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1 Introduction

A classical result of Paul Lévy states that if B = (By)o<t<1 is a standard Brownian
motion (By = 0, EB; = 0, EB? = t) then

(M - B,M)'® (|B|, L(B)) (1)

ie. (My— By, My);0 <t <1)'2 (|By|, L(B);;0 < t < 1) where M = (M,)o<i<1,
M; = maxo<s<; Bs, and L(B) = (L(B):)o<i<1 is the local time of B at zero:

.1t
L(B) = lim 5 [ 105,100 ds. @

(See, for example, [1;Ch.VI].)

The main aim of this note is to give an extension of the distributional property
(1) to the case of a Brownian motion with drift B> where B* = (B})o<i<1, By =
Bt + At. Let’s denote M)‘ = (Mt)\)OStSI, Mt)\ = MaXp<s<t B?

For our presentation the following process X* = (X})o<;<1 defined as the
unique strong solution of the stochastic differential equation

dX} = —AsgnX}dt +dB;,, X =0, (3)

plays a key role. (Here sgnz is defined to be 1 on R, —1 on R_ and 0 at 0.)
In particular we shall see that the process | X*| = (|X}|)o<i<1 realizes an explicit
construction of the process RBM(—\) i.e. a reflecting Brownian motion with drift
(= At).
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2 Main result

Theorem 1 For any A € R
(M = B, M) "2 (|X7, L(X?)) (4)
ie. (M} — B} M});0<t<1)'"2 (X}, L(X*),);0 <t <1) where

1 ot
A 1
Proof. Denote by (2, F, (Fi)o<t<1, P) a filtered probability space and let B =
(Bt)o<t<1 be a standard Brownian motion on (£, F, (F;)o<i<1, P). Define on
(2, F) a new probability measure P*:

dP* = e APV P (= ¢ EIN/2 g ). (5)
By Girsanov’s theorem ([1],[3])
Law(B*| P*) = Law(B | P). (6)

Denoting by C*[0, 1] the space of non-negative continuous functions on [0, 1]

we obtain, using (5), (6) and (1) that for any non-negative measurable functional
G = Glz,y), (z,y) € CH[0,1] x C*[0, 1]:

E[G(M* — B) MY)] = BN V26 (M — BY, MY)]
= E[*N2G(M — B, M)] = E[MUP-IBD-X2G(|B|, L(B)).  (7)
;From another side let us introduce a new measure P*:
AP = eAf()l sgnX2 dBs—)?/2 g p (= e,\fol sgn X2 dX2+22/2 dP) 8)
Again by Girsanov’s theorem
Law(X?* | P}) = Law (B | P). (9)
;From (8) and (9) we find that (with E* denoting expectation w.r. to P*)
E[G(IX), LX)] = Be o 03 002 G (X, L (0]
= E[e7Mo 9mBadBX2 (1B L)), (10)
Now we note that by Tanaka’s formula [1; Ch. VI]
|By| = /01 sgnB; dB; + L(B);.
So, from (10)

E[G(1X*], L(X*))] = E[X" P52 G(|B|, L(B))). (11)
Comparing (7) and (11) we get the statement (4).
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3 Study of X*

In this section we consider some properties of the processes X* and | X*|. If A =0
then X° = B, |X° = |B| and as it is well-known Law(|B|)=Law(RBM(0)),
where RBM(0) is a Brownian motion reflecting in zero; [1;Ch.I1I],[2;Ch.IV]. In
this sense the process |B| gives an ezplicit construction of the reflecting Brownian
motion. We shall see below that for reflecting Brownian with drift the process
| X*| plays the corresponding role.

Let’s describe first of all some properties of X* and |X?| from the point of
view of the general theory of Markov processes.

On a filtered probability space (2, F, (F;)i>0, P) for given A €  and every
r € R we consider the stochastic process X®* = (X} ’)‘)tzo which satisfies the
stochastic differential equation

dXP* = —Asgn XN dt + dB, X3 =z (12)

This equation has a unique strong solution and as a corollary (see [1;Ch.IX,
Th. 1.11]) we also have uniqueness in law. Denote the corresponding distribution
of X* on the space (C,C) of continuous functions by P**:

Law(X™*| P) = P*™, (13)

Denote also by (T}, t > 0) the set of operators given by

T (@) = [ f(e) P(do), (14)

where f € By(R) (the set of bounded Borel measurable real valued functions
defined on R) and ¢ = (¢;)i>0 denotes the coordinate process, ¢ € C.
If 7 is a finite (F});>o-stopping time and A € F, then

E[f(X7) - 14] = E[Tf(X2%) - 14]. (15)

Indeed, from (12)
t
XA = XA ) / sgn(X7)) du + (Bryy — By). (16)
0

But Law (B4, — B, t > 0| P) =Law(B;, t > 0| P) and (B4, — B;)i>0 is inde-
pendent of F, and so by uniqueness in law of equation (12) we get (15).

Thus the process X** = (X;*);5 is a time homogeneous Markov process with
transition functions (T}, t > 0). ;From [4;Ch.6,6.5] it follows that transition
densities p} (y|z) such that

TNz, dy) = p} (y|z) dy



do exist and, for example, for z > 0, A > 0 are given by the following formula:

1 (e—y—xt)? 00 (w=at)? /\t)z
A —empeat) —2X
x) = e 2t + e y/ dv) , >0,
Dy (y| ) ont ( Hy Y=

1 T— 2 o v—2At)2
pr(ylz) = Jori (6(2’\””( 500) 4 A /x_ye e dv) y<0. (17)

This explicit form of the transition density can be used to show that X%*
is a Feller process (indeed that can also be deduced using Zvonkin’s method
[1;Ch.IX, (2.11)].)

Now we show that |X®*| is also a time homogeneous Markov process.

Indeed sgnz is an odd function and {¢| X/ = 0} is P-a.s. a Lebesgue null
set (it is clearly true for A = 0, that is for (z + B:)s>0, but the measures P*° and
P%* are locally equivalent so it holds, in fact, for any A € R). Thus it follows
that P-a.s.

t
— X = — )\/ sgn(—X**) ds — By, (18)
0
and by the uniqueness in law we then obtain

Law(—

) = Law(

)- (19)

Using the Markov property of X®*-processes this implies that forall s, t > 0, x €
[0,00) and all bounded real valued Borel function f on [0,00) we have for any
A? € o(|XP M |u < s)

E[f(IX:5]), A7) = BLF(X3{), A7) = B[Tif(X3), A7)

and
E[f(|X;”;’> ), A%l = E[f(| - T

), A%] = Bl f(1 X, 7). A7

= B[ [(X7), A7) = E[T.f(X; "), A™] = E[T.f (- X3), A7),
Here we have used the notation f(z) for f(|z|), = € R. In other words
E[f(1X)), Al = BITf(

showing that |X®*| is indeed a Feller Markov process.

1), Al (20)

Theorem 2 For each x € Ry and A € R

Law (|

A|) = Law(RBM®(=))) (21)



Proof. In Markov theory, as it is well-known (see, for example, [2;Ch.IV,§5]), the
process RBM*(—)), called a Brownian motion with drift (—\t) started at z > 0
and reflected at zero, is a diffusion Markov process with infinitesimal operator .4*
acting on functions

D) = {7 € C3(10,00)), D |y = 0)

by the formula

Af(z) = () = M) (22)

(It is well-known that the operator A* generates a unique (diffusion) family
of measures Q**, > 0 and the corresponding Markov process, is by definition
the process RBM?(—2\), [2].)

Now let’s consider our process X®*. By the Ito6-Tanaka formula, [1;Ch.VI]

d\th’)‘ = sgn XM dXPN + dL(X™),
= —\dt + sgnXZ" dB, + dL(X"), (23)

where L(X®"); is a local time at zero on the time interval [0,¢] for the process
X®*. Suppose that f € CZ([0,00)) with f'(0+) = 4|, ;o = 0. Then by Itd’s
formula

t t
FUXEN) = £1X5Y) = [ FxE ) alxz +172 [ (X)) ds

t t
= / FUXTA) (=X ds + sgn X7 dB, + dL(X™Y),) +1/2 / X
0 0

)ds (24)

¢
= [Ar ) (X ds + M,
where M; = [} f'(|X**|)sgnX?* dB, is a local martingale. Note that
t
| x>
0

because f'(0+) = 0 and L(X**) increases only on the time set {t| X = 0}.
From (24) we see that

)dL(X®™Y), =0

FOXEA) = (X5 = [ A p(x

)ds (25)

is a local martingale and thus the infinitesimal operators for the two processes
| X®*| and RBM?(—\) are the same (acting on D(A")). Therefore (21) is proved.
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