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ABSTRACT. With a view to the study of, for instance, arterial trees,
this paper presents some exact distributional results on finite trees with
(reciprocal) inverse Gaussian and gamma resistances. In particular, it
is shown that under the specified model the conditional distribution of
the minimal sufficient statistic given the total resistance of the tree is
a convolution of gamma distributions and two—dimensional reciprocal

inverse Gaussian distributions.
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1 Introduction

Networks with random resistances (or, equivalently, random conductivities) have
been the object of extensive study in both mathematics and physics. Some key
references are Stinchcombe (1974), Kesten (1982), Grimmet (1993), Soardi (1994)
and Lyons & Peres (1998).

In the context of physics, much of the literature has been concerned with
critical phenomena, typically for infinite networks with independent identically
distributed resistances on the edges, a key question being whether the total re-
sistance of the network is infinite or not. For the study of, for instance, arterial
networks results of the kind indicated are generally of little relevance. In partic-
ular, the assumption of identically distributed resistances is clearly inappropriate
and, furthermore, the question of infinite total resistance does not arise. For some
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interesting recent work on blood flow and growth of arterial trees, see Bassingth-
waighte, King & Roger (1989), Mayrovitz & Roy (1983), Sandau & Kurz (1993),
Schmid-Schoenbein, Firestone & Zweifach (1986), Sun, Meakin & Jossang (1995)
and VanBavel & Spaan (1992). Of special interest are the physiological mecha-
nisms by which the pressure drop throughout the arterial tree is regulated. Up to
50% or more of the peripheral resistance appears to lie proximal to vessels with
diameter of 100 um (Mulvany & Aalkjer 1990). This led us to consider resis-
tance trees with several levels of constant potential, cf. Section 4. Our results can
conceivably be used to identify changes in parameters describing the pressure at

different levels of the arterial network.

The present paper is part of a wider study (cf. Barndorff-Nielsen (1994),
Barndorff-Nielsen & Koudou (1998), Barndorff-Nielsen & Rydberg (1998)) aimed
at building statistically tractable parametric models for networks such as arterial
trees. A key basis for this work has been the observation that the properties
of the inverse Gaussian and the reciprocal inverse Gaussian distributions fit to-
gether, in a quite unique way, with the elementary Kirchoff-Ohms laws. Using
those distributions, it is possible to build rather versatile and simple exponen-
tial models, a particular aspect of these being that the total resistance follows a
reciprocal inverse Gaussian distribution. This property, which is one of a very
few exact distributional results in the theory of random resistance networks, al-
lows one to obtain further exact distributional properties of the conditional law
given the total resistance, the latter often being an observable quantity. A first
such conditional result was given in Barndorff-Nielsen & Koudou (1998) and the
present paper generalizes this. As an unexpected byproduct, a bivariate recip-
rocal inverse Gaussian distribution, previously considered purely on grounds of
mathematical simplicity, is seen to occur naturally in the present biologically

motivated context.

Section 2 summarizes some basic results concerning the inverse, reciprocal
and generalized inverse Gaussian distributions, and the relation to the Kirchoff-
Ohms laws is indicated. Section 3 sets up definitions and notation for the random
resistance trees to be studied and the new distributional results are derived and

explained in more detail in Section 4.



2 IG, RIG and GIG distributions

The generalized inverse Gaussian distribution GIG(A, 6, ) has density function

(7/5)’\ o)

1
-1 2 (5242 2 ) 1
2K (07) exp( 2( x —|—’y:r) , x>0, (1)

gig(x; A, 6,7)

where the domain of variation of (A, d,~) is given by

0>0 >0 if A>0,

0>0 v>0 if A=0,

>0 v>0 if A<O0,
and where K, denotes the modified Bessel function of the third kind with index
A. In case 6 = 0 and v = 0 the norming constant in (1) has to be interpreted
in terms of the limit of K,(y) for y | 0 (For relevant properties of the Bessel
functions see e.g. the appendix of Jgrgensen (1982)). The GIG distributions
possess the property that

X ~GIG(\,6,7) = X '~GIG(=)\7,9). (2)
Furthermore, for every constant a > 0
X ~GIG(A,6,7) = aX ~GIG(\, a'/?6,a7%). (3)

The most prominent member of the family of GIG distributions is the inverse
Gaussian I1G(6,7v) = GIG(—1/2,0,~) with density function given by

4] 1
ig(x;9,7) = \/—2_7_‘_667.1‘_3/2 exp (—5 (5236_1 + vzx)) .

The IG distribution has a probabilistic interpretation as the first hitting time
to the level § of a Brownian motion with drift v and diffusion coefficient 1.

Using the relation in (2) leads from IG(d, y) to the reciprocal inverse Gaussian
RIG(6,v) = GIG(1/2,6,) distribution with density function

1
rig(z;d,v) = \/Lz_ﬁe""sx_l/2 exp (—5 (523:_1 + 723:)) .

Like the IG distribution the RIG distribution can be given a probabilistic
interpretation. In fact, the RIG distribution is the distribution of the last hitting
time to the level ¢ of a Brownian motion with drift v and diffusion coefficient
1, cf. Vallois (1991). These hitting time interpretations are of direct relevance
for the type of models for resistances on trees considered in the following, see
Barndorff-Nielsen & Koudou (1998).



The gamma (I") distribution is also in the family of GIG distributions. It is
the special case where A > 0 and § = 0, i.e. GIG(),0,v) = ['(\,7?/2), and the

density is then given by

(523) - G ().

We have the following well known convolution properties of GIG random

variables:
LT (AL %) T (A, 3) =T (A + 20, %),
2. IG(61,7) * IG(09,7) = IG (61 + 02,7),
3. IG(61,7) * RIG(62,7) = RIG (61 + 62,7),
4, GIG(—A¢£7)*F(AJ§)::GIG(Aﬂiy)ﬁmeWHyA:>Q

Note that the properties 2. and 3. are immediate consequences of the above-
mentioned hitting time interpretations.

These convolution results can be seen to correspond intimately with the
Kirchoff-Ohm laws, the simplest form of which states that: If two networks with
resistances R and R’ are connected sequentially the total resistance is R + R’

while if they are connected in parallel the overall resistance is

-1

(R'+R7Y) . (4)

To give a graphical illustration of this consider the simple tree in Figure 1, which
is described by the set of edges {e1, 2, €3} and the vertices {v;, vo}. Here the edges
and vertices are equipped with random variables X, , X,, X¢;, Xy, , Xy, Where

3 1
Xe v IG W10, Xo ~ 16 (42, 5x) s X~ 1G (1, %)
1 1/1\? 11/3\?
X’u1 ~T <§a 5 (ZX) ) 3 X’U2 ~T (5; 5 (ZX) ) .
The two branches of the tree have resistances which by property 4. are given by

X62 + sz ~ RIG (1)02’ %X) )

1
Xes + Xy, ~ RIG (wg, ZX> .
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By property 2. and the Kirchoff-Ohm law for parallelly connected resistances we
see that the top part of the tree described by the edges {es, e3} and the vertices

{v1,v2} has resistance
_ vl
((Xez + X’U2) ' + (Xes + le) 1) ~ RIG (1/)2: X) .

Finally, by using the rule for serially connected resistances and property 3. we
get that the total resistance is

((Xez + X112)_1 + (Xea + le)_l)_l + Xe1 ~ RIG (1#1 + ¢2aX) .

U1 %
€3 €9

€1

S

Figure 1: A tree with two branches.

In Barndorff-Nielsen, Blaesild & Seshadri (1992) the following results, which
we will use in Section 4, can be found. Let U and V be independent random

variables such that
U~ GIG(_)‘a 5: 7)7

and
V ~T(A9"/2).
Then if
(Xl,XQ) = (U_l, U+ V) ,

we have that X; ~ GIG(\,7,d) and Xy ~ GIG(A,6,7). Furthermore, X; and
X5 have joint density

fX1,X2 (‘rla xQ) =

(0y)*
PFIT(N) K (07)

1
(3:1332 — 1))‘_1 exp <—§ (52331 + 72$2)) , T1,To € Sm,

where
Se ={(x1,22) : x1,29 >0 and 129 > 1}.
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In particular, for A = % we obtain the two—dimensional RIG distribution,

which has density given by

5 1
(2—;?exp(57)(331x2—1)_1/26XP (53 (0 +7%)) s sumes, G

and Laplace transform

_ _ 20, _ 20
Bloxp(B.X, + 0,Xy)] = exp ((57 (1 \/1 52 \/1 P )) (6)

fEf-E

Furthermore,
X1 ~ RIG(v,6), and Xy ~ RIG(9,7).

3 Random resistance trees

Let T = (V,&, s) be a finite rooted tree, i.e. a connected oriented acyclic graph,
with root s, set of vertices V and set of edges £. If v € V\{s} let {(v) denote the
vertex preceding v according to the order on the tree. A path is a sequence p =
(v1,...,v,) such that v, = ((v,41) for all n. We define a ray 7 = (s, vy,...,vy)
as a path starting at s and such that there does not exist v € V\7 for which
vy, = ((v). Let

0T = {rays},

denote the boundary of T.
Let ¢ be a potential function on 7', i.e. ¢ is a function ¢ : V — [0, 00), suppose

that ¢ is non increasing according to the natural order on 7', and let

be the drop in potential along the edge e € £, e = {((v),v}. We assume that ¢
is zero at 0T, i.e. if m = (s,v1,...,vy,) is a ray then p(v,) = 0.
For v € V let V, denote the subset of the boundary which can be reached

from a path starting in v and let 7, be the subtree with root v. We identify V,
and 07,.

Let v be a deterministic measure on 07, satisfying
v(0T,) >0 Vwve.

Furthermore, let M be a random measure on 97, such that
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e If A and B are disjoint, then M(A) and M(B) are independent.
e The distribution of M(A) is IG(y(A),0) for any subset of 9T

The existence of such a random measure follows from property 2 in Section 2.
We equip the edges e € &, e = {((v),v}, with inverse Gaussian random

variables X, such that the X.’s are mutually independent and
Xe ~ IG (1/}(6)7 /Y(aTv)) :

The influence of the boundary on the resistance will be modelled by the ran-
dom measure defined above, which is assumed to be independent of the X.’s.

Specifically, on the vertices in 07 we place random resistances defined by
1 11 2
X, = M(T,)  ~T (5, S7(0T,) ) .

In this case 07, are singletons. The tree T equipped with these random resistances
we denote by T'.

In Barndorff-Nielsen (1994) it was shown that the total resistance of such a
tree, which we denote by R(T), is distributed as

R(T) ~ RIG (¢(s),7(9T)).

The total resistance is defined by the recursive formula

R(T) = ( Z (RTU +R{5,v})_1>

vE(T1(s)

where T, is the complete subtree with initial vertex v.

4 Conditional distributions

In this section we will study trees with several levels of constant potential. In order
to ease the notation we add the gamma random variable sitting on a terminal
vertex to the edge it is at the end of; thereby the random variables on the exterior
edges are reciprocal inverse Gaussian. We assume that the parameters fulfill the

conditions described in the previous section, so that

R(T) ~ RIG(p(s), 7(9T)).



4.1 One intermediate level

We will study distributions of X, the family of random variables in T', condi-
tional on the total resistance R(T'), under certain proportionality restrictions on
the parameters. Specifically, we assume that for e = {((v),v} € £v, where T"
denotes a subtree with root s and &7» denotes the set of edges in T' (see Figure
2),

Y(e) = h1A. and  y(9T,) =T,

and for e = {((v),v} € Emp
v(e) = 03A, and  y(0T,) = l;

here the A, and I', are considered as known constants while d;, d, and 7 are
unknown parameters.

Suppose for a moment that 6; = do = §. In Barndorff-Nielsen & Koudou
(1998) it was shown that for finite trees T' and for 7" = T the conditional dis-
tribution Xop|R(T') = r is an exponential family with canonical statistic given
by

(' w') = (- A2t — A7) T2x, — TPr),

ecT ecT
where
A= Z A, and I = Z I,
eem e={((v),v}:wedT

and canonical parameter

(" =1).(*~1)).

Furthermore, it was shown that (given R(T') = r) the two canonical statistics u'
and w' are independent and gamma distributed. The shape parameter of u' is
|Er| — |0T| and the scale parameter is . |- | denotes the number of elements.
For w' the shape parameter is |0T| and the scale parameter is 72—2 Since the
distribution of v’ only depends on ¢ and that of w’ only on =, inference can be
carried out separately. Note further that the conditional distribution of u' and
w' does not depend on r, implying that »', w’ and r are independent.

Returning to the case where the potential of the tree 7" is described by two
parameters 6; and 09, one for the tree 7" and one for T\T', we now add the
assumption that at the boundary of 7" the potential drop is the same along all
rays, i.e. for some ¢’ € (0, ¢(s))

> A =p(s)— ¢,

CEW‘TI



T

Figure 2: Example of a tree. The dotted line delimits the tree 7', where the
potential fall is the same along all rays. s denotes the root of the tree.

independently of the path 7, where 77» is a path where all edges lie in 7. This
implies that there exist constants A; and A, such that

Z Ae:Ala

eEﬂ'lTl

and
Z Ae = AZ:

eE7r|T\T/

for all paths m7» and m7\7. We can now write
o(s) = (p(s) = ¢') + ¢’ = 0141 + 62,.
Also we have that

Z 7Fe = Z Vre = 7(6T)

e={¢(v),v}wedT’ e={¢(v),v}wedT
:> Z Fe = Z Fe = F’
e={¢(v),v}wedT’ e={¢(v),v}wedT

where ' = y~1~(T).
Lemma 4.1 We have that

Z AeFe = Alra

ecT!



and

Z AeFe = AQP

ecT\T"

Proof of Lemma 4.1: This follows from Lemma 1 in Barndorff-Nielsen &
Koudou (1998) as is seen by noting that T\7" can by viewed as a tree with
potential fall ¢'. O

By use of the above notation we find that the probability density function of
R(T) is

r
p(r;01,02,7) = \Z—Z_W exp(617A1T) exp(8pyAgl)r~ /2
1 1
X exp <—§5fA§r—1) exp (—EagAgr—l) exp (=010,01 Apr™")
X exp (—%72F2r> .

Further by Lemma 4.1, the probability density function for X, XT\T' is given
by

p(xT'7 m1’\1"; 517 527 /Y) =

(%)\&T'\ <%>\5T\w|—aﬂ (\/%)W

exp (517 > AeFe) exp (527 > AeFe)

ecT’ eeT\T'

(H Aexe3/2> ( H Aexe3/2>
ecT’ e={{(v),w}eT\T" :wgdT
1
( I m;w) e (—5 (6% > A))
e={{(v),v}eT\T :vedT ecT’
1 1
exp (—— ((53 > Agxe_l)) exp (—— <’y2 > nge>> . (7)
2 e€T\T' 2 e€T

Theorem 4.1 By letting

U = Z Aﬁx;l, Uy = Z Aﬁx;l, w= Z nge,

ecT’ eeT\T" eeT

X

X

X

X

and

1

uh =uy — A7 uh =uy — A2 and W' =w — .

we have that
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1. {p (fo,xT\Tf;51,52,*y); 01 >0, 09 >0, v> 0} 15 an exponential fam-
ily with canonical statistic (uq,us,w) and canonical parameter given by
_%(5%a5%a72)

2. w'|r is independent of (u), ub)|r, and w'|r is gamma distributed with shape
parameter |0T| — 1 and scale parameter 72—2 Furthermore, conditional on
R(T), the distribution of (u),us) depends only on (61,02), hence, the infer-
ence for (01,02) depends only on (u',u,) and the inference for vy depends
only on w'.

Proof of Theorem 4.1:

1. Follows directly from formula (7).

2. Now let us look at the family of conditional distributions

{p (fo,xT\T:;(Sl,ég,’y‘ R(T) = r) ;00 >0, 90 >0, v> 0}. We find

(e i21)
P (fo,xT\T:; 01, 52,7‘ R(T) = r) B p(wT/,wT\T,;l,l,l)

B 191,02,
p (e, o i 1,11 R(T) = 1) CE)

= (6)|€m ] (5)|Emur [ZOT1 (yOTI=1 o (610 — 1) Ay Ayr 1)
1 2 ! 2 ! 1 2 !
X exp (—5 (((51 — 1) u; + ((52 — 1) u2)) exp (—5 (fy - 1) w) .

Hence, by letting A = ‘5|T, , B= ‘8|T\T: —|0T| and C = |0T| — 1 we have that
the Laplace transform of (u}, v}, w')|r is given by

E [exp (01u] + Oouly + Osw') |r] =

, 201 —A/2 X 202 —B/2 , 203 —-C/2
&2 o3 7’
2 2
X exp <A1A2T15152 (1 — \l (1 — %) (1 — %))) .
1 2

The Laplace transform is seen to be a product of

/ 9.\ ~C/2
E [exp (63w") |r] = (1 — 7—5) ,

and

E [exp (61u) + Ooul) |r] =

11



- 2—01 —A/2 - 2—02 —B/2
ot 03
2
X exp <A1A2T15152 (1 - \l (1 — %;—021> (1 — %))) . (8)
1 2

Consequently, w'|r is independent of (u},u})|r, and w'|r is gamma distributed

with shape parameter C' and scale parameter 72—2 Furthermore, the above formulae
imply that, conditional on R(T'), the inference for (d;, d2) only depends on (u}, u})
and the inference for v only depends on w'. a
Remark

If 6, = 5 we get the same result as Barndorff-Nielsen & Koudou (1998). To see
this note that

uf +ub =u' 4+ 20 AgrH,

AlAQT_léf 1-— 1-— 2—021 1-— 2—021 = 2A1A27”_101.
o1 o1

and that

Remark
By (8)
E lexp (61u)) |r] = (1 — %) o exp (AlAQT_15162 <1 —4 /1= %)) . (9)
and
E [exp (fousy) |7] = (1 - %) o exp (AlAng(Sl(Sg <1 —4/1 = %)) . (10)
and hence we have that
uylr ~ T (g, %) *x IG <A1A2r71(52, 51)
=T (% %) « RIG (A1A2r_162,(51) , (11)
uhlr ~ T (g 55) « IG (AlAQrflfsl,(sQ)
=T (? %) * RIG <A1A2r‘151,(52) . (12)

12



In the light of this and (8) it is natural to ask whether

20 —-1/2 20 —1/2
12 1 222
of 03
2 2
X exp [ A1Agr To1dy [1— | (1— é 1-— % (13)
Ui 0

is the Laplace transform of a two-dimensional density function. If so, (13) deter-

mines a two—dimensional distribution whose marginals are the reciprocal inverse
Gaussian laws RIG(A;Agr 16,,61) and RIG(A;Agr—161,4,), cf. (11) and (12).
The problem of creating two—dimensional densities with reciprocal inverse Gaus-
sian or inverse Gaussian marginals has been given some attention in the literature,
see e.g. Barndorff-Nielsen et al. (1992). From the results of that paper, restated in
Section 2 above, it follows that, in fact, the quantity (13) is the Laplace transform
of a probability density function given by

5152 exp(AlAzr_léléz)
27

(xlxz — AlAQT’I)_l/Q exp (—% ((5%3:1 + 53:52)) ,

where 21,79 € Sy and S, = {(x1,12) : 11,22 > 0 A x129 > A1 Agr™'}, cf. formula
(5). This type of density function comes about the same way as (5) in Section 2,

namely by letting
2
(Xl,XQ) = ((AlAQ'f'l) Uﬁl, U + V) y

where
1 1 62
UNIG(AlAQT 51,(52) and V ~T 5,3 .
While the two—dimensional RIG distribution (5) was introduced in Barndorff-
Nielsen et al. (1992) as a purely mathematical construct, in the present biological

motivated context, it arises naturally through conditioning on R(T).

4.2 Several levels

Now, let us turn to a situation where we are interested in several intermediate
specific potential levels instead of only one. We restrict ourselves to two levels as
this is enough to indicate the general structure. Let s C 7" C T" C T such that at
the boundaries of these subtrees the potential is constant and 0 < ¢" < ¢’ < ¢(s)
where ¢’ and ¢" are the potentials at the boundary of 7" and 7" respectively.

13



Then we find

p (f”T” Tep\ s T\ "3 01, 02, 03, fy\ R(T) = r)

P (fo,xT\T,; 1,1,1,1| R(T) =7)

where

o 2 1 2 1
u; = ZAexe — Ajr

ecT’

!
Ug

r_ 2 1 2 1
Uy = z Alz,  — Asr

and where

z A, = Ay,

€E7T|TI

ecT\T"

>

eE7T|TH\T/

(51) |£|T’ | (52) |£|TII\TI | (63) |5|T\T” |7|8T| (7)|6T\71
X exp ((5152 — ].) A]_Agril) exp ((5163 — 1) A1A37"71) exp ((6253 —_ ]_) AQA?,T?I)

xexp (=5 (2= 1)+ (B - 1)uy+ (32— 1)) ) exp

> (7 =1)w).

2,.—1 2,.—1
Z Aexe - AQT

ecT\T"

w =Y 2z, — I'?r,

ecT

A, = Ay and

2

Ae = A?n

eE7r|T\Tu

for all paths 77, 7 and mp\gv. Furthermore,

>

YL

e={¢(v),v}wedl”

—

>

e={{(v),w}wedT’

L

>

e={¢(v),v}:wedT”

>

e={{(v),w}wedT"

where I' = y~1~(9T). Thereby we get that

FE [exp (91’1/1 + 92’1/2 + 93’&% + 94’1111)] =

X exp
X exp
X exp
where
A= \gm . B

= e

A1A3T‘_15153

A2A3T_15253

L

YL

e={¢(v),v}wedT

>

e={¢(v),v}wedT

)Y

14

) -3
52 52
{009
{00
=05 (- %)
— (0T, C = |€rrr

YL =~(0T)

r,=T,

B %>/

72

—|8T| and D= |dT| 1.



This implies that w'|r is independent of (u},u), u}y)|r and, like in the case with
only one level, w'|r is gamma distributed with shape parameter D and scale
parameter 7% It should also be noted that the distribution of (u}, uj, u})|r is a
convolution of three gamma distributions and three two—dimensional reciprocal
inverse Gaussian distributions, which are all independent. In fact, the convolution
of the three two-dimensional reciprocal inverse Gaussian distributions gives us
a new type of three—dimensional reciprocal inverse Gaussian distribution which
has reciprocal inverse Gaussian distributed one-dimensional marginals, as can be
seen from below, and two-dimensional marginals each of which is a convolution
of a two—dimensional reciprocal inverse Gaussian distribution and two reciprocal
inverse GGaussian distributions, which are independent. Further, it is seen that

the distribution of u)|r depends only on d, and d3 through ¢(s) since

(1 — %) o exp (Alr—lél(AQ(SQ + Asds) (1 — \ (1 - %)))
_ (1 - %) 7 (Alr‘lél (o(s) = AL61) (1 -\ (1 - i—?))) ,

and we also see that u)|r is a convolution of a gamma distributed random vari-

able with shape parameter A and scale parameter 5% and an inverse Gaussian
1
distributed random variable with parameters A;r~"(p(s) — A;d;) and §;.

The above-mentioned results raise the question of what physical interpreta-
tion may be given of the statistics u', w', u}, u}, etc.. We have not been able to
resolve this.

4.3 Extension

It was assumed above that the potential function was constant at one or more
levels (apart from the end vertices where ¢ is always 0 by assumption). However,
consider the tree cut as indicated by Figure 3 and extend the potential function
¢ to a non-increasing function along all edges, such that it is constant at the
points where the dashed curve cuts the tree. Theorem 4.1 may then be extended

to the present setting, in view of the convolution property 2.
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T

Figure 3: Example of a tree. The dashed line delimits the tree 7", where the
potential fall is the same along all rays. s denotes the root of the tree.
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