
SEMIGROUPS AND PROCESSES WITH PARAMETER

IN A CONE

JAN PEDERSEN AND KEN-ITI SATO

Abstract. For a cone K in a Euclidean space recent results of Pedersen and Sato
on K-parameter convolution semigroups and K-parameter Lévy processes in law
are surveyed. Relations to other multi-parameter processes are discussed.

1. Convolution semigroups with parameter in a cone

A convolution semigroup with parameter in R+ = [0,∞), or an R+-parameter

convolution semigroup, is a family of probability measures {µt : t ∈ R+} on R
d such

that

(1.1) µt1 ∗ µt2 = µt1+t2 for t1, t2 ∈ R+

and

(1.2) µtn → δ0 whenever tn ↓ 0.

Here µt1 ∗ µt2 is the convolution of µt1 and µt2 defined by

(µt1 ∗ µt2)(B) =

∫∫

Rd×Rd

1B(x + y)µt1(dx)µt2(dy),

where 1B is the indicator function of the set B; the convergence µtn → δ0 is weak

convergence and δ0 is the distribution concentrated at 0, that is,

lim
n→∞

∫

Rd

f(x)µtn(dx) = f(0) for all bounded continuous f(x).

The structure of R+-parameter convolution semigroups is as follows. We use the

notion of infinite divisibility. A distribution (= probability measure) µ on R
d is

called infinitely divisible if, for every positive integer n, there is a distribution ρn such

that µ = ρn
n∗, the n-fold convolution of ρn.

This work was partially supported by MaPhySto – A Network in Mathematical Physics and
Stochastics, funded by The Danish National Research Foundation. Jan Pedersen was supported by
the Danish Natural Science Research Council. Ken-iti Sato was partly supported by CIMAT at
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(i) If {µt : t ∈ R+} is an R+-parameter convolution semigroup on R
d, then µ1

is obviously infinitely divisible; conversely, if µ is infinitely divisible, then there is a

unique R+-parameter convolution semigroup {µt : t ∈ R+} such that µ1 = µ.

(ii) If µ is an infinitely divisible distribution on R
d, then the characteristic function

µ̂(z) =
∫

Rd ei〈z,x〉µ(dx), z ∈ R
d, of µ has the representation

(1.3) µ̂(z) = exp

[
−

1

2
〈z, Az〉 +

∫

Rd

g(z, x)ν(dx) + i〈z, γ〉

]

with

g(z, x) = ei〈z,x〉 − 1 − i〈z, x〉1{|x|61}(x),

where 1{|x|61}(x) is the indicator function of the set {|x| 6 1}. Here A ∈ S+
d = {

nonnegative-definite symmetric d × d matrices }, ν is a measure on R
d satisfying

ν({0}) = 0 and
∫

(1 ∧ |x|2)ν(dx) < ∞, and γ ∈ R
d. These A, ν, and γ are uniquely

determined by µ and called the (generating) triplet of µ; A is the Gaussian covariance

matrix, ν is the Lévy measure, and γ is a location parameter of µ. Conversely, for any

A, ν, and γ satisfying the conditions above, there is a unique infinitely divisible distri-

bution µ on R
d having the representation (1.3). (This is called the Lévy-Khintchine

representation of µ).

In fact, if {µt : t ∈ R+} is an R+-parameter convolution semigroup on R
d, then,

for each t, µt is infinitely divisible and has triplet (tA, tν, tγ), where (A, ν, γ) is the

triplet of µ1.

These results, and their probabilistic interpretations, were obtained in the 1930s

by de Finetti, Kolmogorov, Lévy, and Khintchine; see [3], [4], [23], [24].

A natural generalization of the parameter space R+ is R
N
+ , the set of s =

(s1, . . . , sN)> with s1, . . . , sN ∈ R+. The notation (s1, . . . , sN)> gives the column

vector with components s1, . . . , sN . We say that a family {µs : s ∈ R
N
+} of probability

measures on R
d is an R

N
+ -parameter convolution semigroup if

(1.4) µs1 ∗ µs2 = µs1+s2 for s1, s2 ∈ R
N
+

and

µtns → δ0 for s ∈ R
N
+ whenever {tn} is a sequence of reals(1.5)

strictly decreasing to 0.

Although R
N
+ -parameter semigroups of linear operators on a Banach space are dis-

cussed in Dunford and Schwartz [6], we do not know any reference for the explicit

statement of the following result.
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Theorem 1.1. Let ej = (δjk)16k6N , where δjk = 0 or 1 according as k 6= j or k = j.

(i) Let {µs : s ∈ R
N
+} be an R

N
+ -parameter convolution semigroup on R

d. Then,

for any s = s1e
1+ · · ·+sNeN ∈ R

N
+ , µs is infinitely divisible and the triplet (As, νs, γs)

of µs is such that

As = s1Ae1 + · · · + sNAeN , νs = s1νe1 + · · · + sNνeN , γs = s1γe1 + · · · + sNγeN .

(ii) Conversely, let ρ1, . . . , ρN be infinitely divisible distributions on R
d with triplets

(A1, ν1, γ1), . . . , (AN , νN , γN), respectively. Then there is a unique R
N
+ -parameter con-

volution semigroup {µs : s ∈ R
N
+} such that µej = ρj for j = 1, . . . , N .

Proof. (i) Notice that the restriction of {µs} to s = tej , t ∈ R+, is an R+-parameter

convolution semigroup for each j and that µs = µs1e1 ∗ · · · ∗µsNeN for s = s1e
1 + · · ·+

sNeN ∈ R
N
+ . (ii) Let {µ

(j)
t : t ∈ R+} be the R+-parameter convolution semigroup with

µ
(j)
1 = ρj and consider µs = µ

(1)
s1 ∗ · · · ∗ µ

(N)
sN for s = s1e

1 + · · ·+ sNeN ∈ R
N
+ . �

A further natural generalization of the parameter space is a cone K in a Euclidean

space R
M . We say that a subset K of R

M is a cone if it is a non-empty closed convex

set which is closed under multiplication by nonnegative reals and contains no straight

line through 0 and if K 6= {0}. Given a cone K, we call {µs : s ∈ K} a K-parameter

convolution semigroup if it is a family of probability measures on R
d satisfying (1.4)

and (1.5) with R
N
+ replaced by K. Bochner introduced in his book [4] a similar

concept and suggested subordination of cone-parameter convolution semigroups, in a

short section entitled Multidimensional time variable.

Let K be a cone in R
M and let L be the linear subspace generated by K. If L

has dimension N , then K is called an N -dimensional cone. If L has dimension N

and {e1, . . . , eN} is a linearly independent system such that each ej is in K, then

we call {e1, . . . , eN} a weak basis of K. If, moreover, each s ∈ K is represented as

s = s1e
1 + · · · + sNeN with s1, . . . , sN ∈ R+, then we call {e1, . . . , eN} a strong basis

of K. If K is a cone with a strong basis {e1, . . . , eN}, then K is isomorphic to R
N
+ .

Any 2-dimensional cone has a strong basis, but in higher dimensions there are many

cones without a strong basis. Indeed, a 3-dimensional cone has a strong basis if and

only if it is a triangular cone.

The latter half of Theorem 1.1 is not generalized for K-parameter convolution

semigroups unless K has a strong basis. For an infinitely divisible distribution µ on
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R
d satisfying (1.3) we define

µ̂(z)t = exp

[
t

(
−

1

2
〈z, Az〉 +

∫

Rd

g(z, x)ν(dx) + i〈z, γ〉

)]

for t ∈ R. If A 6= 0 or ν 6= 0, then, for any t < 0, µ̂(z)t is not a characteristic function.

Let B(Rd) be the class of Borel sets in R
d and let B0(R

d) be the class of B ∈ B(Rd)

such that infx∈B |x| > 0.

Theorem 1.2. Let K be a cone and let {e1, . . . , eN} be a weak basis.

(i) Let {µs : s ∈ K} be a K-parameter convolution semigroup on R
d. Then, for

any s ∈ K, µs is infinitely divisible and determined by µe1 , . . . , µeN . More precisely,

for s = s1e
1 + · · ·+ sNeN ∈ K, we have

(1.6) µ̂s(z) = µ̂e1(z)s1 · · · µ̂eN (z)sN , z ∈ R
d

and the triplet (As, νs, γs) of µs satisfies

As = s1Ae1 + · · · + sNAeN ,(1.7)

νs(B) = s1νe1(B) + · · · + sNνeN (B) for B ∈ B0(R
d),(1.8)

γs = s1γe1 + · · ·+ sNγeN .(1.9)

(ii) Let ρ1, . . . , ρN be infinitely divisible distributions on R
d. Then the following

conditions are equivalent.

(a) There exists a K-parameter convolution semigroup {µs : s ∈ K} such that

µej = ρj for j = 1, . . . , N .

(b) If s1, . . . , sN ∈ R are such that s1e
1+ · · ·+sNeN ∈ K, then ρ̂1(z)s1 . . . ρ̂N(z)sN

is an infinitely divisible characteristic function.

(c) If s1, . . . , sN ∈ R are such that s1e
1+· · ·+sNeN ∈ K, then s1A1+· · ·+sNAN ∈

S+
d and s1ν1(B) + · · · + sNνN(B) > 0 for B ∈ B0(R

d).

The proof of this theorem is not hard. We refer to [20]. Note that some of

s1, . . . , sN above may be negative.

A system {ρ1, . . . , ρN} of infinitely divisible distributions on R
d is called admis-

sible with respect to a weak basis {e1, . . . , eN}, if it satisfies condition (a) above. If

{e1, . . . , eN} is a strong basis of K, then every system {ρ1, . . . , ρN} is admissible with

respect to {e1, . . . , eN} by virtue of Theorem 1.1. The converse is also true, as we

formulate it below.
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Corollary 1.3. Let {e1, . . . , eN} be a weak basis of K and not a strong basis. Then,

for any d, there is a system {ρ1, . . . , ρN} of infinitely divisible distributions on R
d

which is not admissible with respect to {e1, . . . , eN}.

Proof. Let the Lévy measures νj of ρj (j = 1, . . . , N) be such that there is Bj ∈ B0(R
d)

satisfying νj(Bj) > 0 and νk(Bj) = 0 for k 6= j. Since {e1, . . . , eN} is not a strong

basis, we can find s = s1e
1 + · · ·+ sNeN ∈ K such that sj0 < 0 for some j0. Then

s1ν1(Bj0) + · · · + sNνN(Bj0) = sj0νj0(Bj0) < 0,

which shows that {ρ1, . . . , ρN} is not admissible. �

We have the following result concerning the continuity condition in the definition

of cone-parameter convolution semigroups.

Corollary 1.4. Let K be a cone. Let {µs : s ∈ K} be a K-parameter convolution

semigroup on R
d. Then, for any s ∈ K,

(1.10) µs′ → µs whenever s′ → s in K.

Proof. Use (1.6). �

Let K1 and K2 be cones in R
M satisfying K1 ⊆ K2. It is obvious that if {µs : s ∈

K2} is a K2-parameter convolution semigroup, then its restriction {µs : s ∈ K1} is

a K1-parameter convolution semigroup. Concerning the extension problem we have

the following.

Theorem 1.5. Let K1 be an N-dimensional cone with a strong basis. Then, for any

d, there exists a K1-parameter convolution semigroup {µs : s ∈ K1} on R
d such that,

for any N-dimensional cone K2 satisfying K2 ⊇ K1 and K2 6= K1, {µs : s ∈ K1} is

not extendable to a K2-parameter convolution semigroup.

Proof. Construct {µs : s ∈ K1} similarly to the proof of Corollary 1.3. �

Example 1.6. The class S+
d is a (d(d+1)/2)-dimensional cone. For any d > 2 it has

no strong basis. The class S+
2 is 3-dimensional and isomorphic to a circular cone. See

[20] for a proof.

Let µs = Nd(0, s), the Gaussian distribution on R
d with mean 0 and covariance

matrix s. Then {µs : s ∈ S+
d } is an S+

d -parameter convolution semigroup. This is

introduced in [20] and called the canonical S+
d -parameter convolution semigroup.

5



Let K1 and K2 be cones in R
M1 and R

M2, respectively. A K1-parameter con-

volution semigroup {µs : s ∈ K1} on R
M2 is called K2-valued if, for each s, µs has

support in K2. The condition for an infinitely divisible distribution to have support

in a cone is given in Skorohod [26] (see [23], E 22.11). Many examples of R
N
+ -valued

R+-parameter convolution semigroups are given in the paper [2]. Now let us consider

an extension of Bochner’s subordination to the cone-parameter case. For any measure

µ and µ-integrable function f , we write µ(f) =
∫

f(x)µ(dx).

Theorem 1.7. Let {µu : u ∈ K2} be a K2-parameter convolution semigroup on R
d

and let {ρs : s ∈ K1} be a K2-valued K1-parameter convolution semigroup. Define a

probability measure σs on R
d by

(1.11) σs(f) =

∫

K2

µu(f)ρs(du), s ∈ K1

for bounded continuous functions f on R
d. Then {σs : s ∈ K1} is a K1-parameter

convolution semigroup on R
d.

Proof. We have

σ̂s(z) =

∫

K2

µ̂u(z)ρs(du), z ∈ R
d.

Hence limn→∞ σ̂tns(z) = 1 as tn ↓ 0 and

σ̂s1+s2(z) =

∫

K2

µ̂u(z)ρs1+s2(du) =

∫∫

K2×K2

µ̂u1+u2(z)ρs1(du1)ρs2(du2)

=

∫∫

K2×K2

µ̂u1(z)µ̂u2(z)ρs1(du1)ρs2(du2) = σ̂s1(z)σ̂s2(z).

Thus {σs} is a K1-parameter convolution semigroup. �

The expression of the triplet of σs of Theorem 1.7 in terms of the triplets of µu,

u ∈ K2, and ρs is given in [20].

2. Lévy processes in law with parameter in a cone

To any R+-parameter convolution semigroup a unique (in law) Lévy process in

law is associated and vice versa. More precisely, a stochastic process {Xt : t ∈ R+}
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on R
d is called a Lévy process in law if

for any n > 3 and t1 6 t2 6 · · · 6 tn in R+, Xt2 − Xt1 , . . . , Xtn − Xtn−1
(2.1)

are independent,

Xt2 − Xt1

d
= Xt4 − Xt3 for t2 − t1 = t4 − t3,(2.2)

X0 = 0 a. s.(= almost surely),(2.3)

Xtn → Xt in probability as |tn − t| → 0.(2.4)

Here (and from now on) we do not explicitly mention the probability space (Ω,F , P )

on which the process is defined. The symbol
d
= indicates equality in distribution. Let

us denote the distribution of a random vector X by L(X). If {Xt : t ∈ R+} is a Lévy

process in law on R
d, then {µt : t ∈ R+} defined by µt = L(Xt) is an R+-parameter

convolution semigroup on R
d. Conversely, for any R+-parameter convolution semi-

group {µt : t ∈ R+}, there exists a unique (in law) Lévy process in law {Xt : t ∈ R+}

such that L(Xt) = µt.

We pose the following problem. For a cone K in R
M , can we define a class

of K-parameter stochastic processes which corresponds to the class of K-parameter

convolution semigroups? When a K-parameter convolution semigroup {µs : s ∈ K}

on R
d is given, we mean

(2.5) L(Xs) = µs for s ∈ K

by saying that a process {Xs : s ∈ K} corresponds to {µs : s ∈ K}. Since µ0 = δ0,

(2.5) implies

(2.6) X0 = 0 a. s.

We have to seek probabilistic properties of {Xs : s ∈ K} which gives the semigroup

property

(2.7) µs1 ∗ µs2 = µs1+s2 for s1, s2 ∈ K.

As is shown in Examples 2.15–2.16 below, (2.7) is not satisfied for many R
N
+ -parameter

processes studied in the literature if µs is given by (2.5).

A cone K in R
M induces a partial order in R

M ; we say that s1 6K s2 if s2−s1 ∈ K.

The following two conditions combined with (2.6) imply the semigroup property (2.7)
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if µs is given by (2.5):

if n > 3 and s1 6K s2 6K · · · 6K sn, then Xs2 − Xs1, . . . , Xsn − Xsn−1(2.8)

are independent,

if s1, . . . , s4 ∈ K and s2 − s1 = s4 − s3 ∈ K, then Xs2 − Xs1

d
= Xs4 − Xs3.(2.9)

The following condition implies the continuity property (1.10):

Xsn → Xs in probability as |sn − s| → 0.(2.10)

Thus it is reasonable to introduce the following class of K-parameter stochastic pro-

cesses.

Definition 2.1. A family {Xs : s ∈ K} of random variables on R
d is called a K-

parameter Lévy process in law on R
d if it satisfies (2.6), (2.8), (2.9), and (2.10).

Even in the R+-parameter case, there is a process which is not a Lévy process in

law but corresponds to a convolution semigroup by (2.5) (see [23] E 12.15, E 18.18).

However, in seeking a class of processes corresponding to convolution semigroups, we

cannot find any meaningful one other than the class of K-parameter Lévy processes

in law defined above. In the case K = R
N
+ , K-parameter Lévy processes in law in the

sense of Definition 2.1 were introduced by Barndorff-Nielsen, Pedersen, and Sato [2]

in relation to multivariate subordination.

Now we face two problems. (1) Given a K-parameter convolution semigroup

{µs : s ∈ K}, can we find a K-parameter Lévy process in law {Xs : s ∈ K} satisfying

(2.5)? (2) In the case where we can find {Xs : s ∈ K} of (1), is it unique in law? We

have obtained negative answers to both problems in [21]. Thus we have to pose the

problem to seek conditions under which (1) or (2) is answered in the affirmative. This

is a difficult problem and we have only partial answers, which we describe below. We

refer to [21] for proofs.

Definition 2.2. A K-parameter convolution semigroup {µs : s ∈ K} is said to be

generative if there is a K-parameter Lévy process in law {Xs : s ∈ K} associated with

it, that is, satisfying (2.5).

Definition 2.3. A generative K-parameter convolution semigroup is said to be

unique-generative if all K-parameter Lévy processes in law associated with it have the

same system of finite-dimensional distributions. Otherwise it is said to be multiple-

generative.
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One might be tempted to call a process associated with the canonical S+
d -parameter

convolution semigroup an S+
d -parameter Brownian motion. But such a process does

not exist.

Theorem 2.4. For any d > 2, the canonical S+
d -parameter convolution semigroup is

non-generative.

Another remarkable fact on the cone S+
d is the following.

Theorem 2.5. Let d > 2 and let K = S+
d . Let {µs : s ∈ K} be a K-parameter

convolution semigroup such that
∫
|x|2µs(dx) < ∞ and the covariance matrix vs of

µs satisfies vs 6K s for every s ∈ K. Then µs is Gaussian for every s ∈ K.

In the case of R+ = S+
1 , the condition vt 6 t is fulfilled by all R+-parameter

convolution semigroups {µt : t ∈ R+} on R with the triplet (A, ν, γ) of µ1 satisfying

A +
∫

R
x2ν(dx) 6 1.

Let K be a cone in R
M . Let us denote the triplet of µs by (As, νs, γs).

Theorem 2.6. If {µs : s ∈ K} is a K-parameter convolution semigroup on R
d which

is purely non-Gaussian in the sense that As = 0, then {µs : s ∈ K} is generative.

Theorem 2.7. If {µs : s ∈ K} is a K-parameter convolution semigroup on R (that

is, d = 1), then it is generative.

Theorem 2.8. If K has a strong basis, then, for any d, any K-parameter convolution

semigroup {µs : s ∈ K} on R
d is generative.

A distribution is called trivial if it is concentrated at a point. A convolution

semigroup {µs : s ∈ K} is called trivial if each µs is trivial.

Theorem 2.9. Let K possess a strong basis {e1, . . . , eN} and let {µs : s ∈ K} be

a K-parameter convolution semigroup on R
d. If Aej (Rd) ∩ Aek(Rd) 6= {0} for some

j 6= k or if νej and νek are not mutually singular for some j 6= k, then {µs} is

multiple-generative. In particular, if {µs} is non-trivial and if µe1 = · · · = µeN , then

{µs} is multiple-generative.

Theorem 2.10. Let K possess a strong basis {e1, . . . , eN}. Let L1, . . . , LN ∈ B(Rd)

be additive subgroups of R
d such that Lj ∩ Lk = {0} for all j 6= k. If {µs : s ∈ K}

is a K-parameter convolution semigroup satisfying µtej (Lj) = 1 for all j and t, then

{µs} is unique-generative.
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Theorem 2.11. Let K possess a strong basis. If {µs : s ∈ K} is a unique-generative

K-parameter convolution semigroup on R
d, then all finite-dimensional distributions

of the associated K-parameter Lévy process in law are infinitely divisible. But there

is a multiple-generative K-parameter convolution semigroup {µs : s ∈ K} on R
d such

that some finite-dimensional distributions of some K-parameter Lévy process in law

associated with {µs} are not infinitely divisible.

Among these results, Theorem 2.8 and the last statement of Theorem 2.9 are

easy to prove (see Example 2.12).

Example 2.12. Let K be a cone with a strong basis {e1, . . . , eN}. If {V j
t : t ∈ R+},

j = 1, . . . , n, are independent Lévy processes in law on R
d and if uj = uj

1e
1 + · · · +

uj
NeN ∈ K for j = 1, . . . , n, then {Xs : s ∈ K} defined by

(2.11) Xs =

n∑

j=1

V j

u
j
1
s1+···+u

j

N
sN

for s = s1e
1 + · · ·+ sNeN

is a K-parameter Lévy process in law.

If we are given a K-parameter convolution semigroup {µs : s ∈ K} on R
d, then,

choosing n = N , uj

k = 0 or 1 according as k 6= j or k = j, and L(V j
1 ) = µej for

j = 1, . . . , N , we get a K-parameter Lévy process in law associated with {µs}.

If we are given a K-parameter convolution semigroup {µs : s ∈ K} on R
d satis-

fying µe1 = · · · = µeN , then another construction of an associated K-parameter Lévy

process in law is to choose n = 1 and u1 = e1 + · · · + eN . The system of finite-

dimensional distributions of this K-parameter Lévy process in law is different from

that of the former construction unless {µs} is trivial.

Hirsch [11] and Koshnevisan, Xiao, and Zhong [14] study potential theory and

local times of the processes of type (2.11).

The process defined by (2.11) has an additional property that it has homogeneous

independent increments along any straight line intersected with K. Inoue [12] gives

a more general construction of similar K-parameter processes.

Example 2.13. Let K be a cone with a strong basis {e1, . . . , eN}. For each j =

1, . . . , N , let {V j
t : t ∈ R+} be a Lévy process in law on R

dj . Assume that they are

independent. Define a process Xs by

(2.12) Xs = (V 1
s1

, . . . , V N
sN

)> for s = s1e
1 + · · ·+ sNeN .
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Then {Xs : s ∈ K} is a K-parameter Lévy process in law on R
d, where d = d1 + · · ·+

dN . This is a special case of multi-parameter Markov processes whose potential theory

is studied by Dynkin [7], Evans [9], Fitzsimmons and Salisbury [10], and others.

Remark 2.14. Let K1 and K2 be cones in R
M1 and R

M2 , respectively. Let us give

an analogue to Theorem 1.7 for cone-parameter Lévy processes in law. Hence let

{Zs : s ∈ K1} be a K1-parameter Lévy process in law on R
M2 satisfying that Zs ∈ K2

a. s. for s ∈ K1. Let {Xu : u ∈ K2} be a K2-parameter Lévy process in law on R
d

which is independent of {Zs : s ∈ K1}. Define {Ys : s ∈ K1} by Ys = XZ′

s
, where

Z ′
s = Zs1K2

(Zs). Note that Z ′
s = Zs a. s. In order to ensure that Ys is measurable

we assume that both {Zs : s ∈ K1} and {Xu : u ∈ K2} are measurable processes.

(That is, (s, ω) 7→ Zs(ω) and (u, ω) 7→ Xu(ω) are both measurable mappings.) This

is essentially no restriction since any cone-parameter Lévy process in law has a mea-

surable modification; see [21]. By repeating the proof of Theorem 3.3 of [2] it follows

that {Ys : s ∈ K1} is a K1-parameter Lévy process in law on R
d. That is, the class

of cone-parameter Lévy processes in law is closed under subordination. If we denote

µu = L(Xu), ρs = L(Zs) and σs = L(Ys), then we have the relation (1.11) between

{µu : u ∈ K2}, {ρs : s ∈ K1} and {σs : s ∈ K1}.

Example 2.15. Consider the case K = R
N
+ . Let us show that Brownian sheets

studied by Orey and Pruitt [19], Talagrand [27], Khoshnevisan and Shi [13], and

many others, and the so-called multi-parameter Lévy processes for N > 2 studied by

Ehm [8] (in the strictly stable case), Vares [28], and Lagaize [15] (both in the case

N = 2) are not K-parameter Lévy processes in law in our sense.

We consider the case N = 2, but the case of general N is similar. The processes

in the papers mentioned above are in the following category. Let {Xs : s ∈ R
2
+} be a

family of random variables on R
d. Now and then we write Xs1,s2

instead of Xs when

s = (s1, s2)
>. For s = (s1, s2)

> and u = (u1, u2)
> in K = R

2
+ with s 6K u, call

B = (s1, u1] × (s2, u2] a rectangle in R
2
+ and set

X(B) = Xu1,u2
− Xs1,u2

− Xu1,s2
+ Xs1,s2

,

If B1, . . . , Bn are disjoint rectangles in R
2
+ and B =

⋃n

j=1 Bj , then set X(B) =
∑n

j=1 X(Bj). Assume the following properties.

(a) If n > 2 and B1, . . . , Bn are disjoint rectangles, then X(B1), . . . , X(Bn) are

independent.

(b) If B is a rectangle and s ∈ R
2
+, then X(B)

d
= X(B + s).
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(c) Xs1,0 = X0,s2
= 0 a. s. for s1, s2 ∈ R+.

(d) Xs′ → Xs in probability as |s′ − s| → 0 in R
2
+.

We call a process satisfying (a)–(d) a Lévy sheet on R
d. It follows that if {Xs : s ∈

R
2
+} is a Lévy sheet then L(Xs) is infinitely divisible and that, denoting µ = L(X1,1),

we have

(2.13) E
[
ei〈z,Xs〉

]
= µ̂(z)s1s2 for s = (s1, s2)

> ∈ R
2
+.

Thus we have

(2.14) E
[
ei〈z,X(B)〉

]
= µ̂(z)Leb B,

for any B, union of disjoint rectangles, where Leb B is the Lebesgue measure of B.

Let µs = L(Xs). Now we assume that µ 6= δ0 and show the following:

(i) {Xs : s ∈ R
2
+} satisfies (2.8);

(ii) if s1, . . . , s4 ∈ R
2
+ satisfy s2 − s1 = s4 − s3 ∈ R

2
+ \ {0} and s3 − s1 ∈ R

2
+ \ {0},

then L(Xs2 − Xs1) 6= L(Xs4 − Xs3);

(iii) if s = (s1, s2)
> and u = (u1, u2)

> in R
2
+ satisfy s1u2 6= 0 or s2u1 6= 0, then

µs ∗ µu 6= µs+u.

Indeed, to show (i), let

Bj = ((0, sj+1
1 ] × (0, sj+1

2 ]) \ ((0, sj
1] × (0, sj

2]).

Then Xsj+1 − Xsj = X(Bj). Since B1, . . . , Bn are disjoint, X(B1), . . . , X(Bn) are

independent.

To show (ii), let B1 and B3 be as above, note that Leb B1 < Leb B3, and use

(2.14).

To show (iii), note that, by (2.13), the characteristic function of µs ∗ µu is

µ̂(z)s1s2+u1u2 while that of µs+u is µ̂(z)(s1+u1)(s2+u2).

For general N , a class of R
N
+ -parameter stochastic processes satisfying (a) and

(d) is studied by Adler et al. [1].

In Remark 2.14 we showed that the class of cone-parameter Lévy processes in

law is closed under subordination. We conclude the present example by showing that

this property is not shared by Lévy sheets. Let {Xu1,u2
: (u1, u2)

> ∈ R
2
+} be a Lévy

sheet on R
d and µ denote the infinitely divisible distribution on R

d which determines

the law of Xu1,u2
as in (2.13). Let {Zs1,s2

: (s1, s2)
> ∈ R

2
+} be a Lévy sheet such

that Zs1,s2
∈ R

2
+ almost surely for all (s1, s2)

> ∈ R
2
+. Assume that these two Lévy

sheets are independent and define Ys1,s2
= XZs1,s2

. We give two examples where

{Ys1,s2
: (s1, s2)

> ∈ R
2
+} is not a Lévy sheet. Firstly, if we take Zs1,s2

= (s1s2, s1s2)

12



for (s1, s2)
> ∈ R

2
+ then, noting that {Zs1,s2

: (s1, s2)
> ∈ R

2
+} is indeed a Lévy sheet

on R
2
+, we have Ys1,s2

= Xs1s2,s1,s2
and Ys1,s2

has characteristic function µ̂(z)(s1s2)2 for

(s1, s2)
> ∈ R

2
+. If µ 6= δ0 this is incompatible with the structure of the characteristic

function of a Lévy sheet in (2.13). Secondly we show that Ys1,s2
need not even

be infinitely divisible. Let Xu1,u2
= u1u2, which is a Lévy sheet on R+. Then

Ys1,s2
= Z1

s1,s2
Z2

s1,s2
, where Z i

s1,s2
denotes the ith coordinate of Zs1,s2

for i = 1, 2.

Hence, we just have to construct Zs1,s2
such that the product of the coordinates is

not infinitely divisible and we conclude by giving one such construction. Let ν1 and

ν2 denote infinitely divisible distributions on R+. Since the product measure ν1 × ν2

is infinitely divisible on R
2
+ there exists a Lévy sheet {Zs1,s2

: (s1, s2)
> ∈ R

2
+} with

Eei〈z,Zs1,s2
〉 = ν̂1(z1)

s1s2 ν̂2(z2)
s1s2 for z = (z1, z2)

> ∈ R
2 and (s1, s2)

> ∈ R
2
+.

Thus, Z1
s1,s2

and Z2
s1,s2

are independent and L(Z i
s1,s2

) = νs1s2

i for i = 1, 2. If e.g.

both ν1 and ν2 are the Poisson distribution with mean 1 then Z1
s1,s2

and Z2
s1,s2

have

a Poisson distribution with mean s1s2. As shown in Rohatgi et al. [22], the product

of two such variables is not infinitely divisible for any s = (s1, s2)
> with s1s2 6= 0.

More generally, if ν1 and ν2 are infinitely divisible distributions on R+ such that the

product V1V2 is not infinitely divisible for independent random variables V1, V2 with

L(Vi) = νi, then the same construction gives Ys1,s2
which is not infinitely divisible for

s1s2 = 1. Such a pair ν1, ν2 was first given by Shanbhag et al. [25].

Example 2.16. Lévy [16] defined and studied an R
M -parameter Brownian motion

and the papers of Chentsov [5] and McKean [17] followed. Let {Xs : s ∈ R
M} be

Lévy’s R
M -parameter Brownian motion. It is characterized in law by the properties

that Xs is R-valued and any finite-dimensional distribution is Gaussian and that

E[Xs] = 0 and

E[Xs1Xs2 ] = 1
2
(|s1| + |s2| − |s2 − s1|) for s1, s2 ∈ R

M .

Hence L(Xs) = N(0, |s|) and L(Xs2 −Xs1) = N(0, |s2−s1|). Thus, for any cone K in

R
M , the restriction {Xs : s ∈ K} to K has the property (2.9). However, the property

(2.8) is far from valid. We have

E[(Xs2 − Xs1)(Xs4 − Xs3)] = 1
2
(|s3 − s2| + |s4 − s1| − |s4 − s2| − |s3 − s1|)

for all s1, . . . , s4 ∈ R
M . Hence Xs2 − Xs1 and Xs4 − Xs3 are independent if and only

if

|s3 − s2| + |s4 − s1| = |s4 − s2| + |s3 − s1|.
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For instance (letting s2 = s3) Xs2 − Xs1 and Xs4 − Xs2 are independent if and only

if s1, s2, s4 are on a straight line in this order. (See [16] for a geometric consideration

of the independence condition.) Now we see that, for any N -dimensional cone K in

R
M with M > N > 2, the restriction {Xs : s ∈ K} of {Xs : s ∈ R

M} to K does not

satisfy (2.8).

For any s1 and s2 with |s2 − s1| = 1, the restriction {Xs1+t(s2−s1) : t ∈ R+} is

the usual (R+-parameter) Brownian motion (in law). Mori [18] characterized R
M -

parameter processes having the independent increment property along straight lines

in the purely non-Gaussian setting.
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