SEMIGROUPS AND PROCESSES WITH PARAMETER IN A CONE

JAN PEDERSEN AND KEN-ITI SATO

ABSTRACT. For a cone K in a Euclidean space recent results of Pedersen and Sato on K-parameter convolution semigroups and K-parameter Lévy processes in law are surveyed. Relations to other multi-parameter processes are discussed.

1. Convolution semigroups with parameter in a cone

A convolution semigroup with parameter in $\mathbb{R}_+ = [0, \infty)$, or an \mathbb{R}_+ -parameter convolution semigroup, is a family of probability measures $\{\mu_t : t \in \mathbb{R}_+\}$ on \mathbb{R}^d such that

(1.1)
$$\mu_{t_1} * \mu_{t_2} = \mu_{t_1+t_2} \quad \text{for } t_1, t_2 \in \mathbb{R}_+$$

and

(1.2)
$$\mu_{t_n} \to \delta_0 \quad \text{whenever } t_n \downarrow 0.$$

Here $\mu_{t_1} * \mu_{t_2}$ is the convolution of μ_{t_1} and μ_{t_2} defined by

$$(\mu_{t_1} * \mu_{t_2})(B) = \iint_{\mathbb{R}^d \times \mathbb{R}^d} \mathbb{1}_B(x+y)\mu_{t_1}(dx)\mu_{t_2}(dy)$$

where 1_B is the indicator function of the set B; the convergence $\mu_{t_n} \to \delta_0$ is weak convergence and δ_0 is the distribution concentrated at 0, that is,

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} f(x) \mu_{t_n}(dx) = f(0) \quad \text{for all bounded continuous } f(x).$$

The structure of \mathbb{R}_+ -parameter convolution semigroups is as follows. We use the notion of infinite divisibility. A distribution (= probability measure) μ on \mathbb{R}^d is called infinitely divisible if, for every positive integer n, there is a distribution ρ_n such that $\mu = \rho_n^{n*}$, the *n*-fold convolution of ρ_n .

This work was partially supported by MaPhySto – A Network in Mathematical Physics and Stochastics, funded by The Danish National Research Foundation. Jan Pedersen was supported by the Danish Natural Science Research Council. Ken-iti Sato was partly supported by CIMAT at Guanajuato, Mexico, and the Grant-in-Aid for Scientific Research, Japan.

(i) If $\{\mu_t : t \in \mathbb{R}_+\}$ is an \mathbb{R}_+ -parameter convolution semigroup on \mathbb{R}^d , then μ_1 is obviously infinitely divisible; conversely, if μ is infinitely divisible, then there is a unique \mathbb{R}_+ -parameter convolution semigroup $\{\mu_t : t \in \mathbb{R}_+\}$ such that $\mu_1 = \mu$.

(ii) If μ is an infinitely divisible distribution on \mathbb{R}^d , then the characteristic function $\widehat{\mu}(z) = \int_{\mathbb{R}^d} e^{i\langle z,x \rangle} \mu(dx), \ z \in \mathbb{R}^d$, of μ has the representation

(1.3)
$$\widehat{\mu}(z) = \exp\left[-\frac{1}{2}\langle z, Az \rangle + \int_{\mathbb{R}^d} g(z, x)\nu(dx) + i\langle z, \gamma \rangle\right]$$

with

$$g(z,x) = e^{i\langle z,x \rangle} - 1 - i\langle z,x \rangle \mathbb{1}_{\{|x| \leq 1\}}(x),$$

where $1_{\{|x| \leq 1\}}(x)$ is the indicator function of the set $\{|x| \leq 1\}$. Here $A \in \mathbf{S}_d^+ = \{$ nonnegative-definite symmetric $d \times d$ matrices $\}$, ν is a measure on \mathbb{R}^d satisfying $\nu(\{0\}) = 0$ and $\int (1 \wedge |x|^2)\nu(dx) < \infty$, and $\gamma \in \mathbb{R}^d$. These A, ν , and γ are uniquely determined by μ and called the (generating) triplet of μ ; A is the Gaussian covariance matrix, ν is the Lévy measure, and γ is a location parameter of μ . Conversely, for any A, ν , and γ satisfying the conditions above, there is a unique infinitely divisible distribution μ on \mathbb{R}^d having the representation (1.3). (This is called the Lévy-Khintchine representation of μ).

In fact, if $\{\mu_t : t \in \mathbb{R}_+\}$ is an \mathbb{R}_+ -parameter convolution semigroup on \mathbb{R}^d , then, for each t, μ_t is infinitely divisible and has triplet $(tA, t\nu, t\gamma)$, where (A, ν, γ) is the triplet of μ_1 .

These results, and their probabilistic interpretations, were obtained in the 1930s by de Finetti, Kolmogorov, Lévy, and Khintchine; see [3], [4], [23], [24].

A natural generalization of the parameter space \mathbb{R}_+ is \mathbb{R}_+^N , the set of $s = (s_1, \ldots, s_N)^\top$ with $s_1, \ldots, s_N \in \mathbb{R}_+$. The notation $(s_1, \ldots, s_N)^\top$ gives the column vector with components s_1, \ldots, s_N . We say that a family $\{\mu_s \colon s \in \mathbb{R}_+^N\}$ of probability measures on \mathbb{R}^d is an \mathbb{R}_+^N -parameter convolution semigroup if

(1.4)
$$\mu_{s^1} * \mu_{s^2} = \mu_{s^1 + s^2} \quad \text{for } s^1, s^2 \in \mathbb{R}^N_+$$

and

(1.5)
$$\mu_{t_n s} \to \delta_0$$
 for $s \in \mathbb{R}^N_+$ whenever $\{t_n\}$ is a sequence of reals strictly decreasing to 0.

Although \mathbb{R}^{N}_{+} -parameter semigroups of linear operators on a Banach space are discussed in Dunford and Schwartz [6], we do not know any reference for the explicit statement of the following result.

Theorem 1.1. Let $e^j = (\delta_{jk})_{1 \leq k \leq N}$, where $\delta_{jk} = 0$ or 1 according as $k \neq j$ or k = j.

(i) Let $\{\mu_s : s \in \mathbb{R}^N_+\}$ be an \mathbb{R}^N_+ -parameter convolution semigroup on \mathbb{R}^d . Then, for any $s = s_1 e^1 + \cdots + s_N e^N \in \mathbb{R}^N_+$, μ_s is infinitely divisible and the triplet (A_s, ν_s, γ_s) of μ_s is such that

 $A_{s} = s_{1}A_{e^{1}} + \dots + s_{N}A_{e^{N}}, \quad \nu_{s} = s_{1}\nu_{e^{1}} + \dots + s_{N}\nu_{e^{N}}, \quad \gamma_{s} = s_{1}\gamma_{e^{1}} + \dots + s_{N}\gamma_{e^{N}}.$

(ii) Conversely, let ρ_1, \ldots, ρ_N be infinitely divisible distributions on \mathbb{R}^d with triplets $(A_1, \nu_1, \gamma_1), \ldots, (A_N, \nu_N, \gamma_N)$, respectively. Then there is a unique \mathbb{R}^N_+ -parameter convolution semigroup $\{\mu_s : s \in \mathbb{R}^N_+\}$ such that $\mu_{e^j} = \rho_j$ for $j = 1, \ldots, N$.

Proof. (i) Notice that the restriction of $\{\mu_s\}$ to $s = te^j$, $t \in \mathbb{R}_+$, is an \mathbb{R}_+ -parameter convolution semigroup for each j and that $\mu_s = \mu_{s_1e^1} * \cdots * \mu_{s_Ne^N}$ for $s = s_1e^1 + \cdots + s_Ne^N \in \mathbb{R}_+^N$. (ii) Let $\{\mu_t^{(j)} : t \in \mathbb{R}_+\}$ be the \mathbb{R}_+ -parameter convolution semigroup with $\mu_1^{(j)} = \rho_j$ and consider $\mu_s = \mu_{s_1}^{(1)} * \cdots * \mu_{s_N}^{(N)}$ for $s = s_1e^1 + \cdots + s_Ne^N \in \mathbb{R}_+^N$. \Box

A further natural generalization of the parameter space is a cone K in a Euclidean space \mathbb{R}^M . We say that a subset K of \mathbb{R}^M is a *cone* if it is a non-empty closed convex set which is closed under multiplication by nonnegative reals and contains no straight line through 0 and if $K \neq \{0\}$. Given a cone K, we call $\{\mu_s : s \in K\}$ a K-parameter convolution semigroup if it is a family of probability measures on \mathbb{R}^d satisfying (1.4) and (1.5) with \mathbb{R}^N_+ replaced by K. Bochner introduced in his book [4] a similar concept and suggested subordination of cone-parameter convolution semigroups, in a short section entitled Multidimensional time variable.

Let K be a cone in \mathbb{R}^M and let L be the linear subspace generated by K. If L has dimension N, then K is called an N-dimensional cone. If L has dimension N and $\{e^1, \ldots, e^N\}$ is a linearly independent system such that each e^j is in K, then we call $\{e^1, \ldots, e^N\}$ a weak basis of K. If, moreover, each $s \in K$ is represented as $s = s_1e^1 + \cdots + s_Ne^N$ with $s_1, \ldots, s_N \in \mathbb{R}_+$, then we call $\{e^1, \ldots, e^N\}$ a strong basis of K. If K is a cone with a strong basis $\{e^1, \ldots, e^N\}$, then K is isomorphic to \mathbb{R}^N_+ . Any 2-dimensional cone has a strong basis, but in higher dimensions there are many cones without a strong basis. Indeed, a 3-dimensional cone has a strong basis if and only if it is a triangular cone.

The latter half of Theorem 1.1 is not generalized for K-parameter convolution semigroups unless K has a strong basis. For an infinitely divisible distribution μ on \mathbb{R}^d satisfying (1.3) we define

$$\widehat{\mu}(z)^t = \exp\left[t\left(-\frac{1}{2}\langle z, Az \rangle + \int_{\mathbb{R}^d} g(z, x)\nu(dx) + i\langle z, \gamma \rangle\right)\right]$$

for $t \in \mathbb{R}$. If $A \neq 0$ or $\nu \neq 0$, then, for any t < 0, $\hat{\mu}(z)^t$ is not a characteristic function. Let $\mathcal{B}(\mathbb{R}^d)$ be the class of Borel sets in \mathbb{R}^d and let $\mathcal{B}_0(\mathbb{R}^d)$ be the class of $B \in \mathcal{B}(\mathbb{R}^d)$ such that $\inf_{x \in B} |x| > 0$.

Theorem 1.2. Let K be a cone and let $\{e^1, \ldots, e^N\}$ be a weak basis.

(i) Let $\{\mu_s : s \in K\}$ be a K-parameter convolution semigroup on \mathbb{R}^d . Then, for any $s \in K$, μ_s is infinitely divisible and determined by $\mu_{e^1}, \ldots, \mu_{e^N}$. More precisely, for $s = s_1 e^1 + \cdots + s_N e^N \in K$, we have

(1.6)
$$\widehat{\mu}_s(z) = \widehat{\mu}_{e^1}(z)^{s_1} \cdots \widehat{\mu}_{e^N}(z)^{s_N}, \quad z \in \mathbb{R}^d$$

and the triplet (A_s, ν_s, γ_s) of μ_s satisfies

(1.7)
$$A_s = s_1 A_{e^1} + \dots + s_N A_{e^N},$$

(1.8)
$$\nu_s(B) = s_1 \nu_{e^1}(B) + \dots + s_N \nu_{e^N}(B) \text{ for } B \in \mathcal{B}_0(\mathbb{R}^d),$$

(1.9)
$$\gamma_s = s_1 \gamma_{e^1} + \dots + s_N \gamma_{e^N}$$

(ii) Let ρ_1, \ldots, ρ_N be infinitely divisible distributions on \mathbb{R}^d . Then the following conditions are equivalent.

(a) There exists a K-parameter convolution semigroup $\{\mu_s : s \in K\}$ such that $\mu_{e^j} = \rho_j$ for j = 1, ..., N.

(b) If $s_1, \ldots, s_N \in \mathbb{R}$ are such that $s_1 e^1 + \cdots + s_N e^N \in K$, then $\widehat{\rho}_1(z)^{s_1} \ldots \widehat{\rho}_N(z)^{s_N}$ is an infinitely divisible characteristic function.

(c) If $s_1, \ldots, s_N \in \mathbb{R}$ are such that $s_1 e^1 + \cdots + s_N e^N \in K$, then $s_1 A_1 + \cdots + s_N A_N \in \mathbf{S}_d^+$ and $s_1 \nu_1(B) + \cdots + s_N \nu_N(B) \ge 0$ for $B \in \mathcal{B}_0(\mathbb{R}^d)$.

The proof of this theorem is not hard. We refer to [20]. Note that some of s_1, \ldots, s_N above may be negative.

A system $\{\rho_1, \ldots, \rho_N\}$ of infinitely divisible distributions on \mathbb{R}^d is called *admissible* with respect to a weak basis $\{e^1, \ldots, e^N\}$, if it satisfies condition (a) above. If $\{e^1, \ldots, e^N\}$ is a strong basis of K, then every system $\{\rho_1, \ldots, \rho_N\}$ is admissible with respect to $\{e^1, \ldots, e^N\}$ by virtue of Theorem 1.1. The converse is also true, as we formulate it below.

Corollary 1.3. Let $\{e^1, \ldots, e^N\}$ be a weak basis of K and not a strong basis. Then, for any d, there is a system $\{\rho_1, \ldots, \rho_N\}$ of infinitely divisible distributions on \mathbb{R}^d which is not admissible with respect to $\{e^1, \ldots, e^N\}$.

Proof. Let the Lévy measures ν_j of ρ_j (j = 1, ..., N) be such that there is $B_j \in \mathcal{B}_0(\mathbb{R}^d)$ satisfying $\nu_j(B_j) > 0$ and $\nu_k(B_j) = 0$ for $k \neq j$. Since $\{e^1, \ldots, e^N\}$ is not a strong basis, we can find $s = s_1 e^1 + \cdots + s_N e^N \in K$ such that $s_{j_0} < 0$ for some j_0 . Then

$$s_1\nu_1(B_{j_0}) + \dots + s_N\nu_N(B_{j_0}) = s_{j_0}\nu_{j_0}(B_{j_0}) < 0,$$

which shows that $\{\rho_1, \ldots, \rho_N\}$ is not admissible.

We have the following result concerning the continuity condition in the definition of cone-parameter convolution semigroups.

Corollary 1.4. Let K be a cone. Let $\{\mu_s : s \in K\}$ be a K-parameter convolution semigroup on \mathbb{R}^d . Then, for any $s \in K$,

(1.10)
$$\mu_{s'} \to \mu_s \quad \text{whenever } s' \to s \text{ in } K.$$

Proof. Use (1.6).

Let K_1 and K_2 be cones in \mathbb{R}^M satisfying $K_1 \subseteq K_2$. It is obvious that if $\{\mu_s : s \in K_2\}$ is a K_2 -parameter convolution semigroup, then its restriction $\{\mu_s : s \in K_1\}$ is a K_1 -parameter convolution semigroup. Concerning the extension problem we have the following.

Theorem 1.5. Let K_1 be an N-dimensional cone with a strong basis. Then, for any d, there exists a K_1 -parameter convolution semigroup $\{\mu_s : s \in K_1\}$ on \mathbb{R}^d such that, for any N-dimensional cone K_2 satisfying $K_2 \supseteq K_1$ and $K_2 \neq K_1$, $\{\mu_s : s \in K_1\}$ is not extendable to a K_2 -parameter convolution semigroup.

Proof. Construct $\{\mu_s : s \in K_1\}$ similarly to the proof of Corollary 1.3.

Example 1.6. The class \mathbf{S}_d^+ is a (d(d+1)/2)-dimensional cone. For any $d \ge 2$ it has no strong basis. The class \mathbf{S}_2^+ is 3-dimensional and isomorphic to a circular cone. See [20] for a proof.

Let $\mu_s = N_d(0, s)$, the Gaussian distribution on \mathbb{R}^d with mean 0 and covariance matrix s. Then $\{\mu_s : s \in \mathbf{S}_d^+\}$ is an \mathbf{S}_d^+ -parameter convolution semigroup. This is introduced in [20] and called the *canonical* \mathbf{S}_d^+ -parameter convolution semigroup.

Let K_1 and K_2 be cones in \mathbb{R}^{M_1} and \mathbb{R}^{M_2} , respectively. A K_1 -parameter convolution semigroup $\{\mu_s : s \in K_1\}$ on \mathbb{R}^{M_2} is called K_2 -valued if, for each s, μ_s has support in K_2 . The condition for an infinitely divisible distribution to have support in a cone is given in Skorohod [26] (see [23], E22.11). Many examples of \mathbb{R}^N_+ -valued \mathbb{R}_+ -parameter convolution semigroups are given in the paper [2]. Now let us consider an extension of Bochner's subordination to the cone-parameter case. For any measure μ and μ -integrable function f, we write $\mu(f) = \int f(x)\mu(dx)$.

Theorem 1.7. Let $\{\mu_u : u \in K_2\}$ be a K_2 -parameter convolution semigroup on \mathbb{R}^d and let $\{\rho_s : s \in K_1\}$ be a K_2 -valued K_1 -parameter convolution semigroup. Define a probability measure σ_s on \mathbb{R}^d by

(1.11)
$$\sigma_s(f) = \int_{K_2} \mu_u(f) \rho_s(du), \qquad s \in K_1$$

for bounded continuous functions f on \mathbb{R}^d . Then $\{\sigma_s : s \in K_1\}$ is a K_1 -parameter convolution semigroup on \mathbb{R}^d .

Proof. We have

$$\widehat{\sigma}_s(z) = \int_{K_2} \widehat{\mu}_u(z) \rho_s(du), \qquad z \in \mathbb{R}^d.$$

Hence $\lim_{n\to\infty} \widehat{\sigma}_{t_n s}(z) = 1$ as $t_n \downarrow 0$ and

$$\widehat{\sigma}_{s^{1}+s^{2}}(z) = \int_{K_{2}} \widehat{\mu}_{u}(z)\rho_{s^{1}+s^{2}}(du) = \iint_{K_{2}\times K_{2}} \widehat{\mu}_{u^{1}+u^{2}}(z)\rho_{s^{1}}(du^{1})\rho_{s^{2}}(du^{2})$$
$$= \iint_{K_{2}\times K_{2}} \widehat{\mu}_{u^{1}}(z)\widehat{\mu}_{u^{2}}(z)\rho_{s^{1}}(du^{1})\rho_{s^{2}}(du^{2}) = \widehat{\sigma}_{s^{1}}(z)\widehat{\sigma}_{s^{2}}(z).$$

Thus $\{\sigma_s\}$ is a K_1 -parameter convolution semigroup.

The expression of the triplet of σ_s of Theorem 1.7 in terms of the triplets of μ_u , $u \in K_2$, and ρ_s is given in [20].

2. Lévy processes in law with parameter in a cone

To any \mathbb{R}_+ -parameter convolution semigroup a unique (in law) Lévy process in law is associated and vice versa. More precisely, a stochastic process $\{X_t : t \in \mathbb{R}_+\}$ on \mathbb{R}^d is called a Lévy process in law if

- (2.1) for any $n \ge 3$ and $t_1 \le t_2 \le \cdots \le t_n$ in \mathbb{R}_+ , $X_{t_2} X_{t_1}, \dots, X_{t_n} X_{t_{n-1}}$ are independent,
- (2.2) $X_{t_2} X_{t_1} \stackrel{d}{=} X_{t_4} X_{t_3} \text{ for } t_2 t_1 = t_4 t_3,$
- (2.3) $X_0 = 0$ a.s.(=almost surely),
- (2.4) $X_{t_n} \to X_t$ in probability as $|t_n t| \to 0$.

Here (and from now on) we do not explicitly mention the probability space (Ω, \mathcal{F}, P) on which the process is defined. The symbol $\stackrel{d}{=}$ indicates equality in distribution. Let us denote the distribution of a random vector X by $\mathcal{L}(X)$. If $\{X_t: t \in \mathbb{R}_+\}$ is a Lévy process in law on \mathbb{R}^d , then $\{\mu_t: t \in \mathbb{R}_+\}$ defined by $\mu_t = \mathcal{L}(X_t)$ is an \mathbb{R}_+ -parameter convolution semigroup on \mathbb{R}^d . Conversely, for any \mathbb{R}_+ -parameter convolution semigroup $\{\mu_t: t \in \mathbb{R}_+\}$, there exists a unique (in law) Lévy process in law $\{X_t: t \in \mathbb{R}_+\}$ such that $\mathcal{L}(X_t) = \mu_t$.

We pose the following problem. For a cone K in \mathbb{R}^M , can we define a class of K-parameter stochastic processes which corresponds to the class of K-parameter convolution semigroups? When a K-parameter convolution semigroup $\{\mu_s : s \in K\}$ on \mathbb{R}^d is given, we mean

(2.5)
$$\mathcal{L}(X_s) = \mu_s \quad \text{for } s \in K$$

by saying that a process $\{X_s : s \in K\}$ corresponds to $\{\mu_s : s \in K\}$. Since $\mu_0 = \delta_0$, (2.5) implies

(2.6)
$$X_0 = 0$$
 a.s.

We have to seek probabilistic properties of $\{X_s : s \in K\}$ which gives the semigroup property

(2.7)
$$\mu_{s^1} * \mu_{s^2} = \mu_{s^1 + s^2} \quad \text{for } s^1, s^2 \in K.$$

As is shown in Examples 2.15–2.16 below, (2.7) is not satisfied for many \mathbb{R}^{N}_{+} -parameter processes studied in the literature if μ_{s} is given by (2.5).

A cone K in \mathbb{R}^M induces a partial order in \mathbb{R}^M ; we say that $s^1 \leq_K s^2$ if $s^2 - s^1 \in K$. The following two conditions combined with (2.6) imply the semigroup property (2.7) if μ_s is given by (2.5):

(2.8) if $n \ge 3$ and $s^1 \le_K s^2 \le_K \dots \le_K s^n$, then $X_{s^2} - X_{s^1}, \dots, X_{s^n} - X_{s^{n-1}}$ are independent,

(2.9) if
$$s^1, \ldots, s^4 \in K$$
 and $s^2 - s^1 = s^4 - s^3 \in K$, then $X_{s^2} - X_{s^1} \stackrel{d}{=} X_{s^4} - X_{s^3}$.

The following condition implies the continuity property (1.10):

(2.10) $X_{s^n} \to X_s$ in probability as $|s^n - s| \to 0$.

Thus it is reasonable to introduce the following class of K-parameter stochastic processes.

Definition 2.1. A family $\{X_s : s \in K\}$ of random variables on \mathbb{R}^d is called a *K*-parameter Lévy process in law on \mathbb{R}^d if it satisfies (2.6), (2.8), (2.9), and (2.10).

Even in the \mathbb{R}_+ -parameter case, there is a process which is not a Lévy process in law but corresponds to a convolution semigroup by (2.5) (see [23] E12.15, E18.18). However, in seeking a class of processes corresponding to convolution semigroups, we cannot find any meaningful one other than the class of K-parameter Lévy processes in law defined above. In the case $K = \mathbb{R}^N_+$, K-parameter Lévy processes in law in the sense of Definition 2.1 were introduced by Barndorff-Nielsen, Pedersen, and Sato [2] in relation to multivariate subordination.

Now we face two problems. (1) Given a K-parameter convolution semigroup $\{\mu_s: s \in K\}$, can we find a K-parameter Lévy process in law $\{X_s: s \in K\}$ satisfying (2.5)? (2) In the case where we can find $\{X_s: s \in K\}$ of (1), is it unique in law? We have obtained negative answers to both problems in [21]. Thus we have to pose the problem to seek conditions under which (1) or (2) is answered in the affirmative. This is a difficult problem and we have only partial answers, which we describe below. We refer to [21] for proofs.

Definition 2.2. A *K*-parameter convolution semigroup $\{\mu_s : s \in K\}$ is said to be *generative* if there is a *K*-parameter Lévy process in law $\{X_s : s \in K\}$ associated with it, that is, satisfying (2.5).

Definition 2.3. A generative K-parameter convolution semigroup is said to be *unique-generative* if all K-parameter Lévy processes in law associated with it have the same system of finite-dimensional distributions. Otherwise it is said to be *multiple-generative*.

One might be tempted to call a process associated with the canonical \mathbf{S}_d^+ -parameter convolution semigroup an \mathbf{S}_d^+ -parameter Brownian motion. But such a process does not exist.

Theorem 2.4. For any $d \ge 2$, the canonical \mathbf{S}_d^+ -parameter convolution semigroup is non-generative.

Another remarkable fact on the cone \mathbf{S}_d^+ is the following.

Theorem 2.5. Let $d \ge 2$ and let $K = \mathbf{S}_d^+$. Let $\{\mu_s : s \in K\}$ be a K-parameter convolution semigroup such that $\int |x|^2 \mu_s(dx) < \infty$ and the covariance matrix v_s of μ_s satisfies $v_s \leq_K s$ for every $s \in K$. Then μ_s is Gaussian for every $s \in K$.

In the case of $\mathbb{R}_+ = \mathbf{S}_1^+$, the condition $v_t \leq t$ is fulfilled by all \mathbb{R}_+ -parameter convolution semigroups $\{\mu_t : t \in \mathbb{R}_+\}$ on \mathbb{R} with the triplet (A, ν, γ) of μ_1 satisfying $A + \int_{\mathbb{R}} x^2 \nu(dx) \leq 1$.

Let K be a cone in \mathbb{R}^M . Let us denote the triplet of μ_s by (A_s, ν_s, γ_s) .

Theorem 2.6. If $\{\mu_s : s \in K\}$ is a K-parameter convolution semigroup on \mathbb{R}^d which is purely non-Gaussian in the sense that $A_s = 0$, then $\{\mu_s : s \in K\}$ is generative.

Theorem 2.7. If $\{\mu_s : s \in K\}$ is a K-parameter convolution semigroup on \mathbb{R} (that is, d = 1), then it is generative.

Theorem 2.8. If K has a strong basis, then, for any d, any K-parameter convolution semigroup $\{\mu_s : s \in K\}$ on \mathbb{R}^d is generative.

A distribution is called trivial if it is concentrated at a point. A convolution semigroup $\{\mu_s : s \in K\}$ is called trivial if each μ_s is trivial.

Theorem 2.9. Let K possess a strong basis $\{e^1, \ldots, e^N\}$ and let $\{\mu_s : s \in K\}$ be a K-parameter convolution semigroup on \mathbb{R}^d . If $A_{e^j}(\mathbb{R}^d) \cap A_{e^k}(\mathbb{R}^d) \neq \{0\}$ for some $j \neq k$ or if ν_{e^j} and ν_{e^k} are not mutually singular for some $j \neq k$, then $\{\mu_s\}$ is multiple-generative. In particular, if $\{\mu_s\}$ is non-trivial and if $\mu_{e^1} = \cdots = \mu_{e^N}$, then $\{\mu_s\}$ is multiple-generative.

Theorem 2.10. Let K possess a strong basis $\{e^1, \ldots, e^N\}$. Let $L_1, \ldots, L_N \in \mathcal{B}(\mathbb{R}^d)$ be additive subgroups of \mathbb{R}^d such that $L_j \cap L_k = \{0\}$ for all $j \neq k$. If $\{\mu_s : s \in K\}$ is a K-parameter convolution semigroup satisfying $\mu_{te^j}(L_j) = 1$ for all j and t, then $\{\mu_s\}$ is unique-generative. **Theorem 2.11.** Let K possess a strong basis. If $\{\mu_s : s \in K\}$ is a unique-generative K-parameter convolution semigroup on \mathbb{R}^d , then all finite-dimensional distributions of the associated K-parameter Lévy process in law are infinitely divisible. But there is a multiple-generative K-parameter convolution semigroup $\{\mu_s : s \in K\}$ on \mathbb{R}^d such that some finite-dimensional distributions of some K-parameter Lévy process in law associated with $\{\mu_s\}$ are not infinitely divisible.

Among these results, Theorem 2.8 and the last statement of Theorem 2.9 are easy to prove (see Example 2.12).

Example 2.12. Let K be a cone with a strong basis $\{e^1, \ldots, e^N\}$. If $\{V_t^j : t \in \mathbb{R}_+\}$, $j = 1, \ldots, n$, are independent Lévy processes in law on \mathbb{R}^d and if $u^j = u_1^j e^1 + \cdots + u_N^j e^N \in K$ for $j = 1, \ldots, n$, then $\{X_s : s \in K\}$ defined by

(2.11)
$$X_s = \sum_{j=1}^n V^j_{u_1^j s_1 + \dots + u_N^j s_N} \text{ for } s = s_1 e^1 + \dots + s_N e^N$$

is a K-parameter Lévy process in law.

If we are given a K-parameter convolution semigroup $\{\mu_s : s \in K\}$ on \mathbb{R}^d , then, choosing n = N, $u_k^j = 0$ or 1 according as $k \neq j$ or k = j, and $\mathcal{L}(V_1^j) = \mu_{e^j}$ for $j = 1, \ldots, N$, we get a K-parameter Lévy process in law associated with $\{\mu_s\}$.

If we are given a K-parameter convolution semigroup $\{\mu_s : s \in K\}$ on \mathbb{R}^d satisfying $\mu_{e^1} = \cdots = \mu_{e^N}$, then another construction of an associated K-parameter Lévy process in law is to choose n = 1 and $u^1 = e^1 + \cdots + e^N$. The system of finitedimensional distributions of this K-parameter Lévy process in law is different from that of the former construction unless $\{\mu_s\}$ is trivial.

Hirsch [11] and Koshnevisan, Xiao, and Zhong [14] study potential theory and local times of the processes of type (2.11).

The process defined by (2.11) has an additional property that it has homogeneous independent increments along *any* straight line intersected with K. Inoue [12] gives a more general construction of similar K-parameter processes.

Example 2.13. Let K be a cone with a strong basis $\{e^1, \ldots, e^N\}$. For each $j = 1, \ldots, N$, let $\{V_t^j : t \in \mathbb{R}_+\}$ be a Lévy process in law on \mathbb{R}^{d_j} . Assume that they are independent. Define a process X_s by

(2.12)
$$X_s = (V_{s_1}^1, \dots, V_{s_N}^N)^\top \text{ for } s = s_1 e^1 + \dots + s_N e^N.$$

Then $\{X_s: s \in K\}$ is a K-parameter Lévy process in law on \mathbb{R}^d , where $d = d_1 + \cdots + d_N$. This is a special case of multi-parameter Markov processes whose potential theory is studied by Dynkin [7], Evans [9], Fitzsimmons and Salisbury [10], and others.

Remark 2.14. Let K_1 and K_2 be cones in \mathbb{R}^{M_1} and \mathbb{R}^{M_2} , respectively. Let us give an analogue to Theorem 1.7 for cone-parameter Lévy processes in law. Hence let $\{Z_s: s \in K_1\}$ be a K_1 -parameter Lévy process in law on \mathbb{R}^{M_2} satisfying that $Z_s \in K_2$ a.s. for $s \in K_1$. Let $\{X_u: u \in K_2\}$ be a K_2 -parameter Lévy process in law on \mathbb{R}^d which is independent of $\{Z_s: s \in K_1\}$. Define $\{Y_s: s \in K_1\}$ by $Y_s = X_{Z'_s}$, where $Z'_s = Z_s \mathbf{1}_{K_2}(Z_s)$. Note that $Z'_s = Z_s$ a.s. In order to ensure that Y_s is measurable we assume that both $\{Z_s: s \in K_1\}$ and $\{X_u: u \in K_2\}$ are measurable processes. (That is, $(s, \omega) \mapsto Z_s(\omega)$ and $(u, \omega) \mapsto X_u(\omega)$ are both measurable mappings.) This is essentially no restriction since any cone-parameter Lévy process in law has a measurable modification; see [21]. By repeating the proof of Theorem 3.3 of [2] it follows that $\{Y_s: s \in K_1\}$ is a K_1 -parameter Lévy process in law on \mathbb{R}^d . That is, the class of cone-parameter Lévy processes in law is closed under subordination. If we denote $\mu_u = \mathcal{L}(X_u), \rho_s = \mathcal{L}(Z_s)$ and $\sigma_s = \mathcal{L}(Y_s)$, then we have the relation (1.11) between $\{\mu_u: u \in K_2\}, \{\rho_s: s \in K_1\}$ and $\{\sigma_s: s \in K_1\}$.

Example 2.15. Consider the case $K = \mathbb{R}^N_+$. Let us show that Brownian sheets studied by Orey and Pruitt [19], Talagrand [27], Khoshnevisan and Shi [13], and many others, and the so-called multi-parameter Lévy processes for $N \ge 2$ studied by Ehm [8] (in the strictly stable case), Vares [28], and Lagaize [15] (both in the case N = 2) are not K-parameter Lévy processes in law in our sense.

We consider the case N = 2, but the case of general N is similar. The processes in the papers mentioned above are in the following category. Let $\{X_s : s \in \mathbb{R}^2_+\}$ be a family of random variables on \mathbb{R}^d . Now and then we write X_{s_1,s_2} instead of X_s when $s = (s_1, s_2)^{\top}$. For $s = (s_1, s_2)^{\top}$ and $u = (u_1, u_2)^{\top}$ in $K = \mathbb{R}^2_+$ with $s \leq_K u$, call $B = (s_1, u_1] \times (s_2, u_2]$ a rectangle in \mathbb{R}^2_+ and set

$$X(B) = X_{u_1, u_2} - X_{s_1, u_2} - X_{u_1, s_2} + X_{s_1, s_2},$$

If B_1, \ldots, B_n are disjoint rectangles in \mathbb{R}^2_+ and $B = \bigcup_{j=1}^n B_j$, then set $X(B) = \sum_{j=1}^n X(B_j)$. Assume the following properties.

(a) If $n \ge 2$ and B_1, \ldots, B_n are disjoint rectangles, then $X(B_1), \ldots, X(B_n)$ are independent.

(b) If B is a rectangle and $s \in \mathbb{R}^2_+$, then $X(B) \stackrel{d}{=} X(B+s)$.

- (c) $X_{s_1,0} = X_{0,s_2} = 0$ a.s. for $s_1, s_2 \in \mathbb{R}_+$.
- (d) $X_{s'} \to X_s$ in probability as $|s' s| \to 0$ in \mathbb{R}^2_+ .

We call a process satisfying (a)–(d) a *Lévy sheet* on \mathbb{R}^d . It follows that if $\{X_s : s \in \mathbb{R}^2_+\}$ is a Lévy sheet then $\mathcal{L}(X_s)$ is infinitely divisible and that, denoting $\mu = \mathcal{L}(X_{1,1})$, we have

(2.13)
$$E\left[e^{i\langle z,X_s\rangle}\right] = \widehat{\mu}(z)^{s_1s_2} \quad \text{for } s = (s_1,s_2)^\top \in \mathbb{R}^2_+.$$

Thus we have

(2.14)
$$E\left[e^{i\langle z,X(B)\rangle}\right] = \widehat{\mu}(z)^{\operatorname{Leb}B},$$

for any B, union of disjoint rectangles, where Leb B is the Lebesgue measure of B. Let $\mu_s = \mathcal{L}(X_s)$. Now we assume that $\mu \neq \delta_0$ and show the following:

(i) $\{X_s : s \in \mathbb{R}^2_+\}$ satisfies (2.8);

(ii) if $s^1, \ldots, s^4 \in \mathbb{R}^2_+$ satisfy $s^2 - s^1 = s^4 - s^3 \in \mathbb{R}^2_+ \setminus \{0\}$ and $s^3 - s^1 \in \mathbb{R}^2_+ \setminus \{0\}$, then $\mathcal{L}(X_{s^2} - X_{s^1}) \neq \mathcal{L}(X_{s^4} - X_{s^3})$;

(iii) if $s = (s_1, s_2)^{\top}$ and $u = (u_1, u_2)^{\top}$ in \mathbb{R}^2_+ satisfy $s_1 u_2 \neq 0$ or $s_2 u_1 \neq 0$, then $\mu_s * \mu_u \neq \mu_{s+u}$.

Indeed, to show (i), let

$$B_j = ((0, s_1^{j+1}] \times (0, s_2^{j+1}]) \setminus ((0, s_1^j] \times (0, s_2^j]).$$

Then $X_{s^{j+1}} - X_{s^j} = X(B_j)$. Since B_1, \ldots, B_n are disjoint, $X(B_1), \ldots, X(B_n)$ are independent.

To show (ii), let B_1 and B_3 be as above, note that $\text{Leb } B_1 < \text{Leb } B_3$, and use (2.14).

To show (iii), note that, by (2.13), the characteristic function of $\mu_s * \mu_u$ is $\widehat{\mu}(z)^{s_1s_2+u_1u_2}$ while that of μ_{s+u} is $\widehat{\mu}(z)^{(s_1+u_1)(s_2+u_2)}$.

For general N, a class of \mathbb{R}^{N}_{+} -parameter stochastic processes satisfying (a) and (d) is studied by Adler et al. [1].

In Remark 2.14 we showed that the class of cone-parameter Lévy processes in law is closed under subordination. We conclude the present example by showing that this property is not shared by Lévy sheets. Let $\{X_{u_1,u_2}: (u_1, u_2)^\top \in \mathbb{R}^2_+\}$ be a Lévy sheet on \mathbb{R}^d and μ denote the infinitely divisible distribution on \mathbb{R}^d which determines the law of X_{u_1,u_2} as in (2.13). Let $\{Z_{s_1,s_2}: (s_1, s_2)^\top \in \mathbb{R}^2_+\}$ be a Lévy sheet such that $Z_{s_1,s_2} \in \mathbb{R}^2_+$ almost surely for all $(s_1, s_2)^\top \in \mathbb{R}^2_+$. Assume that these two Lévy sheets are independent and define $Y_{s_1,s_2} = X_{Z_{s_1,s_2}}$. We give two examples where $\{Y_{s_1,s_2}: (s_1, s_2)^\top \in \mathbb{R}^2_+\}$ is not a Lévy sheet. Firstly, if we take $Z_{s_1,s_2} = (s_1s_2, s_1s_2)$ for $(s_1, s_2)^{\top} \in \mathbb{R}^2_+$ then, noting that $\{Z_{s_1, s_2} : (s_1, s_2)^{\top} \in \mathbb{R}^2_+\}$ is indeed a Lévy sheet on \mathbb{R}^2_+ , we have $Y_{s_1, s_2} = X_{s_1 s_2, s_1, s_2}$ and Y_{s_1, s_2} has characteristic function $\hat{\mu}(z)^{(s_1 s_2)^2}$ for $(s_1, s_2)^{\top} \in \mathbb{R}^2_+$. If $\mu \neq \delta_0$ this is incompatible with the structure of the characteristic function of a Lévy sheet in (2.13). Secondly we show that Y_{s_1, s_2} need not even be infinitely divisible. Let $X_{u_1, u_2} = u_1 u_2$, which is a Lévy sheet on \mathbb{R}_+ . Then $Y_{s_1, s_2} = Z^1_{s_1, s_2} Z^2_{s_1, s_2}$, where $Z^i_{s_1, s_2}$ denotes the *i*th coordinate of Z_{s_1, s_2} for i = 1, 2. Hence, we just have to construct Z_{s_1, s_2} such that the product of the coordinates is not infinitely divisible and we conclude by giving one such construction. Let ν_1 and ν_2 denote infinitely divisible distributions on \mathbb{R}_+ . Since the product measure $\nu_1 \times \nu_2$ is infinitely divisible on \mathbb{R}^2_+ there exists a Lévy sheet $\{Z_{s_1, s_2} : (s_1, s_2)^{\top} \in \mathbb{R}^2_+\}$ with

$$Ee^{i\langle z, Z_{s_1, s_2} \rangle} = \widehat{\nu}_1(z_1)^{s_1 s_2} \widehat{\nu}_2(z_2)^{s_1 s_2} \text{ for } z = (z_1, z_2)^\top \in \mathbb{R}^2 \text{ and } (s_1, s_2)^\top \in \mathbb{R}^2_+.$$

Thus, Z_{s_1,s_2}^1 and Z_{s_1,s_2}^2 are independent and $\mathcal{L}(Z_{s_1,s_2}^i) = \nu_i^{s_1s_2}$ for i = 1, 2. If e.g. both ν_1 and ν_2 are the Poisson distribution with mean 1 then Z_{s_1,s_2}^1 and Z_{s_1,s_2}^2 have a Poisson distribution with mean s_1s_2 . As shown in Rohatgi et al. [22], the product of two such variables is not infinitely divisible for any $s = (s_1, s_2)^{\top}$ with $s_1s_2 \neq 0$. More generally, if ν_1 and ν_2 are infinitely divisible distributions on \mathbb{R}_+ such that the product V_1V_2 is not infinitely divisible for independent random variables V_1, V_2 with $\mathcal{L}(V_i) = \nu_i$, then the same construction gives Y_{s_1,s_2} which is not infinitely divisible for $s_1s_2 = 1$. Such a pair ν_1, ν_2 was first given by Shanbhag et al. [25].

Example 2.16. Lévy [16] defined and studied an \mathbb{R}^M -parameter Brownian motion and the papers of Chentsov [5] and McKean [17] followed. Let $\{X_s : s \in \mathbb{R}^M\}$ be Lévy's \mathbb{R}^M -parameter Brownian motion. It is characterized in law by the properties that X_s is \mathbb{R} -valued and any finite-dimensional distribution is Gaussian and that $E[X_s] = 0$ and

$$E[X_{s^1}X_{s^2}] = \frac{1}{2}(|s^1| + |s^2| - |s^2 - s^1|) \text{ for } s^1, s^2 \in \mathbb{R}^M.$$

Hence $\mathcal{L}(X_s) = N(0, |s|)$ and $\mathcal{L}(X_{s^2} - X_{s^1}) = N(0, |s^2 - s^1|)$. Thus, for any cone K in \mathbb{R}^M , the restriction $\{X_s \colon s \in K\}$ to K has the property (2.9). However, the property (2.8) is far from valid. We have

$$E[(X_{s^2} - X_{s^1})(X_{s^4} - X_{s^3})] = \frac{1}{2}(|s^3 - s^2| + |s^4 - s^1| - |s^4 - s^2| - |s^3 - s^1|)$$

for all $s^1, \ldots, s^4 \in \mathbb{R}^M$. Hence $X_{s^2} - X_{s^1}$ and $X_{s^4} - X_{s^3}$ are independent if and only if

$$|s^{3} - s^{2}| + |s^{4} - s^{1}| = |s^{4} - s^{2}| + |s^{3} - s^{1}|.$$

For instance (letting $s^2 = s^3$) $X_{s^2} - X_{s^1}$ and $X_{s^4} - X_{s^2}$ are independent if and only if s^1, s^2, s^4 are on a straight line in this order. (See [16] for a geometric consideration of the independence condition.) Now we see that, for any N-dimensional cone K in \mathbb{R}^M with $M \ge N \ge 2$, the restriction $\{X_s : s \in K\}$ of $\{X_s : s \in \mathbb{R}^M\}$ to K does not satisfy (2.8).

For any s^1 and s^2 with $|s^2 - s^1| = 1$, the restriction $\{X_{s^1+t(s^2-s^1)}: t \in \mathbb{R}_+\}$ is the usual (\mathbb{R}_+ -parameter) Brownian motion (in law). Mori [18] characterized \mathbb{R}^{M_-} parameter processes having the independent increment property along straight lines in the purely non-Gaussian setting.

References

- R. J. Adler, D. Monrad, R. H. Scissors, and R. Wilson, Representations, decompositions and sample function continuity of random fields with independent increments, Stochastic process. Appl., 15 (1983), 3–30.
- [2] O. E. Barndorff-Nielsen, J. Pedersen, and K. Sato, Multivariate subordination, selfdecomposability and stability, Adv. Appl. Probab. 33 (2001), 160–187.
- [3] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer, New York, 1975.
- [4] S. Bochner, Harmonic Analysis and the Theory of Probability, Univ. California Press, Berkeley and Los Angeles, 1955.
- [5] N. N. Chentsov, Lévy's Brownian motion of several parameters and generalized white noise, Theory Probab. Appl., 2 (1957), 265–266.
- [6] N. Dunford and J. T. Schwartz, *Linear Operators, Part I, General Theory*, Interscience, New York, 1958.
- [7] E. B. Dynkin, Additive functionals of several time-reversible Markov processes, J. Funct. Anal., 42 (1981), 64–101.
- [8] W. Ehm, Sample function properties of multi-parameter stable processes, Z. Wahrsch. Verw. Gebiete, 56 (1981), 195–228.
- [9] S. N. Evans, Potential theory for a family of several Markov processes, Ann. Inst. H. Poincaré Probab. Statist., 23 (1987), 499–530.
- [10] P. J. Fitzsimmons and T. S. Salisbury, Capacity and energy for multiparameter Markov processes, Ann. Inst. H. Poincaré Probab. Statist., 25 (1989), 325–350.
- [11] F. Hirsch, Potential theory related to some multiparameter processes, Potential Anal., 4 (1995), 245-267.
- [12] K. Inoue, Multiparameter additive processes of mixture type, Preprint (2002).
- [13] D. Khoshnevisan and Z. Shi, Brownian sheet and capacity, Ann. Probab., 27 (1999), 1135–1159.
- [14] D. Khoshnevisan, Y. Xiao, and Y. Zhong, Local times of additive Lévy processes I. Regularity, Preprint (2001).
- [15] S. Lagaize, Hölder exponent for a two-parameter Lévy process, J. Multivariate Anal., 77 (2001), 270–285.
- [16] P. Lévy, Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris, 1948. (2^e éd. 1965).
- [17] H. P. McKean, Jr., Brownian motion with a several dimensional time, Theory Probab. Appl., 8 (1963), 357–378.
- [18] T. Mori, Representation of linearly additive random fields, Probab. Theory Rel. Fields, 92 (1992), 91–115.

- [19] S. Orey and W. E. Pruitt, Sample functions of the N-parameter Wiener process, Ann. Probab., 1 (1973), 138–163.
- [20] J. Pedersen and K. Sato, Cone-parameter convolution semigroups and their subordination, Preprint (2002).
- [21] J. Pedersen and K. Sato, Relations between cone-parameter Lévy processes and convolution semigroups, Preprint (2002).
- [22] V. Rohatgi, F. Steutel, and G. Székely. Infinite divisibility of products and quotients of i.i.d. random variables, Math. Sci., 15 (1990), 53–59.
- [23] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999.
- [24] K. Sato, Basic results on Lévy processes, Lévy Processes Theory and Applications, ed. O. E. Barndorff-Nielsen et al., Birkhäuser, Boston, 2001, 3–37.
- [25] D. N. Shanbhag, D. Pestana, and M. Sreehari, Some further results in infinite divisibility, Math. Proc. Camb. Phil. Soc., 82 (1977), 289–295.
- [26] A. V. Skorohod, Random Processes with Independent Increments, Kluwer Academic Pub., Dordrecht, Netherlands, 1991.
- [27] M. Talagrand, The small ball problem for the Brownian sheet, Ann. Probab., 22 (1994), 1331– 1354.
- [28] M. E. Vares, Local times for two-parameter Lévy processes, Stochastic process. Appl., 15 (1983), 59–82.

(Jan Pedersen) DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF AARHUS, NY MUNKEGADE, DK-8000 AARHUS C, DENMARK

E-mail address: jan@imf.au.dk

(Ken-iti Sato) HACHIMAN-YAMA 1101-5-103, TENPAKU-KU, NAGOYA, 468-0074, JAPAN *E-mail address*: ken-iti.sato@nifty.ne.jp