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Abstract

We develop a general theory on absence of quantum states corresponding to unstable
classical channels. A principal example treated in detail is the following: Consider a
real-valued potential

�
on �� , � � �, which is smooth outside zero and homogeneous

of degree zero. Suppose that the restriction of
�

to the unit sphere� ��� is a
Morse function. We prove that there are no	
–solutions to the Schrödinger equation��
� � ������ � � ��

which asymptotically in time are concentrated near local
maxima or saddle points of

� �� ���
. Consequently all states concentrate asymptotically

in time near the local minima. Short-range perturbations are included.
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1 Introduction

The purpose of this paper is to show in a class of models that there are no quantum
states corresponding to unstable classical channels. We consider the following general
situation: Suppose� �� � � � is a real classical Hamiltonian in� � ��	 
��
 � �	 �, � � �,
satisfying � � �� � �� � � � � � in a neighborhood of a point�� � � �� � � � 	�� � �	 .
Suppose in addition that this neighborhood is conic in the�–variable and that the orbit
�� � � � � � � �� �� � � � �� �� � � ��� � � �� � with  � ! � is a solution to Hamilton’s
equations

"�"� � �# � �� � � � �
"�"� � $��� �� � � ��

or equivalently,

(1.1) ��� �� � � �� � � � � �# � �� � � �� � �  �� � %

We consider situations in which for each energy& near &� � � �� � � �� � there is a
(typically unique)�� �& �� � �& �� � � 	�� � �	 near �� � � �� � depending smoothly on&
such that the above structure persists, namely

(1.2) � �� �& �� � �& �� � & �
(1.3) ��� �� �& �� � �& �� � � �
(1.4) �# � �� �& �� � �& �� �  �& �� �& �%

Although we shall not elaborate here, we remark that one may easily derive a criterion
for (1.2)–(1.4) using the implicit function theorem.

Let us restrict attention to the constant energy surface� �� � � � � & and to values
of � '� � � � & � close to �� �& �� � �& �� &� �% (Here and henceforth'� � (� (���.) Introduce
a change of variables

(1.5)
� � �	 �� �& � ) *�� � � � �& � ) + ) ,� �& �-
* � � �& � � + � � �& � � � %

This amounts to considering coordinates�* � �	 � + � , � � �	�� � � � �	�� � � . We
can solve the equation� �� �& � ) * � � �& � ) + ) ,� �& �� � & for , using the implicit
function theorem, because./ � �� �& �� � �& � ) ,� �& �� 0/1� �  �& � ! � for & near&� .
We obtain, � $2 �* � + � & � where 2 is smooth in a neighborhood of�� � � � &� � and
2 �� � � � & � � � �. After introducing the “new time”3 � 45 �	 �� � � 45 �� �� � � � �& ��
Hamilton’s equations reduce to

(1.6) * ) 6768 � �9 2 �* � + � & �� 6968 � $�72 �* � + � & �%
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(See [A2, p. 243].) After linearization of these equations around the fixed point�� � � � � �� � ��
we obtain with� � �� � � �

(1.7) �	�
 � � �� �� 
 � �� � � � � ��� � �� �� � � �� �� � � � � �� � � ��� �� �� ���� �� �� �� � �
Here the real symmetric matrix� �� �

of second order derivatives is evaluated at�� � � � � �
. We assume all eigenvalues of

� �� �
have nonzero real part (the hyperbolic

case). These eigenvalues are easily proved to come in quadruples,� � �� � � � and their
complex conjugates (if� is not real). If all eigenvalues of

� �� �
have negative real part

then this corresponds to a stable channel. We prefer the word channel because in the case
considered�� �� � grows linearly in time. If at least one of the eigenvalues of

� �� �
has

a positive real part then the usual stable/unstable manifold theorem shows that there are
always classical orbits (on the stable manifold) for which

� �� �� � � � �� �� � � �� �� � �� ��
for

� � !
(throughout this paper we use the convention

� � !
to mean

� � "!
).

In this situation the question is, do there exist quantum states whose propagation is
governed by a self-adjoint quantization# of $ �� � � � on %& �'� � (possibly with the
singularity at � � �

removed) which exhibit this behavior? We will answer this
question in the negative.

To be precise, let us first fix a (small) neighborhood( ) * '� +,�- . '� of�/ ��) � ) � �) �. Then we consider a small open neighborhood
�) of

�) and states of
the form 0 � 1 �# �0 with

1 2 3 4) ��) � such that:

(1.8)

For all � 5 � �& 2 3 4) �'� �667� 5 8�95�: � �5 �/ �# � �# ���;< => ?@A =B ? CC D E for
B D F GCCHIJ =K ? L IJ =M => ??NOP => ?QA =B ? CC D E for

B D F RA =B ? S TUVWX A G K S LYZ[ G
while

(1.9) \]^ BU^ CC_` aBU^b G K cA =B ? CCJdB e F for all _ f g
\h =i h jk =lh ??R

k =lh ? S H=m =n ?o =n ?G M =n ?? Cn f lh Qp
(Here _` signifies Weyl quantization, andNOP is the characteristic function oflh .)

Notice that by (1.8), at least intuitively, for all such symbols_
(1.10) CC_` aBU^b G K cA =B ? CC D E for

B D F G
so that (1.9) appears as a weak additonal assumption. The statesA obeying the above
conditions (with fixedlh) is a subspace whose closure, sayqh , is > –reducing.

We show the following (main) result.
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Theorem 1.1 Suppose� ��� � has an eigenvalue with a positive real part. Then
under a certain non-resonance condition (and other technical conditions, see(H1)–(H8)
in Section 2) there exists a sufficiently small open neighborhood�� of �� such that

(1.11) �� � �	
�
A symbol satisfying the conditions (1.3) and (1.4) was studied by Guillemin

and Schaeffer [GS]. In their paper the roles of� and 
 are reversed and their� is
homogeneous of degree one in
 . There is only one half-line of points in question rather
than a one parameter family of half-lines (their critical set of points is at zero energy).
Under certain conditions of non-resonance they obtain a conjugation of� to a simpler
normal form from which they draw conclusions about propagation of singularities for
an equation of the form� � � �.

To see what our result means in a particular model, namely in the case where� is
given by � �� � 
 � � ���
 � � � � �� � with � a Morse function on� ���, we recall from
[H]: The spectrum of� � ���� � � � � �� � is purely absolutely continuous and

(1.12) � � ��� !" # $ �
where

#$
are � –reducing orthogonal projections defined as follows: Pick any family�% $ &' $ ( )* 
 of smooth functions on� ��� with %+ �' $ � � ,+$ (the Kronecker symbol);

here
)*

is the finite set of non-degenerate critical points in� ��� for � . Then#$ � - . /01234 5627 % $ � �� �5�627 �
see [H] and [ACH]. Furthermore in [H] the existence of an asymptotic momentum8 9
was proved and its relationship to the above projections was shown. See also [HS2].
(There was the restriction in [H] to: ; < but this is easily removed using the Mourre
estimate [ACH, Theorem C.1].)

We notice that (1.12) has an analogue in Classical Mechanics: Any classical orbit
(except for the exceptional ones that collapse at the origin) obeys=> = ? @ with A> ? B C
for someBD E FG .

Obviously the collection (1.2)–(1.4) corresponds in the potential model exactly toFG : HB HI JK L HI JJ M NB C K OPHI Q R HB C JJB CS with B C E FG . The assumption that the
real part of one eigenvalue is positive corresponds toB C being either a local maximum
or a saddle point ofR . Moreover we have the identification

(1.13) TU M RanHV C WXY HZ JJ[
Whence, upon varying\U, Theorem 1.1 yields the following for the potential model.

Theorem 1.2SupposeB C E FG is a local maximum or a saddle point ofR . Then

(1.14) VC M ] [
3



A detailed analysis of the large time asymptotic behavior of states in the range of the
projections�� which correspond to local minima was accomplished recently in [HS2].
In particular for any local minimum,� � �� �. Moreover in this case we have (1.13)
for the analogous space of that in Theorem 1.1. One may easily include in Theorem
1.2 a short-range perturbation�� � � �	
 	���� 
 � � � � � � �� �� � � �	
 	�� 
 � 	� 	 � � �
to the Hamiltonian� , see Remarks 8.3.

The result Theorem 1.1 is much more general than Theorem 1.2. In particular, as a
further application, we can apply it to a problem of a quantum particle in two dimensions
influenced by a Lorentz force which is asymptotically homogeneous of degree� � in x,
see [CHS2]. For another magnetic field problem in this class see [CHS1].

Our proof of Theorem 1.1 consists of three parts:

I) Assuming� �� � � ��� ! � does localize in phase space as
� " #

in the region	$ 	 % 	& 	 ' ( for any ( � �, we prove a stronger localization. Namely, for some small
positive

�
, the probability (assuming here that� is normalized) that� ���

is localized
in the region 	$ 	 % 	& 	 ) ���

goes to zero as
� " #

.

II) Using I) and an iteration scheme, we construct an observable* which decreases
“rapidly” to zero. This iteration scheme is based on one used by Poincaré (see [A1, pp.
177–180]) to obtain a change of coordinates which linearizes (1.6). The fact that if one
eigenvalue of+ �, �

has a positive real part then another has real part- � � is relevant
here. Our observable* is in first approximation roughly a quantization of a component
of . in (1.7) which decays as/01 �23 �

with Re2 - � �.

III) Using Mourre theory we prove an uncertainty principle lemma for two self-
adjoint operators� and4 satisfying5 6� � 4 7 ) 89 � 8 � � �

and some technical conditions.
The lemma states that if

�� - �� and : � and :� are two bounded compactly supported
functions then;<= > ? 		: � @���A 4 B:� @��C � B 		 � � D
If � is normalized this bound implies that the localizations of I) and II) are incompatible.

The basic theme of our paper may be phrased as absence of certain quantum
mechanical states which are present in the corresponding classical model. Notice
that given any critical pointE � F GH (restricting for convenience the discussion to
the potential model) there are indeed classical orbits withIJ I K L and MJ K NO ; in
particular this is the case for any given local maximum or saddle point. Intuitively,
Theorem 1.1 is true because the associated classical orbits occur for only a “rare” set
of initial conditions as fixed by the stable manifold theorem. Alternatively, for some
components ofP MJ Q R S the convergence toTN U Q R V W is “too fast” thus being incompatible
with the uncertainty principle in Quantum Mechanics. These two different explanations
are actually connected.

For another example of this theme we refer to [G2], [S1] and [S2].

We addressed the problem of Theorem 1.2 in a previous work, [HS1], where we
proved (1.14) at local maxima but only had a partial result for saddle points (using a
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different method). In the two-dimensional case with homogeneous potential a related
result concerning distributional eigenfunctions was proved in [HMV].

A generalization
Before getting into the details of the proof of Theorems 1.1 and 1.2, we consider

possible generalizations of the homogeneity condition� � ��� �� � � � 	 
. We will focus
our discussion on the structure of the classical mechanics of our models and leave to
the reader a formulation of the quantum problem.

The above homogeneity condition is best understood as the invariance of the
Hamiltonian under the flow generated by the vector field� �� � � � 	 � �
� ���
 , or
infinitesimally

(1.15) � � �� � � � 	 
 �
Our goal is thus to find invariance conditions (1.15) which will

(a) reduce the dimension of phase space by two giving an autonomous dynamical
system in dimension�� � � (usually not Hamiltonian)

(b) give a natural framework for discussing stability of orbits which do not lie in a
compact set. It will turn out that stability is not measured using any preexisting metric
in the phase space but rather using bundles of orbits of the vector field� surrounding
a given orbit of the Hamiltonian vector field,��.

The vector field� �� � � � 	 � �
� ���
 does not generate a symplectic flow but does
satisfy a crucial property. Namely��� 	 � where�� is the Lie derivative in direction
� and � is the symplectic form. It will turn out (see Lemma 1.3) that a geometric
condition such as this (although more restrictive than necessary) will guarantee that�
is a suitable vector field.

We will require � to satisfy certain conditions relative to��, where �� is a
Hamiltonian vector field on a symplectic manifold

�� � � � with Hamiltonian
�
:

1) In a neighborhood of a point� � � � , the local flow��� ��� generated by� exists
for all � � ���� � � for some�  
 and there exists a surface! containing�� , transverse
to � , and a diffeomorphism" # $ % ! , where$ is a ball in &'()* centered at
,
such that the map

$ + ��� � � � , �- � �� % ��� �" �- ��
is a diffeomorphism onto its image,.� . We also assume� and �� are parallel (and
nonzero) along the positive orbit of� originating at�� .

2) There are smooth functions/ and 0 such that

1� � ��2 	 / �� 3 0 � in .� �
3) � � 	 
 in .� �
Condition 1) allows us to assume (after a change of coordinates) that.� 	

$ + ��� � � �, �� 	 �
 � 
�, and � 	 �
 � � � � � 
 � 4� in .� . With the notation�5 	
5



�� � � � � � � � �����
for

� 	 
 ��
, condition 2) implies

��� �
 �� � � � �� ���� �
 ��
 � ��

for some positive
� ���

so that introducing the new time variable� with �� ��� � � �� �� ��
the first �� � � of Hamilton’s equations become

��

��

� ��� �
 ��
 � ���

As long as�� ��� � �� �
, using condition 3) we can eliminate one more variable using

energy conservation,� �� � � � ��
 � �� � �
. For example if� �������� �� �

we obtain����� � � � � � �
with

 � �� � � � � � � � ���� �
. Here we assume

� � � �
is in a neighborhood

of
�� � � � �

,
�� � � ��� � � � �� �. We obtain

(1.16) !"!#
� $ � � � ��

where
$ � � � � � %��� �� � � � � � � ��� � � � � ��� ����� � � � � � � ��& �

The orbit of
��

along
�

corresponds to
 � � � � � ��

(in which case
$ �� � � � � � �

). If '() �� $* �� + �� � � � �� ��
�

there will be a smooth family of fixed points of (1.16),
 �  �� �

, in a neighborhood
of

��
(with

 ��� � � �
). This situation is entirely analogous to the case

� �� � , � �
- �*� ���* discussed above and we can define stability of orbits in. in terms of the
stability of the fixed points

 �� �
.

If a proof of absence of channels is contemplated along the lines carried out in this
paper, it is necessary that low order “resonances” do not occur at more than a discrete set
of energies. In particular, the equations (1.16) should not have a Hamiltonian structure.

The only place where the Hamiltonian nature of the equations appeared above was
where we used conservation of energy. To bring in the symplectic form/ we introduce
what turns out to be a more restrictive but more geometric condition:

Lemma 1.3 Fix an open set0 1 . .

a) Suppose23/ � 4/ in 0 for some smooth function
4

. Suppose in addition that� � � �
in 0 . Then 5� � �� 6 � �4��

in 0 .

b) Suppose
�

is nonzero in0 and for any smooth function� on 0 satisfying
� � � �

in a neighborhood of a point of0 ,
�

satisfies5� � �� 6 � �4��
in this neighborhood. Then

23/ � 4/ in 0 .

This paper is organized as follows: In Section 2 we elaborate on all technical
conditions needed for Theorem 1.1 and give a more detailed outline of its proof, cf.
the steps I)–III) indicated above. In Section 3 we have collected a few technical
preliminaries. In Section 4 we prove the�

�7
–localization, cf. step I), while the

localization of 8 is given in Section 5. Finally, Section 6 is devoted to the Mourre
theory for this observable. We complete the proof of Theorem 1.1 in Section 7 and
give a few missing details of the proof of Theorem 1.2 in Section 8.
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2 Technical conditions and outline of proof

We fix �� � � �� � � � �	
 ��� and a small open neighborhood
� of �� � � ��� � � �� �
as in Section 1. We shall elaborate on conditions on the real-valued symbol� �� � � �,
see (H1)–(H8) below. For convenience we remove a possible singularity at� � �
caused by the imposed (local) homogeneity assumption of Section 1. This may be done
as follows. Let� � be as small open neighborhood of�� � � �� �. We shall now and
henceforth assume that for some�� � �
(H1)

� �� � � � � � ��� �� � � � in �� �� ��� � � � �� �� � � � � � � � �� � � �� ��� � � � ��� � �� ��
Notice that this modification intuitively is irrelevant for the issue of Theorem 1.1 (which
concerns states propagating linearly in time in configuration space).

We assume that for some� � �  �
(H2) � � � !"� #$ "� #% � &�' ( &� � "� #	)*�) + *� ) � "� # � ,- + �� �) .
/) �
and that

(H3) 0 � �1 �� � 2 � is essentially self-adjoint on��� ��� ��
(See Section 3 for notation.)

Remark There is some freedom in choosing a global condition like (H2), for
example it suffices to have (H2) with&� replaced by"� #	)34 567 8 96 :7;< 5= 7

with> ? @7 A @B ? C
.

We assume

(H4) (1.2)–(1.4) forD E FG.
We defineHI JD K L H JD K and pick smooth functionsH B JD KM N N N M HIOB JD K E P IOB

such thatH B JD KM N N N M HI JD K are mutually orthogonal. We define, cf. (1.5),
6Q L6 N HQ JD K for R ? S

, TQ L 6Q U6I and VQ L J= W = JD KK N H Q JD K for R ? S W C
andX L J= W = JD KK N HI JD K. Let Y L JT M V K L JT B M N N N M TIOB M V B M N N N M VIOB K.

As for the matrixZ JD K of (1.7) in these coordinates we need the condition:

(H5) The real part of all eigenvalues ofZ JD K is nonzero forD E FG [
Let us order the eigenvalues as\ ]B JD KM N N N M \ ]I ^ JD KM \ _B JD KM N N N M \ _I` JD K where

Rea\ ]Q JD Kb A >
(\ ]Q JD K are the stable ones) and Rea\ _Q JD Kb c >

(\ _Q JD K are the un-

stable ones). Let\ JD K refer to thed7IO7–vector of eigenvaluesJ\ ]B JD KM N N N M \ _I` JD KK
counted with multiplicity.

7



We are interested in the case the hyperbolic case

(H6) �� � �� �� � � ��
Let 	 
 �� �

and 	 � �� �
be the sum of the generalized eigenspaces of� �� �

cor-
reponding to stable and unstable eigenvalues, respectively. Then we have the decom-
position�
��
 � 	 
 �� � � 	 � �� ��

Using basis vectors respecting this structure we can find a smooth�
��
 �� �
–valued

function � �� �
such that

(2.1) � �� ���
� �� �� �� � �

diag
�� 
 �� �� � � �� ���

We may assume the following at
� � ��

: Corresponding to the decomposition
into generalized eigenspaces�
��
 � 	 
 � 	 � � 	 
� � � � � � 	 
�� � 	 �� � � � � � 	 ��� �

� ��� ���
� ��� �� ��� � �

diag
�� 
� � � � � � � ��� ��

where for all entries� �� �� � �� � ��� ��� ��
dim

� !" � is strictly lower triangular. Given

any # $ % we may assume (by rescaling the basis vectors) that

(2.2) &&� �� && ' # �
We introduce a vector of new variables( � �( 
 � ( � � � �( � � � � � � ( 
��
 �

(2.3) ( � ( �) �� �� � � � � �� ���) �� ��
where ( 
 and ( � are the vectors of coordinates of the part of

) �� �
in 	 
 �� �

and	 � �� �
, respectively.

We shall make the assumption (using “tr” to denote transposed):

(H7)
There exists a smooth eigenvector* �� �

of � �� �+,
in

� - �� �
such that Re

�. �� �� / ��
for the corresponding eigenvalue

. �� ��
See Remark 2.2 below for an alternative condition.

The ordering of the eigenvalues may be chosen such that

(2.4) � 
� �� � � . �� ��
It may also be assumed that* �� �

is the first row of� �� ���
. Clearly by (2.4)� 
� �� �

is smooth
� - ��

.

We call
��

a resonance of order0 - 12 � 3 � � � �4
for an eigenvalue� �� ��� �

if for

some5 � �5� � � � � 5
��
 � - �6 71%4�

��


with &5 & � 0 ,

(2.5) � �� ��� � � � ��� � � 5 �

8



We assume that

(H8) �� is not a resonance of order� �� for � �� ��� �	
Here �� may be extracted from the bulk of the paper; the condition

�� 
 ��
 �� � � � Re�� �� ��� ���Re�� �� ��� �� � � � � � � � Re�� �� � ��� ���Re�� �� � �� � �� �
suffices.

We shall build a (classical) observable� from the first coordinate� � �� � �� �� �� � � � � �� � � � �� � of � � � � � �� �� �� � �
(2.6) � � �� �� �� �� � � � � ��� �� �� �� � � � ! 	

In the study of an analogous quantum observable we consider in detail the case
where for some� � " � # � �
(2.7) $% & � � �� � �� �'()� *� + 	
We notice that if (2.7) is not true then for some� � " � # � �
(2.8) $,& � � �� � �� � '()� *� + 	

The construction of the quantum� in the case of (2.7) and an elaboration of its
decay properties will be given in Section 5. A Mourre esimate is given in Section 6,
and we complete the proof of Theorem 1.1 in this case in Section 7. We refer the
reader to Remarks 5.3, 6.3 and 7.2 for the modifications needed for showing Theorem
1.1 in the case of (2.8).

Outline of proof of Theorem 1.1

Consider a classical orbit with� -. �/ � � 0 �/ �� 1 �2 �� �� 0 �� �� for
/ 1 3 (and �

nearby��). How do we prove the bound�4 � � �5 � � 6 /78
for some positive9?

We consider the observables

(2.9) : � � �� � � � :, � �� , � � : 7 � :, � : � � :; � :, � :� � �� � 	
Using (1.6) and (2.1) we compute

(2.10) <<= � � >? @AB CDE F DG HI F J E K DG HI K H L M NOP Q RS
For T U V small enough in (2.2) the equation (2.10) leads to

(2.11) WWX O Y Z [Re\I K J WWX I K ]^B_ ` [Re\I F J WWX I F ]^Ba b cYdYeOP
9



for some positive�� (which may be chosen independent of� close enough to��) and
for all � � �� (with �� large enough).

In particular � � is increasing and hence

(2.12) � � � � 	 � � �� 

Using (2.10), (2.12) and the Cauchy-Schwarz inequality we compute

(2.13) ��� � 
 � �Re�� 
 � ��� � 
 ���� � ��� 
���� 

for some positive� 
 and all � � �
.

Integrating (2.13) yields

(2.14) � 
 � � 
���� � � � � �
 

Finally from (2.12) and (2.14) we conclude that�� � �� 
���� � and therefore that

(2.15) �� � � � ��� 	 � � � 
 

Remarks 2.11) We may choose the positive� in (2.15) as close to the (optimal)

exponent�� !Re!�" 
� !�� ##� $ $ $ �Re!�" 
%� !� � ### as we wish (provided� is taken close
enough to��). 2) Although not needed, one may easily prove using similar differential

inequalities that indeed�& � ' (!� 
 #�) in complete agreement with the stable manifold
theorem.

Classical*
We shall for each+ , -.� $ $ $ � + � / construct a� 01 2 of the form (2.6) such that

(2.16) ��� � 01 2 � 34 56� " 
� 7� 01 2 8 ' 9:; :<= >? @A B C> D B C> EF GH
Specifically we shall require

(2.17) ; I>J D ; > K and ; I< J D ; > L MNO PQ PO< RQ ; Q A S T U K
with ; Q D ; QV> W W W ; Q XYZXN[ \N . (It will follow from the construction below that the coeffi-
cientsRQ D RQ EF G will be smooth; this will be important for “quantizing” the symbol.)

We proceed inductively. Clearly by (2.10) we have (2.16) for
S D ]. Now suppose

we have constructed a function; I< \>J D MPQ PO< \> RQ ; Q obeying

^̂_ ; I< \>J D `a bc[ B C> de; I< \>J L fPQ Pg< ^Q; Q L h i:; :<= >jkl m
10



then we add to� �� ���
a function of the form ��� �	� 
� � �

and we need to solve

(2.18) ��� ��� �	� 
� � � 
 �� ��� � �� ��� �	� �
� � �� �� � � � ��� �� � �� �
For that we compute the derivative using again (2.10). Let us denote by� ! the"#

’th entry of the matrix diag
�$ � �% ��& ' $ ( �% ��& �

. Then (2.18) reduces to solving

(2.19) ��)� �	� � *! +, � ! 
 )� � )� �-.�-/ 
 � �� ��� �	� �
� � �� �� � '
which in turn reduces to solving the system of algebraic equations

(2.20) � *! �, � 0 � 1 ! �� ! 
��-. �-/ 
 � �� �
� � �� �2 �, � 
 3 �
Here4 and 4! denote canonical basis vectors in5 67 �6 and1 ! is the Kronecker symbol.

Clearly (2.20) amounts to showing that� �� is not an eigenvalue of the linear map+$ on 8 )7 with

+9 
 : ;, < �= > ?@ A�67 �6 � �, � 
 3 B C DE F GH I JKLDGH I JKLE L
given by

M NO P Q C DQR KR S T UV QWR C XYZ[\] D^[ F _ I `[] Ka[] QRbcdecf gh R i M NO j
Sincea[] C a[] Dk K depends continuously onk i lm we only need to show that

(2.21)
UV Dk m K I a no Dk m Kl is invertible.

By the condition (H8) indeed (2.21) holds sinceE p E m and the spectrumq T UV Dkm KW C ra Dk m K s ^ t t^ t C E uj
The latter is obvious if diag

TV n Dk m Kvw x V y Dkm Kvw W
is diagonal. In general the spectrum

may be computed by a perturbation argument, see [N, p. 37].

Finally we definez { | }~ � � �
If we have� � so large that� �� � � �� � �� �� �� � where� is given as in (2.15) we

infer by integrating (2.16) (since����� � � �� ��� { �) that

(2.22) � { | � � � ��| ��   { � ¡�¢ £¤ }¥ �¦§¨ © ª «¬ � ­ �
11



Remark 2.2We could have used a different observable constructed by a similar iteration
using as� ���

a component of� corresponding to an eigenvector with eigenvalue� �� �
having Re�� �� �� � 	. We would again need smoothness of the eigenvector and a
non-resonance condition for� ��
 �, cf. (H7) and (H8). The analogous observable� �� �
decreases as�
� �� � ��

with no upper bound on� (assuming�
 is not a resonance of any
order). But as we will see below, the correspondence between classical and quantum
behavior is not so precise as to allow a similar statement in Quantum Mechanics. Thus
it does not much matter which of these observables is used.

Quantum �
To get a statement like (2.22) in Quantum Mechanics we need to quantize the

classical symbol� �� � � � �� � �� � � �. We choose a quantization that takes into account
localizations of the states� � � �� �� obeying (1.8) and (1.9). We fix� � � 

depending on an analogue of the classical bound (2.15), cf. the classical case discussed
above. Without going into details, in the case of (2.7) this operator takes the form

� � � ��� � �� � � ��
 �� � � � ��
 � � � � �� �  � � �� � bounded.

Strictly speaking to get this expression we first make the modification of the classical� of dividing by the constant!� � "#$ � � �% � �
 �&' (
 and then taking the real part; we
shall not discuss the case of (2.8) here. We show the following analogue of (2.22):

Given ) � 	 we have for some� of this form the strong localization

(2.23) **+ ,-. /0 12 � � *� *�3
4-5 � ** 6 	 for � 6 7 8
We notice that (2.23) is a weaker bound than (2.22); to control various commutators

we need to have) positive. On the other hand it may appear somewhat surprising
that such localization result can be proved at all for) 9 :
�

. According to folklore
wisdom there is usually a strong connection for pseudodifferential operators between the
functional calculus and the pseudodifferential calculus, see for example [DG, Appendix
D]. In our case one might think that (2.23) is equivalent to a statement like

3
4-5 � ; <'- �� � � �3
4-5 � for � 6 7 �
where the symbol<- � = >?@AB

ReCDA@E F GH I JKK
for suitableL M N OP QR S andF GH I J

given
by the classical symbol (possibly modified by cut-offs) discussed above. However forT U VA@

such symbolsWX do not fit into any standard (parameter-dependent) pseu-
dodifferential calculus which essentially would require the uniform boundsY Z[ Y \] WX ^_ C?`a bZ bA`c b\ bK

with de U d@. As a consequence we shall base our proof of (2.23) on
a functional calculus approach. Using a differentialequality related to (2.16) we can
indeed bound certain quantum errors in a calculus even forT U VA@

. It is important
that we can takeT small; see the next subsection. Somewhat related problems were
studied in [G1] and [CHS1].

Remark Although suppressed in the above discussion it isimportantfrom a calculus
point of view that the localization similar to the classical bound (2.15) used to define

12



�
and proving (2.23) is “somewhat weak” (to be specified later); in particular it must

be weaker than that used (and being of the same type) in the uncertainty principle
argument of the next subsection, see (2.24).

Implementing the uncertainty principle

The last step in our proof of Theorem 1.1 is the decisive one; here Quantum
Mechanics enters crucially. We show that a localization similar to the classical bound
(2.15) and (2.23) are incompatible unless� � �. First fix � � � in agreement with
(2.15). More precisely we need the localization

(2.24) ���	
 � � �
 � �� ����	
 � � � for � � � �
for some�
 � � �� �� �

and some operator of the form

�� � �� � ��  ! " 
 �� � # " 
 �� � � $ %�� & � �  � � ' (  �) � �*
Then fix any+ � �� � � �

and introduce with
�

as in (2.23) the operator�, � � ��� � *
We prove a global Mourre estimate

(2.25) - . �, � �� / 0 1 � �2 *
Abstract Mourre theory and (2.25) lead to the bound

(2.26) 33�
 � �� �� � ��� �4 �, � 33 5 � � 64 �� 78
 �
valid for all � � � �
 � � �� �� �

.

Finally picking localization functions in agreement with (2.24) and (2.23) we
conclude from (2.26) that

���	
 � � �
 � �� �� � %�� �4 �, & ���	
 � � � for � � � �
completing the proof.

3 Preliminaries

We use the notation9 :; < = > for the space of operators given by quantizing symbols
in the symbol class? :; < = > as defined by [Hö, (18.4.6)]. For the weight functions;
and metrics= relevant for this paper it does not matter here whether “quantize” refers
to Weyl or Kohn-Nirenberg quantization. For@ A ? :; < = > we use the notation@B :C < D >
to denote the Weyl quantization of@. We refer the reader to [DG, Appendix D] and
[Hö, Chapter 18] for a detailed account of the calculus of pseudodifferential operators.
We shall deal with various kinds of parameter-dependent symbols. In one case the
parameter is timeE F G and for that we introduce the following shorthand notation.

13



Definition 3.1 A family ��� �� � ��
of symbols in� 	
 � � 
 is said to be uniform in� 	
 � � 
 if for all semi-norms�� � ��� on � 	
 � � 
 (cf. [Hö, (18.4.6)]) ���� ���� ��� � � . In

this case we write�� � ����� 	
 � � 
 and ��� 	� � � 
 � ����� 	
 � � 
.
Given this uniformity property various bounds from the calculus of pseudodiffer-

ential operators are uniform in the parameter (by continuity properties of the calculus).

We shall also deal with parameter-dependent metrics. Specifically we shall consider
for � �  ! �  " � �

and
� � �

(3.1) �� # � $% &$'� # �(!$% )�! * �!$' )+ ! ,
Similarly to Definition 3.1 we shall write (for given- � . ), �� � ����� /�0 � �� 1
and ��� 	� � � 
 � ����� /�0 � �� 1 meaning that for all (time-dependent) semi-norms���� ���� ��� &� � � . Also in this case various bounds from the calculus of pseudo-

differential operators will be uniform in the parameter. Some extensions of this idea
will be used without further comments.

One may verify that (1.10) follows from (1.8) by applying a partition of unity to
the 2 of any state3 4 5 67 89 of (1.8) to decompose it as5 4 : 5; and by noticing
that (1.8) remains valid for the sharper localized states9 < 9; 4 5; 67 89 . (Notice that
if supp65; 8 is located near=; this leads to>?@A B C 6= ; 8D 6=; 8 and E B F 6=; 8 along9; 6> 8.) The latter follows readily upon commutation and applying Lemma 3.2 stated
below. The same argument shows that indeedGH is 7 –reducing. (This property may
also be verified without appealing to Lemma 3.2.)

Pick real-valuedI @ J KI @ J KKI @ L M NH 6OP 8 such thatI @ 4 Q in a (small) neighborhood ofC 6=H 8D H , KI @ 4 Q in neighborhood of supp6I @ 8 and KKI @ 4 Q in neighborhood of supp6KI @ 8.
Similarly, pick real-valuedIR J KIR J KKI R L M NH 6OP 8 such thatIR 4 Q in neighborhood ofFH, KIR 4 Q in neighborhood of supp6IR 8 and KKI R 4 Q in neighborhood of supp6KIR 8. We
suppose suppSKKI @T U suppSKKI R T V W H (with W H given as in (1.9)), and in fact that the
supports are so small that for some>H X Q the symbol

(3.2) YZ 6A J F 8 [4 Y 6A J F 8KI @ S>?@A T KIR 6F 8 4 Y 6\H ]A J F 8 KI @ S>?@AT KIR 6F 8^ > X >H J
cf. (H1). By the assumption (H2) we then have

(3.3) YZ L _`P;a 6QJ IH 8 b _`P;a cQJ I @dHZ e f
Lemma 3.2 For all g h i jk lm n the family

(3.4) g lopq lr s t nn h uvwxy lzs {k n | uvwxy }zs { ~�kq �
and

(3.5) ��{ ~ ���~r�{� lt n�g lopq lr s t nn � g l� n� �� � � ���j � �
14



Proof As for (3.4) we may proceed as in the proofs of [DG, Propositions D.4.7 and
D.11.2]. (One verifies the Beals criterion using the representation (3.10) given below
and the calculus of pseudodifferential operators.)

For (3.5) we let� � ��� �� � � 	 and
 � �� �� � � 	 � ��� �� � � 	. By (3.10)

(3.6) � ���� �� � � 		 � � �
 	 � �� �� ��� �� � �� 	 �� � � 	��
 �
 � � 	������ �
For any large� � � we may decompose

(3.7) �� � � 	��
 �  !"# � $�
"% �
 	�� � � 	�" & �� � � 	��$� % �


	�� � � 	� �
yielding (by the calculus)

(3.8) ' � (
)��� *'+ �� 	�� � � 	��
 �  ,"#�

- " �� � � 	�"
&
'� ()��� *'+ �� 	�� � � 	��$� % �


	�� � � 	� . - " � / 0123 4 5
By (H2), 6789 :; < = >?@AB CDE FG28 H IJK and therefore6789 :; < L M 01G28 4, whence

(3.9) NNI O 012OE4IP :Q <:R S T <2O; NN U V 1G28 NImT N2 W8X OY
uniformly in T = suppC Z[ K.

Clearly (3.5) follows from (3.6) and (3.9).

Remark 3.3 The statements of Lemma 3.2 extend to any smooth function
[

with\]\^] [ :_ < L M 0_8 2` 4 (for fixed a = b ); in particular Lemma 3.2 holds for
[ :_ < L _ 5

Definition 3.4 Let cd denote the largest set ofe f ed g h i jk l, such thatm n e n o
, e p q m r e p g h is ttuv r wx yy,e tuv y f m r e twx y f o

andzo { e r ze r ze p gh i , which is stable under the mapse | e } and e | o { jo { e l} ~ � g � � Letc�
denote the set of functionse� f o { ed whereed g c d .

We shall in Section 5 use a modification of the abstract calculus [D, Lemma A.3
(b)], see also [DG, Appendix C], [G1, Appendix] or [Mø].

Lemma 3.5 Suppose �� and � are self-adjoint operators on a complex Hilbert
space� , and that �� j�l � � � �s � is a family of self-adjoint operators on� with the
common domain� j� j�ll f � j� l. Suppose that�� is bounded, that the commutator
form � � �� r � j� l� defined on� j� l is a symmetric operator with same (operator) domain� j� l and that the� j� l-valued function� j�lj� { �l�u is continuously differentiable.
Then
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(A) For any given� � � �� �� � we let �� � � �� �	 � denote an almost analytic
extension. In particular

(3.10) � �
 ���� � 
� �� ��� �� � �� ��
 �� � � � ��
���� � � � � � �� �
The � � �-valued function� �
 ���� is continuously differentiable, and introducing

the Heisenberg derivative! � ""# � � $ �% � &', the form ""# � �
 �� �� � � $ �% � � �
 ����' is
given by the bounded operator

(3.11) !� �
 ���� � � 
� �� ��� �� � �� ��
 �� � � � ��
 �!
 �����
 �� � � � ��
���� �
In particular if !
 ��� is bounded then for any( ) * (with +� , � -. � /� /0 1 23 )

(3.12) 4456 78 79:: 44 ; <= >?@ABC DEF G=HI 4ImF 4JI 4DKL M6 N 7F : 4N 4458 79: 44O
(B) Suppose in addition that we can split

58 79: P Q 79: R QS 79 :
, whereQ 79:

and
QS 79 :

are symmetric operators onT 78 : and that the formUV WXVY Z[\ 7Q 79 :: PU ]UVJ^WXVJ^Y Z[\ 7Q 79 ::_ 8 79 :` for a P b
defined onT 78 : is a symmetric operator onT 78 :;WXcY Z[\ 7Q 79 :: P Q 79:

. (No assumption is made for the form whena P d
.) Then the

contribution frome fgh to (3.11) can be written as

(3.13)

i jk lm nop qr s ft hfu fg h i t hvwe fghfu fg h i t hvwxyxz{ j| }r ~ fu fg hhe fg h � e fghr ~ fu fg hh� � � w fg h �� w fg h { j|k lm nop qr s ft hfu fg h i t hv��x�� ��� fe fg hhfu fg h i t hv�xyxz �
For all � � � �� f� h

(3.14)

j| }� � fu fg hhe fg h � e fgh� � fu fg hh�{ � fu fg hhe fg h� fu fg hh � �� fg h �� � fg h { |vwk v� lm lm nop q� s ft� h nop q� s ftw hfu fg h i t� hvw fu fg h i tw hvw�x�� ��� fe fg hhfu fg h i tw hvw fu fg h i t� hvwxy wxz wxy�xz� �
(C) Suppose in addition to previous assumptions that for all

g � g� the form� �e fg h� u fg h� extends from� fu h to a bounded self-adjoint operator. Similarly suppose
the operatore� fg h extends to a bounded self-adjoint operator. Then for all

r � ��
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the � �� �-valued function� �� ������ � ��	
 is continuously differentiable, and there is
an almost analytic extension with

(3.15) �� 
� �� � �� � � � �� �� �	
	� �Im� �� � � � � �
yielding the representation

(3.16) � � �� ���� � � � � �� �� ��! �� �� � � �� �� �� " # 
 �� � " #$ �� � " #% �� ��
where # 
 �� � is given by (3.13),#$ �� � by (3.14) with & � '� � and #% �� � is the
contribution from!( �� � to (3.11).

Remarks 1) The left hand side of (3.16) is initially defined as a form on) �� �
while the terms on the right hand side are bounded operators. We shall use the stated
representation formulas for bounding these operators in an application in the proof of
Proposition 5.1; this will be in the spirit of (3.12) although somewhat more sophisticated.
2) There are versions of Lemma 3.4 without the assumption
* be bounded; they are
not needed in this paper.

4 +,-–localization

Let . / 0 12 3. be any state obeying (1.8) and (1.9) with0 supported in a very
small neighborhood of45 (in agreement with the smallness of the neighborhood65 of
Theorem 1.1). Let7 8 9 :7 8 9 7; 9 :7; < = >5 1?@ 3 be given as in (3.2) and (3.5). In particular
we have7 8 1A 14 3B 14 330 14 3 / 0 14 3 and 7; 1C 14 330 14 3 / 0 14 3.

Consider forD 9 E F G symbols

(4.1) H / HI JK 1L 9 C 3 / MN OEP Q 1L 9 C 3R :7 8 ODQ8L R :ST UV WX
whereYZ is given as in Definition 3.4 and[ \ is built from the[ \ of (2.9) by writing[ \ ] [ \ U^ U_ WX _ W

and substituting for_ the symbol` Uab cd X V W
cf. (3.2),

(4.2) [ ] [ \ U^ U` Uab cd X V WW X ` Uab cd X V WW e
We shall considerf g hiX jk l

with m n o. To have a good calculus for the symbolp we needm q irs. Notice that

(4.3) pt uv g wxyz{ |iX S }\k ukt ~ e
Denoting by���t the expectation in the state� UjW ] �\zt� � we have the following

localization.

Lemma 4.1 For all m g Uo X sr�W
(4.4) �p�t ut� Ud X � W�t � o for

j � � e
17



Proof We shall use a scheme of proof from [D]. Let

(4.5) �� �� � � � �� 	
 ��� �� �
 � � 	� � �� 	� � � �� 	 � � � ����
 ��� �� 	�
From (1.10) and the calculus of pseudodifferential operators we immediately con-

clude that for fixed��� ��� �� � � for � � � �
yielding

(4.6) ������ �� �  !�
�"���� ��#� �

where
"

refers to the Heisenberg derivative
" � $$� % & '( � )*. We shall show that the

expectation of
"���� is essentially positive (in agreement with (2.11)). Up to terms+ ��� � we may replace

"
by

"� � $$� % & ',�� �
 � � 	� )*, cf. Remark 3.3. First we
notice that

(4.7) �� �� 	� � ����
 � �" ���� �� �
 � � 	�� � ����
 ��� �� 	 - �. �/0 �1 �
where. 2 � is independent of� 3 '4� �0 *.

This bound follows from the calculus. The classical Poisson bracket contributes
by a positive symbol when differentiating5 �
 � 6 	. The Fefferman-Phong inequality
(see [Hö, Theorem 18.6.8 and Lemma 18.6.10]) for this term yields the lower bound+ 7�0 �� ���0 ����8 � + ��/0 �1 �.

Hence (uniformly in�)"���� - 9: % : 
 ; � . �/0 �1 �
: � �� �� 	� � ����
���� �� �
 � � 	" � �� � ����
 ��� �� 	� �

For the contribution from the first term on the right hand side we invoke (1.9) after
symmetrizing. We conclude that

(4.8)  !�
�"� ��� ��#� - < ��= � � . �/0 �� uniformly in � 3 '4� �0 * �

Pick � � �0 .
By combining (4.6) and (4.8) we infer that�� � ��> ?@ A B for C A D E

and therefore (4.4).

Let FG E F H and FI be given as in (2.9) upon substitutingJ by the symbolK LMN OP E Q R,
cf. the use ofF S above. We introduce the symbolsTU@ V CW SUF S LP E Q RX YG ZCW F S LP E Q R[ \] U ZCSUP [ \]^ LQ RET@̂ V CW SUFG LP E Q RX YG ZCW F S LP E Q R[ \] U ZCSUP [ \]^ LQ R_
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We get the following integral estimate from the above proof employing the uniform
boundedness of the family of “propagation observables”�� ��� , cf. a standard argument
of scattering theory see for example [D, Lemma A.1 (b)].

Lemma 4.2 In the state� � �� � 	 
 � �� �� �� ���
� 
�� ���� �� �� �� ��� � � �� ���� �� �� � � ��� ���� � � �

Proof We substitute� 	 �� in the construction (4.5). Then up to integrable terms
the left hand side of (4.7) (with 	 �) is given by !�� �� � � � with!� �� � " � 	 #$ �" �$# � ��%���$ �& �� %�' % �� � " � � �� () �� � " �� ' % �� � " � *�+ ,- ��� ' % �� � " �� �
where ./0 /1 signifies Poisson bracket.

We have the bounds for some2 3 4 and all large enough52 6789 :; 0 < = > ?@ :< =@? 7 A567;B@ AC 79 :; 0 < = D C@9 :; 0 < =B > 2 89 :; 0 < = 0
from which we readily get the lemma by the Fefferman-Phong inequality.

Remark 4.3 We shall not use Lemma 4.2. However the proof will be important.
In particular we shall need the non-negativity of the above symbol89.

Let for 5 0 E F G and 4 H IJ H K LM :N 0 IJO = with N H IPQ and J O as in (2.13) (this
number may be taken independent ofR close toRS , cf. Remarks 2.1 1)),T9 UV :; 0 < = W XY ZE675@[ \ O :; 0 < =]X6 A5^ \ 6 :; 0 < =B _? 7 A567;B _?@ :< = ` abcde ZG0 ? 76^ U^9 ] f

Lemma 4.4 For all g 3 4
(4.9) hTi9 U9j kl m n opq r s for t r u v

Proof We shall use another scheme of proof from [D]. Let

(4.10) wqxy z { | kt o} ~�q xy kl m n o{ | kt o m
cf. (4.5), and write for any (large)t�
(4.11) �wq xy �q z �wq� xy �q� � q�q� ��w�xy ���� v

19



To show that the left hand side of (4.11) vanishes as� � � (with � � ��) we look
at the integrand on the right hand side: As in the proof of Lemma 4.1 we may replace�

by
� �

up to a term�� 	
 such that��
�
 �� 	
 �� � � uniformly in � � � and � � �� as �� � � �

Using (1.9) and Remark 4.3 we may estimate the integrand up to terms of this type as

� � � � �� � ���� ���� 	
 � �! " # �� � ���$� "
where ��� 	
 �! " % � � �&��'( �)*�&�+ � �! " % � , -. �! " % �" + � �! " % �/�0� 	
 �! " % � 1

0� 	
 �! " % � � 2 34 5�&��'( + � �! " % �62& ��7 + & �! " % �� 89 � ��&�! � 89' �% ��
We compute, cf. (2.13), that for all large

�
and a large constant: ; <

= > ?@ABC BD = > ?@ABDE F GH I J KLF MN GH I J KO PDF MN GH I J K O > ?@ABC BD = > BD?@A BDE F GH I J KLF MN GH I J K I
from which we conclude that

(4.12) QRS TUVWXYZ TUVN[DMW[WX
W\WX ]^_FMN `Fa? O < b

As for the first term on the right hand side of (4.11), obviously for fixedcd
(4.13) ]_WX MN `WX e < for f e g b

Combining (4.12) and (4.13) we conclude (by first fixingcd) that

QRS TUVWYZ ]_WMWh `W O < I
whence we infer (4.9).

Next we “absorb” thei of Lemma 4.4 into thej and introduce the symbols

(4.14)

PW GH I J K k lB mc@A E F GH I J KnlB ocC E B GH I J Kp qr D ocBDHp qr@ GJ KIPDW GH I J K k =cBDl sB mc@A E F GH I J KnlB ocC E B GH I J Kp qr D ocBDH p qr@ GJ KI
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where� � �� � � �� �� 	 �� 
 � with � � ��
 and � 
 as in (2.13). Clearly�� �� 	 � � � ���� ��	 � ��� � �� �� �  ���!� ��	 � ��� ��� � " � # $ � % �&
We have the following integral estimate.

Lemma 4.5 In the state' � �( � $ ) � �( �' �( �
(4.15) *+� ,

- .��� /0 �� 	 1 �2� ,
3( � 4 &

Proof We use the proofs of Lemmas 4.2 and 4.4. Notice that to leading order “the
derivative” of the symbol56 �(78 9 : ;< = > ?@AB CDE F B ;< = > ?G HI J CDBJ<G HIK ;> ?
is indeed non-positive, and thatA LM N OA LB .

By combining Lemmas 4.1 and 4.4 we conclude the following localization result.

Proposition 4.6For any stateP N Q ;R ?P obeying (1.8) and (1.9) withQ S T UV ;WV ?
whereWV is a sufficiently small neighborhood ofXV
(4.16) YYP ;D ? O Z[\ ;< = ] ?P ;D ? YY ^ _ for

D ^ ` a
Using the symbolZ\ ;< = > ? we can bound powers ofb , cf. (2.16). If we defineb N b ;< = > ? as in (2.3) upon substitutingX by the symbolsc ;dV e< = > ? we may consider

the symbol

(4.17) b f\ ;< = > ? gN b f ;< = > ?Z\ ;< = > ? h i S ;j k l_m?KnBK a
We have the bounds

(4.18) YY;b f\ ?[ ;< = ] ? YY N o pDBq rs rt u
5 v and its localization

With the assumption (2.7) we define operatorsw andx as follows: The right hand
side of (2.17) is of the formy z{ | } ~ y � � ��� rs r�{ | �s y s �
here �s and y s depend smoothly of� . As done in (4.17) we substitute

(5.1) � ~ � ��� �� � � �
21



and multiply suitably by the factors��� � ������ and ��� � �	 
 as introduced in Section 3 (with
small supports). Precisely we pick� � 
 � � such that (2.7) holds and write� � � �� �	 � 	 ��� 

 � � � �� � 
 � �� �� � 	 
 � �� � ��� � � � � �� 
 !" #� $
Then we define the operator% � %& � �"& �� � ' 
 by the symbol

(5.2)

�& �� � 	 
 � � � �� � 	 
 � � (& �� � 	 
�� � �� � 	 
 � �	 � 	 ��� 

 � � � ��� 
�
� (& �� � 	 
 � ��� 
�� )*�� �� � 	 
 � +(, !- !,. / �-� - �

� � 	 
01 ��� � ����� ���� ( �	 
$
For the second term the substitution (5.1) is used. Let2 � 2& � Re�% 
.

Clearly the quantization of this second term3 � �� 
 � �� (& �" �� � ' 
 is bounded.

We shall assume that

(5.3) 4 �5 � � �
 6 ��
where 4 7 89: ; <= >? @ 8AB C is given as in Proposition 4.6.

We shall use the operatorD : >E C given in (4.5). Let us introduce the notationDF >E C G HIJ >K @ L C for the quantization of the first symbol of (4.14). Let us also introduce
the “bigger” localization operatorDM >E C G NOHJPI >K @ L CQOHJ >K @ R C G S9 N89:EFT U B >K @ R CPS9 V89:EW U 9 >K @ R CX OY : VE9:KX OYF >R CZ
Notice that alsoOHJ >K @ R C [ \]^_` Na@ Y :9W b cW bJ P Q ? d G ? e A@
and that indeed for example

(5.4) >f e DM >E CCD F >E CD : >E C G g VE9h X Z
We obtain from (2.16), (5.3) and bounds like (4.18) that

(5.5) DM i jk @ lmDM G eDM OE9:lDM n g VE9F X @
whereE is omitted in the notation and

OE9: is the Weyl quantization of the symbol

e opq >K @ R CK r s >q >K @ R CC t B: >q >K @ R CC
OOY : VE9:K XOOY F >R CZ

We may assume that the supports of
OOY : and

OOY : are so small that

(5.6) ReVOE9:X u E9:ReVOOY : VE9:KX OOY F >L CX n g VE9F X Z
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We have the following localization result.

Proposition 5.1 Let � � � and � be given as in Proposition 4.6 and suppose (5.3).
Then for all � � �� � � � 	 � � 
, � � � � 	 �, and with � � �
 � ��� � ��� where� � �
 is given as above

(5.7) ���� ������ � �� �� 
 �� � � for
� � � �

Proof Using the calculus we compute (with some patience)��  !" � � #�� � $Re���  !" � � #��� � � ����  !" � �#�� 

� Re���  !" � � # !� � � �� # 	 !� � � �� # !" � �#�� 

� Re���  !" � � �# !� � �� # 	 !� � �� # !" � � �#�� 

� $Re���  !" � � #��� � � ����  !" � � #�� 
 � %&
 �' � ( 
 � ) *��+ ,��- �

where %
 �' � . 
 � %
 � $Re*/01
 � /01
 � 02
 3345 6 789 :; < =>?@ ABCD EFC 6 G HFD E ID E9 ; J
Applying (5.5) to the first two terms on the right hand side and symmetrizing yields

(5.8) KC L MN 6 O PKC
Q RKC SO ReT7BFHU V 5 JW JXKC V ReTYZ TBF[ U V Y\Z TBF[ UU V Z AB[D EFC; J

Notice that the contribution fromW]9 ^_ 6 ` a disappears and that we use

(5.9) O ReT7BFHU V 5 JW J Q bY
ReT7BFHUY \ V bY\

ReT7BFHUY V Z TBFC U J
We shall use the scheme of the proof of Lemma 4.4. Consider withc Q Bd

for a
small e f g the observableh ^B 6 c a Q K H ^B a\ij ^k ^BaaK[ ^B a[ij ^k ^BaaK H ^B a lk ^B a Q k ^B l c a Q mY mY\ V mY\ mY 6 mY Q mY ^B l c a Q cFHB HFn Y9 J

As before we first compute the Heisenberg derivative treatingc as a parameter and
split (with Ko Q Ko ^B a)p h ^B 6 c a Q q H ^B 6 c a V q[ ^B 6 c a V qC ^B 6 c alq H Q K

\Hij ^k ^BaaK
[[ ^p ij ^k ^BaaaK H V 5 JW J6q[ Q K

\Hij ^k ^Baa Tp K
[[UK[ij ^k ^BaaK H 6qC Q K

\Hij ^k ^BaaK
[[ij ^k ^Baap K H V 5 JW J

The analogue of (4.11) is

(5.10) rh ^B 6 c as9 Q rh ^Bt 6 c as9u v wx
wy

z{ | }~ � � � v {� }~ � � � v {� }~ � � ����~ �
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We shall prove that

(5.11) ��� ������	 ����
��
���� �
� �� � � ����� � � � � � �� � � � �

To do this we may replace by the modified Heisenberg derivative

 ! � ��"
# � $ %& � '( � %& � )!& )! � )! � )! �" � �

cf. (5.4) and arguments below for (5.17).

With this modification we first look at the most interesting bound (5.11) with� � �.
We use (3.16) to write

(5.12)
 !*+ �, �"�� � * - ./+ �, �" ��0 �" �* - ./+ �, �" �� # 1 2 �" � # 13 �" � # 1! �" ��
0 �" � � � 4 �5" , �" � 4 )! 6, �"�Re78"9

2: # ; �< �=)! �
Notice that here

1! �" � is given by the integral representation (3.11) of Lemma 3.5 in
terms of the bounded operator0> �" � �  !, �"� 4 0 �"� which by (5.8) is of the form

(5.13) 0> �" � � �9
3
"
3
9
3? ��"

@ # 6�9
3
"
3
9
3?
)!& � A)! � @ B # ; �< �=# �9

3
"
3
9
3? C

ReDEF DGHIJJ K ReDE LF DGHI JJ K F MGIN O HPQ RS
First we examine the contribution from the expectation of the term

T T T U I VWXI YZ [ VWX K ZI VWX\U [ VWX K ] S^ S
of the integrand of (5.11) (after substituting (5.12)). We may write, omitting here and
henceforth the argumentW,

(5.14)

_ `a b c d e f_ gUP hcReDiGH[J K ] S^ SjUP b c ke f DUP hcReDiGH[J K ] S^ Sj_ `UP b c d K ] S^ SJf UP hcReD_ giGH[ b c kJ K ] S^ SjUP S
Substituted into the representation formulas (3.13) and (3.14) of Lemma 3.5 the first
term to the right can be shown to contribute by terms of the formlHIF DWHm J (using the

factors ofU [ andUI and commutation), however the boundlH[F MWN OH[Hn Q suffices.

Here and henceforth
F DWHop J refers to a term bounded byq WHop uniformly in

G
(recall

that
c

contains a factorlHI e GHIp). To demonstrate this weaker bound we compute_ `UP b c d e lH[W[Hn _ `UP b E d rE L K lH[W[Hn rEL_ `UP b E d K ] S^ Sb
_ `UP b E d e F MWN OH[Q S
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Since the middle factor Re������ � � �����
we get the bound	��� ����
 �� ��� 
 ��� �	��� ��� 
���
 �

. We used that �� � ���
and � may be considered as bounded in

combination with the resolvents of� ; explicitly we exploited the uniform bounds (after
commutation)

(5.15) �� �� �� � � ��� ��� �� �� � �� � � ��� �� � � �� �����Im� � �
���� � � ��� �� � � �Im� ��� � ��� �� � � ��� �� � � �

Similarly, since

(5.16) Re� !���� � � "� � 	��� �����
 � �� � # 	��� �����
 � �� # $ �% �
the second term to the right in (5.14) contributes by a term of the form	��� �����
 � �

Using the representation for&' � &' ��� and commutation we claim the bound

(5.17) ( ( ( ) ��&') � # $ �% � � 	��� ����� # 	��� �����
 � # 	��� ���� 
����
 � �
The contributions from the first two terms of (5.13) are	��� ���* �

and therefore in
particular	��� �����

. Let us elaborate on this weaker bound for the first term: Write

	������
 ++� , � 	�����
 - �� ++� � � # �� � ++� � # $ �% �.�
and compute the time-derivative of the symbol��/ � ����0 �

that defines the time-
dependence of the symbol of

�
++� ��/ � ����0 � � ����0 ( �1 ��/ �� ����0� �

The contribution from this expression is treated by using the factor/ � ����0�
of ) �.

First we may insert the2 ’th power of 3 � �/� ����0�
next to a factor) �. Then we place

one factor of3 next to any of the factors of the time-derivative of
�

by commuting
through the resolvent of� , and repeat successively this procedure for the “errors” given

in terms of intermediary commutators. At each step a factor of	���� 
�
 � � ��� 
�
 �
will be gained. (In fact for the first term of (5.13) treated here we have the stronger
estimate

� ���
 �
.) This means that if we put4 5 � 4 � 6 5 then

$ � ��
 
 will be an
“effective Planck constant”. Notice that 7�� � � ��� � 3 8� 	�����
 �� � � ��� 9 ��� ��� 
��� # ���� ��� 
��� # $ �% �:�� � � ��� �
Repeated commutation through such an expression by factors of3 provides eventu-
ally the power

$; � ��
 
; . Again the finite numbers of factors like�� �� � � ���
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and ��� �� � � ��	
may be estimated by (5.15) before integrating with respect to the�

–variable. We choose
 so large that� � �
 
 �� � �.
The contribution to (5.17) from the second term of (5.13) may be treated very

similarly.

Clearly the last term of (5.13) contributes by terms of the form of the last two
terms to the right in (5.17).

Next we move the factors of�� next to those of� 	 (and other commutation) for the
contribution to (5.11) from the first term to the right in (5.12) yielding, as a conclusion,
that

(5.18)

�� 	 �� � � ��� � � �� � � ��� �� � 
 ��	�  ��	! 
 � "�# $ ��% &
�� '  ( ��) ! *+ �� ������ ���� 	 ���� ���,

Notice that commutation of
� ���

with the factors of �� ���,( � *+) �� ����
and

 ( ��) ! *+ �� ����
(when symmetrizing) involves the calculus of

Lemma 3.4 and the effective Planck constant- ' ��. $
in a similar fashion as above.

For the first term on the right hand side of (5.18) we infer from (5.6) and (5.9) that

(5.19)
� �� � � ��� �� � � / 	�����	��. 
 /���� ,

By combining (5.18) and (5.19) we finally conclude (5.11) for0 ' �.
As for (5.11) for 0 ' 1

we use Remark 4.3, the integral estimate of Lemma 4.5
and the factors of� 	. Notice that the leading (classical) term from differentiating the
symbol 23 may be written as a sum of three terms: The contribution from “differentiat-
ing” the factor

(�  4# 5 � �6 � 7 �!
is non-positive, cf. Remark 4.3. The contribution from

“differentiating” the first factor
(�  4�8 5 � �6 � 7 �!

may after a symmetrization be treated
by Lemma 4.5. The commutation through the factors of

() �� ����
(when symmetriz-

ing) involves the calculus of Lemma 3.4 in a similar fashion as above. Finally the
contribution from “differentiating” the last two factors are integrable due to the factors
of � 	. We omit further details.

As for (5.11) for 0 ' 9
we use the integral estimate (1.9) and commutation. We

omit the details.

We conclude (5.11), and therefore by Proposition 4.6 the bound (5.7) first with�
replaced by�
 : and then (since: is arbitrary) by any� as specified in the proposition.

Corollary 5.2 Under the conditions of Proposition 5.1 and with; < ;= < Re>? @
(5.20) AABC DEFGH A; AIJ >E @ AA K L for

E K M N
Proof Let O P >QR S T U@ be given. FixO F P >QR S T O @. By Proposition 5.1 it suffices

to show that

AABC DEFGH A; AIBG DEVGVH W X I AA < Y DEH WGH I N
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Clearly by the spectral theorem this estimate follows from��� ���� ��� ��	�	� � 
 � �� � 
�
which in turn follows from substituting

� � ��� �� � �� �
and then estimating��� ���� ��� ��	�	� � 
 � ��� ��� ��� ��� ���� ��� �� � ��� ��� ��� �� ��� ��� ��� ��� ���	�	� � �� ���� ���� ��� ����	 � ��� ���	�	�� �� �������� ��� ����	� ���� ����	�	� � 
 �� ��� ����	 � 
�

Remark 5.3 In the case of (2.8) we define
�

as follows: We pick� � � � 

such

that (2.8) holds and write

� � � �� � �! � " � �# $ � � %& '( �� � ) �*�� � +,- � � �. � #$ � /0 1$ �  �! � �2 �#$ ��
The operator

� � �& � �0& �� � 3 � is given by the symbol (using the substitution (5.1))

(5.21)

�& �� � ) � � � �& �� � ) � � � 	& �� � ) �*� �& �� � ) � � ���� � " � �#$ ��
� 	& �� � ) � � 2 �#$ ���

45%& '( �� � ) � � 6	7 89 8:; < =9> 9 ?@ A B CDE FFG H IJKH@LFFG M ?B CA
cf. (5.2). One proves Proposition 5.1 with thisN in the same way as before. LetO P

Re
?N C

. We have (5.20) for this
O

.

6 Mourre theory for Q
Let

O
be as in Section 5 (assuming first (2.7)). TheRS of (5.2) is here considered

as arbitrary (but fixed); the condition (5.3) (needed before for dynamical statements)
is not imposed.

We introduce forT U VW X Y
the operators

(6.1)
VZ P JHK [\ O A V] P V̂_̀ ?@ A a Cb
V̂` ?@ A B C P J [\ KH I@ c d e ?fS C g h@ c d e ?i ?@ A B CC j @ c d e ?fS CkFFG H IJKH@ LFFG M ?B CL l
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We shall need a specific construction of the functions��� � and ��� � in the definition of��
and

��
above in terms of a small parameter� � 	:

The factor ��� � 
���
 �
is the product of the� functions

(6.2) �� 
��� ����
 � �� ��� � �� � � � �� � � � � � � ��
�� 
��� ����
 � � ��� � � ! ��� � �� "

The factor ��� � �# � is the product of the� functions

(6.3)
�� 
��� ��# � # ��� �� � � $ ��� � �� �
�� 
��� ��# � # ��� �� � �� ��� � �� � � � �� � � � � � � �� � %� & �
�� 
��' ��# � # ��� �� � � ��� � �� "

We have the following result (with( �� ) � 
� * ��� ��+�
).

Lemma 6.1There exists�� � 	 such that for all positive� , �� there exist constants�� � - � �
such that for all

� . ��
and / 0 - 1� �2 �

(6.4)
��( �� )��/ 
 �� �( �� )�� �� , - ��/ ��3 4 5

Proof We shall use the abstract theory of [M] with the conjugate operator67 to
obtain a globally uniform resolvent bound.

We claim that for all small enough8
(6.5) 9 : 6; < 67= > ?@A B C > CD E CD F8G 5

To see this we notice that clearly the first term in (5.2) and the first term of the
symbol 6H contribute by

9 IC A@ JK LM ANO FP <Q G< C JK@AP R S T FU D GV E W<
so it remains to estimate

(6.6) XX9 IC A@ JK L
Re

LM YZ NNO FP < Q G< 67V XX [ \@A B C > CD <
and

(6.7) XX9 IC A@ JK LM ANO FP <Q G< 67 ] C JK@AP R S T FU D GV XX [ \@A B C > CD 5
Let us denote byHZ FP < ^ G the Weyl symbol of the operator in (6.6) or the one in

(6.7). We have in both cases thatHZ _ `abcd eW< f AgDZ h, so it suffices to show (cf. [Ḧo,
Theorem 18.6.3] and the proof of [DG, Proposition D.5.1]) that

(6.8) ijkl gm no p gZqZr stu vw x y z s { |} ,
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where �� is a (universal) small positive constant associated for example to the��
–boundedness result [Hö, Theorem 18.6.3].

For (6.8) we note the uniform bounds� �� � � 	 
 �� � 
 ��� � �
���� � �� � � 	 � 
 ���� �
��� � �� � � 	 � 
 ��� � for � � � 
 �� ��� � �� � � 	 � 
 ��� � �
�� �� � � 	 � 
 ��� � � ��� �� �� � � 	 � 
 ��� � � �� �� �� � � 	 � 
 ��� � �

on the support of the function���  ��! ����� � �� 	
given by (6.2) and (6.3). Here we used

(1.3) and (1.4), and the notation�� � � " #� ��� 	� �� � � " #� ��� 	$
By estimating the leading term of the symbol using these bounds we may show

(with some patience) that

(6.9) %&'� (� )* � (+,+- ./+ �� � � 	 . � 0 � �
from which (6.8) and (therefore) (6.5) follow.

As for the boundedness of second commutators required by the Mourre theory we
have the bound

(6.10) ..1 21 2 34 � 356 � 356 .. � 
 7� 89! : � 
 ��	$
Using (6.5) and (6.10) we readily obtain by keeping track of constants in the method

of [M] that for some positive constant0
(6.11) ..; 35 <=> ? @A B CD=> E @F G=> HH I J K

Im
C LM N O P Q PR S

RepresentingT ? @A D M U => VWXYZR [ T \] ^Im _? @A B ] B `aD=>bc] and then using (6.11)

we conclude (6.4).

Remark Although stated for concrete operators
@A

and
@F

clearly there is an abstract
version of Lemma 6.1; the important properties are (6.5) and (6.10).

Corollary 6.2 SupposeT> O Td e J fR \g ^ and N I h i @j I k
. Then there existsaR l N such that for all positive

a I aR there exists
J l N such that for allP Q k

(6.12)
HHT > ? @F DTd _P mn =o @A b HH I J P \o = mn ^pd S
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Remark 6.3 In the case of (2.8) we introduce (with� as in Remark 5.3)

(6.13)

�� � ��� �� � 	 �
 � ���
 �� 	 � ����
 �� 	 � � � � �� ��� � � ��� �� � � � �� � � � � �� 	 � ���� � ���������  �� �� 	
� �� 	 � � � �� � � �! �� 	 � ��� � � � �! �� 	 � �� � �� � � ��� �� � � � ��� �"

Here the factor��� � ������ is the product of the# functions$� �%� &���� � � � ��� � &� 	$� �%�' &���� � �( ��� � &� � ) � *	 � � � 	 # � *	 ) +� , 	$� �%� &���� � �- ��� � � . ��� � &� 	
while the factor���  �� � is the product of$� �%�' &�� � � ��� �� � �( ��� � &� � ) � *	 � � � 	 # � *	$� �%�/ &�� � � ��� �� � �- ��� � &� "

One verifies (6.12) under the same conditions as in Corollary 6.2 along the same
line as before.

7 Proof of Theorem 1.1

The proof of Theorem 1.1 is based on Proposition 4.6, and Corollaries 5.2 and 6.2
(with the assumption (2.7)).

We recall the assumptions of Proposition 4.6:0 1 23 1 4 56 �7 	 23 8 � with 7 1 29:
and 3 8 as in (2.13).

Lemma 7.1 With
�
 � �

 given in terms of any (small)% ; 0 and of

�3 � 3 (with 3
as above) by either (6.1) (in the case of (2.7)) or (6.13) (in the case of (2.8))

(7.1) <54
=> &&$? �& �
 &�@ AB C DD E F G
whereH E I AJ CH is given as in Proposition 4.6 (withI strongly supported depending
on K).

Proof We fix LM such thatNL O NLM O P QR AS G NLT C. Let UV AW G X C be given by (4.14)
in terms of LM and S .

By Proposition 4.6 it suffices to show that

DDYZ [D \] D̂ U_V AW G ` C DD a F for B a b G
and therefore in turn

DD \]U_V AW G ` C DD E c dBefeg h i
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For the latter bound one easily check that the symbol of�� ��� �� �� 	 belongs to


��
 ������ � � ��� � �� �� � � � � � � � �� �

Now, we first fix � as above and conclude from Lemma 7.1 that

(7.2)   ! �� 	 � " � # ��  $! �� 	   % & for
� % ' �

where
! � ( �) 	! is given as in Proposition 4.6. This holds for( * + ,- �.- 	 � .- �.- �/	 �

Next we fix any0 * �& � � 	 in agreement with Corollary 5.2 which means that

(7.3)   "1 # � ��2 3  $! �� 	   % & for
� % ' �

Here the input of� in Proposition 5.1 say�� (needed to fix the4 - in the definition of the3
of Corollary 5.2) is different; we need to have0 5 � � � � � � �� � �� � for which �� 6 �

is needed. The construction of this
3

depends on the same/ as above, cf. Section 6.

Combining (7.2) and (7.3) leads to

(7.4)   ! �� 	 � " � # ��  $" � # � ��2 3  $! �� 	   % & for
� % ' �

By combining Corollary 6.2 and (7.4) we conclude (by finally fixing/ 5 &
sufficiently small) that

(7.5)   ! �� 	   � & for
� % ' �

and therefore that
! � & proving Theorem 1.1.

Remark 7.2 With the assumption (2.8) we proceed similarly using Remarks 5.3
and 6.3, and Lemma 7.1.

8 Proof of Theorem 1.2

We shall here elaborate on the derivation of Theorem 1.2 from our general result
Theorem 1.1.

First we remove the singularity at7 8 9 by defining: ;7 < = > 8 ?@A= B C DE ;7 > F DE ;7 > 8 GH ;I7 I>E ; J7 ><
where (as before)

E
is a Morse function onK L@A. (See Remarks 8.3 for extensions.)

In this case clearly the hypotheses (H1)–(H3) of Section 2 are satisfied, and (H4) holds
for any critical pointM N O PQ and energyR S E ;MT > upon puttingM ;R > 8 M N < = ;R > 8U ;R >M N and

U ;R > 8 V? ;R W E ;M N >>.
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For (1.6) we put� �� � � � � � � �	�� 
 � �� 
 �� 
 �	� 
 � � 
 	� �� 
 � ���
yielding (1.7) with� �� � � � �� ��� �� ��� �� 
 � �� � � �

We may choose an orthonormal basis in�� 
 �� �  ! for which � ��� �� 
 � is diagonal,
say � ��� �� 
 � � diag�"� � # # # � "!�� �. The eigenvalues of$ �� � take the form

(8.1) %&' �� � � 
 (	 � (	 �( 
 	"' ) �� 
 � �� 
 �� or

% �' �� � � 
 (	 
 (	 �( 
 	"' ) �� 
 � �� 
 �� �
say with *+ ,� -*
+ if + . �.

Clearly the hypothesis (H.5) is the non-degeneracy condition,"' /� � for all 0 ,
while hypothesis (H.6) amounts to"' . � for some0 , i.e. � 
 be a local maximum or
a saddle point of� .

As for (H.7) one easily checks that there exists a smooth basis of eigenvectors of$ �� �12 for � 
 � �� 
 � 3 �� � 4 �5�	"� � # # # � 	"!���.
Elementary analyticity arguments show that given any6 3 �	 � 7 � # # #� the set of

resonances of order6 for any of the eigenvalues of8 9: ; is discrete in9< 9= > ; ? @ ;.
In conclusion, the hypotheses (H1)–(H8) are satisfied for any local maximum or

saddle point= > of a Morse function< for :A B 9< 9= > ;? @ ;CD whereD is discrete
in 9< 9= > ; ? @ ;.

Due to the possible existence of boundstates we change the definition ofE> as to beE> F G H IJKLMN OPLQ R > 9 ST ;OUPLQ :VW 9X ;?
where:VW 9X ; is the orthogonal projection onto the absolutely continuous subspace ofX , see [H] and [ACH, Theorem C.1]. This gives (1.12) with the left hand side replaced
by :VW 9X ;.

Now, to get (1.14) it suffices by Theorem 1.1 to verify (1.13) for any:A B9< 9= > ; ? @ ;. Invoking the discreteness of the set of eigenvalues ofX on the complement
of the set of critical values of< , cf. [ACH, Theorem C.1], one may easily conclude
(1.13) from the following statement:

Consider any open setYA Z 9< 9= > ;? @ ; such thatYA [ 9\]] 9X ; ^ < 9_` ;; F a. LetbA be the closure of the subspace of statesc F d 9X ;c , d B _ NA 9YA ;, obeying (1.8)
and (1.9). Then for allc F E>d 9X ;c where d B _ NA 9YA ;
(8.2) c B b A e
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We shall verify (8.2) by showing that indeed� � ��� �� �� obeys (1.8) and (1.9).
We shall proceed a little more general than needed in that we here assume that the� 	
of (1.9) is given by

� 	 � � 
 � ��
 
 �� �
�� 
 � �� � �� ���� ��� � � 
 �� � 
 � �� � ���� � �� � � � �  ! "�

where ! # � is taken so small that
�
 $ %& � �� � � '

Pick �� � % (	 �)	 � such that� * �� * + and �� � + in a neighborhood of supp�� �.
Let , � % ( ��� � be given in terms of any-. � / . by

(8.3) , �� � � 01 02	 -. �3�43 5 �2	 -� �3�43 '
(Notice that, �� � � �� � for �� � 6 +.) Let

7 00 � +8 �9, : 7 5 ; '< '� � �7 00 � �� �� �7 00 �� �� �'
Lemma 8.1 Let => ? @ AB C D E F be given withG H => H I and => J I in a

neighborhood ofK >, and LMN ? @ AB CO F by LMN CPF J LQ RSTUPN V W CK > FXIYB ZA [ CPF. Let
real-valuedM TU \ M]U ? @ AB CO F be given with^T] _ L̂T ` ^T] J abc Rsupp

RM TU XX \ L̂T J def CsuppCLMN FF \^]T g L̂] ` ^]T J def Rsupp
RM]U XX \ L̂] J abc CsuppCLMN FF h

Let i] ? j] \ iT ? jT and

@ g SkSCabc CsuppCQ FF l m de CW FFh
Then, in the staten CoF J pTqrs t >Q Cu Fn

(8.4) v wx TUTy z{|} ~ � � � � � �
(8.5) � ��� � � ���� �{ �|} ~ � �
(8.6) � �� �� �� �� �{|} ~ � �
(8.7) � � �� �� � �� �� � � ��� � � �� �� � �{|} ~ � � �� � � � � � ��  ¡¢ ��  �
(8.8) £�¤ ¥}�¤ ¦¡ §� �¨ �¤}�¤��©{|} ~ � �
(8.9) £�¤ }�¤ ��ª ��� ««�¡� �¨ �¤}�¤� �¬ �}   ���|} ~ � � ª ­ ¨ £® ��¥� � �  � ª̄ � ª �
(8.10) £�¤ }�¤ ���° ¥ �ª� ��� ««��¡� �¨ �¤}�¤�� �� �¬ �}   ���|} ~ � �
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(8.11) ��� ��� ��� � �� �	 �� � ��
�� � 
 � � � ��� � � �� ����� � ��
 ��� ��� �
(8.12) ��� ��� ��� � �� �	 �� � ��
�� � 
 � � � ��� � ��� ����� � ��
 ��� ��� �

Proof For (8.4), (8.5) and (8.6) we refer to [H] and [ACH, Theorem C.1]. The
bound (8.7) follows from those estimates by Taylor expansion.

As for (8.8) we consider the “propagation observable”� ��� � � �� ��� �� ������ �� �� ��
We may bound its Heisenberg derivative as�� ���  !"���� �� �� #� �� ������ �� �� � $ % ���
� � " & ' �

As for (8.9) we consider the observable� ��� � �� �� �� ��� ��������� �� �������� ��� ���
�� �� ��

We write its Heisenberg derivative as�� ��� � ( � $ (
 $ () �( � � �� �� � ��� ��� ���������� �� ������ �� ��� ���
�� �� � $ * �+ ��

(
 � ,�� �� �� �� ��� ������� ���� �� ������ ��� ��� ���
�� �� � $ * �+ ��

() � ,�� �� �� �� ��� ��� �� ����� ���� �� �������� ��� ���
�� �� � $ * �+ ��

and notice the identities

(8.13)
�� � � �� � �� �� � � - � .
/� $ % ���) � �

Using (8.4), (8.5), the second identity of (8.13) and (3.11) we readily obtain after
symmetrization that

(8.14) ��� �0( � 12 ��� � 
 �
As for the the term(
 we use the first identity of (8.13) and (8.8) to derive

(8.15) ��� �0(
 12 ��� � 
 �
For the term() we compute using the first identity of (8.13) and (3.11)

(8.16) () � Re3��� �� �� �� ��� ��� �� �� ! ������� �� ������ �� ��� ���
�� �� �4 $ % ���
 �5 !"��� �� �� �� ��� ����� �� ������ �� ��� ���

�� �� � $ % ���
 � � " & ' �
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We conclude (8.9) from (8.14), (8.15) and (8.16).

The bound (8.10) follows from elementary energy bounds, Taylor expansion and
the previous estimates. (For this we need (8.9) to deal with the “region” where� ���
energetically has the right size, but� �� � �.)

As for (8.11) we consider

� ��� 	 
� �� � 

� �
� ���� ����� � 

� �
� ��� 
� �� �� � ���� 	 �
��

��

 �� ������ �

We write its Heisenberg derivative as

� � ��� 	 � � � ��  
� � 	 
� �� � �� 

� �
� ����� ����� � 

� �
� ��� 
� �� � � ! �" � 
�� 	 
� �� �

� �
� ��� �� � ������� 

� �
� ��� 
� �� ��

Using (8.4), (8.5), the second identity of (8.13) and (3.11) as for (8.9) we obtain that

(8.17)
�#
� $%� � &' $

�� � ( �
As for the the term

�� we compute using the first identity of (8.13) and (3.11)

(8.18)

�� 	 ��� 
� �� �) � ���* �� �� + �����) � �� � 
� �� � � , ���� �
- ���) � ���* .
� ��/ 0123 4� 5 �
� ��� + "�6 
� �� ��7) � ��� � , ���� �
- 8���) � �� �*) � �� � � , ���� � � 8 	 
"� + "�6 �

Clearly (8.11) follows by combining (8.17) and (8.18).

As for (8.12) we may proceed similarly using

� ��� 	 
� �� � 

� �
� ���� ����� � 

� �
� ��� 
� �� �� � ���� 	 �
��

��

 6� ������ �

Corollary 8.2 Let 9 , :; < = >? @ A B C and DEF be given as in Lemma 8.1. LetE G < = >? @H C be given such thatI J EG J K and E G L K in an open interval containing
supp@DEF C. Then

(8.19) MM9 @N C O EG PNQGR S DEF PDT UUS: ; @ VW C DX @Y C9 @N C MM Z I for
N Z [ \
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Proof From the very definition of� we have��� �� � � �� � �	 � 
� �� �� �� � �� 
 �
for � 
 � �

Next, from [H, Theorems 4.10 and 4.12] we learn that

(8.20)
��� �� � � 
�� �
� ���� � � �	 � 
� �� �� �� � �� 
 �

for � 
 � �
Whence to show (8.19) it suffices to verify that���� � ������ � �� �
� ��� �
�� �
� ��� 
� �� �� �� � �� 
 �

for � 
 � �
which in turn is reduced (by a standard density argument using that the energy bounds
the momentum) to verifying that for all big constants�
(8.21)

���� �� ������� ��� ����� � � � � �
� ��� �
�� �
� ��� 
� �� �� �� � �� 
 �
for � 
 � �

For (8.21) we consider the observable� ��� ! 
� �� �
�� �
� ����� �� ������� �
� �� � ���� ���� �� ������ � 
�� �
� ��� 
� �� ��
Using Lemma 8.1 as well as the proof of this lemma we easily show that"#

�
� $$� %� �� �&' �$� �

"#
� ��� %� �� �&'$� ( � �

from which we conclude that along some sequence�) 
 �
indeed %� ��) �&'* 
 �

,
and then in turn that

(8.22) %� �� �&' 
 � �
We easily obtain (8.21) using (8.22), (3.10) and commutation.

Now, one may easily verify (8.2) for� ! +�� �� �� as follows: We introduce a
partition

� ! , �-
of sharply localized

�-
’s and for each of these a “slightly larger”
�-. Using these functions and the states�- ! + ��- �� �� as input in Corollary 8.2 the

bounds (1.8) follow from the conclusion of the corollary and [H, Theorems 4.10 and
4.12]. As for (1.9) we may use the same partition and then conclude the result from
Lemma 8.1 (applied with
� replaced by 
�-).

Remarks 8.31) Using the Mourre estimate [ACH, Theorem C.1] one may easily
include a short-range perturbation.� ! / ��	 ����0 � � 1 2 � � 3 45 . � ! / ��	 ��� � � �6 � ! 7 �
to the Hamiltonian� . In particular Theorem 1.2 holds for the strictly homogeneous
case as discussed in Section 1.

2) The non-degeneracy condition at8 � is important for the method of proof presented
in this paper. However it is not important that the set of critical points�9 is finite; it
suffices that8 � is an isolated non-degenerate critical point and that: ;<= > is countable.
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3) At a local maximum we proved a somewhat better result in [HS1] (by a different
method): A larger class of perturbations was included and we imposed a somewhat
weaker condition than the non-degeneracy condition. The method of [HS1] yielded
only a limited result at saddle points. Although there are indications that this method
of proof might be extended to included Theorem 1.2 (by using a certain complicated
iteration scheme) the proof presented in this paper is probably much simpler.

4) The components of the� of (2.3) may be taken of the form

�� � �� � ���� 	 
 �� � 

� �� �� 
�� �
where � �� �� 
 is given by one of the expressions of (8.1). In particular both of the
conditions (2.7) and (2.8) are satisfied in the potential case.

5) We applied the Sternberg linearization procedure in [HS2] to the equations (1.6) in
the case of a local minimum. In this case the union of all resonances (of all orders and for
all eigenvalues) is discrete on

�
 �� � 
 � � 
. One needs to exclude this set of resonances
to construct a smooth Sternberg diffeomorphism, see for example [N, Theorem 9]. The
construction of the symbol� �� �

in (2.17) may be viewed as a rudiment of this procedure.
However, the union of all resonances at a local maximum or a saddle point� � is dense
in

�
 �� � 
 � � 
, and for that reason the smooth Sternberg diffeomorphism (defined at
non-resonance energies) would not be suited for quantization. Although not elaborated,
one may essentially view� �� �

as being constructed by a� �
Sternberg diffeomorphism.
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