vj . If this integral Ik(sj),

which we call the Phillips-Sarnak integral, is non-zero for at least one of the Eisenstein

series Ek(sj), then the eigenvalue λj disappears under the perturbation aM+α2N for small

α 6= 0 and becomes a resonance. This follows from the fact that Im λ′′j (0) is proportional to

the sum over k of |Ik(sj)|2, a fact known as Fermi’s Golden Rule. The strategy of Phillips

and Sarnak is on the one hand to prove this rule for Laplacians A(Γ) and on the other
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hand to prove that Ik(sj) 6= 0 for some k under certain conditions. For congruence groups

with singular character perturbation closing two or more cusps a fundamental difficulty

presents itself due to the appearance of new resonances of A(Γ, α) for α 6= 0, which

condense at every point of the continuous spectrum of A as α → 0. These resonances

(poles of the S-matrix) were discovered by Selberg [Se2] for the group Γ(2) with singular

character perturbation closing 2 cusps, so we call them the Selberg resonances. Any

method of proving that eigenvalues become resonances or remain eigenvalues has to deal

with these resonances, which arise from the continuous spectrum of the cusps, which are

closed by the perturbation. This makes the problem very difficult in that case. This is

also illustrated by the example of Γ0(p) with trivial character, where p is a prime. Here

the Riemann surface has two cusps, which are both closed by a singular perturbation

defined by a holomorphic Eisenstein series of weight 2. The Phillips-Sarnak integral is

non-zero for all new odd cusp forms, but the spectra of the perturbed operators are purely

discrete, condensing in the limit on the original continuous spectrum. Se also Remark 8.9

for another example. In the case of regular perturbations derived from cusp forms it is not

too difficult to prove Fermi’s Golden Rule, but it is very hard to prove that the integral

is not zero.

We consider instead as our basic operator A(Γ, χ), where Γ = Γ̄0(N) is the Hecke group

of level N and χ is the one-dimensional unitary representation of Γ̄0(N) defined by a real,

even, primitive Dirichlet character mod N . These characters are fundamental in number

theory, since they are related to real quadratic fields. We study basic spectral properties

of the operators A(Γ̄0(N), χ) and related Hecke theory. We prove that the multiplicity
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one conjecture holds for A(Γ̄0(N), χ) and the set of non-exceptional Hecke operators T (p),

p - N . The exceptional Hecke operators U(q), q |N , are shown to be unitary and have only

the eigenvalues ±1. This implies that the analogue of Selberg’s small eigenvalue conjecture

is valid for the exceptional Hecke operators U(q) with primitive character. Moreover, we

prove that the Hecke L-functions are regular and non-zero on the boundary of the critical

strip.

Based on this theory we develop the perturbation theory for embedded eigenvalues of

the operators A(Γ̄0(N), χ). We prove that for a class of regular perturbations defined by

holomorphic Eisenstein series of weight 2 the Phillips-Sarnak integral Ij(sj) 6= 0 for all

odd Hecke eigenfunctions of A(Γ̄0(N), χ) with eigenvalues λj = sj(1 − sj) except if sj

takes one of the values s(n, q) = 1
2

+ in π
log q

, q a prime, q |N.

Consequently, at least one eigenfunction from each odd eigenspace of A(Γ0(N), χ)

with sj 6= s(n, q) for all n and q |N becomes a resonance function under this perturbation,

the corresponding eigenvalue giving rise to a resonance. We notice that in the case of

A(Γ̄0(N)) with trivial character the embedded eigenvalues are discrete in the space of

new forms, whereas in the case of A(Γ̄0(N)) with primitive character they are genuinely

embedded, since both cusp forms and Eisenstein series are new.

We now describe in more detail the contents of the paper. It consists of the following

sections:

1. The group Γ̄0(N) with real, primitive character χ
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2. The Eisenstein series

3. The discrete spectrum of the automorphic Laplacian A(Γ̄0(N), χ)

4. Hecke theory for Maass cusp forms

5. Non-vanishing of Hecke L-functions

6. The form ω(z)

7. The Phillips-Sarnak integral

8. Perturbation of embedded eigenvalues

In Section 1 we introduce the Hecke groups Γ̄0(N) to be considered and define their

primitive character mod N . We consider precisely those sequences of values of the level

N for which such a character exists: 1) N = N1 ≡ 1 mod 4, 2) N = 4N2, N2 ≡ 3 mod

4, 3) N = 4N3, N3 ≡ 2 mod 4, where N1, N2, N3 are square-free integers. The Riemann

surfaces associated with the groups Γ̄0(N) have d(N) cusps, where d(N) is the number of

divisors in N.

The primitive character χ keeps all cusps open in case 1 and closes one third of the

cusps in case 2 and one half of the cusps in case 3 (Theorem 1.1). Closing of a cusp means

that the continuous spectrum associated with that cusp disappears.

In Section 2 we discuss the Eisenstein series, and in Section 3 we prove the Weyl law for

eigenvalues of A(Γ̄0(N), χ) (Theorem 3.6), using the factorization formula for the Selberg

zeta function [V1] and Huxley’s explicit formula for the scattering matrix of Γ̄1(N) [Hu].
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In Section 4 we develop the Hecke theory for Maass wave cusp forms of A(Γ̄0(N), χ).

We prove that there is a unique common eigenfunction of A(Γ̄0(N), χ) and the Hecke

operators T (p), p - N , with given eigenvalues and first Fourier coefficient 1 (the multiplicity

one theorem) (Theorem 4.2). The exceptional Hecke operator U(q), q |N , are unitary

(Theorem 4.1) and have only the eigenvalues ±1 (Theorem 4.3). This is in contrast with

the case of A(Γ̄0(N)) with trivial character, where the operators U(q) are not normal in

the whole Hilbert space and normal but not unitary in the space of new forms.

In Section 5 we study the Dirichlet L-series L(s; vj) and L(s, v̂j) associated with the

eigenfunctions vj of A(Γ̄0(N), χ) and their conjugates v̂j. They have an Euler product

representation (Theorem 5.1) and analytic continuation to all of C , connected by a func-

tional equation (Theorem 5.2). Based on this together with a general criterion proved in

[M-M] (Lemma 5.3) we prove that L(s; vj) and L(s; v̂j) are regular and non-zero on the

boundary of the critical strip (Theorem 5.4).

In Section 6 we introduce perturbation of A(Γ̄0(N), χ) by characters χ(α). This is

equivalent to perturbation by a family of operators αM+α2N , whereM = −4πiy2
(
ω1

∂
∂x
− ω2

∂
∂y

)
,

N = 4π2 |ω|2 and ω = ω(z) = ω1 + ω2 is a modular form of weight 2 derived from the

classical holomorphic Eisenstein series E2(z). The basic result here is in each of the cases

2) and 3) the existence of such a form ω(z), which keeps the same cusps open and closed,

which are already open and closed by the primitive character χ (Theorem 6.1). In Theo-

rem 6.2 an explicit (k−1)-parameter family of such forms ω is constructed, where k is the

number of prime factors in N2 or N3. This makes the perturbation defined by ω regular
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relative to A(Γ̄0(N)) and thereby accessible to analysis of embedded eigenvalues. In case

1) this is not possible, and the remaining part of the paper deals with the cases 2) and 3).

In Section 7 we prove for this class of perturbations, using the non-vanishing of

the Dirichlet L-series for eigenfunctions, that for some k the Phillips-Sarnak integral

Ik
(

1
2

+ irj
)

is different from zero for all odd eigenfunction except for rj = n π
log q

, q = 2 or

q an odd prime, q |N , n ∈ Z (Theorem 7.1).

Section 8 contains the general perturbation theory (Theorem 8.4), which allows to

conclude from the non-vanishing of the Phillips-Sarnak integral that at least one eigen-

function from each odd eigenspace turns into a resonance function (Theorem 8.5). Using

this result, the proportion of odd eigenfunctions which leave as resonance functions can be

estimated depending on the growth of the dimensions m(sj) of the eigenspaces (Theorem

8.6). The estimate m(λj) <<
λj

log λj
, which can be obtained using Selberg’s trace formula,

gives at least the proportion c
√
λj logλj , while boundedness m(λj) ≤ m, which has been

conjectured, implies that a positive proportion leaves (Corollary 8.7).

The operator M , which is derived from the real part of the form ω, maps odd functions

into even functions and even into odd. Therefore, the Phillips-Sarnak integral is always

zero for even eigenfunctions, and it remains an open question whether some of these leave

under this perturbation.

There is another perturbation αM̃ + α2N , where M̃ is derived from Imω and M̃ pre-

serves parity. This perturbation, however, is completely different. It is singular, but in
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some sense very simple. Although the Phillips-Sarnak integral is non-zero for all even

Hecke eigenfunctions, it does not follow that corresponding eigenvalues give rise to res-

onances. Quite the contrary happens. All eigenvalues and resonances remain constant,

because the Laplacians L(α) are conjugate to L via multiplication by an automorphic

phase function (Remark 8.8).

The proof that the Phillips-Sarnak integral is not zero utilizes strong arithmetical

properties based on Hecke theory and is specific for the operators A(Γ0(N), χ). Gen-

eral perturbation theory makes it possible, however, to draw some conclusions about

the eigenvalues more globally (Remark 8.9). Thus, eigenvalues of A(Γ0(N), χ) with odd

eigenfunctions which leave the spectrum for α 6= 0 can then only become eigenvalues for

isolated values of α ∈
(
−1

2
, 1

2

)
.

This preprint is a revised version of previous preprints entitled “The Phillips-Sarnak

conjecture for Hecke groups with primitive character” and “The Phillips-Sarnak conjecture

for Γ0(8) with primitive character”. Section 4 gives a considerably expanded account of

the Hecke theory, which was incomplete in the previous versions. In Section 8 we give the

correct version of Theorems 8.5 and 8.4 from the previous preprints.

1 The group Γ̄0(N) with primitive character

We consider the Hecke congruence group Γ̄0(N) together with its one-dimensional unitary

representation χ̂, also called a character of the group. We are interested here only in

arithmetically important characters, coming from real primitive Dirichlet characters χ
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mod N . We have, following Hecke,

χ(γ) = χN(n), γ =

(
a b
Nc n

)
∈ Γ̄0(N). an− bcN = 1.

It is well-known (see [D]) that the real primitive characters mod N = |d| are identical

with the symbols

(
d

n

)

where d is a product of relatively prime factors of the form

−4, 8,−8, (−1)(p−1)/2p, p > 2. (1.1)

We have

(
d1d2

n

)
=

(
d1

n

)(
d2

n

)

provided (d1, d2) = 1.

By definition

(
−4

n

)
= χ4(n) =

 1, n ≡ 1 mod 4
−1, n ≡ 3 mod 4
0, otherwise

(
8

n

)
= χ8(n) =

 1, n ≡ ±1 mod 8
−1, n ≡ ±3 mod 8
0, otherwise

(
−8

n

)
= χ4(n)χ8(n).
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We have also, by the law of quadratic reciprocity for the Legendre symbol

(
n

p

)
=

(
p′

n

)
where p′ = (−1)(p−1)/2p (1.2)

provided n is an odd square-free integer. By Kronecker’s extension of Legendre’s symbol

we have

(
p′

2

)
=

(
2

p

)

or, more generally,

(
p′

2km

)
=

(
2km

p

)
k ∈ Z, k ≥ 1.

Thus, relation (1.2) holds whether n is odd or even. It holds also in the more general

form

(n
l

)
=

(
l
′

n

)

where

l
′
= (−1)(l−1)/2l

and l = p1p2, ..., that is if l is any square-free odd positive integer, and l
′

= p′1p
′
2... (see

(1.2)).

Finally, we recall that

(
n

p

)
=

{
+1 if nRp
−1 if nNp

for p an odd prime and (p, n) = 1. We also define

(
n

p

)
= 0 p |n .
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Here by definition, nRp just means that there exists an integer x, such that x2 ≡ n mod

p, in the case of nNp such integer does not exist.

For odd n we also have

(
2

n

)
=

(
8

n

)
,

(
−2

n

)
=

(
−8

n

)
.

This explicit definition of the symbol
(
d
n

)
is important in order to calculate the values

of the character χ on the parabolic generators of the Hecke group.

The numbers

(−1)(p−1)/2p, p > 2,

are all congruent to 1 mod 4, and the products of relatively prime factors, i.e. distinct

factors, each of this form, comprise all square-free integers, positive and negative, that

are congruent to 1 mod 4. In addition, we get all such numbers, multiplied by -4, that

is, all numbers 4N , where N is square free and congruent to 3 mod 4. Finally, we get all

such numbers, multiplied by ±8, which is equivalent to saying all numbers 4N where N

is congruent to 2 mod 4 (see [D]).

By this we have obtained all real primitive Dirichlet characters. But we need only

even characters here, since we consider the projective Hecke group Γ̄0(N) ⊂ PSL(2,R),

that means we identify two matrices

(
a b
Nc d

)
∼
(
−a −b
−Nc −d

)

and χ(d) = χ(−d). According to this classification of primitive even real characters, we
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will consider three different choices of N in Γ̄0(N).

1) Γ̄0(N1), N1 = Πp>2(−1)(p−1)/2p, N1 > 0.

That means N1 is any positive square-free integer and N1 ≡ 1 mod 4.

2) We take M
′
2 = Πp>2(−1)(p−1)/2p, M

′
2 < 0, and we consider Γ̄0(4N2), where N2 =

−M ′
2. That means, N2 is any square-free positive integer N2 ≡ 3 mod 4.

3) We take M
′
3 = Πp>2(−1)(p−1)/2p, and we define N3 = 2

∣∣M ′
3

∣∣.
We have, N3 is any square-free positive integer, and N3 ≡ 2 mod 4.

Then we consider Γ̄0(4N3).

We now recall the basic properties of the group Γ̄0(N), having in mind our choices 1),

2), 3) for N . It is well-known [Sh] that for any N

[
Γ̄0(1) : Γ̄0(N)

]
= N

∏
p|N

(1 + 1/p) = m

n2 =

{
0 4 |N∏

p|N

(
1 +

(
−1
p

))
otherwise,

(
−1

p

)
=

 0, p = 2
1, p ≡ 1 mod 4
−1, p ≡ 3 mod 4

n3 =

{
0 9 |N∏

p|N
(
1 +

(−3
P

))
otherwise,

(
−3

p

)
=

 0, p = 3
1, p ≡ 1 mod 3
−1, p ≡ 2 mod 3

h =
∑
d|N
d>0

ϕ((d,N/d))
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g = 1 +
m

12
− n2

4
− n3

3
− h

2
.

Here m is the index of Γ̄0(N) in the modular group, n2 is the number of Γ̄0(N) inequivalent

elliptic points of order 2 (n3, of order 3), h is the number of Γ̄0(N) inequivalent cusps, g is

the genus, ϕ(n) is the Euler function, ϕ(1) = 1, ϕ(n) = n(1−1/p1)(1−1/p2)...(1−1/pk),

n = pl11 p
l2
2 ...p

lk
k .

For our purposes it is important to see the parabolic generators of our groups and

corresponding cusps of the canonical fundamental domains.

Case 1). For Γ̄0(N1) we have N1 = p1p2...pk, a product of odd different primes. Then

h1 =
∑
d|N1

d>0

ϕ((d,N1/d)) = d(N1), the number of positive divisors of the positive integer N1.

Let σd ∈ Γ0(1), d |N , d > 0

σd =

(
1 0
d 1

)
. (1.3)

We can take a complete set of inequivalent cusps for Γ̄0(N1) the set of points zd = 1/d ∈ R,

d |N1 , d > 0. We define then Γ̄d =
{
γ ∈ Γ̄0(N1) |γzd = zd

}
. Let Sd be the generator of

Γ̄d. We can find Sd from the condition S
′
d ∈ Γ̄0(N1)

S
′
d =

(
1 0
d 1

)(
1 m

′
d

0 1

)(
1 0
−d 1

)
=

(
1− dm′d m

′
d

−d2m
′
d 1 + dm

′
d

)
(1.4)

where we have to take the minimum
∣∣m′d∣∣ (width). That gives md = N1/d, and we obtain

Sd =

(
1−N1 N1/d
−dN1 1 +N1

)
, d > 0, d |N1 . (1.5)

Since our character χ = χN1 is mod N1, we obtain

χN1(Sd) = χN1(1 +N1) = χN1(1) = 1 for any d |N1 , d > 0. (1.6)
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Case 2) Γ̄0(4N2), N2 is the product of different odd primes. Then we have

h2 =
∑
d|4N2
d>0

ϕ((d, 4N2/d)).

Since ϕ(2) = 1 we obtain h2 = d(4N2), the divisor function of 4N2. For any d |4N2

we introduce the matrix σd ∈ Γ0(1) (1.3). Again we take as a complete set of inequivalent

cusps for Γ0(4N2) the set of points zd = 1/d ∈ R, d |4N2 , d > 0. We define in analogy

with the first case

Γ̄d =
{
γ ∈ Γ̄0(4N2) |γzd = zd

}
(1.7)

and for the generator Sd = S
(2)
d we have

Sd =

(
1− dmd md

−d2md 1 + dmd

)
(1.8)

where for md we have the minimum
∣∣m′d∣∣, when S

′
d ∈ Γ0(4N2) (see (1.4)). We have three

possibilities now. In case (i) d |N2 , then we have 4N2 |d2md and md = 4N2/d. We obtain

Sd =

(
1− 4N2 4N2/d
−4N2d 1 + 4N2

)
, d |N2 , d > 0. (1.9)

In case (ii) d = 2d1, d1 |N2 , then we have 4N2 |d2md and md = N2/d1. We get

Sd =

(
1− 2N2 N2/d1

−4d1N2 1 + 2N2

)
, d1 |N2 , d1 > 0, d = 2d1. (1.10)

Finally in case (iii) we have d = 4d2, d2 |N2 . Then 4N2 |16d2
2md , and we get md = N2/d2.

We obtain

Sd =

(
1− 4N2 N2/d2

−16d2N2 1 + 4N2

)
, d2 |N2 , d2 > 0, d = 4d2. (1.11)
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Case 3) For Γ̄0(4N3) we have N3 = 2n, n = p1, p2...pk is the product of different odd

primes. We get

h3 =
∑
d|4N3
d>0

ϕ((d, 4N3/d)) = d(4N3). (1.12)

We take as the set of all Γ̄0(4N3) inequivalent cusps the set of points

zd = 1/d, d |4N3 , d > 0, (1.13)

then we define in analogy to (1.7)

Γ̄d =
{
γ ∈ Γ̄0(4N3) |γzd = zd

}
and its generator Sd, given by (1.8) with d |4N3 , d > 0. Similar to (1.4) for md we take

the minimum
∣∣m′d∣∣, when S

′
d ∈ Γ̄0(4N3). We have 4 possibilities now,

(i) d |n (ii) d = 2d1, d1 |n (iii) d = 4d2, d2 |n (iv) d = 8d3, d3 |n .

Analogous to (1.8), (1.10) we obtain

Sd =



(
1− 4N3 4N3/d
−8dn 1 + 4N3

)
d |n , d > 0(

1− 2N3 N3/d1

−4d1N3 1 + 2N3

)
d = 2d1, d1 |n , d1 > 0(

1− 2N3 n/d2

−16d2n 1 + 2N3

)
d = 4d2, d2 |n , d2 > 0(

1− 4N3 n/d3

−64d2n 1 + 4N3

)
d = 8d3, d3 |n , d3 > 0.

(1.14)

In (1.6) we calculated the values of χN1(Sd), d |N1 , d > 0. Now we do that for all

other cases. We have in Case 2) of 4N2 with either (i) d |N2 or (iii) d = 4d2, d2 |N2

χ4N2(Sd) = χ4N2(1 + 4N2) = χ4N2(1) = 1, d |N2, d > 0 (1.15)
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χ4N2(Sd) = 1, d = 4d2, d2 |N2 , d2 > 0 (see (1.11)) (1.16)

For the case (ii) d = 2d1, d1 |N2 , d1 > 0 we have to calculate

χ4N2(Sd) = χ4N2(1 + 2N2) (see (1.10)). (1.17)

We obtain

χ4N2(1 + 2N2) =

(
4N2

1 + 2N2

)
=

(
−4

1 + 2N2

)(
−N2

1 + 2N2

)
(1.18)

= χ4(1 + 2N2)

(
M ′2

1 + 2N2

)
= χ4(1 + 2N2)

(
1 + 2N2

N2

)
= χ4(1 + 2N2).

Since N2 ≡ 3 mod 4 we get χ4(1 + 2N2) = −1 and then

χ4N2(Sd) = χ4N2(1 + 2N2) = −1, d = 2d1, d1 |N2 , d1 > 0. (1.19)

In Case 3) Γ̄0(4N3) we have (see (1.14))

χ4N3
d|n

(Sd) = χ4N3
d3|n

(S8d3) = 1 (1.20)

χ4N3
d1|n

(S2d1) = χ4N3
d2|n

(S4d2) = χ4N3(1 + 2N3) = −1. (1.21)

From the basic properties of the symbol
(
d
n

)
(see the beginning of this section) follows

χ4N3(1 + 2N3) =

(
4N3

1 + 2N3

)
=

 χ8(1 + 2N3)
(

1+2N3

M
′
3

)
, M

′
3 > 0

χ8(1 + 2N3)χ4(1 + 2N3)
(

1+2N3

M
′
3

)
, M

′
3 < 0

where M
′
3 =

∏
p>2

(−1)(p−1)/2p. Then we have

(
1 + 2N3

M
′
3

)
=

(
M3

1 + 2N3

)
= 1

16



where M3 =
∏
p>2

p, corresponding to the product M
′
3. Next 2N3 = 4

∣∣M ′
3

∣∣ and we have

χ4(1 + 2N3) = 1. (1.22)

Since N3 ≡ 2 mod 4 we have finally

χ8(1 + 2N3) = −1. (1.23)

We have proved the following theorem.

Theorem 1.1 1. For the group Γ̄0(N1), N1 a square-free positive integer, N1 ≡ 1

mod 4, and its arithmetical character χ̂N1 =
(
N1

.

)
we have a complete system of

Γ̄0(N1) inequivalent cusps zd given by zd = 1
d
, d |N1 , d > 0. The system of all

parabolic generators Sd is given by (1.5). Then all the above-mentioned cusps are

open relative to this character. That precisely means that χN1(Sd) = 1. We are also

saying in this case that the character χ is regular for the group Γ̄0(N1) (see Section

2).

2. For the group Γ̄0(4N2), N2 a square-free positive integer, N2 ≡ 3 mod 4, and its

arithmetical character χ4N2 =
(

4N2

.

)
we have the complete system of Γ̄0(4N2) in-

equivalent cusps zd = 1/d, d |4N2 , d > 0. The system of all parabolic generators

Sd is given by (1.9), (1.10), (1.11). The character χ4N2 is singular for the group

Γ̄0(4N2), two third of the cusps zd are open and one third is closed by the character

χ. That precisely means, that for open cusps zd, d |N2 , d > 0, or d = 4d2, d2 > 0,

d2 |N2 , we have χ(Sd) = 1 (see (1.15), (1.16)). For closed cusps zd, d = 2d1, d1 > 0,

d1 |N2 , χ(Sd) = −1 (see (1.19)).
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3. For the group Γ̄0(4N3), N3 a square-free positive integer, N3 ≡ 2 mod 4, and its

arithmetical character χ4N3 =
(

4N3

.

)
we have the complete system of Γ̄0(4N3) in-

equivalent cusps zd = 1/d, d |4N3 , d > 0. The system of all parabolic generators

Sd is given by (1.14). The character χ4N3 is singular for the group Γ̄0(4N3) with

half of the cusps open and the other half closed. The open cusps are zd, d |n , d > 0

(N3 = 2n), or d = 8d3, d3 |n , d3 > 0 (see (1.20)). The closed cusps are zd, d = 2d1,

d1 |n, d1 > 0, or d = 4d2, d2 |n , d2 > 0 (see (1.21), (1.22), (1.23)).

2 The Eisenstein Series

We recall the main points of the spectral theory of the automorphic Laplacian on the

hyperbolic plane, which we need in this paper (see [Se1], [He], [BV], [V2]).

Let H be the hyperbolic plane. We consider H = {z ∈ C |z = x+ iy} as the upper

half-plane of C with the Poincaré metric

ds2 =
dx2 + dy2

y2
.

Let ∆ = y2
(
∂2

∂x2 + ∂2

∂y2

)
be the Laplacian associated with the metric ds2. Then let Γ

be a cofinite group of isometries on H and χ a one-dimensional unitary representation

(character) of Γ. We define the automorphic Laplacian A(Γ;χ) in the Hilbert space H(Γ)

of complex-valued functions f , which are (Γ;χ) automorphic, i.e. f(γz) = χ(γ)f(z) for

any γ ∈ Γ, z ∈ H, and which satisfy

‖f‖2 =

∫
F

|f(z)|2 dµ(z) <∞.
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It is clear that H(Γ) = L2(F ; dµ), when F is given. The linear operator A(Γ;χ) is defined

on the smooth (Γ;χ) automorphic functions f ∈ L2(F ; dµ) by the formula

A(Γ;χ)f = −∆f.

We identify A(Γ;χ) with the restriction AF (Γ;χ) of A(Γ;χ) to the space of functions f |F ,

where f runs over all smooth (Γ, χ) automorphic functions f . The closure of A(Γ;χ) in

HΓ is a selfadjoint, non-negative operator, also denoted by A(Γ;χ).

We recall that the character χ is regular in the cusps zj of the fundamental domain

F if χ(Sj) = 1 and Sj is the generator of a parabolic subgroup Γj ⊂ Γ, which fixes the

cusp zj . Otherwise χ(Sj) 6= 1, and χ is singular in zj . It is clear that this property of the

character does not depend on the choice of fundamental domain, since in equivalent cusps

the character has the same values (that means χ(Sj) = χ(S̃j), and Sj , S̃j correspond to

equivalent cusps).

The total degree k(Γ;χ) of singularity of χ relative to Γ is equal to the number of all

pairwise non-equivalent cusps of F , in which χ is singular. If Γ is non-compact, which is the

only case we consider, and the representation χ is singular, i.e. h > k(Γ;χ) ≥ 1, then the

operator A(Γ;χ) has an absolutely continuous spectrum {λ ∈ [1/4,∞)} of multiplicity

h − k(Γ;χ), where h is the number of all inequivalent cusp of F . In other words, the

multiplicity r(Γ;χ) of the continuous spectrum is equal to the number of inequivalent

cusps where χ is regular, r(Γ;χ) = h− k(Γ;χ).

The continuous spectrum of the operator A(Γ;χ) is related to the generalized eigen-

functions of A(Γ;χ), which are obtained by the analytic continuation of Eisenstein se-
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ries. We define this as follows. For each cusp zj of the fundamental domain F , in

which the representation χ is regular, we consider again the parabolic subgroup Γj ⊂ Γ,

Γj = {γ ∈ Γ |γzj = zj }. Γj is an infinite cyclic subgroup of Γ, generated by a certain

parabolic generator Sj, χ(Sj) = 1.

There exists an element gj ∈ PSL(2,R) such that

gj∞ = zj, g
−1
j Sjgjz = S∞z = z + 1

for all z ∈ H. Let y(z) denote Im z. Then the non-holomorphic Eisenstein (or Eisenstein-

Maass) series, is given by

Ej(z; s; Γ;χ) =
∑

γ∈Γj\Γ

ys(g−1
j γz)χ(γ). (2.1)

Here χ is the complex conjugate of χ, γ is a coset Γjγ of Γ with respect to Γj. The series is

absolutely convergent for Re s > 1, and there exists an analytic continuation to the whole

complex plane as a meromorphic function of s. We have a system of r(Γ;χ) functions

given by (2.1). For s = 1/2 + it, t ∈ R, they constitute the full system of generalized

eigenfunctions of the continuous spectrum of the operator A(Γ;χ).

We recall the definition of the automorphic scattering matrix. We have for

1 5 α, β 5 r(Γ;χ)

Eα(gβz; s; Γ;χ) =
∞∑

n=−∞
an(y; s; Γ;χ)e2πinχ. (2.2)

This function is periodic under z → z + 1, and moreover

a0(y; s; Γ;χ) = δαβy
s + ϕαβ(s; Γ;χ)y1−s, (2.3)
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z = x+ iy ∈ H, where

δαβ =

{
1 α = β
0 α 6= β

.

The matrix φ(s; Γ;χ) = {ϕαβ(s; Γ;χ)} which is of the order r(Γ;χ) is called the auto-

morphic scattering matrix. It is well-known that φ(s; Γ;χ) is meromorphic in s ∈ C and

holomorphic in the line Re s = 1/2 and satisfies the functional equation

φ(s; Γ;χ)φ(1− s; Γ;χ) = Ir, (2.4)

where Ir is the r(Γ;χ) × r(Γ;χ) identity matrix. The matrix φ(s; Γ;χ) is important for

establishing the analytic continuation and the functional equation for the Eisenstein series

given by

Eα(z; 1− s; Γ;χ) =
r∑

β=1

ϕαβ(1− s; Γ;χ)Eβ(z; s; Γ;χ) (2.5)

1 5 α 5 r = r(Γ;χ).

We make now more precise the formulas (2.4), (2.5). We have

Eα(gβz; s; Γ;χ) = δαβy
s + ϕαβ(s; Γ;χ)y1−s (2.6)

+
√
y
∑
n6=0

ϕαβn(s; Γ;χ)Ks−1/2(2π |n| y)e2πinχ

where Ks−1/2(y) is the McDonald-Bessel function. This expression is obtained from the

differential equation ∆f + 1(1 − s)f = 0 by separation of variables in the strip −1/2 ≤

x ≤ 1/2, 0 < y <∞. Let Γ∞ be the infinite cyclic group generated by z → z + 1. Then

we construct a double coset decomposition (see [I], p. 163)

Γ∞\g−1
α Γgβ/Γ∞ = δaβΓ∞ ∪

{⋃
c>0

⋃
dmod c

Γ∞

(
∗ ∗
c d

)
Γ∞

}
(2.7)
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where

(
∗ ∗
c d

)
=

(
a b
c d

)
∈ g−1

α gβ.

The general Kloosterman sums are introduced by

Sαβ(m,n; c; Γ;χ) = Sαβ(m,n; c) =
∑

d mod c

χ̄

(
a b
c d

)
exp 2πi

ma+ nd

c
. (2.8)

Here we have assumed that we can extend the character χ from Γ to g−1
α Γgβ. Then we

have

ϕαβ(s) = ϕαβ(s; Γ;χ) =
√
π

Γ(s− 1/2

Γ(s)

∑
c>0

Sαβ(0, 0; c)

c2s
(2.9)

ϕαβn(s) = ϕαβn(s; Γ;χ) =
2πs

Γ(s)
|n|s−1/2

∑
c>0

Sαβ(0, n; c)c−2s. (2.10)

where Γ(s) is the Euler’s gamma function.

The explicit calculation of these series in full generality for our groups Γ̄0(N1), Γ̄0(4N2),

Γ̄0(4N3) and the corresponding arithmetical characters in terms of Dirichlet L-series is

rather technical and will be presented it in a separate paper. The approach to solve this

problem is by developing an idea due to M.N. Huxley (see [Hu]), although he considered

congruence groups without characters. We will use his results later in this paper to prove

the asymptotical Weyl law for discrete eigenvalues of A(Γ;χ) with the Γ and χ considered

here.

3 The discrete spectrum of the automorphic Lapla-

cian for Γ0(N) with primitive character

We consider in this paragraph the group Γ = Γ̄0(N) with primitive character χ. We will

prove here that apart from the continuous spectrum of multiplicity r(Γ;χ) (see Section 2)
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the operator A(Γ;χ) has an infinite discrete spectrum consisting of eigenvalues of finite

multiplicity, satisfying a Weyl asymptotical law

N(λ; Γ;χ) ∼
λ→∞

µ(F )

4π
λ (3.1)

where N(λ; Γ;χ) = # {λj 5 λ} is the distribution function for eigenvalues of A(Γ;χ), and

the λj are repeated according to multiplicity, µ(F ) = |F | is the area of the fundamental

domain F of Γ.

As follows from general results on the spectrum of A(Γ;χ) (see [F] ,p. 382, [V1],

p. 77) and the Selberg trace formula, it is enough to prove that the determinant of the

automorphic scattering matrix

ϕ(s; Γ;χ) = detφ(s; Γ;χ) (3.2)

is a meromorphic function of order 1. We will prove this indirectly, reducing to the group

Γ̄1(N), and then using Huxley’s result.

We recall the definitions

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z)|c ≡ 0 mod N

}

Γ1(N) =

{(
a b
c d

)
∈ SL(2,Z)|c ≡ 0, a ≡ d ≡ 1 mod N

}

Γ(N) = Γ2(N) =

{(
a b
c d

)
∈ SL(2,Z)|b ≡ c ≡ 0, a ≡ d ≡ 1 mod N

}

and we recall the classical result (see [Mi] p. 104).

23



Theorem 3.1 1. Let TN be the homomorphism of SL(2, Z) into SL(z;Z/NZ)

TN :

(
a b
c d

)
→
(
a mod N, b mod N
c mod N d mod N

)

then TN is surjective, Ker TN = Γ(N) = Γ2(N).

2. The mapping

(
a b
c d

)
→ d mod N ∈ (Z/NZ)∗ induces an isomorphism

Γ0(N)/Γ1(N) w (Z/NZ)∗

and Γ1(N) is a normal subgroup of Γ0(N) of index ϕ(N), where ϕ is the Euler

function.

We recall now the general theorem proved in [V1], which we adopt to our situation.

Theorem 3.2 For a general cofinite Fuchsian group Γ and its normal subgroup Γ′ of

finite index the following formula for the kernels of the resolvents of A(Γ
′
; 1) in HΓ′ and

A(Γ;χ) in HΓ holds:

1

[Γ : Γ′ ]

∑
χ̂∈(Γ′\Γ)∗

[
trχr(z, z

′
; s; Γ;χ)

]
dimχ = r(z, z

′
; s; Γ

′
; 1) (3.3)

where
[
Γ : Γ

′]
denotes the index of Γ

′
in Γ. Here χ̂ runs over the set of all finite-

dimensional, irreducible unitary representations of the factor group Γ
′\Γ. We extend

the representation χ̂ to a representation χ of the group Γ by the trivial representation,

setting for γ = γ1 · γ2, γ1 ∈ Γ
′
, γ2 ∈ Γ

′\Γ, χ(γ) = χ(γ1)χ(γ2) = χ(γ1)χ̂(γ2) = χ̂(γ2). The

trace trχ is the trace in the space of the representation χ, and dimχ is the dimension of

χ.
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For Re s > 1 the resolvent is defined as

R(s; Γ;χ) = (A(Γ;χ)− s(1− s)I)−1, (3.4)

where I is the identity operator in HΓ. We recall

‖f‖2
Γ =

∫
F

|f |2v dµ

f : F → V , the finite dimensional space of the representation χ. Then the kernel of

the resolvent, considered as an integral operator is given by the absolutely convergent

Poincaré series

r(z; z
′
; s; Γ;χ) =

∑
γ∈Γ

χ(γ)k(z, γz
′
; s), (3.5)

where k(z, z
′
; s) is the Green’s function for the operator −∆− s(1− s) on H.

As the group Γ from Theorem 3.2 we consider the projective group Γ̄0(N) and set

Γ
′

= Γ̄1(N). Then from Theorem 3.1 follows that the factor group Γ̄0(N)/Γ̄1(N) is

isomorphic to the group of all even Dirichlet characters of Z mod N . Each of these

characters becomes a character of the group Γ̄0(N) if we set

χ(γ) = χ(d), γ =

(
a b
c d

)
∈ Γ̄0(N) (3.6)

since

(
a b
c d

)(
a′ b′

c′ d′

)
=

(
∗ ∗
∗ dd′ + cb′

)
, c ≡ 0 mod N.

The identity (3.3) becomes

2

ϕ(N)

∑
χ even
χ mod N

r(z, z′; s; Γ̄0(N);χ) = r(z, z′; s; Γ̄1(N); 1) (3.7)
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where χ = 1 means the trivial one-dimensional representation. From (3.7) follows the

factorization formula for the Selberg zeta function

Z(s; Γ̄1(N); 1) =
∏

χ even mod N

Z(s; Γ̄0(N);χ) (3.8)

and finally we obtain the relation between the distribution functions of discrete eigenval-

ues of A(Γ̄1(N); 1) and A(Γ̄1(N);χ)

N(λ; Γ̄1(N); 1) =
∑

χ even mod N

N(λ; Γ̄0(N);χ). (3.9)

We have

µ(F̄1(N)) =
ϕ(N)

2
µ(F̄0(N)) (3.10)

and the inequality valid for all big enough λ,

N(λ; Γ̄0(N);χ) ≤ µ(F̄0(N))

4π
λ, (3.11)

where µ(F̄1(N)), µ(F̄0(N)) are the areas of the fundamental domains for Γ̄1(N) and Γ̄0(N)

respectively. From that follows

Lemma 3.3 Let the Weyl formula (law) hold for N(λ; Γ̄1(N); 1). Then the Weyl formula

is true for each summand N(λ; Γ̄0(N);χ) in (3.9). In particular, the Weyl law is valid

for N(λ; Γ̄0(N);χ) with real primitive character mod N .

Let us formulate now the result of Huxley (see [Hu], p. 142).

Lemma 3.4 For the group Γ̄1(N) the determinant of the scattering matrix φ(s; Γ̄1(N); 1)
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is given by

detφ(s; Γ̄1(N); 1) = (−1)(k−k0)/2

(
Γ(1− s)

Γ(s)

)k (
A

πk

)1−2s∏
χ

L(2− 2s, χ̄)

L(2s;χ)
, (3.12)

where k is the number of cusps, -k0 = trφ(1/2, Γ̄1(N); 1), A is a positive integer composed

of the primes dividing N , and the product has k terms, in each of which χ is a Dirichlet

character to some modulus dividing N , L(s, χ) the corresponding Dirichlet L-series, χ̄ is

the complex conjugated character.

From (3.12) follows

Lemma 3.5 detφ(s; Γ̄1(N); 1) is a meromorphic function of order 1.

From Lemmas 3.3-3.5 and the Selberg trace formula follows

Theorem 3.6 For Γ = Γ̄0(N) with real primitive character χ mod N the Weyl law (3.1)

is valid.

So we have infinite discrete spectrum of eigenvalues of A(Γ̄0(N), χ). Actually, having

in mind the Selberg eigenvalue conjecture and equality (3.8), it is very likely that the

whole spectrum of A(Γ̄0(N);χ) belongs to [1/4,∞), since we have a nontrivial congruence

character χ, coming from the symbol
(
N
·
)
.

The even and odd subspaces He and H0 of H are defined by

He = {f ∈ H |f(−z̄) = f(z)} , H0 = {f ∈ H |f(−z̄) = −f(z)} .
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The spaces He and H0 are invariant under A(Γ̄0(N);χ), giving rise to operators

Ae(Γ̄0(N);χ) and A0(Γ̄0(N);χ). The spectrum of A0(Γ̄0(N);χ) is purely discrete.

Corollary 3.7 The Weyl law for Ae(Γ̄0(N);χ) and A0(Γ̄0(N);χ) is given by

# {λj |λj ≤ λ} ' |F |
8π

λ,

where {λj} is the sequence of eigenvalues counted with multiplicity for either Ae(Γ̄0(N);χ)

or A0(Γ̄0(N);χ).

Proof. We refer to [V3], which deals with the modular group without character. This

can be extended to Γ̄0(N) with primitive character.

4 Hecke theory for Maass cusp forms

We now recall the Hecke theory for Maass cusp forms in application to all our cases

Γ̄0(N1), χN1 , Γ̄0(4N2),χ4N2 and Γ̄0(4N3), χ4N3. There is no published account of this theory

except for the short review by H. Iwaniec (see [I], p.70-72). But for holomorphic forms

the corresponding results are well known and published in [Ogg], [A-L], [Li]. We make this

transfer to the case of Maass forms specifically for the form with real primitive character

in the style of [I] supplying more details about exceptional Hecke operators. We will write

here simply Γ̄0(N) and χ, having in mind the three particular cases we consider.

Let f be a continuous (Γ̄0(N), χ)-automorphic function, i.e.

f(γz) = χ(γ)f(z), ∀γ ∈ Γ̄0(N), z ∈ H
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and let n ∈ Z+. Then the Hecke operators are defined by

T (n)f(z) =
1√
n

∑
ad=n

χ(a)
∑

b mod d

f

(
az + b

d

)
(4.1)

and T (n)f(z) is again a continuous (Γ̄0(N), χ) automorphic function.

It is not easy to see immediately this property from the definition (4.1). We have to

bear in mind the more general definition

Tgf(z) =
M∑
j=1

χ(γj)f(g−1γjz) (4.2)

for an arithmetical cofinite group Γ acting on H and for some isometrical transformations

g of H with the property that the intersection Γ′ = g−1Γg ∩ Γ has a finite index both in

g−1Γg and Γ. Then we define γj from the right coset decomposition

Γ =
M⋃
j=1

Γ′γj.

In this definition we assume that we can define the character χ of Γ for the group g−1Γg.

Then the definition (4.1) follows from (4.2) if we take Γ = Γ̄0(N) with our character χ

and

g =

(
n 0
0 1

)
.

It is easy to check this in the simplest case n = p prime, p - N . We have

Γ′ = Γ0(N, p), Γ′\Γ =

{(
1 b
0 1

)
, b mod p,

(
pβ 1
Nγ 1

)
(see [A-L], p. 137) where β, γ are any integers with the property pβ −Nγ = 1.

Then from (4.1) directly follows the basic relation

T (m)T (n) =
∑

d|(m,n)

χ(d)T (mn/d2). (4.3)
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It is easy to check (4.3) for (m,n) = 1 and then to consider the case n = pk, m = pk
′
,

different powers of the same prime p. From (4.3) follows that all T (n) commute with each

other and also commute with the automorphic Laplacian A(Γ̄0(N);χ).

From (4.3) follows also that the most fundamental are the Hecke operators T (p) which

correspond to primes. Here we have to distinguish two cases, 1) p - N , 2) p |N. For

convenience we introduce the notation U(q) = T (q) for q |N, while T (p) is reserved for

p - N. We can see from (4.1) and the definition of χ :
T (p)f(z) = 1√

p
χ(p)f(pz) + 1√

p

∑
b mod p

f
(
z+b
p

)
p - N

U(q)f(z) = T (q)f(z) = 1√
q

∑
b mod q

f
(
z+b
q

)
q |N

(4.4)

All the operators T (p), U(q) are bounded in the Hilbert spaceH(Γ̄0(N)), also they map

the subspace of cusp forms H(Γ0(N)) into itself. The operators T (p) are χ(p)-hermitian

in H(Γ0(N)):

〈T (p)f, g〉 = χ(p) 〈f, T (p)g〉 (4.5)

or

T (p)∗ = χ(p)T (p).

The equality (4.5) is similar to Lemma 13 of [A-L], where the corresponding fact was

proved for holomorphic forms without character in relation to the Petersson inner product

(on the subspace of cusp-forms).

We introduce next two involutions, Kf(z) = f(z) is the complex conjugation, HNf(z) =

f (−1/Nz). It is easy to see that they map (Γ̄0(N), χ)-automorphic functions to them-
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selves because, in particular, we have

(
0 −1
N 0

)(
a b
Nc d

)(
0 1/N
−1 0

)
=

(
d −c
−Nb a

)
,

HN Γ̄0(N)H−1
N = Γ̄0(N). Then we have obviously KA(Γ̄0(N), χ) = A(Γ̄0(N), χ)K

KT (p) = T (p)K, U(p)K = KU(p)
KHN = HNK

. (4.6)

Less trivial facts are

T ∗(p) = HNT (p)HN (4.7)

U∗(q) = HNU(q)HN (4.8)

where T ∗(p) and U∗(q) are the adjoint operators of T (p), U(q) in H(Γ) respectively. From

(4.5), (4.7) follows

HNT (p) = χ(p)T (p)HN , p - N. (4.9)

Then we can see that all Hecke operators have only point spectrum in the space of

all cusp forms H0(Γ0(N);χ), and we want to find the common basis of eigenfunctions for

A(Γ0(N), χ) and all Hecke operators T (p), U(q) in this space. And actually it is possible,

because we consider primitive characters χ, which make all cusp forms ”new”. We recall

briefly the definition of old and new forms for Γ̄0(N) and χ, generated by a Dirichlet

character mod N.

If χ is mod M and v(z) ∈ H0(Γ̄0(N);χ) then v(dz) ∈ H0(Γ̄0(N);χ) whenever dM |N .

By definition Hold
0 (Γ̄0(N);χ) is the subspace of H0(Γ̄0(N);χ) spanned by all forms v(dz),
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where v(z) is defined for Γ̄0(M) with character χ mod M , M < N , dM |N and v is a

common eigenfunction for all Hecke operators T (m) with (m,M) = 1. Let the space Hnew
0

be the orthogonal complement

H0(Γ̄0(N);χ) = Hold
0 (Γ̄0(N);χ)⊕Hnew

0 (Γ̄0(N);χ).

From this definition it is clear that there are no old forms for the pairs (Γ̄0(N1);χN1),

(Γ̄0(4N2);χ4N2) and (Γ̄0(4N3);χ4N3) we consider, because χN1, χ4N2 , χ4N3 are primitive

characters modN1, 4N2, 4N3, respectively. The existence of the above-mentioned common

basis of eigenfunctions follows from the following important theorem.

Theorem 4.1 Each Hecke exceptional operator U(q), q |N , is a unitary operator in the

space H(Γ̄0(p)), U(q)U∗(q) = U∗qUq = I, where I is the identity operator in H(Γ̄0(N)).

Proof. The proof is a transfer of Theorem 4 and Corollary 1 of [Ogg] to our case of

non-holomorphic forms with primitive character. The case q = 2 is the simplest, because

22 |N . We consider the more difficult case where q is a prime, q |N , q 6= 1. By (4.8) we

have to prove U(q)HmU(q)Hm = I. We have

U(q)HNU(q)HNf(z) =
1

q

∑
b mod q

∑
b′ mod q

f

(
z + b′

−N/q bz + 1−N/q bb′
)

(4.10)

=
1

q

∑
b′ mod q

b=0

f

(
z + b′

−N/q bz + 1−N/q bb′
)

+
1

q

∑
b′ mod q

b6=0

f

(
z + b′

−N/q bz + 1−N/q bb′
)

= f(z) +
1

q

∑
b mod q
b6=0

∑
b′ mod q

f

(
z + b′

−N/q bz + 1−N/q bb′
)
.
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We want to prove that the double sum on the right hand side of (4.10) is equal to zero.

Then we get that for each pair b, b′ mod q, b 6= 0 there exists a unique matrix depending

on a′ mod q,

(
α β
Nγ δ

)
∈ Γ0(N), such that

(
1 b′

−N/q b 1−N/q bb′
)

=

(
α β
Nγ δ

)(
1 a′

−N/q 1−N/q a′
)

and δ ≡ b mod q, δ ≡ 1 mod N/q. That means χ(δ) = χq(δ)χN/q(δ) = χq(b). Here we

use a notation for the χq(δ) part of the character symbol
(
N
δ

)
, which corresponds to the

period q (see Section 1).

Then we get that the double sum considered is equal to

1

q

∑
a′ mod q

f

(
z + a′

−N/q z + 1−N/q z′
) ∑
b mod q

χq(b) = 0

and that proves the first part of the theorem. The proof of the identity U∗qUq = I is

similar.

From Theorem 4.1 follows that all operators U∗(q) also commute with all Hecke op-

erators and A(Γ0(N), χ) and that is the reason why there exists the common basis of

eigenfunctions for all these operators in the space H0(Γ0(N);χ). In fact, it is possible to

prove a much stronger result about the existence of the common basis of eigenfunctions,

the so-called ”multiplicity one” theorem. Unitarity of U(q) does not follow from this

theorem, however. It is analogous to Theorem 3 of [A-L] and to Theorem 3 of [Li]. This

theorem is about the following. We take first the common basis of all eigenfunctions vj(z)

for all T (n), (n,N) = 1, and A(Γ̄0(N);χ) in the space H0(Γ̄0(N);χ) of cusp forms. Let
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us introduce

T ′(n) = iT (n) if χ(n) = −1 and T ′(n) = T (n) if χ(n) = 1 (4.11)

We can see then that all T ′(n) are selfadjoint operators (see (4.5)).

Since vj is an eigenfunction of A(Γ̄0(N);χ), Avj = λjvj, λj = sj(1 − sj) we have for

j = 1, 2, ...

vj(z) =
∑
n6=0

ρj(n)
√
yKsj−1/2(2π |n| y)e2πinx (4.12)

(similar to (2.6)) with ρj(n) ∈ C . We have also

T (n)vj(z) = Λj(n)vj(z) (n,N) = 1. (4.13)

From (4.1), (4.12), (4.13) follows that if ρj(1) = 0, then ρj(n) = 0 for all n, (n,N) = 1.

If ρj(1) 6= 0 we obtain for all n, (n,N) = 1

Λj(n) =
ρj(n)

ρj(1)
. (4.14)

Before talking about the proof of this theorem we make the following remark.

There is also the important involution

J : z → −z̄, z ∈ H.

This involution acts on the space of all continuous (Γ0(N), χ) automorphic functions and

splits this space into the sum of subspaces of even and odd functions given by f(Jz) = f(z)

or f(Jz) = −f(z). This J commutes with A(Γ0(N), χ) and with all Hecke operators. The
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conditions for the eigenfunction vj(z) of A(Γ̄0(N), χ), we consider in (4.12) to be even or

odd are the following, respectively

ρj(n) = ρj(−n), ρj(−n) = −ρj(n). (4.15)

That means, in particular, that the Fourier coefficients ρj(n) with negative numbers n are

determined in both cases by ρj(n) with positive numbers n. We have also

HNJ = JHN , KJ = JK. (4.16)

Let us consider the case ρj(1) = 0 first. Then we will show that the whole function

vj(z) is zero. From that follows that only the eigenvalues Λj(n) for (n,N) = 1 determine

completely the function vj(z) up to multiplication by a constant, of course. In that case

vj(z) has to be an eigenfunction of all U(q), U∗(q), q |N . And that is the multiplicity one

theorem in our case.

Very briefly the idea of the proof of the multiplicity one theorem is the following. We

consider an eigenfunction (4.12) with (4.13) and we assume that ρj(1) = 0, ρj(n) = 0,

(n,N) = 1. Then we see that the series (4.12) can be written as a sum of terms

vj(z) =
∑
q|N

wjq(z). (4.17)

Each wjq is associated with a subgroup of Γ0(N) with character χ and level q, where the

numbers q are mutually prime. Then, since the whole sum (4.17) belongs to (Γ0(N), χ) it

follows that each wjq ∈ (Γ0(N), χ). The last step of the proof is to see from the structure

of wjq as a Fourier series similar to (4.12) that each wjq belongs to some overgroup of

Γ̄0(N) with trivial extension of χ. Since the character χ is primitive it is only possible
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if each wjq(z) = 0. Now we have for any nontrivial vj(z) from (4.12) with (4.13) that

ρj(1) 6= 0. Let us introduce the normalization

ρj(1) = 1 (4.18)

for all fj(z). This normalization is different from the Hilbert space theory normalization

‖vj‖ = 1 (4.19)

but it is more natural when we are talking about Hecke theory. From the previous

argument follows that vj(z) from (4.12) with (4.13), (4.18) is completely determined,

in other words for the eigenvalues {λj,∆j(n)}, (n,N) = 1, (4.14), there is only one

eigenfunction vj(z). This is the idea of the proof of the ”multiplicity one” theorem. We

formulate this theorem as follows.

Theorem 4.2 1. There exists a unique common basis of eigenfunctions for all opera-

tors A(Γ0(N);χ), T (n), T ∗(n), n ≥ 1 in the space of cusp forms H0(Γ0(N);χ).

2. Each eigenfunction vj(z) (4.12) of this basis can be taken with normalization (4.18)

and is uniquely determined by the eigenvalues λj, Λj(n), (n,N) = 1, (4.14).

3. We have also (see (4.3))

U(q)vj(z) = ρj(q)vj(z), U
∗(q)vj(z) = ρj(q)vj(z)

and

4) ρj(n)ρj(m) =
∑

d|(m,n)

χ(d)ρj(mn/d
2),
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in particular ρj(q)ρj(n) = ρj(qn), q |N,

ρj(p
k+1) = ρj(p

k)ρj(p)− χ(p)ρj(p
k−1), p - N, k ≥ 0,

where by definition ρj(p
−1) = 0, p, q are primes.

On the basis of these two theorems we can prove

Theorem 4.3 For any q |N we have ρj(q) = ±1, j = 1, 2, ... , see 3) of Theorem 4.2.

Proof. We consider the involution HNK (see (4.6)). We have

T (p)(HNK)vj = χ(p)KHNT (p)vj = χ(p)Λ̄j(p)(HNK)vj

= Λj(p)(HNK)vj.

From Theorem 4.2 follows then that HNKvj = νjvj with νj ∈ C . Since (HNK)2 = 1 we

have νj = ±1. So we obtain

HNKvj = ±vj (4.20)

for any j = 1, 2, ... . Then from Theorem 4.1 follows

HNU(q)HNU(q) = I

is equivalent to

(HNK)U(q)(HNK)U(q) = K ·K = I (see (4.6)). (4.21)

Applying (4.21) to the function vj(z) and using (4.20), we obtain the claim of the

theorem Λ2
j(q) = ρj(q)

2 = 1.
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Remark 4.4 The Selberg small eigenvalue conjecture for A(Γ̄0(N), χ) says that all eigen-

values are embedded in the continuous spectrum [1
4
,∞). It is not difficult to see that for

q |N the continuous spectrum of U(q) is the whole unit circle. Since the only eigenvalues

are ±1, the analogue of Selberg’s small eigenvalue conjecture holds true for the exceptional

Hecke operator.

5 Non-vanishing of Hecke L-functions

For each function vj(z) from (4.12) with (4.13), (4.18) we define the Dirichlet series

L(s; vj) =
∞∑
n=1

ρj(n)

ns
. (5.1)

From studying the Rankin-Selberg convolution we can see that the series (5.1) is

absolutely convergent for Re s > 1.

From Theorems 4.2 and 4.3 also follows

Theorem 5.1 Let L(s, vj) be the series (5.1) and the function vj(z) be as in the Theorem

4.2. Then for Re s > 1 we have an Euler product representation for L(s; vj)

L(s; vj) =
∏
p

(
1− ρj(p)p−s + χ(p)p−2s

)−1
. (5.2)

The product is taken over all primes.

We can also write (5.2) in the form

L(s; vj) =
∏
q|N

(
1− ρj(q)q−s

)−1
∏
p-N

(
1− ρj(p)p−s + χ(p)p−2s

)−1
(5.3)
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since χ(q) = 0, q |N . From Theorem 4.3 we know ρj(q) = ±1, q |N , j = 1, 2, 3, ... .

We derive now the functional equation for the pair of the Dirichlet series
L(s; vj) =

∞∑
n=1

ρj(n)

ns

L(s; v̂j) =
∞∑
n=1

ρj(n)

ns
, Re s > 1.

(5.4)

We only consider the case of odd eigenfunctions since that is important for this paper.

We have together with (4.12) by definition

v̂j(z) =
∞∑
n6=1

ρj(n)
√
yKsj−1/2(2π |n| y)e2πinx. (5.5)

If sj − 1/2 ∈ iR or sj ∈
(

1
2
, 1
)

then Ks
j− 1

2

(2π |n| y) is a real-valued function and for

odd vj we have v̄j(z) = −v̂j(z). We will write vj(z) = vj(x, y), where z = x + iy. We

have vj(−x, y) = −.vj(x, y). The action of the involutions HNK (4.20) can be written as

follows

{
vj(u, v) = ±vj(x, y)
u = − x

N(x2+y2)
, v = y

N(x2+y2)

. (5.6)

We apply the partial derivative ∂
∂x

and obtain

− 1

Ny2

∂vj
∂u

∣∣∣∣
x=0

= ±∂vj
∂x

∣∣∣∣
x=0

.

This is equivalent to

±B(y) = ±N3/2y3
∞∑
n=1

ρj(n)nKs
j− 1

2

(2πny) =
∞∑
n=1

ρj(n)nKsj−1/2(2πn/Ny). (5.7)

We multiply the left hand side of (5.7) by 4πNs/2−3/2ys−3 and integrate it from 0 to
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∞ in y. We obtain

∞∫
0

4πs/2−3/2ys−3B(y)dy (5.8)

= π−sms/2Γ

(
s+ sj

2
+ 1/4

)
Γ

(
s− sj

2
+ 3/4

)
· L(s; v̂j)

= Ω(s; v̂j).

That is because

∞∫
0

ysKsj−1/2(y)dy = 2s−1Γ

(
s+ sj

2
+ 1/4

)
Γ

(
s− sj

2
+ 3/4

)
.

We can now write the integral obtained as a sum of two integrals

4πs/2−3/2

∞∫
0

B(y)ys−3dy = 4πms/2−3/2

 1/
√
N∫

0

+

∞∫
1/
√
N

 . (5.9)

In the first integral we use (5.7) for B(y) and then map y → 1/Ny.

Then we obtain that (5.9) is equal to

4π

N3/2

∞∫
1/
√
N

ys
∞∑
n=1

ρj(n)nKsj−1/2(2πny)dy ±N 1−s
2

∞∫
1/
√
N

y1−s
∞∑
n=1

ρj(n)nKsj−1/2(2πny)dy


= C(s; v̂j)± C(1− s; vj).

(5.10)

It is clear that C(s; vj), C(s; v̂j) are entire functions of s. Then we have

Ω(s; v̂j) = C(s; v̂j)± C(1− s; vj). (5.11)

The analogous calculation shows

Ω(s; vj) = C(s; vj)± C(1− s; v̂j)

Ω(1− s; vj) = C(1− s; vj)± C(s; v̂j)
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and we finally obtain

±Ω(1− s; vj) = Ω(s; v̂j). (5.12)

We have proved the

Theorem 5.2 Any L(s; vj) (5.1) which is defined by the odd eigenfunction vj(z) by (4.12)

with (4.13), (4.18) has an analytic continuation to all s ∈ C . The same property has the

Dirichlet series L(s; v̂j) which is defined in (5.4). Both series are connected by (5.12) with

(5.8), where the functions Ω(s; vj) and Ω(s; v̂j) are entire functions of s ∈ C .

We shall prove that the functions L(s; vj) and L(s, v̂j) are regular and non-vanishing

on the boundary of the critical strip.

We start with the Rankin-Selberg convolution. For each eigenfunction vj(z) from

(4.12) we define the series

∞∑
n=1

|ρj(n)|2

ns
(5.13)

which is absolutely convergent for Re s > 1.

For Re s > 1 we consider the following Selberg integral

∫
F0(N)

|vj(z)|2E∞(z; s; Γ̄0(N); 1)dµ(z) = A(s)

where

E∞(z; s) = E∞(z; s; Γ̄0(N); 1) =
∑

γ∈Γ∞\Γ̄0(N)

ys(γz)
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Using the unfolding of the Eisenstein series we obtain

A(s) =

∞∫
0

ys−1
∑
n6=0

|ρj(n)|2K2
irj

(2π |n| y)dy =

=
Γ2(s/2)Γ

(
s
2

+ irj
)

Γ(s/2− irj)
4πsΓ(s)

∞∑
n=1

|ρj(n)|2

ns
.

It is well known that E(z, s; Γ0(N); 1) has analytic continuation to the whole s-plane,

and at Re s > 1/2 it has only a simple pole at s = 1 with residue equal to µ(F0(N))−1

(inverse µ-area of the fundamental domain of Γ̄0(N)). From that follows that the Rankin-

Selberg convolution (5.13) is a regular function in Re s > 1/2 except for a simple pole at

s = 1.

We want to see now the Euler product for the Rankin-Selberg convolution (5.13). The

method is due to Rankin (see [R]). The main difference from Rankin’s case is that our

coefficients ρj may be complex numbers, and that we have also exceptional primes q |N .

First consider the main case (n,N) = 1. It follows from (4.5) that

ρj(n) = χ(n)ρ̄j(n) j = 1, 2, ... (5.14)

and for χ(n) = −1, ρj(n) is purely imaginary (it can not be zero). In both the cases

χ(n) = ±1 we have

|ρj(n)|2 = χ(n)ρ2
j(n). (5.15)

From Theorem 4.2 follows

{
ρ2
j(p

n) = (ρj(p)ρj(p
n−1)− χ(p)ρj(p

n−2))2

(χ(p)ρj(p
n−3))2 = (−ρj(pn−1) + ρj(p)ρj(p

n−2))2 . (5.16)
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Then multiplying the second line of (5.16) by χ(p) and taking the difference, we obtain

ρ2
j(p

n)− ρ2
j(p)ρ

2
j(p

n−1) + χ(p)ρ2
j(p

n−1) + χ(p)ρ2
j(p)ρ

2
j(p

n−2)− ρ2
j(p

n−2)− χ(p)ρ2
j(p

n−3) = 0.

(5.17)

Multiplying now (5.17) by χ(pn) and using (5.15) we obtain

|ρj(pn)|2 −
∣∣ρj(pn−1)

∣∣2 |ρj(p)|2 +
∣∣ρj(pn−1)

∣∣2 + |ρj(p)|2
∣∣ρj(pn−2)

∣∣2 − ∣∣ρj(pn−2)
∣∣2 − ∣∣ρj(pn−3)

∣∣2 = 0.
(5.18)

In the case q |N we have from Theorems 4.2, 4.3 that

|ρj(qn)| = 1, n = 1, 2, ... . (5.19)

Then applying Theorem 4.2 again we get

∞∑
n=1

|ρj(n)|2

n2s
=
∏
p-N

(
1 +
|ρj(p)|2

p2s
+
|ρj(p2)|2

p4s
+
|ρj(p3)|2

p6s
+ ...

)
·
∏
q|N

(
1 +

1

q2s
+

1

q4s
+ ...

)
(5.20)

=
∏
q|N

(
1− q−2s

)−1 ·
∏
p-N

1 + p−2s

1− |ρj(p)|2 p−2s + p−2s + |ρj(p)|2 p−4s − p−4s − p−6s

=
∏
q|N

(
1− q−2s

)−1 ·
∏
p-N

(
1 + p−2s

) (
1− p−2s

)−1 (
1 + (2− |ρj(p)|2)p−2s + p−4s

)−1

=
∏
q|N

(
1− q−2s

)−1 ·
∏
p-N

(
1− p−4s

) (
1− p−2s

)−2 (
1 + (2− |ρj(p)|2)p−2s + p−4s

)−1

= ζ(2s)L(2s; χ̂)L−1(4s; χ̂)
∏
p-N

(
1 + (2− |ρj(p)|2)p−2s + p−4s

)−1
,

where L(s; χ̂) is the Dirichlet L-series with principal character mod N.

L(s; χ̂) =
∏
p

(
1− χ̂(p)p−s

)−1
= ζ(s)

∏
p|N

(1− p−s).

The products in (5.20) are taken over all primes p - N , q |N . For p - N we now introduce

new functions αj(p), βj(p), which are important to define symmetric power L-series, by{
αj(p) + βj(p) = ρj(p)
αj(p)βj(p) = χ(p)

. (5.21)
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We have (αj(p) + βj(p))
2 = ρ2

j(p) = α2
j(p) + 2χ(p) + β2

j (p), and

{
χ(p)α2

j (p) + χ(p)β2
j (p) = |ρj(p)|2 − 2

α2
j (p)β

2
j (p) = 1

. (5.22)

Applying (5.22) to (5.20) we obtain by the definition

∏
p-N

(1 + (2− |ρj(p)|2)p−2s + p−4s)−1 (5.23)

=
∏
p-N

(
1−

χ(p)α2
j(p)

p2s

)−1(
1−

χ(p)β2
j (p)

p2s

)−1

= L2(2s; vj).

Combining with (5.20) we finally obtain

L(s; vj × v̄j) =
L(s; χ̂)

L(2s; χ̂)
L2(s; vj)ζ(s) (5.24)

where L(s; vj × v̄j) is the Rankin-Selberg convolution (5.13).

We can also write using (5.21) for Re s > 1
L(s; vj) =

∏
q|N

(1± q−s)−1 ∏
p-N

(
1− αj(p)

ps

)−1 (
1− βj(p)

ps

)−1

L(s; v̂j) =
∏
q|N

(1± q−s)−1 ∏
p-N

(
1− αj(p)

ps

)−1 (
1− βj(p)

ps

)−1 . (5.25)

For the proof of the next theorem we will make use of the following general criterion

proved in [M-M] (Theorem 1.2).

Lemma 5.3 Let f(s) be a function satisfying

1. f is holomorphic and f(s) 6= 0 in {s |Re s = σ > 1}

2. f is holomorphic on the line σ = 1 except for a pole of order e ≥ 1 at s = 1

3. log f(s) can be written as a Dirichlet series

∞∑
n=1

bn
ns
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with bn ≥ 0 for σ > 1.

Then if f has a zero on the line σ = 1, the order of the zero is bounded by e/2.

We now want to prove the following

Theorem 5.4 L(s; vj) and L(s, v̂j) from (5.4) are regular for s = 1 + it, s = it, t ∈ R,

and

L(1 + it; vj) 6= 0, L(it; vj) 6= 0, L(1 + it; v̂j) 6= 0, L(it; v̂j) 6= 0, j = 1, 2, ... . (5.26)

Proof. Clearly, (5.26) is analogous to the prime number theorem, ζ(1 + it) 6= 0,

for the Riemann zeta function. This kind of property for different zeta-functions is very

important in number theory (see, for example, [J-S], [M-M].

From the functional equation (5.12) follows that it is enough to prove the inequalities

L(1 + it; vj) 6= 0, L(1 + it; v̂j) 6= 0 (5.27)

because we know all singular points of the Euler Γ-function from (5.12).

Consider the following product

f(s) = L(s; vj × v̂j)L(2s; χ̂)L(s; vj)L(s, v̂j)
∏
q|N

(1− q−s)(1− ρj(q)q−s)(1− ρ̄j(q)q−s).

Let Re s > 1, then from (5.23), (5.24), (5.25) follows

log f(s) = −
∑
p-N

{
2 log(1− p−s) + log(1− χ(p)α2

j(p)p
−s) + log(1− χ(p)β2

j (p)p
−s)
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+ log(1− αj(p)p−s) + log(1− βj(p)p−s) + log(1− ᾱj(p)p−s)

+ log(1− β̄j(p) · p−s)
}
. (5.28)

For |x| < 1 we have log(1− x) = −
∞∑
n=1

xn/n. Using this we continue (5.28)

log f(s) =
∑
p-N

∞∑
n=1

1

npns
(2 + χ(p)nα2n

j (p) + χ(p)nβ2n
j (p) + αnj (p) (5.29)

+βnj (p) + ᾱnj (p) + β̄nj (p))

=
∑
p-N

∞∑
n=1

an,p
npns

.

We will show now an,p ≥ 0.

We consider two cases: χ(p) = 1, χ(p) = −1. In the first case

an,p = 2 + 2αnj (p) + 2βnj (p) + α2n
j (p) + β2n

j (p) = (1 + αnj (p))2 + (1 + βnj (p)) ≥ 0 (5.30)

because in that case αj(p), βj(p) are real numbers. In the second case we have that

αj(p) = iα̃j(p), βj(p) = iβ̃j(p), and α̃j(p), β̃j(p) are real numbers. We have

an,p = 2 + α̃2n
j + β̃2n

j + α̃nj (i)n((−1)n + 1) + β̃nj (i)n((−1)n + 1) (5.31)

and this is real and ≥ 0 if n = 2m− 1, m = 1, 2, ... . We consider n = 2m, m = 1, 2, ...

an,p = 2 + α̃4m
j + β̃4m

j + (−1)m · 2α̃2m
j + (−1)m · 2β̃2m

j = (1 + (−1)mα̃2m
j )2 + (1 + (−1)mβ̃2m

j )2 ≥ 0

and we have proved that an,p ≥ 0 for all p - N, n = 1, 2, ... .

Let us assume first that L(s; vj) = 0 at s = 1. That means also L(s; v̂j) = 0 at s = 1.

Since L(s; vj × v̂j) has only a simple pole at s = 1, we see that the function f(s) has a
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zero at s = 1. On the other hand, since log f(s) has the property 3, log f(s) > 0 for s > 1,

so f(s) > 1 for s > 1, a contradiction. So we have L(1; vj) 6= 0, L(1, v̂j) 6= 0.

Suppose now that L(1 + it; vj) = 0 for some t 6= 0. Then f(s) has a zero of order

≥ 1 on the line Re s > 1, s 6= 1, since L(s; v̂j) and L(s; vj × v̂j) are regular at s = 1 + it.

Also, f(s) has a pole of order 1 at s = 1, since L(s; vj × v̂j) has a simple pole at s = 1

and L(1; vj) 6= 0, L(1; v̂j) 6= 0. This is in contradiction with Lemma 5.3, and Theorem 5.4

is proved.

6 The form ω(z) and perturbation of A(Γ̄0(N), χ) by

characters

Let ω(z) be a holomorphic modular form of weight 2, which belongs to Γ̄0(N). Thus

ω(γz) = (cz + d)2ω(z),

γ =

(
a b
c d

)
∈ Γ̄0(N).

It is well known that the integral

χα(γ) = exp 2πiαRe

γz0∫
z0

ω(t)dt, γ ∈ Γ̄0(N) (6.1)

α ∈ R, z ∈ H, defines a family of unitary characters for the group Γ̄0(N), which is

independent of the choice of the point z0. We consider the family of self-adjoint operators

A(Γ̄0(N), χ · χα), as we defined in Section 1 by the Laplacian acting on functions g(z)

satisfying

g(γz) = χ(γ)χa(γ)g(z), γ ∈ Γ̄0(N). (6.2)
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We consider α as a small parameter, |α| < ε, ε > 0. The domain of definitionD(A(Γ̄0(N);χ·

χα)) is a dense subspace of L2(F ; dµ), varying with α. We consider then the operator

Aα = A(Γ̄0(N);χ·χα) as a perturbed A0 = A(Γ̄0(N), χ), since the character (6.1) becomes

trivial when α = 0.

In order to apply perturbation theory we have to bring all the operators Aα to the

domain of definition of A0. Then we have to choose the form ω which makes the pertur-

bation regular, and this is very important if we want to get information on eigenvalues

and eigenfunction. On the other hand, it is very important to take as ω(z) the old holo-

morphic Eisenstein series, coming from the holomorphic Eisenstein series E2(z) = P (z)

which belongs to the modular group. The last condition is crucial for the evaluation of the

Phillips-Sarnak integral and for proving that it is not zero (see Section 7). We will show

that there exists a form ω(z), which satisfies these two conditions, for exactly the two

cases 2), 3) from Theorem 1.1: 2) Γ̄0(4N2), N2 a square-free positive integer and N2 ≡ 3

mod 4, and its arithmetical character χ =
(

4N2

.

)
, 3) Γ̄0(4N3), N3 a square-free positive

integer, N3 ≡ 2 mod 4, and its arithmetical character χ =
(

4N3

.

)
. In these two cases the

character χ is always singular, since there exist both open and closed cusps. We construct

now this perturbation, and then we will find the appropriate form ω(z).

For a function f , f(γz) = χ(γ)f(z), γ ∈ Γ̄0(N), we define

g(z) = f(z) exp 2πiαRe

z∫
z0

ω(t)dt = f(z)Ω(z, α). (6.3)

It is not difficult to see that g(z) satisfies the condition (6.2). Applying the negative
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Laplacian

−∆ = −4y2 ∂2

∂z∂z̄
(6.4)

to the function g(z), we obtain that the operator A(Γ̄0(N);χ · χα) is unitarily equivalent

to the operator

L(α) = −∆ + αM + α2N (6.5)

where

{
M = −4πiy2

(
ω1

∂
∂x
− ω2

∂
∂y

)
= −4πiy2

(
ω ∂
∂z̄

+ ω̄ ∂
∂z

)
N = 4π2y2 |ω(z)|2 = 4π2y2 (ω2

1 + ω2
2)

(6.6)

and ω = ω1 +iω2, ω̄ = ω1−iω2. The domain of definition D(L(α)) equals Ω(z, α)−1D(Aα)

and

L(α) = Ω(·, α)−1AαΩ(·, α). (6.7)

Note that M maps odd functions to even and even to odd. Recall that functions

satisfying f(−x+iy) = −f(x+iy) are odd and functions satisfying f(−x+iy) = f(x+iy)

are even by definition. Note also that a function f , satisfying f(γz) = χ(γ)f(z), γ ∈

Γ̄0(N), with our arithmetical character χ, is allowed to be odd or even. It is also true

for the trivial character. It is not difficult to see also that the differential operators M,N

map (Γ̄0(N), χ · χα) automorphic functions to (Γ̄0(N), χ · χα) automorphic functions.

We will determine now the form ω(z). We start with constructing the holomorphic

Eisenstein series of weight 2 for Γ̄0(N) without character, using non-holomorphic Eisen-

stein series of weight zero. This method goes back to Hecke (see also [Sch] p. 15). We

49



consider the series (2.1) for Γ = Γ̄0(N), χ = 1. Then we define

Gg(z; s; Γ; 1) = 2i
∂

∂z
Eg(z; s; Γ; 1) =

(
∂

∂y
+ i

∂

∂x

)
Eg(z; s; Γ; 1) (6.8)

1 ≤ g ≤ h, where h is the number of all inequivalent cusps of F .

(The function Eg(z, ·) depends also on z̄, complex conjugate variable, since it is not

a z-holomorphic function, so we have to write Eg(z, ·) = Eg(z, z̄; ·) or Eg(x, y; ·), z =

x + iy, z̄ = x − iy, ∂
∂x

= ∂
∂z

+ ∂
∂z̄

, ∂
∂y

= i
(
∂
∂z
− ∂

∂z̄

))
. It is well known that each of the

Eg(z; s; Γ; 1) has a simple pole at s = 1 with residue constant, independent of g. That

means Gg(z; s) = Gg(z; s; Γ; 1) is regular at s = 1. We set Gg,2(z) = Gg(z, 1). It is clear

then that Gg,2(z) transforms as a modular form of weight 2,

Gg,2(γz) = (z + d)2Gg,2(z) for any γ ∈ Γ (6.9)

γ =

(
a b
c d

)
.

But Gg,2(z) is not a holomorphic form. Let us denote cz + d = j(γ; z).

From (2.6) follows the Fourier decomposition:

Gg,2(gβz)j
−2(gβ; z) = δαβ −

2iC

z − z̄ − 4π
∞∑
n=1

√
nϕαβn(1; Γ; 1)e2πinz (6.10)

where Ress=1Eg(z; s) = C, K1/2(y) =
√

π
2y
e−y.

Let n1, ..., nh be integers with the condition

h∑
α=1

nα = 0. (6.11)
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Then we define

h∑
α=1

nαGα,2(z) = G(z;n1, ..., nh). (6.12)

From (6.10) follows that G(z;n1, ..., nh) is a holomorphic modular form of weight 2 for Γ.

Then it is not difficult to see that all periods

γz0∫
z0

G(t, n1, ..., nh)dt (6.13)

are real, γ ∈ Γ, z0 ∈ H.

We construct now our form ω(z) as one of these functions G(z;n1, ..., nh). Let us go

back to Theorem 1.1. We consider there the last two cases. In Case 2) we had Γ = Γ̄0(4N2),

N2 is a square-free positive integer N2 ≡ 3 mod 4. For our arithmetical character
(

4N2

.

)
we have open cusps zd, d |N2 , d > 0 and d = 4d2, d2 |N2 , d2 > 0. We have the closed

cusps zd, d = 2d1, d1 |N2 , d1 > 0. The total number of all closed cusps is

k

(
Γ̄0(4N2),

(
4N2

.

))
= d(N2) (6.14)

where d(·) is the divisor function. The total number of open cusps is

r

(
Γ̄0(4N2),

(
4N2

.

))
= 2d(N2) (6.15)

and we certainly have h = k + r = 3d(N2) = d(4N2). We now define the form ω(z) by

ω(z) =
∑
d1|N2

d1>0

n2d1G2d1,2(z) (6.16)

where each of the n2d1 is equal to ±1 with the only condition

∑
d1|N2

d1>0

n2d1 = 0. (6.17)
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From (6.10) follows that ω(z) is exponentially small in all open cusps and it is like j2(gβ, z)

in each closed cusp β = 2d1.

In analogy to this we consider Case 3) of Theorem 1.1. We have Γ = Γ̄0(4N3), N3 is a

square-free positive integer, N3 ≡ 2 mod 4, and χ =
(

4N3

.

)
. The open cusps are zd, d |n ,

d > 0 (N3 = 2n) and d = 8d3, d3 |n , d3 > 0. The closed cusps are zd, d = 2d1, d1 |n ,

d1 > 0 and d = 4d2, d2 |n , d2 > 0. We have k
(
Γ̄0(4N3),

(
4N3

.

))
= 2d(N3/2)

r
(
Γ̄0(4N3),

(
4N3

.

))
= 2d(N3/2)

h = k + r = 4d(N3/2) = d(4N3)
(6.18)

ω(z) =
∑

d1|N3/2
d1>0

n2d1G2,2d1(z) +
∑

d2|N3/2
d2>0

n4d2G2,4d2(z) (6.19)

where each of n2d1 , n4d2 is equal to ±1 with the condition

∑
d1|N3/2
d1>0

n2d1 +
∑

d2|N3/2
d2>0

n4d2 = 0. (6.20)

From (6.20) again follows that ω(z) is exponentially small in all open cusps and it is like

j2(gβ; z) in each closed cusp β = 2d1, β = 4d2.

Let us calculate now the parabolic main periods of ω(z) in the two cases (6.16), (6.19).

We consider (6.16) first. Let Sd′ be a parabolic generator of Case 2), Γ̄0(4N2) (one of

(1.9), (1.10) or (1.11). We have

Sd′z0∫
z0

ω(z)dz =

g−1
d′ Sd′z0∫
g−1
d′ z0

ω(gd′t)
dt

j2(gd′ ; t
(6.21)

where

gd′∞ = zd′ , g
−1
d′ Sd′gd′z = S∞ z = z + 1. (6.22)

52



The right hand side of (6.21) is equal to

g−1
d′ Sd′gd′ t0∫
t0

ω(gd′t)
dt

j2(gd′ ; t)
=

S∞t0∫
t0

ω(gd′t)
dt

j2(gd′; t)
(6.23)

=
∑
d1|N2

d1>0

n2d1

S∞t0∫
t0

G2d1,2(gd′t)
dt

j2(gd′ ; t)
.

We apply formula (6.10) and we finally obtain

Sd′z0∫
z0

ω(z)dz =
∑
d1|N2

d1>0

n2d1δ(2d1)d′ , δαβ =

{
1 α = β
0 α 6= β

(6.24)

This is zero, if zd′ is any open cusp, since the sum in (6.24) is taken over closed cusps

only. And if zd′ is one of the closed cusps, then (6.24) is equal to nd′ = ±1.

The analogous calculation shows in Case 3) Γ̄0(4N3) that the ω(z) from (6.19) has the

main parabolic periods equal to

Sd′z0∫
z0

ω(z)dz =

{
0 if zd′ is an open cusp for

(
4N3

.

)
nd′ if zd′ is a closed cusp for

(
4N3

.

) (6.25)

nd′ = ±1. Thus in Case 2) Γ̄0(4N2) with χ =
(

4N2

.

)
and χα(γ) = exp 2πiαRe

γz0∫
z0

ω(t)dt =

exp 2πiα
∫ γz0
z0

ω(t)dt we obtain

χ(Sd′)χα(Sd′) =

{
1 if zd′ is an open cusp for

(
4N2

.

)
e2πiαnd′−πi = eπi(2αnd′−1) if zd′ is closed for

(
4N2

.

) (6.26)

nd′ = ±1. The same result is valid in Case 3) Γ̄0(4N3), χ =
(

4N3

.

)
and χα(γ) =

exp 2πiαRe
γz0∫
z0

ω(t)dt = exp 2πiα
γz0∫
z0

ω(t)dt. We have

χ(Sd′)χα(Sd′) =

{
1 if zd′ is open for

(
4N3

.

)
e2πiαnd′−πi = eπi(2αnd′−1) if zd′ is closed for

(
4N3

.

) (6.27)

nd′ = ±1. We obtain in both cases that for α ∈ (−1/2, 1/2) the character χ · χα relative

to the group Γ has the same degree of singularity and keeps the same cusps open and
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closed. For Γ̄0(4N2) and
(

4N2

.

)
it is given by (6.14) and for Γ̄0(4N3),

(
4N3

.

)
by (6.18). This

means that the perturbation (6.6) is regular for the constructed forms ω(z).

We now consider the case Γ̄0(4N2), N2 = p1p2...pk.

We want to get an expression for the form ω(z) of (6.6) as

ω(z) =
∑

d|4N2, d>0

P (dz)αd (6.28)

with real coefficients αd, and we will prove that there exists a set of integers n2d1 = ±1

satisfying (6.17) such that the coefficient α1 which corresponds to d = 1 is not zero,

α1 6= 0. (6.29)

Here P (z) is the holomorphic Eisenstein series of weight 2 for the modular group Γ̄0(1).

We recall

P (z) = E2(z) = 1− 24
∞∑
n=1

σ(n)e2πinz. (6.30)

It is not quite a modular form of weight 2. We have the following transformation

properties:

P

(
az + b

cz + d

)
= (cz + d)2P (z)− 6i

π
c(cz + d),

(
a b
c d

)
∈ Γ̄0(1). (6.31)

In particular

{
P (−1/z) = z2P (z)− 6i

π
z

P (z + 1) = P (z)
. (6.32)

We consider (6.28) as a system of linear equations with unknown αd, using well-known

asymptotics of ω(z) and P (z) at cusps of F0(4N2), fundamental domain for Γ̄0(4N2).
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When we defined the non-holomorphic Eisenstein series (2.1) we introduced the ele-

ments gj. We now parametrize these elements by the divisors d |4N2 , and we will consider

all inequivalent cusps of Γ0(4N2), see (1.8), (1.9), (1.10), (1.11). We have

gdS∞g
−1
d = Sd (6.33)

gd =

(
1 0
d 1

)( √
md 0

0
√
md
−1

)
=

( √
md 0

d
√
md

√
md
−1

)
.

As a linear fractional transformation, gdz = mdz
dmdz+1

, it has integer coefficients. To calculate

the asymptotics of the right hand side of (6.28) at the cusps 1/d′ we have to find the

asymptotics of the functions

P (dgd′z) = P

(
dmd′z

d′md′z + 1

)
, z →∞ (6.34)

for all positive divisors d |4N2 , d′ |4N2 . We set md′z = z′ and consider P
(

dz′

d′z′+1

)
=

P
(

d1z′′

d2z′′+1

)
where

d1 = d/(d, d′), d2 = d′/(d, d′), z′′ = (d, d′)z′ = (d, d′)md′z

where (d, d′) is the greatest common divisor of d, d′. The matrix

(
d1 0
d2 1

)

does not belong to Γ̄0(1), so we can not directly apply formula (6.31), but since we have

(d1, d2) = 1 we can make the following transformation. We define

g =

(
α β
γ δ

)
∈ PSL(2,R)

P

(
d1z
′′

d2z′′ + 1

)
= P

(
g−1 ◦ g d1z

′′

d2z′′ + 1

)
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g
d1z
′′

d2z′′ + 1
=
α
(

d1z′′

d2z′′+1

)
+ β

γ
(

d1z′′

d2z′′+1

)
+ δ

=
(αd1 + βd2)z

′′ + β

(γd1 + δd2)z′′ + δ
(6.35)

We now choose α, β, γ, δ by αd1 + βd2 = 1, γd1 + δd2 = 0.

For example γ = −d2, δ = d1. Since (d1, d2) = 1 there exist integers α, β with these

conditions. That means g ∈ SL(2,Z). We have

g
d1z
′′

d2z′′ + 1
=
z′′ + β

d1
=

o
z,

and we apply (6.31) to the function

P
(
g−1 oz

)
= P

(
d1

o
z − β

d2
o
z + α

)
=
(
d2

o
z + α

)2

P
(
o
z
)
− 6i

π
d2

(
d2

o
z + α

)
. (6.36)

We have finally from (6.34), (6.35), (6.36) and (6.30)

(
d2

o
z + α

)2

=

(
d2(z′′ + β)

d1
+ α

)2

=

(
d2z
′′ + 1

d1

)2

(6.37)

=
1

d2
1

(d2(d, d′)md′z + 1)
2

=
1

d2
1

(d′md′z + 1)
2

=
(d, d′)2

d2
(d′md′z + 1)

2
.

That means, from (6.32), (6.37) we get

lim
z→∞

(d′md′z + 1)−2P (dgd′z) =
(d, d′)2

d2
. (6.38)

That gives the desired asymptotics of the right hand side of (6.28).

From (6.10), (6.16) we can see that

lim
z→∞

Gd,2(gd′z)
(
d′
√
md′z +

√
md′

−1
)−2

= δdd′
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that means

lim
z→∞

Gd,2(gd′z)(d
′md′z + 1)−2 =

δdd′

md′
. (6.39)

Combining with (6.16) we obtain the following system of linear equations where d′ |4N2

∑
d′′|4N2

d′′>0

βd′′(d
′, d′′)2 =

∑
d1|N2

d1>0

δ(2d1)d′
n2d1

md′
(6.40)

where αd′′ = βd′′ · d′′2. From this system we have to determine the coefficients αd′′ and to

see that there exists a form ω(z) with α1 6= 0.

Before studying the system (6.40) we will define the analogous system for the case

Γ̄0(4N3). We have

ω(z) =
∑

d|4N3 ,d>0

P (dz)αd. (6.41)

Using the definition of ω(z) in this case (6.19), we obtain in analogy with (6.40) the system

∑
d′′|4N3

d′′>0

βd′′(d
′, d′′)2 =

∑
d1|N3/2
d1>0

δ(2d1)d′
n2d1

md′
+
∑

d2|N3/2
d2>0

δ(4d2)d′
n4d2

md′
(6.42)

where αd′′ = βd′′ · d′′2.

In AppendixA we prove the following Theorem about solution of the systems of equa-

tions (6.40) and (6.42).

Theorem 6.1 In both the cases Γ̄0(4N2) and χ4n2, Γ̄0(4N3) and χ4N3 there exist forms

ω(z) given by (6.16), (6.17) and (6.19), (6.20) with the properties that each of them is

given by a formula (6.28) with rational coefficients αd, and the coefficient α1 is not zero.
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At the end of this paragraph we present some class of forms ω(z) with explicit coef-

ficients αd. For these forms we can evaluate the Phillips-Sarnak integral (see Section 7).

We have to satisfy two necessary conditions for the coefficients αd. Namely 1) ω(z) has to

be a holomorphic form of weight 2 for our group Γ̄0(N) with trivial character. 2) It has to

be small in all open cusps for the character χ. We have ω(z) =
∑
d|N

αdP (dz), ω(1/d′) = 0

if 1/d′ is an open cusp. Then we have

P (dgd′z) = P

(
dmd′z

Nz + 1

)
= (Nz + 1)2 P

(◦
z
) (d, d′)2

d2
− 6i

π
· d
′

d
(Nz + 1) .

The first condition becomes

∑
d|N

αd · 1/d = 0 (6.43)

since we have d2

(
d2
◦
z + α

)
= d2 · (d,d′)

d
(Nz + 1) = d′

(d,d′) ·
(d,d′)
d

(Nz + 1) (see notations for

(6.35)). And the second condition is

∑
d|N

(d, d′)2

d2
αd = γd′ = 0 if 1/d′ is open. (6.44)

We introduce now the notations d = 2β0 · qβ1

1 ...q
βk
k , d |N , where qj are different primes.

Then β0 = 0, 1, 2 in the second case (see Theorem 1.1) and β0 = 0, 1, 2, 3 in the third case.

For other βj j = 1, ..., k we have in both cases βj = 0, 1. We denote

αd = αβ0β1...βk.

We will now prove the theorem, considering the cases 2) and 3) separately.

Theorem 6.2 Let ω(z) =
∑

d|N αdP (dz), αd = αβ0β1...βk. The following systems of coeffi-

cients αβ0...βk define a class of forms ω(z) =
∑
d|N

αdP (dz) which satisfy (6.43), (6.44) and
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therefore define regular character perturbations of A(Γ̄0(N), χ). For N = 4N2 we have

d = 2β0qβ1
1 ...q

βk
k , qj |N2 different primes, then αd = αβ0β1...βk, where

α0β1...βk = (−1)β1+β2...+βkεβ1
1 ...ε

βk
k q

β1
1 ...q

βk
k , ε1 = 1

α1β1...βk = −5α0β1...βk

α2β1...βk = 4α0β1...βk

βj = 0, 1, j = 1, ..., k.

(6.45)

For N = 8N3, d = 2β0qβ1

1 ...q
βk
k

α0β1...βk = (−1)β1+...+βkεβ1

1 ...ε
βk
k q

β1

1 ...q
βk
k , ε1 = 1

α1β1...βk = −7α0β1...βk

α2β1...βk = 14α0β1...βk

α3β1...βk = −8α0β1...βk

(6.46)

where ε2, ..., εk are any real numbers.

Proof. Let N = 4N2. We have

1

d
α0β1...βk = (−1)β1+...+βkεβ2

2 ...ε
βk
k (6.47)

and if we sum (6.47) over all d |N2 we are obviously getting zero, because of (−1)β1 coming

with β1 = 0 and β1 = 1. The same is true for the other two lines in (6.45). So the condition

(6.43) is satisfied. We check now (6.44). We have

2∑
β0=0

1∑
β1=0

...
1∑

βk=0

αβ0...βk

22β0q2β1
1 ...q2βk

k

22 min(β0,β′0)q
2 min(β1,β′1)
1 ...q

2 min(βk,β
′
k)

k (6.48)

=
1∑

β1=0

...
1∑

βk=0

(−1)β1+...βk

qβ1
1 ...q

βk
k

εβ1

1 ...ε
βk
k · q

2 min(β1,β′1)
1 ...q

2 min(βk,β
′
k)

k(
1− 5

4
· 22 min(1,β′0) +

4

16
· 22 min(2,β′0)

)
. (6.49)

From Theorem 1.1 follows that β′0 = 0 or β′0 = 2 for the open cusp zd′ . Then the last term

in parenthesis of (6.48) is equal to zero in both these cases.

The case N = 4N3 is dealt with in the same way. For the last step we have the
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common multiple

1− 7

4
· 2min(1,β′0) +

14

16
· 22 min(2,β′0) − 8

64
22 min(3,p′0). (6.50)

The open cusps in that case correspond to β′0 = 0 or β′0 = 3, and we obtain in that case

that (6.50) is equal to zero. The theorem is proved.

These forms ω(z) are important for our perturbation (6.5), (6.6), and precisely for

these forms we will consider the Phillips-Sarnak conjecture.

7 The Phillips-Sarnak integral

In this section we study the Phillips-Sarnak integral, adapted to our perturbation (6.6).

For any odd eigenfunction of Theorem 4.2, which corresponds to an embedded eigenvalue

λj > 1/4 (actually, according to the Selberg eigenvalue conjecture, reduced to our case of

congruence character, all λj ≥ 1/4) we define the integral over the fundamental domain

F0(N) of Γ̄0(N). We use the notations of Section 6 (see the beginning of Section 6).

The cusp 1/N is equivalent to ∞. So we have F0(N), containing ∞, and we define the

Eisenstein series

E∞(z, s) = E∞(z, s; Γ̄0(N);χ) =
∑

γ∈Γ∞\Γ

ys(γz)χ(γ). (7.1)

The integral is the following one

Ij(s) =

∫
F0(N)

(Mvj)(z)E∞(z, s)dµ(z). (7.2)
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Theorem 7.1 1) For any Hecke eigenfunction vj of A(Γ̄0(N);χ), given by Theorem 4.2,

with eigenvalue λj = sj(1−sj) = 1
4

+r2 and for any form ω(z) from Section 6 the integral

Ij(sj) is well defined.

2) Let ω(z) be a form given by Theorem 6.2 with real parameters ε2,..., εk (ε1 = 1).

Let ε2, ..., εl = ±1 and εm 6= ±1 for m = l + 1, ..., k. Then Ij(sj) 6= 0 if sj = 1
2

+ irj does

not belong to any of the following sequences:

sn =
1

2
+ irn with rn = n

π

log 2
, rn = n

π

log qm
, m = 1...l, n ∈ Z.

Proof. The proof contains two parts, the first being the calculation of the integral,

and the second the evaluation of the Dirichlet series coming from vj and ω.

We take first Re s > 1. It is not difficult to see that vj(z) is a function of exponential

decay in all parabolic cusps of F0(N). This follows from the fact that vj(z) is an eigen-

function of the Laplacian, which is (Γ̄0(N), χ) automorphic. In open cusps zm it is a cusp

form and it has Fourier decomposition

vj(gmz) =
√
y
∑
n6=0

ρ(m)
j (n)Ksj−1/2(2π |n| y)e2πinx (7.3)

where gm is defined in (2.1). In closed cusps zl it has Fourier decomposition

vj(glz) =
√
y

∞∑
n=−∞

ρ
(l)
j (n)Ksj−1/2(2π |n+ 1/2| y)e2πi(n+1/2)x. (7.4)

Then it is obvious that vj(γz) = χ(γ)vj(z), (Mvj)(γz) = χ(γ)(Mvj)(z)
E∞(γz; s) = χ(γ)E∞(z, s)
χ2(γ) = 1, γ ∈ Γ̄0(N)

.
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That means that the integral (7.2) is well defined and we can unfold the Eisenstein

series E∞(z, s), obtaining

Ij(s) =

∞∫
0

dy

y2

1/2∫
−1/2

dx(Mvj(z))y
s (7.5)

where y−2(Mvj)(z) = −4πi(ω1vjx − ω2vjy) (see (6.6)),

vjx =
∂vj
∂x

, vjy =
∂vj
∂y

.

Then we have

1/2∫
−1/2

ω1(x, y)vjx(x, y)dx = ω1vj

1/2∫
−1/2

−
1/2∫

−1/2

ω1x(x, y)vj(x, y)dx (7.6)

= −
1/2∫

−1/2

ω1x(x, y)vj(x, y)dx

because ω and vj are periodic in x with period 1. Similarly

∞∫
0

ysω2vjydy = ysω2v

∣∣∣∣∣∣
∞

0

− s
∞∫

0

ys−1ω2vjdy −
∞∫

0

ysvjω2dy (7.7)

= −s
∞∫

0

ys−1ω2vjdy −
∞∫

0

ysvjω2ydy.

Also we have Fourier decompositions
ω1(x, y) =

∞∑
n=1

ane
−2πny cos 2πnx

ω2(x, y) =
∞∑
n=1

ane
−2πny sin 2πnx

. (7.8)

Using (7.3)-(7.8) we obtain

Ij(s) = 4πi

∞∫
0

ysdy

1/2∫
−1/2

dx(ω1x − ω2y)vj − 4πis

∞∫
0

ys−1dy

1/2∫
−1/2

ω2vjdx (7.9)

= −4πis

∞∫
0

ys−1dy

1/2∫
−1/2

ω2(x, y)vj(x, y)dx.

62



Then we apply (4.12), (7.8) to (7.9). We obtain

Ij(s) = 4πs

∞∫
0

ys−1/2
∞∑
n=1

anρj(n)e−2πnyKsj−1/2(2πny)dy (7.10)

= 4πs
1

(2π)s+1/2

 ∞∫
0

ts−1/2e−tKsj−1/2(t)dt

 ∞∑
n=1

anρj(n)

ns+1/2
.

The standard integral in brackets is equal to

√
π · 2−s−1/2 Γ(s+ sj)Γ(s− sj + 1)

Γ(s+ 1)
(7.11)

and we finally obtain

Ij(s) =
s

22s−1πs−1
· Γ(s+ sj)Γ(s− sj + 1)

Γ(s+ 1)

∞∑
n=1

anρj(n)

ns+1/2
. (7.12)

We have now s = 1/2 + iτ, τ 6= 0, sj = 1/2 + iτj , τj 6= 0 (τ, τj ∈ R).

With these conditions the factor to the Dirichlet series in (7.12) is never equal to the

zero. So we have to study the Dirichlet series in more detail.

We have ω(z) =
∑
d|N

αdP (dz). We introduce ω̃(z) = − 1
24
ω(z), b(n) = −1/24an. The

series we will study is

Rj(s) =
∞∑
n=1

b(n)ρj(n)

ns+1/2
, Re s > 1. (7.13)

We have then

ω̃(z) =
∑
d|N

αd

∞∑
n=1

σ(n)e2πindz. (7.14)

We arrange the summation in (7.13) in the following way. We write n = pr00 p
r1
1 ...p

rk
k ·

p
rk+1

k+1 ...p
rm
m where rj ≥ 0, 0 ≤ j ≤ m, m = 0, 1, ... and pj |N , 0 ≤ j ≤ k, p0 = 2. Then we

63



have for d |N , d = pβ0
0 p

β1
1 ...p

βk
k where β0 = 0, 1, 2 in the case N = 4N2 and β0 = 0, 1, 2, 3

in the case N = 4N3. For other primes βj = 0, 1, 1 ≤ j ≤ k we have

ω̃(z) =
∑

β0,...,βk

αβ0...βk

∑
n

σ (pr00 ) ...σ (prmm ) exp 2πiz
(
pr0+β0

0 ...prk+βk
k · prk+1

k+1 ...p
rm
pm

)
. (7.15)

Using (7.14), (7.15) we obtain

b (pr00 ...p
rm
m ) =

∑′

β0,...,βk
αβ0...βkσ

(
pr0−β0

0

)
...σ
(
prk−βkk

)
σ
(
p
rk+1

k+1

)
...σ (prmm ) . (7.16)

The prime means that the sum is taken over βj with the conditions rj − βj ≥ 0.

We have from (7.16) and Theorem 4.2, setting

n = pl0+β0
0 ...plk+βk

k · plk+1

k+1 ...p
lm
m , (7.17)

∞∑
n=1

b(n)ρj(n)

ns+1/2
=
∑

β0,...,βk

αβ0...βk

∞∑
n=1

σ
(
pl00
)
σ
(
pl11
)
...σ
(
plmm
)
ρj

(
pl0+β0

0 ...plk+βk
k · plk+1

k+1 ...p
lm
m

)
(
pl0+β0

0 ...plk+βk
k · plk+1

k+1 ...p
lm
m

)s+1/2

(7.18)

=
∑

β0,...,βk

αβ0...βk

ρβ0

j (p0)...ρβkj (pk)(
pβ0

0 ...p
βk
k

)s+1/2

∏
q|N

∞∑
n=0

σ(qn)ρnj (q)

qn(s+1/2)

∏
p-N

∞∑
n=0

σ(pn)ρj(p
n)

pn(s+1/2)
.

The right hand side of (7.18) is the product of three factors θ1, θ2, θ3. We consider first θ2

and θ3. For θ2 we have

θ2 =
∏
q|N

∞∑
n=0

σ(qn)ρnj (q)

qn(s+1/2)
=
∏
q|N

∞∑
n=0

qn+1 − 1

q − 1
·
ρnj (q)

qn(s+1/2)
(7.19)

=
∏
q|N

(
1− ρj(q)q−s+1/2

)−1 (
1− ρj(q)q−s−1/2

)−1
.

For θ3 we have

θ3 =
∏
p-N

∞∑
n=0

σ(pn)

pn(s+1/2)
ρj(p

n) (7.20)

=
∏
p-N

∞∑
n=0

ρj(p
n)

pn(s+1/2)
· p

n+1 − 1

p− 1

=
∏
p-N

∞∑
n=0

1

p− 1

(
pρj(p

n)

pn(s−1/2)
− ρj(p

n)

pn(s+1/2)

)
.
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Then we get

θ3 =
∏
p-N

1

p− 1
[p
(
1− ρj(p)p−(s−1/2) + χ(p)p−2(s−1/2)

)−1
(7.21)

− (1− ρj(p)p−(s+1/2) + χ(p)p−2(s+1/2))−1]

=
∏
p-N

(1− χ(p)p−2s)(1− ρj(p)p−(s−1/2) + χ(p)p−2s+1))−1

· (1− ρj(p)p−(s+1/2) + χ(p)p−2s−1)−1

Then using Theorem 5.1 we obtain that the product of θ2 and θ3 from (7.18) is equal to

θ2 · θ3 =
∏
q|N

·
∏
p-N

= L−1(2s;χ)L(s+ 1/2; vj)L(s− 1/2; vj). (7.22)

From Theorem 5.4 follows that (7.22) is not zero for any s = 1/2 + ir, r ∈ R. In order

to prove the theorem we have to study now the first factor θ1 in (7.18). Here we have to

consider separately two different cases N = 4N2, N = 4N3. For N = 4N2 the factor θ1 is

equal to (with notation pj = qj |N)

∑
β0...βk

αβ0...βkρj(2)β0ρj(q1)β1 ...ρj(qk)
βk
(

2β0qβ1
1 ...q

βk
k

)−(s+1/2)

(7.23)

=
(

1− 5ρj(2) · 2 1
2
−s + 4ρ2

j(2) · 21−2s
) ∏
q|N2, q prime

(
1− εq

qs−1/2
ρj(q)

)
, εq = εqj .

We have s − 1/2 = ir. To make (7.23) equal to zero we have to satisfy one of the

following conditions,

ρj(2) = 2irj , ρj(2) = 1/2 · 2irj , ρj(q) = qirj/εq.

We apply now Theorem 4.3 that ρj(q) = ±1, ρj(2) = ±1, and that gives the result in the

case N = 4N2. To prove it for N = 4N3 we have to see also the equation

1− 7ρj(2) · 2−ir + 14ρ2
j(2)2−2ir − 8ρ3

j(2)2−3ir = 0. (7.24)
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That gives solutions for ρj(2) equal to 2irj , 1/2 · 2irj , 1/4 · 2irj and the result follows as in

the case N = 4N2. The theorem is proved.

8 Perturbation of embedded eigenvalues

Definition 1 Suppose that F has h cusps z, ..., zh and that under the character χα the

cusps z1, ..., zk are open and zk+1, ..., zh are closed. Let γizi = ∞, i = 1, ..., k, where

γi = g−1
i . The Banach spaces Cµ,ν = Cµ,ν(F ) are defined as the spaces of continuous

functions f on F such that

|f(γiz)| ≤ C |Im γiz|µ for i = 1, ..., k

|f(γiz)| ≤ C |Im γiz|ν for i = k + 1, ..., h

with the norm

‖f‖µ,ν = max

max
1≤i≤k

sup
z∈F

Im γiz≥1

|f(γiz)| (Im γiz)
−µ, max

k+1≤i≤h
sup
z∈F

Im γiz≥1

|f(γiz)| (Im γiz)
−ν

 .

We utilize mainly the spaces C1,−2, C1 = C1,1 and C−1,0.

We make use of results of [F] on estimates and mapping properties of the resolvent

kernel of the Laplacian A(Γ) extended by [V1] to operators A(Γ, χ) with character χ.

From the results of [F] and [V1] we obtain the following theorem.

Theorem 8.1 For any α ∈
(
−1

2
, 1

2

)
the resolvent R(s, α) of L(α) = L+ αM + α2N has

an analytic continuation R̃(s, α) to {s |0 < Re s < 2} as an operator in B(C−1,0, C1,−2).

For Re s > 1, R(s, α) ∈ B(C1,−2).
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We set R̃(s) = R̃(s, 0).

We consider the mapping properties of the operators M and N . In the open cusps the

coefficients of M and N are exponentially decreasing, in the closed cusps they go like y2.

It follows that V (α) ∈ B(C1,−2), C−1,0), where V (α) = αM + α2N . This implies

Lemma 8.2 V (α)R̃(s) ∈ B(C−1,0) for 0 < s < 2,

∥∥∥V (α)R̃(s)
∥∥∥
B(C(−1,0))

→
α→0

0

and for |α| < ε

R̃(s, α) = R̃(s)(1 + V (α)R̃(s))−1 ∈ B(C−1,0, C1,−2).

R̃(s, α) is analytic with values in B(C−1,0, C1,−2) for 0 < Re s < 2 as a function of α

for |α| < ε.

We now consider the operator L1(α) = L + αM + α2N acting in the Banach space.

C1,−2 with maximal domain D(L1(α)).

By Theorem 8.1 the resolvent R1(s) of L1 = L1(0) exists as an operator in B(C1,−2) for

Re s > 1, hence V (α)R1(s) ∈ B(C1,−2) and ‖V (α)R1(s)‖ →
α→0

0 for Re s > 1. Moreover,

for |α| < ε and Re s > 1

R1(s, α) = R1(s)(1 + V (α)R1(s))−1 ∈ B(C1,−2).

It follows that L1(α) is closed on the domain D(L1(α)) = D(L1) for |α| < ε. We have

established
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Lemma 8.3 L1(α) is analytic for |α| < ε as a family of closed operators in C1,−2 with

domain D(L1).

We shall analyze now the perturbation of embedded eigenvalues. This was investigated

by [Ho] for Schrödinger operators−∆+αV with multiplicative potential V . In our case the

form of the perturbation requires a somewhat different approach, combining the analytic

family P̃ (α) derived from Faddeev’s analytic continuation of the resolvent with Kato’s

theory of regular perturbations of isolated eigenvalues for selfadjoint operators [K].

Let λ0 = s0(1 − s0) > 1
4

be an eigenvalue of L = A(Γ̄, χ), s0 = 1
2

+ it0, t0 6= 0, with

eigenspace N = N (L− λ0) of dimension m.

Let K = K(s0, δ) be a circle with center s0 and radius δ separating s0 from other

points si corresponding to eigenvalues λi = si(1 − si) of L, and choose ε > 0 such that

R̃(s, α) ∈ B(C−1,0, C1,−2) for s ∈ K and |α| < ε. The operators P̃ (α) ∈ B(C−1,0, C1,−2)

are defined for |α| < ε by

P̃ (α) = − 1

2πi

∫
K

R̃(s, α)(2s− 1)ds.

P̃ (α) is analytic in α for |α| < ε, and P̃ (0) coincides with the orthogonal projection

P0 of H on N(L− λ0), restricted to C−1,0.
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We consider the operators

P0P̃ (α)P0 = − 1

2πi
P0

∫
K

R̃(s, α)(2s− 1)dsP0

= − 1

2πi
P0

∫
K

R̃(s)(2s− 1)dsP0

+
1

2πi
P0

∫
K

R̃(s, α)(αM + α2N)R̃(s)(2s− 1)dsP0

= P0 + αP0
1

2πi

∫
K

R̃(s, α)(M + αN)R̃(s)(2s− 1)dsP0.

Here we use that R(P0) = N ⊂ C−1,0 = D(P̃ (α)). Since the eigenfunctions φ ∈ N decay

exponentially, we can also consider P0 as an operator inB(C1,−2,H), so P0P̃ (α)P0 ∈ B(H).

For α→ 0, the second term converges in norm to zero.

It follows that dimR(P0P̃ (α)P0) = dimR(P0) = m for |α| < ε.

The circle K contains for each α with |α| < ε a finite number of poles s1(α), ..., sk(α) of

the meromorphic function R̃(s, α) with values inB(C−1,0, C1,−2). Let P̃i(α) = −Res
{
R̃(s, α)

}
s=si(α)

.

Then

P̃ (α) =
k∑
i=1

P̃i(α).

For |α| < ε we have

m = dimR(P̃ (α)P0) =
k∑
i=1

dimR(P̃i(α)P0. (8.1)

This implies that for |α| < ε all the poles si(α) of R̃(α, s) inside K are simple.
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Then we have with λi(α) = si(α)(1− si(α))

(L1(α)− λi(α))P̃i(α) = 0, i = 1, ..., k.

We choose a basis φ1, ..., φm of N and set φj(α) = P̃ (α)φj.

Let now φ(α) be an eigenfunction or a resonance function with eigenvalue or resonance

λ(α). Then φ(α) ∈ P̃ (α)N , hence

φ(α) =
m∑
j=1

aj(α)φj(α) =
m∑
j=1

aj(α)P̃ (α)φj. (8.2)

The condition (L1(α)− λ(α))φ(α) = 0 is equivalent to

〈(L1(α)− λ(α))φ(α), φk〉 = 0, k = 1...m (8.3)

or

m∑
j=1

aj(α)〈(L1(α)− λ(α))P̃ (α)φj, φk〉 = 0, k = 1...m.

In order that these equations have non-trivial solutions, it is necessary and sufficient

that

d(λ;α) = det
{
〈(L1(α)− λ(α))P̃ (α)φj, φk〉

}m
j,k=1

= 0. (8.4)

Since the coefficients of the polynomial d(λ, α) are analytic in α for |α| < ε, it follows

that the m−dimensional eigenvalue λ0 splits into analytic functions λi(α) and branches

λjl(α) of Puiseux cycles. Any embedded, real eigenvalue is analytic, while resonances,

which are non-real for α 6= 0, may be analytic functions or branches of Puiseux cycles.

70



Due to the special circumstance that a resonance λjl(α) can not move into the resolvent

set, but has to move to the second sheet, the Puiseux series for λjl(α) has to begin with

a polynomial of the form

2k−1∑
l=0

alα
l + a2kα

2k, al real for l ≤ 2k − 1, Im a2k 6= 0, k ≥ 1.

This implies that λjl(α) ∈ C2k(−ε, ε).

Based on this we construct a Kato basis for N and L(α).

Let

λ1(α), λ2(α), ..., λs(α)

be the distinct real eigenvalues of L(α) with multiplicity mi, i = 1, ..., s, and let

λs+1(α), λs+2(α), ..., λs+t(α)

be the distinct resonances of L(α) with multiplicity mi, i = s+ 1, ..., s+ t. The functions

λ1(α), ..., λs(α) are analytic for |α| < ε, while the functions λs+1(α), ..., λs+t(α) are at least

C2(−ε, ε) and may be analytic. The dimensions mj , j = 1, ..., s+ t, are independent of α

for 0 < |α| < ε and
s+t∑
j=1

mj = m.

For i = 1, .., s we get from (8.3) with λ(α) = λi(α)

m∑
j=1

aj(α)〈(L1(α)− λi(α))P̃ (α)φj, φk〉 = 0, k = 1, ...,m. (8.5)

Since d(λi(α), α) = 0 and λi(α) has multiplicity mi as root in d(λi(α), α), we can obtain

mi linearly independent solutions {alj(α)}mj=1 of (8.5), l = 1, ...,mi. Then by (8.2) we
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obtain mi linearly independent eigenfunctions φl(α) =
∑m

j=1 alj(α)φj(α), analytic for

|α| < ε. It follows that for any linear combination φ =
∑mi

j=1 clφl(0), φ(α) = P̃ (α)φ =

∑mi
j=1 clP̃ (α)φl(0) =

∑mi
j=1 clφl(α), so (L1(α)− λi(α))φ(α) = 0 for any φ in the subspace

Ei spanned by φ1(0), ..., φl(0).

Consider now a resonance λi(α), where we assume that λli(α) is a b ranch of a Puiseux

cycle, i = s+1, ..., s+t. Again we insert λi(α) in (8.3), getting (8.5), but we only know that

λli(α) ∈ C2(−ε, ε). We can again solve (8.5) for alj(α), since d(λli(α), α) = 0, obtaining

C2(−ε, ε) functions ali(α), l = 1, ...,mi. Moreover, we get mi linearly independent vectors

{ali(α)}mil=1, since for |α| < ε, λli(α) is a simple pole of R̃(λ, α) so that the range of

Resλi(α)R̃(λ, α) is N(L1(α)−λi(α)). This gives by (8.2) mi linearly independent resonance

functions ψli(α), l = 1, ...,mi, which are C2(−ε, ε) with values in C1,−2. As above, for any

function ψ =
mi∑
l=1

βlψli(0)

P̃ (α)ψ = ψ(α) =

mi∑
l=1

βlψli(α) and (L1(α)− λli(α))ψ(α) = 0.

We can choose an orthonormal basis for Eli = span{ψli(0)}mil=1, but whereas the subspaces

Ei and Ej corresponding to embedded eigenvalues λi(α) and λj(α) are orthogonal, Eli is

not necessarily orthogonal to the spaces Eki, Elj and Ei. If the resonance λi(α) is analytic,

we onbtain analytic functions ψi(α).

We have proved the following general result on perturbation of embedded eigenvalues

and eigenfunctions.
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Theorem 8.4 Let λ0 = s0(1− s0) be an eigenvalue of L with eigenspace N of dimension

m. The poles λ1(α), ..., λk(α) of R̃(α, s) inside the curve K1 can for |α| < ε be divided

into groups forming Puiseux cycles of order p ≥ 1. If p = 1, the corresponding λj(α) is

analytic for |α| < ε. If p ≥ 2, the Puiseux cycle consists of p branches λj1(α)...λjp(α) of

a function having a branch point of order p at α = 0. In the first case p = 1 we have the

following possibilities,

1. λ1(α) is real for all real α, and λi(α) is an embedded eigenvalue of L(α) for α ∈

(−ε, ε).

2. λi(α) = λ0 + a1α + ... + a2l−1α
2l−1 + a2lα

2l +
∑

m≥2l+1

amα
m, a1, ..., a2l−1 are real,

Im a2l > 0 for s0 = 1
2

+ it0, Im a2l < 0 for s0 = 1
2
− it0, t0 > 0.

In the case p ≥ 2, the functions λj1(α), ..., λjp(α) have expansions of the form

λjl(α) = λ0 + b1α+ ... + b2m−1α
2m−1 + b2mα

2m + b2m+1ω
lα(2m+1)/p + ...,

l = 1, ..., p, where b1, ..., b2m−1 are real and Im b2m > 0 for s0 = 1
2

+ it0, Im b2m < 0 for

s0 = 1
2
− it0, t0 > 0.

The multiplicity of each λi(α) and λj(α) is constant and is the same for all elements

of a Puiseux cycle.

The total dimension of the eigenvalues and resonances λi(α) and λjl(α) equals m.

For each eigenvalue function or analytic resonance function λi(α) of multiplicity mi

there exists an mi-dimensional subspace Ni of N , such that for φ ∈ Ni, φ(α) = P̃ (α)φ ∈
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N(L1(α) − λi(α)), and φ(α) is analytic for |α| < ε with values in H for embedded

eigenvalues λi(α) and C1,−2 for resonances λi(α). When λlj(α) with multiplicity mj is a

branch of a Puiseux cycle, there exists an mj-dimensional subspace Nlj of N , such that

for φ ∈ Nlj, φ(α) = P̃ (α)φ ∈ N(L1(α) − λlj(α)), and φ(α) ∈ C2(−ε, ε) with values in

C1,−2. Choosing any orthonormal bases of each of the spaces Ni and Nlj, we obtain taking

their union a Kato basis of N , where functions from different subspaces are not necessarily

orthogonal unless both consist of eigenfunctions φi ∈ Ni, φk ∈ Nk where φi(α) and φj(α)

are eigenfunctions of L(α).

We shall now derive explicit formulas for the perturbation of the eigenvectors φ to first

order and the eigenvalue λ0 = s0(1− s0) to second order.

Let φ ∈ N (L− λ0) = P0H. Then φ(α) = P̃ (α)φ is an analytic function with values in

C1,−2 for |α| < ε. We calculate φ1 = φ′(0) as follows.

φ1 = lim
α→0

1

α

{
P̃ (α)− P̃ (0)

}
φ (8.6)

= lim
α→0

1

α

(−1)

2πi

∫
K

{
R̃(α, s)− R̃(s)

}
(2s− 1)ds

= lim
α→0

1

2πi

∫
K

1

α
R̃(α, s)(αM + α2N)R̃(s)φ(2s− 1)ds

= lim
α→0

1

2πi

∫
K

R̃(α, s)(M + αN)(L− s(1− s))−1φ(2s− 1)ds

=
1

2πi

∫
K

R̃(s)Mφ {s0(1− s0)− s(1− s)}−1 (2s− 1)ds.
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Setting ψ = Mφ, we derive an expression for R̃(0, s)ψ. Let |s− s0| < δ, Re s > 1
2
,

Im(s− s0) > 0. Then by the spectral theorem,

R(s)ψ =
1

4π

∫ ∞
−∞

1
1
4

+ r2 − s(1− s)

m∑
j=1

| Ej(1
2

+ ir)〉〈Ej(1
2
− ir)|ψ〉 (8.7)

+Rl(s)ψ +Rd(s)ψ + (s0(1− s0)− s(1− s))−1 P0ψ,

where h is the number of open cusps,

Rl(s)ψ =
∞∑
k=1

|φk 〉 〈 φk| ψ〉 (sk(1− sk)− s(1− s))−1

Rd(s)ψ =
∞∑
l=1

|φ′k 〉 〈 φ′k| ψ〉 (s′k(1− s′k)− s(1− s))
−1

and sk(1− sk) are the embedded eigenvalues different from s0(1− s0) with eigenfunctions

φk and s′l(1− s′l) are the small, discrete eigenvalues with eigenfunctions φ′k.

Here we use the notation 〈u, v〉 =
∫
F
u(z)v̄(z) dµ(z) for any pair of functions on F

such that
∫
F
|u| · |v| dµ(z) <∞. Also, |u〉 means multiplication by the function u.

The integrand is analytic in r, and we can deform the contour R to a contour ΓR,

|s− s0| < R ≤ δ, obtained by replacing [t0 −R, t0 +R] by the semicircle
{
−Reiϕ |0 ≤ ϕ ≤ π

}
,

see Fig. 1.

For a fixed s the poles of the function
(

1
4

+ r2 − s(1− s)
)−1

are

ρ± = ±i(s− 1
2
) = ±i (it0 + s− s0) = ∓t0 ± i (s− s0) .
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0

t0 -R t0 R+t0

t0 - i(s-s )0

Figure 1: Deformation of the spectrum of L.

We have chosen to focus on s0 = 1
2

+ it0. The root ρ− = t0 − i(s − s0) lies inside the

above semicircle. The residue of the integrand at the simple pole ρ− is

Res

{
1

r − i
(
s− 1

2

) 1

r + i
(
s− 1

2

) h∑
j=1

|Ej (1
2

+ ir) 〉 〈 Ej(1
2
− ir) | ψ〉

}
r=−i

�
s−1

2

�

=
1

−2i
(
s− 1

2

) h∑
j=1

|Ej (s) 〉 〈 Ej (1− s)| ψ〉

so the first term Rc(s)ψ of R(s)ψ equals

Rc(s)ψ =
1

4π

∫
ΓR

1
1
4

+ r2 − s(1− s)

h∑
j=1

| Ej(1
2

+ ir 〉 〈 Ej | 1
2
− ir ψ〉 dr (8.8)

+
1

4
(
s− 1

2

) h∑
j=1

|Ej (s) 〉 〈 Ej (1− s)| ψ〉 .

Both terms of Rc(0, s) have analytic continuations to {s |s− s0| < R}, and we obtain

R̃c(0, s)ψ expressed by the same equation (8.8).
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We calculate the first term at s = s0. Replacing R by any smaller radius ρ > 0 we

obtain

1

4π

∫
Γρ

1
1
4

+ r2 − s0(1− s0)

h∑
j=1

| Ej(1
2

+ ir) 〉 〈 Ej(1
2
− ir)| ψ〉 dr

=
1

4π
lim
ρ↓0


t0−ρ∫
−∞

+

∞∫
t0+ρ

 1

r2 − t20

h∑
j=1

| Ej(1
2

+ ir) 〉 〈 Ej(1
2
− ir)| ψ〉 dr

+
1

4π
lim
ρ↓0

∫
C̃ρ

1
1
4

+ r2 − s0(1− s0)

h∑
j=1

| Ej(1
2

+ ir) 〉 〈 Ej(1
2
− ir)| ψ〉 dr

=
1

4π
PP

∞∫
−∞

1

r − t0
1

r + t0

h∑
j=1

| Ej(1
2

+ ir) 〉 〈 Ej(1
2
− ir)| ψ〉 dr

+
1

4π
1
2
· 2πi Res

{
1

1
4

+ r2 − s0(1− s0)

h∑
j=1

| Ej(1
2

+ ir) 〉 〈 Ej(1
2
− ir)| ψ〉 dr

}
s=s0

where C̃ρ is the semicircle {s = ρeiϕ |−π ≤ ϕ ≤ 0} . Thus, half of the previously subtracted

residue is added, and we obtain

R̃c(s0)ψ =
1

4π
PP

∞∫
−∞

1

r − t0
1

r + t0

h∑
j=1

| Ej
(

1
2

+ ir
)
〉 〈 Ej

(
1
2
− ir

)
| ψ〉 dr

+
1

8it0

h∑
j=1

| Ej
(

1
2

+ it0
)
〉 〈 Ej

(
1
2
− it0

)
| ψ〉 .

(8.9)

We can now introduce (8.7) in (8.6), using (8.9). We obtain the following expression

for φ1, using that all the terms of R̃(s)ψ have a simple pole at s = s0 except possibly the

last term of (8.7) which contains a double pole if 1
4

is an eigenvalue of L.

φ1 =
1

4π
PP

∞∫
−∞

1

r − t0
1

r + t0

h∑
j=1

| Ej
(

1
2

+ ir
)
〉 〈 Ej

(
1
2
− ir

)
| Mφ〉 dr (8.10)

+
1

8it0

h∑
j=1

|Ej(1
2

+ it0) 〉 〈 Ej(1
2
− it0) |Mφ〉

+Re(s0)Mφ +Rd(s0)Mφ.
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From this expression for φ1 and Theorem 7.1 it is clear that for every odd Hecke

eigenfunction vj of Theorem 4.2, vj(α) can not be a linear combination of eigenfunctions

corresponding to embedded eigenvalues λi(α), since vj1 /∈ H. Thus, if N(L−λ0) contains

odd functions, there exists at least one eigenfunction φ with eigenvalue λ0, such that φ(α)

is resonance function with resonance λ(α).

To complete the picture we prove, using (8.10), the expression for the imaginary part

of the coefficients in the 2nd order expansion of the resonances λi(α) known as Fermi’s

Golden Rule.

Let λ(α) = λi(α), i = s + 1, ..., s + t, be a resonance of L(α) of multiplicity mi,

0 < |α| < ε, α real, λ(0) = λ. Let φ be a function in the subspace Ni of N of Theorem

8.4, such that

L1(α)φ(α) = λ(α)φ(α). (8.11)

Since λ(α) ∈ C2(−ε, ε) and φ(α) ∈ C2(−ε, ε) with values in C1,−2, we can expand both

sides of the equation (8.11) to second order, obtaining

(L+ αM + α2N)(φ+ αφ1 + 1
2
α2φ2 + o(α2)) (8.12)

= (λ+ αλ1 + 1
2
α2λ2 + o(α2))(φ+ αφ1 + 1

2
α2φ2 + o(α2)).

The first and second order equations are

Lφ1 +Mφ = λ0φ1 +Nφ (8.13)
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and

1
2
Lφ2 +Mφ1 +Nφ = 1

2
λφ2 + λ1φ1 + 1

2
λ2φ. (8.14)

Integrating (8.13) and (8.14) with φ̄, we get

〈Mφ1, φ〉 = λ1 (8.15)

〈Mφ1, φ〉+ 〈Nφ, φ〉 = 1
2
λ2. (8.16)

Here we have used that φ is a cusp form and hence

〈(L = λ)φi, φ〉 = 〈φi, (L− λ)φ〉 = 0, i = 1, 2

and 〈φ1, φ〉 = 0, which follows from (8.10).

Introducing (8.10) in (8.16), we obtain

Reλ2 =
1

2π
PP

∫ ∞
−∞

1

r − t0
1

r + t0

h∑
j=1

| 〈Ej(1
2
− ir) |Mφ〉2dr (8.17)

+ ((Re(s) +Rd(s))Mφ, φ) + (Nφ, φ)

Imλ2 =
1

4t0

h∑
j=1

| 〈Ej(1
2
− it) |Mφ〉 |2 . (8.18)

By Theorems 7.1, 8.4 and (8.10), (8.18), we have obtained the following result.

Theorem 8.5 Let λ = 1
4

+ t2, s = 1
2

+ it, be an eigenvalue of L = A(Γ̄0(N), χ) with

eigenspace N of dimN = m, and assume that N contains a subspace of odd functions.

Let φ ∈ N and φ(α) = P̃ (α)φ. Then φ1 = d
dα
φ(α) |α=0 is given by

φ1 = φ̃1 +
1

8it

h∑
j=1

| Ej(1
2

+ it)〉〈Ej(1
2
− it) |Mφ〉
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where φ̃1 ∈ H is given by (8.10).

The function φ1 /∈ H if and only if 〈Ej(1
2
− it) |Mφ〉 6= 0 for some j.

For odd Hecke functions φ, the function φ1 does not belong to H.

There exists at least one eigenfunction φ in N , such that φ(α) is a resonance function

with resonance λ(α), λ(0) = λ.

For any such eigenfunction, Imλ′′(0) is given by Fermi’s Golden Rule

Imλ2 =
1

4t0

h∑
j=1

| 〈Ej(1
2
− it) |Mφ〉 |2 .

Definition 2 Let

λ1 < λ2 < ... < λk < ...

be the eigenvalues of L whose eigenspaces contain odd subspaces Kk ⊂ N(L − λk) with

multiplicities

dk = dimKk.

Let

mk = max {dj |1 ≤ j ≤ k}

m(λ) = mk for λk ≤ λ < λk+1.

Let S be the union of the exceptional sequences of Theorem 7.1 and

N1(λ) = # {λk ≤ λ}
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N2(λ) = # {λk ≤ λ |λk ∈ S }

N3(λ) = # {λk ≤ λ |λk /∈ S } = N1(λ)−N2(λ).

We write

f1(λ) & f2(λ) if, for every ε > 0,
f1(λ)

f2(λ)
≥ 1− ε, λ ≥ Λ(ε).

Theorem 8.6 Assume that m(λ) = o(λ) as λ→∞. Then

N3(λ) &
1

m(λ)

|F |
8π

λ.

Proof. We consider first λ = λk. By Corollary 3.7

N(λk)
|F |
8π
λk
≥ 1− ε1 for λk > Λ(ε1). (8.19)

But

N1(λk) ≥
N(λk)

mk

for all k (8.20)

so

N1(λk) ≥ (1− ε1)
|F |

mk · 8π
λk.

Since N2(λk) ≈ cλ
1
2
k , we conclude that

N3(λk) &
1

mk

|F |
8π

λk.

To obtain the result for general λ we first prove N(λk+1)

N(λk)
→
k→∞

1. We have

N(λk+1) = # {µi ≤ λk+1} = # {µi ≤ λk}+ dk+1 = N(λk) + dk+1 ≤ N(λk) +mk+1

81



where

µ1 ≤ µ2 ≤ ... ≤ µk ≤ ...

are the eigenvalues of L, counted with multiplicity. Then

1 ≤ N(λk+1)

N(λk)
≤ 1 +

mk+1

N(λk)
= 1 +

N(λk+1)

N(λk)
ε(λk+1),

hence

N(λk+1)

N(λk)
(1− ε(λk+1)) ≤ 1, ε(λk+1) →

k→∞
0,

so

lim
k→∞

N(λk+1)

N(λk)
= 1. (8.21)

From (8.20) and (8.21) we obtain

Ñ(λk) ≥
N(λk)

mk
=

N(λk)

N(λk+1)
· N(λk+1)

mk
≥ (1− ε1)

N(λk+1)

mk
, λk > Λ(ε1). (8.22)

By (8.19)

N(λk+1)
|F |
4π
λk+1

≥ 1− ε2, λk > Λ(ε2). (8.23)

From (8.22) and (8.23) follows

Ñ(λk)
1
mk

|F |
4π
λk+1

≥ (1− ε1)(1− ε2) ≥ 1− ε for λk > Λ(ε),

where

ε1 + ε2 + ε1ε2 < ε, Λ(ε) = max {Λ(ε1),Λ(ε2)} .
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Since Ñ(λ) = Ñ(λk), m(λ) = m(λk) = mk for λk ≤ λ < λk+1, this implies

N(λ)
1

m(λ)
|F |
4π
λ
≥ 1− ε, λ > Λ(ε),

and the Theorem is proved.

The result on the asymptotic number of eigenvalues, which become resonances under

character perturbation, thus depends on bounds on the dimension of eigenspaces, see

[Sa]. We obtain the following asymptotics from increasingly strong proved or conjectured

bounds.

Corollary 8.7 (a) Assume m(λ) ≤ c
√
λ

log λ
, c > 0

This can be proved using estimates of the argument of the Selberg zeta function on

Re s = 1
2
, (cf. [Se], [V]).

This bound implies by Theorem 8.6

Ñ(λ) &
|F |
8πc

λ
1
2 log λ.

(b) Assume m(λ) ≤ cλβ for some c > 0, 0 < β < 1.

This is a conjecture [Sa], which implies

Ñ(λ) &
|F |
8πc

λ1−β.

(c) Assume m(λ) ≤ m for all λ > Λ.

This boundedness conjecture implies

Ñ(λ) &
|F |

8πm
λ.
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This indicates that the Weyl law is violated for small α 6= 0. We note that it follows

from the Hecke theory of Section 4 that m ≥ 2.

Remark 8.8 For even eigenfunctions the Phillips-Sarnak integral is zero, since Mφ is

odd for even φ. It is therefore not known whether even eigenfunctions leave or stay under

this perturbation. There is another perturbation obtained by replacing Reω by Imω in the

definition of the characters ω(α),

χ(α)(γ) = e
2πiα Im

R γz0
z0

ω(t)dt
, γ ∈ Γ0(N).

The family A(Γ0(N), χ · χ(α)) corresponds by unitary equivalence via the operator

e2πiα
R z
z0
ω(t)dt to the family of operators in H(Γ0(N), χ)

L̃(α) = L+ αM̃ + α2N

where

L = A(Γ0(N), χ)

M̃ = −4πiy2

(
ω2

∂

∂x
+ ω1

∂

∂y

)

N = 4π2y2(ω2
1 + ω2

2).

It turns out that the operator M̃ is not L-bounded, and therefore the perturbation the-

ory developed for M does not apply. Although the Phillips-Sarnak integrals are in fact

given by the same Rankin-Selberg convolution and can be proved to be non-zero for Hecke
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eigenfunctions, this does not imply that certain eigenvalues with even eigenfunctions be-

come resonances under this perturbation. Indeed, Im
∫ γz0
z0

ω(t)dt = 0 for γ ∈ Γ0(N), which

implies that χ ·χ(α) = χ for all α and the functions Ω(α) = exp
{

2πiα Im
∫ z
z0
ω(t)dt

}
are

Γ0(N)-automorphic. Thus, the operators L̃(α) are unitarily equivalent to L for all α via

L̃(α) = Ω−1(α)LΩ(α), and all eigenvalues stay. The domain D(L̃(α)) equals Ω(α)D(L),

which changes with α.

Remark 8.9 The proof that the Phillips-Sarnak integral is not zero is based on the non-

vanishing of the Dirichlet L-series for eigenfunctions, which is proved using Hecke the-

ory. This is therefore specific for the operators A(Γ̄0(N), χ). However, we can draw the

following conclusions about embedded eigenvalues of A(Γ̄0(N), χ · χ(α)) based on general

perturbation theory. Due to the analyticity in α, each embedded eigenvalue λ(α0) of L(α0)

under the perturbation αM + α2N either stays as an embedded eigenvalue for α 6= α0,

analytic in α, or leaves as a resonance.

Therefore eigenvalues of L = A(Γ̄0(N), χ), which leave the spectrum as resonances for

α 6= 0, can only become eigenvalues for isolated values of α ∈
(
−1

2
, 1

2

)
.

A Appendix

We will study the matrices of (d′, d′′)2, which correspond to the systems . We want to

prove that the coefficient β1 is not zero, for some choices of coefficients n2d1 , n4d2 . We

start from (5.3). We have 4N2 = 4p1...pk, where pi are different primes not equal to two.
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To see the matrix

(d′, d′′)2, d′ |4N2, d′, d′′ > 0, (A.1)

we consider the following primitive matrices:

A =

 1 1 1
1 4 4
1 4 16

 , Bi =

(
1 1
1 p2

i

)
1 ≤ i ≤ k. (A.2)

It is not difficult to see that the inverse matrices are

A−1 =
1

36

 48 −12 0
−12 15 −3
0 −3 3

 , B−1
i =

(
p2
i −1
−1 1

)
1

p2
i − 1

(A.3)

We define the tensor product A⊗B1⊗B2...⊗Bk by recurrence relations os the block

matrix

C1 =

(
A A
A p2

1A

)
, C2 =

(
C1 C1

C1 p2
2C1

)
, Ck =

(
Ck−1 Ck−1

Ck−1 p2
kCk−1

)
. (A.4)

It is not difficult to see that the matrix Ck coincides with the matrix (A1.1), if we take

the following order of divisors d′ and d′′

1, 2, 4, p1(1, 2, 4), p2 [1, 2, 4, p1(1, 2, 4)] , ... . (A.5)

It is easy to see now that the inverse matrix to Ck is coming from the recurrence relation
c−1

1 = 1
p2

1−1

(
p2

1A
−1, −A−1

−A−1, A−1

)
, c−1

2 = 1
p2

2−1

(
p2

2C
−1
1 , −C−1

1

−C−1
1 , C−1

1

)
, ...

...c−1
k = 1

p2
k−1

(
p2
kC
−1
k−1, −C−1

k−1

−C−1
k−1, C−1

k−1

)
.

(A.6)

From this follows that C−1
k exists, and we can determine the coefficients βd′′ from (5.3)

explicitly. Actually, it is important to see now only the first row in the inverse matrix

C−1
k , since we want to prove β1 6= 0. Let us denote this first row of C−1

l by el, 1 ≤ l ≤ k.
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From (A.6) follows{
e1 = 1

36(p2
1−1)

(p2
1(48,−12, 0)− (48,−12, 0))

em+1 = 1
p2
m+1−1

(
p2
m+1em,−em

)
1 ≤ m ≤ k − 1.

(A.7)

Let us see now the right hand side of (6.40). When d′ runs through all positive divisors

of 4N2 in the order of (A.5), we get the column vector, which has non-zero components

only on places d′ = 2d1, d1 |N2 , d1 > 0 equal to n2d1/m2d1 . From (1.8), (1.10) follows

m2d1 = N2/d1. We remind that the coefficients n2d1 = ±1 with the only condition (6.11).

Applying ek to this vector we obtain up to the common multiple

1

36(p2
1 − 1)(p2

2 − 1)...(p2
k − 1)

(A.8)

that β1 is equal to

∑
d1|N2
d1>0

n2d1x2d1 (A.9)

where x2d1 are pairwise different integers with equal number of positives and negatives.

From that follows that there exists the choice of coefficients n2d1 = ±1 with condition

(6.11) which makes (A.9) not equal to zero.

The investigation of the system (6.42) is completely analogous. We have 4N3 = 8n,

n = p1 · p2 · · · pk is the product of different odd primes. Instead of the matrix A from we

take

A =


1 1 1 1
1 4 4 4
1 4 16 16
1 4 16 64

 , A−1 =


4/3 −1/3 0 0
−1/3 5/12 −1/12 0
0 −1/12 5/48 −1/48
0 0 −1/48 1/48

 (A.10)

and then repeat the proof. We obtain that up to the common multiple

1

48(p2
1 − 1)(p2

2 − 1)...(p2
k − 1)

(A.11)
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the coefficient β1 is equal to

∑
d1|n
d1>0

n2d1

m2d1

x2d1 +
∑
d2|n
d2>0

n4d2

m4d2

x4d2 (A.12)

where x2d1 , x4d2 are integers with equal number of positives and negatives. There exists

a choice of coefficients n2d1 , n4d2 which makes (A.12) not equal to zero. We have proved

Theorem 6.1.
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