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Abstract

We repair the proof of equivalence of certain L2-Sobolev spaces on mani-
folds with bounded curvature of all orders from [4]. The results are extended
to generalized compatible Dirac operators, fractional order Sobolev spaces and
weighted Sobolev spaces. A certain way of doing coordinate free computations
is presented.
AMS subject classification: 35B05, 35B40, 53C21, 58G03, 58G20, 58G30.
Keywords: Manifolds with bounded curvature, Sobolev Spaces, Dirac Opera-
tors, Bochner Laplacians.

0 Introduction

Let E 7→M be a Hermitian vector bundle supplied with a Hermitian connection ∇. A
natural operator to consider is the Bochner Laplacian ∆ = ∇∗∇. Thus we can define
Sobolev spaces H2k(E) by

H2k(E) = {f ∈ L2(E) | ∀0 ≤ j ≤ k : ∆kf ∈ L2(E)}.
∗This work was supported by MaPhySto – Centre for Mathematical Physics and Stochastics, funded

by a grant from the Danish National Research Foundation.



2 0 INTRODUCTION

Similarly we can define Sobolev spaces in terms of ∇ itself

W l(E) = {f ∈ L2(E) | ∀0 ≤ j ≤ l : ∇jf ∈ L2(T ∗M⊗j ⊗E)}.

Solutions of partial differential equations involving ∆ are normally found in the H2k-
spaces. Further use of the solutions however often requires that they belong to some
W l-space. It is an important problem to find conditions on M and E, under which
those two families of Sobolev spaces are equivalent, or under which the Sobolev norms
are equivalent on the space C∞0 (E) of smooth sections with compact support. It turns
out that the norms are equivalent on C∞0 (E) if M has bounded curvature of all orders
and that H2k(E) and W 2k(E) are equivalent if in addition M is complete.

A clever proof of that was given in [4] and was later extended to a more general
situation in [3]. The proof uses the Bochner-Weizenböck formula together with some
commutater estimates. Unfortunately a wrong identity [4, (1.7)] was used for the
commutater estimates. The mistake was discovered by Ulrich Bunke. After that other
methods have been applied in order to prove Sobolev imbedding theorems on open
manifolds. See for example [3, Lemma 1.19], where a lower bound on the injectivity
radius is assumed and [9], where the method of [3, Lemma 1.19] is extended to manifolds
with bounded curvature of arbitrary order. This other method, which involves a special
covering of M by geodesic balls, is well suited for generalizing all sorts of elliptic
estimates to open manifolds, but when a lower bound on the injectivity radius is not
assumed, it does not give the best possible theorems in the L2-theory. Thus it is worth
the effort repairing the proof of [4]. The main strength (and at the same time the main
limitation) is that it is completely adapted to L2-theory and gives the best possible
L2-estimates in very high generality with relatively little effort.

In Section 2 we repair the proof of [4] in the generality of Bochner Laplacians.
The decisive lemma is Lemma 2.1, which replaces [4, (1.7)]. We push the method far
enough in order to define L2-Sobolev spaces of any real order and demonstrate how
to prove that suitable differential operators map between those spaces as expected. In
Section 3 we extend the method to Dirac type operators, for which it is in some sense
more natural. In Section 4 we consider the case of weighted Sobolev spaces. Under
mild assumptions on the weight the method can be extended to prove equivalence of
weighted Sobolev spaces also. Finally in Section 5 we use self-adjointness properties
of operators on complete Riemannian manifolds in order to get further equivalences,
among others that the space of smooth sections with compact support is dense in
distributionally defined Sobolev spaces. The case of weighted Sobolev spaces follows
surprisingly easily from the case of non-weighted Sobolev spaces under very reasonable
assumptions on the weights.

We have also used this paper as an opportunity for presenting some methods for
coordinate free manipulation of tensors on manifolds using higher parallel tensors.
These methods have been very harshly received wherever we have presented them, but
they simplify computations so much that they certainly deserve to be taken seriously.
The complicated commutaters in this paper are just perfectly suited for presenting
those methods. There is no particular new result involved. It is just a way to proceed
doing coordinate free computation, which limits the computations in local coordinates
and the number of proofs by induction. The idea is that higher tensor products of vector
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bundles contain an abundance of canonical parallel sections. Expressing formulas in
terms of those give coordinate free and vector field free expressions, which we can diffe-
rentiate covariantly without getting the typical mess of terms of secondary importance,
expressing the invariance properties.
Acknowledgement: We will like to thank Werner Müller and Boris Vaillant for
conversations, without which this paper would not have existed, and Jürgen Eichhorn
for a historical account of this method.

1 Invariantly Defined Spaces.

Let M be a Riemannian manifold and let E 7→ M be a Hermitian vector-bundle
supplied with a Hermitian structure h and a Hermitian connection ∇. Together with
the Riemannian metric and the Levi-Civita connection on the tangent bundle, h and ∇
induce Hermitian structures and Hermitian connections on all bundles in the algebra
of bundles generated by 1C , E, E∗, TM and T ∗M . Isomorphisms of bundles will be
required to preserve the Hermitian structure as well as the connection. For example
E ⊗E∗ ∼= End(E) is an isomorphism in this sense. In this section we define a number
of spaces of sections and operators, which we will need later on.

Definition 1.1. The space C∞b (E) is the space of smooth sections s of E such that
for all k ∈ N0 , the section ∇ks is bounded.

Lemma 1.2. If M is a Riemannian manifold with metric g ∈ C∞(T ∗M ⊗ T ∗M) ∼=
C∞(End(TM, T ∗M)) we have

g ∈ C∞b (End(TM, T ∗M)), (1.1)

g−1 ∈ C∞b (End(T ∗M, TM)). (1.2)

Further if E 7→M is a Hermitian vector-bundle supplied with a Hermitian connection
we have

h ∈ C∞b (End(E, E∗)), (1.3)

h−1 ∈ C∞b (End(E∗, E)). (1.4)

Proof: Because g is parallel and is bounded with respect to itself, (1.1) follows. But
since g is parallel, also g−1 is parallel and it follows that also (1.2) holds. The statements
about h are similar since the fact that the connection is Hermitian is the same as to
say ∇h = 0.

Definition 1.3. If E, F are Hermitian vector bundles supplied with Hermitian con-
nections, both denoted by ∇, and m ∈ N0 , the space Diffmbd(E, F ) is the space of
differential operators P of the form

P =
m∑
j=0

ξj∇j,

where for j = 0, . . . , m, ξj ∈ C∞b (End((T ∗M)⊗j ⊗E, F )).
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Lemma 1.4. We have

C∞b (End(E, F )) = Diff0
bd(E, F ). (1.5)

Further, if P ∈ Diffm1
bd (E, F ), Q ∈ Diffm2

bd (F, F ′), then QP ∈ Diffm1+m2
bd (E, F ′).

Proof: This is easily checked.

Definition 1.5. Let E be a Hermitian vector-bundle with a compatible connection.
For k ∈ N0 , let W 2,k

0 (E) be the completion of C∞0 (E) with respect to the norm

‖f‖W 2,k :=

√√√√ k∑
j=0

‖∇jf‖L2((T ∗M)⊗j⊗E). (1.6)

Further let W 2,k(E) be the space

W 2,k(E) := {f ∈ L2(E) | ∀j = 0, . . . , k : ∇jf ∈ L2((T ∗M)⊗j ⊗ E)}. (1.7)

Here ∇ is applied iteratively in the distributional sense.

Lemma 1.6. Let E and F be Hermitian vector bundles supplied with Hermitian con-
nections. The spaces W 2,k

0 (E) and W 2,k(E) are Hilbert spaces and W 2,k
0 (E) is a closed

subspace of W 2,k(E). Further, if m ≤ k and P ∈ Diffmbd(E, F ), P is bounded as an
operator

P : W 2,k(E) 7→W 2,k−m(F )

and PW 2,k
0 (E) ⊆W 2,k−m

0 (F ).

Proof: All claims are easily checked.

We notice that if the completion of M is a manifold with a non-empty smooth
boundary, W 2,1

0 (1C 7→ M) and W 2,1(1C 7→ M) do not coincide, so it is possible that
W 2,1

0 (E) is a proper subspace of W 2,k(E).
If ∇ is a connection in a vector bundle E, we may define its curvature R∇ ∈

C∞(T ∗M ⊗ T ∗M ⊗ End(E)) by

R∇(X ⊗ Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ], (1.8)

where X, Y ∈ C∞(TM). If a specific connection ∇ is given on E we write RE for R∇.
Further we write R for the curvature tensor associated to the Levi-Civita connection
on M .

The adjoint of RE with respect to the canonical pairing of E and E∗ is the tensor
−RE∗. On the other hand the curvature on E∗ can be obtained by conjugating by the
Hermitian structure, which is parallel. This immediately gives that if RE ∈ C∞b (T ∗M⊗
T ∗M ⊗End(E)) then also RE∗ ∈ C∞b (T ∗M ⊗ T ∗M ⊗ End(E)).

Curvatures behave additively under formation of tensor products, so in particular,
if R ∈ C∞b (T ∗M⊗T ∗M⊗End(TM)) and RE ∈ C∞b (T ∗M⊗T ∗M⊗End(E)), it follows

R(T ∗M)⊗k⊗E ∈ C∞b (T ∗M ⊗ T ∗M ⊗ End(T ∗M⊗k ⊗ E)).
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We make aware of some complicated but elementary facts. Let E = E1⊗E2⊗· · ·⊗Ek

be a tensor product of Hermitian vector bundles with Hermitian connections. Assume
that Ej

∼= End(Ei, F ) and that j 6= i. Then the section

Aij ∈ C∞(End(E, E1 ⊗ · · · ⊗ Êj ⊗ Ej+1 ⊗ · · · ⊗ Ei−1 ⊗ F ⊗ Ei+1 ⊗ · · · ⊗ Ek)), (1.9)

given by applying an element of Ej to an element of Ei, is bounded and parallel. In
particular Aij ∈ C∞b .

Let E, F be Hermitian vector bundles and let τ be a parallel element of C∞(E).
Then the element τ⊗ of C∞(End(F, E ⊗ F )) given by

τ ⊗ (f) = τ ⊗ f

is parallel. In particular, since parallel sections are bounded, τ⊗ ∈ C∞b (F, E ⊗ F ).
Now consider the trace tr ∈ C∞(End(E)∗). We may write the trace as

tr = A12, (1.10)

where we have used the isomorphism End(E) ∼= E⊗E∗. If there is any doubt about, on
which factors of a tensor product the trace should be applied, we write tr i,j. Similarly,
for example gi denotes the operator of applying g to the i’th factor of a tensor product.

2 The Bochner Laplacian.

In this section we consider the Bochner Laplacian ∆ = ∇∗∇ = −tr 1,2g
−1
1 ∇2 in a Her-

mitian vector-bundle E supplied with the Hermitian connection ∇ over a Riemannian
manifold M . Sobolev spaces related to ∆ are defined by

H2,2k(M, E) := {f ∈ L2(M, E) | ∀j = 0, . . . , k : ∆jf ∈ L2(M, E)}, (2.1)

H2,2k
0 (M, E) := Closure of C∞0 (M, E) in H2,2k(M, E). (2.2)

The first substitute for the commutater in Dodziuk is:

Lemma 2.1. Let E be a Hermitian vector bundle over a Riemannian manifold M and
assume that

R ∈ C∞b (T ∗M ⊗ T ∗M ⊗End(TM))

and

RE ∈ C∞b (T ∗M ⊗ T ∗M ⊗End(E)).

Then we have

∇∗∇∇−∇∇∗∇ ∈ Diff1
bd(M, E, T ∗M ⊗ E).
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Proof: Let g ∈ C∞(M, End(TM, T ∗M)) denote the Riemannian structure on M .
Then we have

∇∗ = −tr 1,2g
−1∇.

We further introduce parallel sections Si,j in End(T ∗M ⊗ · · · ⊗ T ∗M ⊗ E). Si,j inter-
changes the i′th and j′th factor of T ∗M . Then we have

(1− S1,2)∇2 = R,

where R is the curvature on T ∗M ⊗ · · · ⊗ T ∗M ⊗E. Let g−1
i be the parallel section of

application of g−1 to the i’th factor of T ∗M . Then we may compute

∇∗∇∇−∇∇∗∇ = tr 1,2g
−1
1 ∇3 − tr 2,3g

−1
2 ∇3

= tr 1,2g
−1
1 ∇3 − tr 1,2g

−1
1 S2,3S1,2∇3

= tr 1,2g
−1
1 ∇3 − tr 1,2g

−1
1 S2,3∇3 + tr 1,2g

−1
1 S2,3R∇

= tr 1,2g
−1
1 ∇3 − tr 1,2g

−1
1 ∇3 + tr 1,2g

−1
1 ∇R + tr 1,2S2,3g

−1
1 R∇

= tr 1,2g
−1
1 ∇R + tr 1,2g

−1
1 S2,3R∇ ∈ Diff1

bd(M, E, T ∗M ⊗ E).

This proves the lemma.

Theorem 2.2. Let E be a Hermitian vector bundle over a Riemannian manifold M
and assume that

R ∈ C∞b (T ∗M ⊗ T ∗M ⊗End(TM)),

and

RE ∈ C∞b (T ∗M ⊗ T ∗M ⊗ End(E)).

Then for every k ∈ N we have the equivalence

H2,2k
0 (M, E) = W 2,2k

0 (M, E).

Proof: Clearly the theorem is true for k = 0. Assume the theorem holds for k − 1.
Let f ∈ C∞0 (M, E) then 〈

∇2kf,∇2kf
〉

=
〈
(∇∗)2k∇2kf, f

〉
. (2.3)

Now, Tk := ∇∗∇∇−∇∇∗∇ satisfies that Tk ∈ Diff1
bd(M, T ∗M⊗2k−2⊗E, T ∗M⊗2k−1⊗E)

by Lemma 2.1. Consequently (2.3) can be rewritten〈
(∇∗)2k−1∇∇∗∇2k−1f, f

〉
−
〈
Tk∇2k−2f,∇2k−1f

〉
. (2.4)
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The last term can be estimated by〈
∇2k−1f,∇2k−1f

〉
=
〈
(∇∗)2k−1∇2k−1f, f

〉
.

If k = 1 this is just 〈∆f, f〉 ≤ 1
2
(‖f‖2 + ‖∆f‖2), otherwise it equals

=
〈
(∇∗)2k−2∇∇∗∇2k−2f, f

〉
−
〈
Tk−1∇2k−3f,∇2k−2f

〉
.

By induction the last term can by estimated by ‖f‖2
H2,2(k−1) . For the first term we

apply Lemma 2.1 iteratively, such that we each time get a term of the same type as
the last one, which can be estimated by ‖f‖2

H2,2(k−1) by induction. We end up with〈
(∇∗)2k−2∇2k−2∆f, f

〉
≤ 1

2

(
‖∇2(k−1)∆f‖2 + ‖∇2(k−1)f‖2

)
≤ ‖f‖2

H2,2k .

Now we return to the first term of (2.4). Again we apply Lemma 2.1 iteratively and
each time get a commutater, which can be handled like the second term of (2.4). We
end up with 〈

(∇∗)2k−1∇2k−1∆f, f
〉

=
〈
∆f, (∇∗)2k−1∇2k−1f

〉
. (2.5)

Using Lemma 2.1 iteratively we again get a number of terms, which can be estimated
by ‖f‖H2,2(k−1) by induction. We end up with the term〈

∇2(k−1)∆f,∇2(k−1)∆f
〉
≤ ‖∆f‖2

H2,2(k−1) ≤ ‖f‖2
H2,2k .

This proves the theorem.

We consider ∆ as a self-adjoint operator on the domain given by the Friedrich’s
extension of ∆. We define for f ∈ C∞0 (M, E)

‖f‖2
Hk

0,1
:=

k∑
j=0

‖∆j/2f‖2
L2,

and let Hk
0,1(M, E) be the completion of C∞0 (M, E) with respect to ‖ · ‖Hk

0,1
. By the

spectral calculus for ∆ it is easy to see that ‖ · ‖Hk and ‖ · ‖Hk
0,1

are equivalent as norms

on C∞0 (M, E) when k is even. Further,

Theorem 2.3. ‖ · ‖H2,k
0,1

is equivalent to ‖ · ‖W 2,k on W 2,k
0 , also for odd k.

Proof: Exactly like the proof of Theorem 2.2. We omit the details.

Using the spectral calculus for ∆ we can also define H2,s
0 (E) for all s ∈ R+ as the

closure of C∞0 (E) in the domain of ∆s. We can also as usual define H2,−s(E) as the dual
of H2,s

0 (E). Standard commutater estimates together with Lemma 2.1 and Theorem 2.2
suffice to prove that Diffkbd(E, E) consists of bounded operators H2,s

0 (E) 7→ H2,s−k
0 (E).

We prove this in the following proposition:
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Proposition 2.4. For all s ∈ R, ∇ maps H2,s(E) into H2,s−1(T ∗M ⊗E). Further, if
Ψ ∈ C∞b (End(E, F )) for some Hermitian vector bundle F with a Hermitian connection,
Ψ maps H2,s(E) into H2,s(F ).

Proof: We already have this for s = 1. We consider the case s > 1. By Lemma 2.1
we have

[∆ + 1,∇] = [∆,∇] ∈ Diff1
bd(E, T ∗M ⊗ E).

Consequently for each λ

[(∆ + λ)−1,∇] = −(∆ + λ)−1[∆,∇](∆ + λ)−1

is bounded as an operator H2,k(E) 7→ H2,k+3(E) with

‖[(∆ + λ)−1,∇]‖H2,k,H2,k+3 ≤ C‖Im(λ)‖−1

for some C < ∞. Consequently, for a suitable curve Γ passing around [0,∞) with
|Im(Γ(ξ))| = 1 for |ξ| � 1 we may estimate

[(∆ + 1)−s, ∆] =

[
−1

2πi

∫
Γ

(ξ + 1)−s(∆− ξ)−1dξ, ∆

]
=

1

2πi

∫
Γ

(ξ + 1)−s(∆− ξ)−1[∆,∇](∆− ξ)−1dξ.

Thus for t ≥ 0, s > 1, [(∆ + 1)−s,∇] is bounded as an operator H t 7→ Hbtc+3. Here btc
denotes the biggest integer ≤ t. Thus [(∆ + 1)s,∇] = −(∆ + 1)s[(∆ + 1)−s,∇](∆ + 1)s

is bounded as an operator H t(E) 7→ Hbt−2sc+3−2s(T ∗M ⊗ E). Thus we may estimate
for f ∈ C∞0 (E), considered as an element of Hs+1(E):

‖(∆ + 1)
s
2∇f‖ ≤ ‖∇(∆ + 1)

s
2 f‖+ ‖[∇, (∆ + 1)

s
2 ]f‖.

The commutater maps Hs+1(E) into Hbs−sc+4−s ⊆ L2 for 0 ≤ s ≤ 4. Further the first
term can be estimated directly

‖∇(∆ + 1)
s
2 f‖ =

√〈
∇(∆ + 1)

s
2 f,∇(∆ + 1)

s
2 f
〉

≤ ‖(∆ + 1)
s+1

2 f‖ 1
2 · ‖(∆ + 1)

s
2 f‖ 1

2 .

The integration by parts is justified since (∆+1)
s
2 f ∈ D(∆) ⊂ W 2,1

0 (E). Thus the state-
ment about ∇ holds for s ≤ 4. In the same way as above, since [∆, Ψ] ∈ Diff1

bd(E, F )
it follows that Ψ maps Hs(E) into Hs(F ) for 1 ≤ s ≤ 4.

Now, if the statement about ∇ holds for s we compute

[(∆ + 1)
s
2 ,∇] = (∆ + 1)

s−2
2 [∆,∇] + [(∆ + 1)

s−2
2 ,∇](∆ + 1).

It follows by induction that [(∆+1)
s
2 ,∇] maps Hs+1(E) into L2(E). The induction

step for Ψ is similar.
Consequently the proposition holds for all s ≥ 1. By duality the proposition holds

for all s ≤ 0. Finally, if 0 < s < 1, we write f = (∆+1)g for some g ∈ Hs+2. It follows
immediately

∇f = ∇g + ∆∇g + [∇, ∆]g ∈ Hs−1.

This finishes the proof of the proposition.
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3 Twisted Dirac Operators.

Let M be a Riemannian manifold with a Riemannian metric g ∈ C∞(T ∗M⊗T ∗M) and
let E 7→M be a Dirac bundle. That means a Hermitian vector bundle supplied with a
connection and a structure c ∈ C∞(End(Cliff(TM)⊗E, E)) of Clifford multiplication,
such that c, the Hermitian structure h ∈ C∞(E∗ ⊗ E∗) and the connection ∇ are
compatible in the way:

∇c = 0, (3.1)

∇h = 0, (3.2)

h(cx(X)v, w) = −h(v, cx(X)w), ; x ∈M, X ∈ TxM and v, w ∈ Ex (3.3)

h(cx(X)v, cx(X)v) = |X|2h(v, v) ; x ∈M, X ∈ TxM and v, w ∈ Ex. (3.4)

If (3.1), (3.2), (3.3) and (3.4) are satisfied we define the associated generalized com-
patible Dirac operator D by

D := cg−1∇. (3.5)

Now assume that F is a Hermitian vector bundle with Hermitian structure hF , supplied
with a connection∇F . The Hermitian structure hF⊗E on F⊗E is given by C∞-linearity
and the condition

hF⊗E(f1 ⊗ e1, f2 ⊗ e2) := hF (f1, f2)h(e1, e2) ; e1, e2 ∈ C∞(E); f1, f2 ∈ C∞(F ). (3.6)

Similarly the connection and a structure of Clifford multiplication are given by

∇(f ⊗ e) := (∇f)⊗ e + f ⊗∇e, (3.7)

cF⊗E(X ⊗ f ⊗ e) := f ⊗ c(X ⊗ e). (3.8)

With this structure, F ⊗ E is a Dirac bundle, and we may define the Dirac operator
DF⊗E.

Definition 3.1. Let E be a Dirac bundle. We let H2,k
0 be the completion of C∞0 (E)

with respect to the norm

‖f‖H2,k :=

√√√√ k∑
j=0

‖Djf‖L2(E).

Further we let H2,k(E) be the space

H2,k(E) = {f ∈ L2(E) | ∀j = 0, . . . , k : Djf ∈ L2(E)}.

Also H2,k(E) is supplied with the norm ‖f‖H2,k .
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Lemma 3.2. Let E be a Dirac bundle. Then H2,k
0 (E) and H2,k(E) are Hilbert spaces,

H2,k
0 (E) is a closed subspace of H2,k(E) and there are bounded inclusions

W 2,k(E) ↪→ H2,k(E), (3.9)

W 2,k
0 (E) ↪→ H2,k

0 (E). (3.10)

Further, if M is complete we have the identity

H2,k
0 (E) = H2,k(E). (3.11)

Proof: That H2,k
0 (E) and H2,k(E) are Hilbert spaces is easily checked. The inclusions

(3.9) and (3.10) follow since c ◦ g−1 ∈ C∞b (End(T ∗M ⊗E, E)) so that D ∈ Diff1
bd(E).

Thus, by Lemma 1.4 for j ∈ N0 , Dj ∈ Diffjbd(E) and by Lemma 1.6, Dj maps W 2,k

continuously into L2(E). This immediately gives that the inclusions are bounded.
If M is complete all powers of D are essentially self-adjoint by [2]. Thus the domain

of the closure Dk of Dk coincides with the domain of (Dk)∗. Further it follows that
D̄k = Dk, such that Djf ∈ L2(E) for all f in the domain of Dk and for all j = 0, . . . , k.
Consequently H2,k

0 (E) = D(Dk) = D((Dk)∗) = H2,k(E).

The Bochner-Weizenböck curvature tensor RBW ∈ C∞(End(E)) is given by

D2 = ∇∗∇+ RBW .

Explicitly, if {ei} is an orthonormal basis for TxM , RBW
|x is given by

RBW
|x =

1

2

∑
i6=j

c(ei)c(ej)R
E
|x(ei ⊗ ej). (3.12)

Lemma 3.3. If RE ∈ C∞b (T ∗M ⊗ T ∗M ⊗ End(E)), then RBW ∈ C∞b (End(E)).

Proof: The formula (3.12) and that fact that RE
eiei

= 0 gives that we may rewrite

RBW = (c1,2g
−1
1 )(c2,3g

−1
2 )A2,4A4,6IdT ∗M ⊗ IdT ∗M ⊗RE. (3.13)

Here cij denotes the section c of Clifford multiplication applied to the i’th and j’th
entry, the i’th entry is skipped and the result is inserted in the j’th. The lemma
immediately follows.

Lemma 3.4. Let E be a Dirac bundle and assume that

R ∈ C∞b (T ∗M ⊗ T ∗M ⊗ End(TM))

and

RE ∈ C∞b (T ∗M ⊗ T ∗M ⊗ End(E)).

Let D be the Dirac operator defined on (T ∗
C
M)⊗k ⊗E for any k ∈ N0 . For each p ∈ N

we have

[∇, Dp] ∈ Diffp−1
bd ((T ∗

C
)⊗k ⊗ E, (T ∗

C
)k+1 ⊗E).
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Proof: We may assume without loss of generality that k = 0. Let Si,j be the per-
mutation of the i’th and j’th entry like in Lemma 2.1. Then since c and g−1 are
parallel,

∇D −D∇ = c2,3g
−1
2 ∇2 − c1,3g

−1
1 ∇2 (3.14)

= c2,3g
−1
2 (1− S1,2)∇2 (3.15)

= c2,3g
−1
2 R. (3.16)

This proves the lemma in the case p = 1. For p > 1 it follows by the formula

[∇, Dp] =

p−1∑
q=0

Dq[∇, D]Dp−q−1

and Lemma 1.4.

We now have the tools for (re-)proving the main theorem in the case of Dirac
operators.

Theorem 3.5. Let E be a Dirac bundle. If the curvatures R and RE satisfy

R ∈ C∞b (T ∗M ⊗ T ∗M ⊗ End(TM)),

RE ∈ C∞b (T ∗M ⊗ T ∗M ⊗End(E)).

Then for each k ∈ N0,

W 2,k
0 (E) = H2,k

0 (E).

Proof: Since C∞0 (E) is dense in both spaces, it suffices to prove that the norms are
equivalent on C∞0 (E). We already have that there exists a constant C(k) such that

‖f‖H2,k(E) ≤ C(k)‖f‖W 2,k(E) ; f ∈ C∞0 (E).

Thus it suffices to prove that there exists a constant C ′(k) such that

‖f‖W 2,k(E) ≤ C ′(k)‖f‖H2,k(E).

For k = 0 this is trivial. For k = 1 this is standard: Using the Bochner-Weizenböck
formula one gets for f ∈ C∞0 (E)

〈∇f,∇f〉L2(T ∗M⊗E) = 〈∇∗∇f, f〉L2(E)

=
〈
(D2 −RBW )f, f

〉
L2(E)

= 〈Df, Df〉L2(E) −
〈
RBWf, f

〉
L2(E)

≤ (1 + ‖RBW‖∞)‖f‖2
H2,1(E).
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We will iterate this computation and use induction. Thus we assume that the theorem
is true for k − 1. In order to get through with the induction step we need a further
induction in a variable p ∈ N . The induction hypothesis in p is that there exists a
constant C(k, p− 1, R, RE) such that

‖∇kf‖2
L2((T ∗M)k⊗E) ≤ ‖Dp−1∇k−p+1f‖2

L2((T ∗M)⊗k−p+1⊗E)

+ C(k, p− 1, R, RE)‖f‖H2,k−1(E).

This induction hypothesis is trivial for p = 1. Now, if p ≤ k, we may estimate

‖Dp−1∇k−p+1f‖L2((T ∗M)⊗k−p+1⊗E) ≤ ‖∇Dp−1∇k−pf‖L2((T ∗M)⊗k−p+1⊗E) +

‖[∇, Dp−1]∇k−pf‖L2((T ∗M)⊗k−p+1⊗E).

For p = 1, [∇, Dp−1] vanishes. For p > 1, since [∇, Dp−1] ∈ Diffp−2
bd it follows by

induction in k that the last term can be estimated by a multiple of ‖f‖H2,k−1(E). The
first term can again be handled by the Bochner-Weizenböck formula:

‖∇Dp−1∇k−pf‖L2((T ∗M)⊗k−p+1⊗E) =
〈
Dp+1∇k−pf, Dp−1∇k−pf

〉
L2((T ∗M)⊗k−p⊗E)

−
〈
RBWDp−1∇k−pf, Dp−1∇k−pf

〉
L2((T ∗M)⊗k−p⊗E)

. (3.17)

By induction in k the second term can be estimated by a multiple of ‖f‖H2,k(E). This
establishes the induction hypothesis in p.

For p = k the first term can trivially be estimated by ‖f‖H2,k(E). This establishes
the induction step in k, and the proof of the theorem is completed.

The Bochner-Weizenböck formula gives easily that the Hk
0 -spaces in this section

coincide with the Hk
0 -spaces in Section 2. Using the operator |D| we can again construct

fractional order Sobolev spaces and prove that fractional order Sobolev spaces are
mapped by Diffkbd(E, E) like one would expect it. These fractional order Sobolev
spaces coincide with the ones defined in Section 2. This can be proved using the
Bochner-Weizenböck formula and commutater estimates similar to those in the proof
of Proposition 2.4.

4 Weighted Sobolev Spaces.

Let E be a Hermitian vector bundle and let ξ be a measurable section in End(E),
taking values in the pointwise positive endomorphisms with respect to the Hermitian
structure. We assume that ξ is locally bounded from above and below and define

L2
ξ(E) = {f ∈ L2,loc(E) | ξ 1

2 f ∈ L2(E)}.

The inner product on L2
ξ(E) is given by

〈f, g〉L2
ξ(E) =

∫
M

〈ξf, g〉E|x dx.
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The section ξ ∈ End(E) naturally extends to ξ ∈ (T ∗
C
M)⊗j ⊗ E by tensoring with 1.

Using L2
ξ , for each k > 0 we get a Sobolev space norm

‖f‖W 2,k
ξ (E) =

√√√√ k∑
j=0

‖∇jf‖L2
ξ((T

∗
C
M)⊗j⊗E) . (4.1)

Let W 2,k
0,ξ (E) be the completion of C∞0 (E) with respect to ‖ · ‖W 2,k

ξ
. Further we define

W 2,k
ξ (E) = {f ∈ L2

ξ(E) | ∀j = 0, . . . k : ∇jf ∈ L2
ξ((T

∗
C M)⊗j ⊗ E)}.

Again W 2,k
0,ξ (E) and W 2,k

ξ (E) are Hilbert Spaces and W 2,k
0,ξ (E) ⊆W 2,k

ξ (E).

If E is in addition a Dirac bundle, we may define H2,k
0,ξ (E) and H2,k

ξ (E) like above
with D in place of ∇. Again there are the obvious inclusions

W 2,k
ξ (E) ↪→ H2,k

ξ (E), (4.2)

W 2,k
0,ξ (E) ↪→ H2,k

0,ξ (E). (4.3)

Due to commutaters between ξ
1
2 and differential operators the proof of Theorem 3.5

becomes more complicated in the case of weighted Sobolev spaces, and it only goes
through under additional assumptions on ξ. We will assume:

Assumption 4.1. The distribution ∇ξ
1
2 belongs to L∞,loc(End(E, T ∗M⊗E)) and the

section

ξ−
1
2 (∇ξ

1
2 ) (4.4)

is bounded. Further, ξ
1
2 commutes with Clifford multiplication.

Lemma 4.2. If Assumption 4.1 holds, ξ−
1
2 [D, ξ

1
2 ] ∈ L∞(End(E)).

Proof: We compute

Dξ
1
2 = cg−1∇ξ

1
2 = cg−1ξ

1
2∇+ cg−1(∇ξ

1
2 )

= ξ
1
2 D + cg−1(∇ξ

1
2 ).

Since c commutes with ξ
1
2 , it also commutes with ξ−

1
2 . Consequently

ξ−
1
2 [D, ξ

1
2 ] = cg−1ξ−

1
2 (∇ξ

1
2 ).

This proves the lemma.
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Remark : If M = R typical weight functions like (1+x2)
s
2 and ea

√
1+x2

satisfy (4.1).
For the interior of a compact manifold with a smooth boundary, (4.1) is however rarely
satisfied and the theory for weighted spaces does therefore not extend the results of
the previous section in this case. The examples of weight functions on the real line
immediately give examples of weight functions on a complete Riemannian manifold M .
Let namely β be a weight function on R and let ξ(x) = β(1 + d(x, q)), where q is a
fixed point in M and d denotes the Riemannian distance. Then, almost everywhere

∇ξ
1
2 = (β

1
2 )′(1 + d(x, q))∇d(x, q).

Further the estimate

|d(x, q)− d(x′, q)|
d(x, x′)

≤ 1

gives that ∇d(x, q) is bounded uniformly in norm wherever it is defined.

Theorem 4.3. Let E be a Dirac bundle. If the curvatures R and RE satisfy

R ∈ C∞b (T ∗M ⊗ T ∗M ⊗End(TM)),

RE ∈ C∞b (T ∗M ⊗ T ∗M ⊗ End(E)),

and additionally ξ satisfies Assumption 4.1, then for each k ∈ N0,

W 2,k
0,ξ (E) = H2,k

0,ξ (E).

Proof: As in the proof of Theorem 3.5 it suffices to prove that there exist a constant
C ′(k) such that for f ∈ C∞0 (E),

‖f‖W 2,k
ξ (E) ≤ C ′(k)‖f‖H2,k

ξ (E). (4.5)

For k = 0 this is trivial and for k = 1 we may compute

〈∇f,∇f〉L2
ξ(T
∗M⊗E) =

〈
ξ

1
2∇f, ξ

1
2∇f

〉
L2(T ∗M⊗E)

=
〈
∇ξ

1
2 f − (∇ξ

1
2 )f,∇ξ

1
2 f − (∇ξ

1
2 )f
〉
L2(T ∗M⊗E)

≤ 2

(〈
∇ξ

1
2 f,∇ξ

1
2 f
〉
L2(T ∗M⊗E)

+
〈
(∇ξ

1
2 )f, (∇ξ

1
2 )f
〉
L2(T ∗M⊗E)

)

≤ 2

(〈
(D2 −RBW )ξ

1
2 f, ξ

1
2 f
〉
L2(E)

+ ‖ξ− 1
2 (∇ξ

1
2 )‖2

L∞(T ∗M⊗End(E))‖f‖2
L2
ξ

)
.
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The term containing the Bochner-Weizenböck curvature courses no problems. After an
integration by parts the remaining term is of the form〈

Dξ
1
2 f, Dξ

1
2 f
〉
L2(E)

≤ 2
(
‖ξ 1

2 Df‖2
L2(E) + ‖[D, ξ

1
2 ]f‖2

L2(E)

)
.

Here the first term is just ‖Df‖L2
ξ(E). By Lemma 4.2 the second term can be estimated

by a multiple of ‖f‖L2
ξ
. Thus the theorem holds for k = 1. Again we will iterate

this computation, and we will need an additional induction in a variable p ∈ N . The
induction hypothesis in p is that there exists a constant Ck,p−1 = C(k, ξ, p− 1, R, RE)
such that

‖∇kf‖2
L2
ξ((T

∗M)⊗k⊗E) ≤ ‖Dp−1∇k−p+1f‖2
L2
ξ((T

∗M)⊗k−p+1⊗E) + Ck,p−1‖f‖2
H2,k−1
ξ (E)

.

This hypothesis is trivial for p = 1. Now, by induction in 1 ≤ p ≤ k:

‖∇kf‖2
L2
ξ((T

∗M)⊗k⊗E) ≤ ‖Dp−1∇k−p+1f‖2
L2
ξ((T

∗M)⊗k−p+1⊗E) + Ck,p−1‖f‖2
H2,k−1
ξ (E)

.

Further, if p ≤ k we may estimate

‖Dp−1∇k−p+1f‖L2
ξ((T

∗M)⊗k−p+1) ≤ ‖∇Dp−1∇k−pf‖L2
ξ((T

∗M)⊗k−p+1)

+ ‖[∇, Dp−1]∇k−pf‖L2
ξ((T ∗M)⊗k−p+1).

Since [∇, Dp−1] ∈ Diffp−2
bd it follows by induction in k that the last term is bounded

from above by a constant multiple of ‖f‖H2,k−1
ξ (E). Again the first term can be handled

exactly like in the case k = 1. This establishes the induction hypothesis in p.
For p = k the first term can trivially be estimated by a constant multiple of

‖f‖H2,k(E). This completes the induction step in k and proves the theorem.

5 Further Equivalences.

In this section we assume that M is complete and that the curvatures R and RE are
bounded with all derivatives.

In the non-weighted case we have H2,k
0 (E) = H2,k(E). Together with the other

inclusions this gives a circle of inclusions such that

W 2,k
0 (E) = H2,k

0 (E) = H2,k(E) ⊇W 2,k(E) ⊇W 2,k
0 (E).

Consequently all Sobolev spaces are equivalent.
With only a slight strengthening of Assumption 4.1, this can be extended to weighted

Sobolev spaces:

Assumption 5.1. For all k the distribution ∇kξ
1
2 belongs to L∞,loc(End(E, T ∗M⊗E))

and the sections

ξ−
1
2 (∇kξ

1
2 ) (5.1)

are all bounded. Further, ξ
1
2 commutes with Clifford multiplication.
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Lemma 5.2. If Assumption 5.1 holds, C∞0 (E) is dense in W 2,k
ξ (E) and in H2,k

ξ (E)
for all k.

Proof: Take ϕj ∈ C∞0 (E) such that ‖ϕj−ξ
1
2 f‖W 2,k(E) → 0 for j →∞. This is possible

by Theorem 3.5 and since C∞0 (E) is dense in Hk(E) for all k. For k = 0 the lemma is
easily checked. For k > 0 we use induction. Consider

‖∇k(f − ξ−
1
2 ϕj)‖L2

ξ(T ∗M⊗k⊗E) ≤

‖ξ 1
2∇k(f − ξ−

1
2 ϕj)‖L2(T ∗M⊗k⊗E) ≤

‖∇k(ξ
1
2 f − ϕj)‖L2(T ∗M⊗k⊗E) +

∑
p

(
k
p

)
‖(∇pξ

1
2 )∇k−p(f − ξ−

1
2 ϕj)‖L2(T ∗M⊗k⊗E)

≤ ‖ξ 1
2 f − ϕj‖W 2,k(E) +

k∑
p=1

(
k
p

)
‖ξ− 1

2∇pξ
1
2‖∞‖f − ξ−

1
2 ϕj‖W 2,k−p

ξ (E).

The term (∇pξ
1
2 )∇k−p(f−ξ−

1
2 ) means the symmetrization of the tensor product in the

factors of T ∗M . By induction it follows that the terms in the sum converge towards 0.
Thus ξ−

1
2 ϕj → f . The proof that C∞0 (E) is dense in H2,k(E) is similar.

Thus if ξ satisfies Assumption 5.1 we again have the circle of inclusions

W 2,k
0,ξ (E) = W 2,k

ξ (E) ⊆ H2,k
ξ (E) = H2,k

0,ξ (E) = W 2,k
0,ξ (E),

which implies that all spaces are equivalent.

Remark 1. By results of [9] it follows that Lemma 5.2 holds for a great class of weight
functions satisfying Assumption 4.1 but not Assumption 5.1.

We will conclude this paper by demonstrating how the weighted theory can be used
for studying properties of functions of D, considered as operators in L2

ξ . These results
overlap with the results of [9], but each method gives information not provided by the

other. The following is of course well known. See for example [6]. The operator ξ−
1
2 is

an isometry L2(E) 7→ L2
ξ(E). Consequently the operator

ξ−
1
2 Dξ

1
2 = D + ξ−

1
2 [D, ξ

1
2 ]

is essentially self-adjoint on C∞0 (E) considered as an unbounded operator in L2
ξ(E). If

we let

A := ξ−
1
2 Dξ

1
2 ,

B := ξ−
1
2 [D, ξ

1
2 ],
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we thus have that A is a self-adjoint operator in L2
ξ(E), that B is a bounded operator

in L2
ξ(E) and that D = A−B. Thus

(D − λ)−1 = (A− λ)−1(I −B(A− λ)−1)−1

is a bounded operator if dist(λ, spec(A)) > ‖B‖∞. In the case where B(A − λ)−1 is
compact (which tends to be the case if ξ has sub-exponential growth and does not
oscillate too much) we can further use analytic perturbation theory [11] in order to
establish that specL2

ξ(E)(D) ⊆ specL2(E)(D)∪V , where V is some discrete set of points.

From the resolvent other functions of D can be constructed using contour integrals, and
in this way a variety of partial differential equations involving D can be solved. The
imbedding theorems for weighted Sobolev spaces now provide more precise information
on the solutions.
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