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Abstract

Braunstein and Caves showed how quantum information can be used to
define a metric for quantum states, relying on attainability of a quantum
information bound. We show that the bound is not generally attainable.
But a two-stage procedure of repeated measurements achieves the bound in
the limit. We connect to the question of whether a generalised measurement
on n independent copies of a quantum system can yield more information
than n separate measurements. Separate measurements are in the limit as
informative as joint, and measurement of classical observables suffices.
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1 Introduction

Braunstein and Caves [1] have clarified the relation between classical expected information
i(#), in the sense of Fisher, and the analogous concept of expected quantum information
1(#), by showing that I(#) is an upper bound of i(6; M) with respect to all (dominated)
generalized measurements M of the state p = p(f) where 6 is an unknown parameter and
i(0; M) is the Fisher expected information for € in the distribution of the outcome of the
measurement of M. They indicate moreover that a measurement exists achieving the bound.
In the present paper we show by an example, for an elementary spin—% situation, that in
general there does not exist a single measurement M such that i(6; M) = I(6) for all 0
simultaneously.

The example is presented in section 3, after a brief recapitulation in section 2 of expected
classical and quantum information. Section 4 discusses the implications of the result. We
indicate that in the one parameter case, asymptotically the bound is achievable, so that
in this case Braunstein and Cave’s motivation for /() in the definition of a statistical dis-
tinguishability metric for quantum states can be maintained. However for more than one
parameter the situation is rather more complex, and we indicate the open problems which
this discussion has uncovered.

2 Expected classical and quantum information

Consider a general quantum state p = p(f) that depends on an unknown scalar parameter
6. Consider also a generalised measurement M on a measure space (X', 4) of the form

M(4) = [ m(x)u(dz)

where the operator m(z) is nonnegative and selfadjoint and p is a real o-finite measure on
(X, A). The probability density with respect to u of the observation x arising from a single
measurement by M is

p(z; 0) = trace{p(0)m(z)} .
The expected Fisher information from this measurement on @ is defined by
i(0; M) = E{i7}
= [ (io(a))*p(a; 6)(dz)
where
1 =1(0) =logp(x;0)

is the log likelihood function of # and iy = (9/80)1(0). For this quantity to be statistically
meaningful, it is necessary that {z : p(z;60) > 0} does not depend on 6.

Now, let Dp denote the symmetric logarithmic derivative of p with respect to 6, that is,
the selfadjoint operator Dp given implicitly by

1
Dp = 5 (pDp+Dpp) (2.1)

where D denotes differentiation with respect to 6.



The expected quantum information on € is defined by

1(0) = trace{p(Dp)*} .

Note that this quantity does not depend on M. Incidentally, I(6) is derivable as an infinites-
imal metric from the von Neumann relative entropy trace(polog(po) — polog(p)) just as the
classical information is obtainable from the Shannon relative entropy (or Kullback-Leibler
distance).

It is possible to express the information ¢(#; M) also in terms of the symmetric logarithmic
derivative of p, namely as

i(6; M) = [ p(:0)~" [Retrace{pDpm(x)}]” p(da)
X
This follows on noting that
lp(z) = p(x;0)'trace{Dpm(z)}

p(r:6)' Strace{ (sDp + Dppm(x)}
= p(z;0) 'Retrace{pDpm(z)} .

As shown by Braunstein and Caves [1], it follows from the Cauchy-Schwarz inequality
for traces of operators on the underlying Hilbert space H, that

i(0; M) < I(6) . (2.2)

Necessary and sufficient conditions for equality in (2.2) are that for (z almost) all z we have

Im trace{pDpm(z)} =0 (2.3)
and
m(x)?{k(z;0)/?1 — Dp}p*? =0 (2.4)
where
wlai0) = THELEEOP) (25)

3 Spin-% example

For a single spin—% particle the pure states have density matrices of the form p = |¢) (¢|

where '¢/2
9) = [9(1,9)) = [ZZ/Z S‘iﬁif?"/;))]

and hence p = p(n, ¢) is given by

co 2()%7)) e~ 00'5%77) sin(§n)] ] (3.1)



In the following we consider 1 € (0,7) as known and ¢ € [0, 27) as the unknown parameter.
(For n = 0 and n = 7 the parameter ¢ is meaningless).

Our first step is to determine the symmetric logarithmic derivative of p. The derivative
of p itself with respect to ¢ is

B 0 —ie~* cos(3n) sin(in)
Dp = [iei‘z’ cos(3n) sin(3n) 0 ' (3.2)

Since p is pure, p?> = p and hence pDp + Dpp = Dp. Comparing with the defining relation
(2.1) shows us that that Dp = 2Dp and hence

. O efi(¢+7r/2) .
Dp =siny Gil6+7/2) 0 = sin N or/2,¢4n/2 (3.3)

where 0, 4 = sin 7 cos ¢ 0, +sin7sin ¢ o, +cosn o, denotes the Pauli spin matrix (normalised
to have eigenvalues +1) for the direction, in polar cordinates, (7, ¢).
Since 07 , = 1 and trace(p) = 1 it follows that the expected quantum information on ¢
is
I(¢) =sin’7 .
Write | 1) = [¢(n, ¢)) and | |) = [¢(m —n, ¢ + 7)). We proceed to express p, Dp and m
in terms of the basis (| 1), | })) and find

p=]1{t]

Dp =sinp(| 1) [+ [ D)
Conditions (2.3) and (2.4) for equality of I(¢) and i(¢) therefore take the form

Imm“ =0

and
&Ym= sinnmyy, KY2myy = sinnmy,.

The first and second of these three equalities tell us myy = my, = (k¥2/sinn)mpy (real),
and together with the third we find also m;; = (k/2?/sinn)?m4;. Define the real numbers
a = m#{ B = (/fl/z/sinn)m#Q, so that myy = o2, myy = my = af, and m; = (%
Then we have obtained m = [£){(¢] with [£) = «| 1) + S| |) with o and 8 real. Now as ¢
varies, & and [ may vary too but m must remain constant. Let us consider £ in the original
coordinate system:

(acos(3n) — ifsin(dn))e 4P

(asin(3n) + iB cos(3n))e/?

This vector must be constant as ¢ varies, up to an arbitrarily varying phase. In particular
therefore ||£]|2 = |&1]? + |&]* = o 4 52 is constant, and |&]? = o cos?(in) + 42 sin®(37) is
constant. This implies, as long as n # 7/2 so that these two equations are linearly inde-
pendent, that a? and 3% are constant. Since o and (3 are real, this implies that o and 8
are constant as ¢ takes on at least several different values. Consequently & varies (by more
than a phase change) as ¢ varies. Consequently, for n # 7/2, no measurement M exists

&=
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with Fisher information i(¢; M) equal to the quantum information I(¢) whatever the value
of the unknown parameter ¢.

4 Discussion

We have shown, for the case of a one-dimensional parameter as considered by Braunstein
and Caves, that there need not exist a measurement M such that i(6; M) = I(#) for all
parameter values # simultaneously. It is on the other hand possible to find a measurement
M such that at a given parameter-value, i(6; M) = I(f), as Braunstein and Caves indicate.
They do not remark on the possible dependence of M on . As we explain below it is vital
for their arguments to come up with a measurement which achieves the bound independently
of . A similar lack of distinction between measurements optimal at a single point in the
parameter space and global optimality occurs elsewhere in the literature; see Fujiwara and
Nagaoka [2] (section 4, formula (17)) for another instance.

The construction of M at a specified value of @ is as follows. Supposing for simplicity
that Dp has discrete spectrum, let m(z) be the projector onto the eigenspace of Dp with
eigenvalue z, and let y be counting measure on the eigenvalues so that [ m(x)u(dz) = 1.
Then for each z, Dp and m(z) commute and their product equals xm(z). We find that (2.3)
and (2.4) are satisfied with x(z,0) = x?. However the eigenspace decomposition of Dp(f)
generally depends on 6 so this does not define a measurent M which achieves the bound
uniformly in 6.

Braunstein and Caves’ aim was to define a statistical distinguishability metric between
quantum states. The reason that i(f; M) is relevant in this context is (as those authors
explain) that based on n independent measurements M of identical copies of the given quan-
tum system, there typically exists an asymptotically unbiased estimator of 8 with asymptotic
variance 1/(ni(6; M)) and moreover no estimator based on the same measurements can do
better. That estimator—the maximum likelihood estimator—works for all values of §. On
the other hand it is only for special types of models (so-called exponential families), and
particular parameters (the so-called mean parameter) in those models, for which the Cramér-
Rao lower bound 1/(ni(f; M)) for the variance of an unbiased estimator can be achieved
exactly (for fixed n, in particular, n = 1), uniformly in 6. In fact a similar result can be
proved for quantum models; see Barndorff-Nielsen, Gill and Jupp (in preparation).

Note that the classical information based on n independent and identically distributed
realisations from a given density p(z, #) is equal to n times the information for one realisation.
Similarly, the quantum information in the state p(6)®" corresponding to n identical particles
each in state p(f) is easily found to be n times the quantum information for one particle.

In view of these facts the question is therefore: does there exist a measurement proce-
dure (not depending on #) on the state p®", on the basis of which an estimator of 6 can
be constructed having asymptotic variance 1/(nl(#))? If the answer is ‘yes’, then I(0) is
not just an upper bound on i(f; M) but in an asymptotic sense the least upper bound,
hence Braunstein and Caves’ proposed role for the quantum information 7(f) in defining a
statistical distinguishability metric is well motivated.

The following procedure seems a likely candidate: first estimate the parameter using a
perhaps inefficient procedure on a vanishing proportion of the observations, say logn out of
the total of n. Now carry out the ‘estimated optimal measurement’ on the remaining copies.



In our example this would reduce to the following procedure. Measure the spin operator
oy on k= %logn of the copies. The number of ‘+1’ observed is binomially distributed with
parameters k and p = %(sinncosqﬁ + 1). Similarly for another £ measurements of the spin
operator o, we get a binomial number of ‘+1’ with parameters £ and p = %(sinnsin o+1).
This allows us consistent estimation of both sin ¢ and cos ¢ and hence of ¢ € [0,27). Denote
such an estimator by ¢. We saw above that Dp in this example was proportional to the spin
operator for the direction 7/2, ¢ + m/2. Let us use the remaining n — logn observations to
measure this operator with ¢ replaced by ¢. Given ¢, this results in a binomial number X
of ‘+1’ with parameters n’ = n —logn and p = 1(1 — sinysin(¢ — ?)). Let

¢ = ¢ + arcsin((n' — 2X)/(n'sinn)) .

A straightforward mathematical-statistical analysis of this ‘final’ estimator shows that
n'/2(¢ — @) is asymptotically normal with mean zero and variance 1/sin(n), uniformly
in ¢, so that the quantum information bound is asymptotically achievable by our two stage
procedure. Our example shows that no ‘one stage’ procedure (i.e., repeating the same mea-
surement n times) can asymptotically achieve the bound uniformly in ¢. The present analysis
shows on the other hand that it is not necessary to use generalised measurements; measure-
ments of classical observables are enough. We conjecture that such two-stage procedures
will work in fair generality in one-parameter problems.

The situation is rather unclear when there are several unknown parameters. However
in the spin—% situation with both n and ¢ unknown, the same appears to hold: asymp-
totically, measurements of classical observables on separate particles can achieve maximum
information.

The symmetric logarithmic derivatives for the two parameters n and ¢ are o, /24 and
Sin N0y /2,4+4x/2 Tespectively. After a small proportion of measurements we know roughly
the location of the parameter, and it is sufficient to investigate optimal measurement at a
‘known’ parameter value.

More specifically, consider (essentially without loss of generality) the special point 7 =
7/2, ¢ = 0. At this point the symmetric logarithmic derivatives are o, and —o,, and the
quantum information matrix is the identity matrix 1. The arguments of Braunstein and
Caves do not appear to extend to the multi-parameter case, but the quantum Cramér-Rao
bound (Holevo, 1982; Helstrom, 1976) does hold also for the multi-parameter case, with the
inverse of the quantum information matrix being a lower bound to the variance-covariance
matrix of an unbiased estimator of (7, ¢) based on the outcome of a single measurement
M. However there is not a single measurement whose probability distribution has Fisher
information matrix for (7, ¢) equal to the quantum information matrix, since by our results
above it would have to be of the form m(z) = [£)(£| with [£), up to a phase, equal to
al 1) + 3] |) with @ and 8 real and « non-zero for attainability of the ¢ component of
the information, while by a similar calculation for n (for which the symmetric logarithmic
derivative turns out to be equal to i| 1){({ | —i| 1){1 |) m should again be rank-one but now
with |£), up to a phase, of the form o/| 1) +i4'| |) with o/ and ' real and o' non-zero, which
is only possible if 3 = ' = 0. Though m(z) can have this form for some z it is impossible
for it to be true for all, since [ m(z)u(dz) = 1.

Since no measurement attains simultaneously full quantum information for n and ¢, at
a given parameter point, but separately this is possible, we see that the class of Fisher



information matrices for an arbitrary measurement on the spin—% system does not include
its least upper bound (the identity matrix 1). This means that for different loss functions,
different repeated measurements will be optimal. An appealing loss function is one minus
the smuared inner-product between the true state vector and its estimate. This emuals
one minus the squared cosine of half the angle between the points on the Poincaré sphere
representing the two states. At the special point under consideration therefore, the loss
function is asymptotically emuivalent to one guarter times the sum of the smuares of the
errors in 7 and ¢ respectively.

Massar and Popescu [5], in response to a problem posed by Peres and Wootters [6],
exhibited a measurement, optimal in the Bayes sense, with respect to the loss function just
mentioned and a uniform prior distribution. It had an asymptotic mean square error 4/n.
This was a genuine generalised measurement of the composite system p®". They showed
that for the case of n = 2 there were no measurement methods of the two particles separately
which were as good as the optimal method.

However, consider taking with probability half measurements of o, and o, independently
on each particle. We find easily that the Fisher information matrix for 7, ¢ at n = 7/2,
¢ = 0is 31. Therefore (31)"'/n = 21/n is an asymptotically achievable lower bound,
at the point under consideration, for the covariance matrix of (asymptotically unbiased)
estimators of 7, ¢ based on n of such measurements. The maximum likelihood method
would provide estimators asymptotically achieving this bound. The sum of the variances is
4/n. This strongly suggests that a two-stage procedure similar to what we proposed in the
one-parameter case can asymptotically achieve Massar and Popescu’s mean square error of
4/n, using only classical measurements of single particles. More explicitly, first carry out
measurements of each of 0,, 0, and o, on a small proportion of separate particles. Compute
from these results a consistent estimate of 7, . Now rotate the coordinate system so that the
estimated value is at n = 7/2, ¢ = 0, and measure alternately o, and o, on the remaining
(large proportion) of the particles. Estimate 7, ¢ (new coordinate system) by the method of
maximum likelihood using the second stage observations, and finally transform back to the
original coordinate system using the first estimates.

The muantum information matrix was in this case equal to 1 itself. This implies a lower
bound to the covariance matrix of unbiased estimators of 7, ¢ of 17! /n = 1/n (at the spe-
cial point under consideration before). This bound applies to estimators based on arbitrary
measurements of the n particles as a single system. The sum of the mean s®uare errors can
not be less than the trace of this matrix, 2/n. By analogy with classical statistical theory
one should expect the same bound to apply to the wider class of asymptotically unbiased
estimators. However the Massar and Popescu results suggest that the actual asymptotic
bound is 4/n, asymptotically achieved by their optimal Bayes procedure based on a gener-
alised measurement of the n particles as a single system, but also by our two-stage procedure
of separate measurements of classical observables.

All this means that in the multiparameter case, the bound implied by the guantum
information matrix is not even asymptotically achievable. Hence the role of the muantum
information matrix in multiparameter problems is rather less fundamental than in the one-
parameter case. Whether or not it is possible in more general examples to compute an
asymptotically attainable lower bound for a particular loss function is a very difficult open
problem.
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