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Abstract

We develop a general theory on absence of quantum states corresponding to unstable
classical channels. A principal example treated in detail is the following: Consider a
real-valued potentia’ on R, n > 2, which is smooth outside zero and homogeneous
of degree zero. Suppose that the restrictionVofto the unit sphereS™~! is a
Morse function. We prove that there are hé-solutions to the Schidinger equation
ihp = (—27'A+ V)¢ which asymptotically in time are concentrated near local
maxima or saddle points dfs.-:1. Consequently all states concentrate asymptotically
in time near the local minima. Short-range perturbations are included.
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1 Introduction

The purpose of this paper is to show in a class of models that there are no quantum
states corresponding to unstable classical channels. We consider the following general
situation: Supposg(z,¢) is a real classical Hamiltonian 6i*°(R"\{0} x R"), n > 2,
satisfyingz - V h(x,€) = 0 in a neighborhood of a pointwg, &) € S™~! x R™.
Suppose in addition that this neighborhood is conic inatheariable and that the orbit
(0,00) > t — (2(t),£(t)) = (kotwo, &) with kg > 0 is a solution to Hamilton’s
equations

dx B
dt

df

= Veh(x,8), — = =Vh(z,9),

or equivalently,
(1.1)  Vih(wo, &) = 0, Veh(wo, &) = kowo.

We consider situations in which for each enerfflynear Ey = h(wy, &) there is a
(typically unique)(w(E), £(E)) € S™~! x R™ near(wy, &) depending smoothly o
such that the above structure persists, hamely

(1.2)  hw(E),E(E) = E,
(1.3)  Vih(w(E),E(E)) =0,
(1.4)  Veh(w(E),E(E)) = k(E)w(E).

Although we shall not elaborate here, we remark that one may easily derive a criterion
for (1.2)—(1.4) using the implicit function theorem.

Let us restrict attention to the constant energy surface&) = E and to values
of (2,¢, E) close to(w(E),&(E), Ey). (Here and hencefortty = |z|~'2.) Introduce
a change of variables

@ = an(W(E) +u), £ =E(E) +n+ pw(E);
(1.5)
u-w(E)=mn -w(E)=0.

This amounts to considering coordinatgs z,,,n, #) € R"! x R x R* ! x R. We
can solve the equatioh(w(E) + u,&(E) + n+ pw(E)) = E for p using the implicit
function theorem, becausg ii(w(E),{(E) + pw(E))|,=y = k(E) > 0 for E nearEp.
We obtainy = —g(u,n, E) where g is smooth in a neighborhood @b, 0, Ey) and
g(0,0,Ep) = 0. After introducing the “new time”r = Inxz,(t) = In(z(t) - w(E))
Hamilton’s equations reduce to

(1.6) u+ 3—17‘ = Vy9(u,n, E), fl—z = —Vug(u,n, E).



(See [A2, p. 243].) After linearization of these equations around the fixed point
(u,m) = (0,0) we obtain withw = (u,n)

(1.7) % = B(E)w; B(E) = (_OI é)A(E) - <é 8) A(E) = (9“7“ 9“7’7).

Inu - Gnn

Here the real symmetric matrid(FE) of second order derivatives is evaluated at
(0,0, E). We assume all eigenvalues BfF) have nonzero real part (the hyperbolic
case). These eigenvalues are easily proved to come in quadriples— A, and their
complex conjugates (if is not real). If all eigenvalues dB(E) have negative real part

then this corresponds to a stable channel. We prefer the word channel because in the case
consideredr,(t) grows linearly in time. If at least one of the eigenvalue3¢¥) has

a positive real part then the usual stable/unstable manifold theorem shows that there are
always classical orbits (on the stable manifold) for whiéit), {(¢)) — (w(E),&(E))

for t — oo (throughout this paper we use the convention: oo to meant — +o0).

In this situation the question is, do there exist quantum states whose propagation is
governed by a self-adjoint quantizatiddé of h(z,¢) on L?(R™) (possibly with the
singularity atz = 0 removed) which exhibit this behavior? We will answer this
question in the negative.

To be precise, let us first fix a (small) neighborhadg C R™\{0} x R" of
(k(Eo)wo,&). Then we consider a small open neighborhdgdf Ey and states of
the formy = f(H)y with f € C§°(Ip) such that:

For all g1, g2 € C5°(R"™)

(1.8) {91 (t7" &) = g1 (k(H)w(H))11,(H) }4(1)|] — 0 for ¢ — oo,
1{g2(p) — g2(£(H))11,(H)}(t)|] — 0 for t — oo;
U(t) =e ’tHw, p=—iV,,

while

(1.9) 1/15 1||a iz D)V Y(t)|]2dt < oo for all a € C§°(Uy\v(1p));

v(o) = {(k(E)w(E),§(E))|E € Io}.
(Herea™ signifies Weyl quantization, anty, is the characteristic function dj.)
Notice that by (1.8), at least intuitively, for all such symbals

(1.10) ||a®(t~ e, p)o(t)]] — 0 fort — oo,

so that (1.9) appears as a weak additonal assumption. The gtatesying the above
conditions (with fixedly) is a subspace whose closure, $&dy, is H-reducing.

We show the following (main) result.



Theorem 1.1 SupposeB(Ej) has an eigenvalue with a positive real part. Then
under a certain non-resonance condition (and other technical conditiongHBe(H8)
in Section 2) there exists a sufficiently small open neighbortigad E; such that

(1.11) Hy = {o}.

A symbol satisfying the conditions (1.3) and (1.4) was studied by Guillemin
and Schaeffer [GS]. In their paper the rolesaofand ¢ are reversed and their is
homogeneous of degree onefinThere is only one half-line of points in question rather
than a one parameter family of half-lines (their critical set of points is at zero energy).
Under certain conditions of non-resonance they obtain a conjugatiéhtofa simpler
normal form from which they draw conclusions about propagation of singularities for
an equation of the fornft{y = ¢.

To see what our result means in a particular model, namely in the case iere
given by h(z,¢) = 271¢% + V(&) with V' a Morse function ons™~!, we recall from
[H]: The spectrum off = 2~1p? + V() is purely absolutely continuous and

(112) I = Y P,

wiEC,
where P, are H—reducing orthogonal projections defined as follows: Pick any family
{xi|w; € C,.} of smooth functions o™ ! with y.(w;) = 6 (the Kronecker symbol);
hereC, is the finite set of non-degenerate critical pointsSttr! for V. Then

wH itH

P =s— lim "y (&)e™ ",
t—o0

see [H] and [ACH]. Furthermore in [H] the existence of an asymptotic momenptlm
was proved and its relationship to the above projections was shown. See also [HS2].
(There was the restriction in [H] te > 3 but this is easily removed using the Mourre
estimate [ACH, Theorem C.1].)

We notice that (1.12) has an analogue in Classical Mechanics: Any classical orbit
(except for the exceptional ones that collapse at the origin) obpgys oo with & — w;
for somew; € C,.

Obviously the collection (1.2)—(1.4) corresponds in the potential model exactly to

Cr: (w(E),E(R)) = (wl, V2(E — V(wl))wl> with w; € C,.. The assumption that the
real part of one eigenvalue is positive corresponds;tbeing either a local maximum
or a saddle point oi/. Moreover we have the identification

(1.13) Mo = Rar(P1,(H)).

Whence, upon varying,, Theorem 1.1 yields the following for the potential model.

Theorem 1.2Supposey; € C, is a local maximum or a saddle point f. Then

(1.14) P, = 0.



A detailed analysis of the large time asymptotic behavior of states in the range of the
projectionsP; which correspond to local minima was accomplished recently in [HS2].
In particular for any local minimump; # 0. Moreover in this case we have (1.13)
for the analogous space of that in Theorem 1.1. One may easily include in Theorem
1.2 a short-range perturbatid = O(|z|~1%), 6 > 0, 9°V4 = O(|z]7%), |o| = 2,
to the HamiltonianH, see Remarks 8.3.

The result Theorem 1.1 is much more general than Theorem 1.2. In particular, as a
further application, we can apply it to a problem of a quantum particle in two dimensions
influenced by a Lorentz force which is asymptotically homogeneous of degreae X,
see [CHS2]. For another magnetic field problem in this class see [CHS1].

Our proof of Theorem 1.1 consists of three parts:

) Assuming(t) = e~*H¢) does localize in phase spacetas> o in the region
lu| + |n| < € for any e > 0, we prove a stronger localization. Namely, for some small
positive ¢, the probability (assuming here thatis normalized) that)(¢) is localized
in the region|u| + || > ¢~ goes to zero ag — .

II) Using I) and an iteration scheme, we construct an obserabich decreases
“rapidly” to zero. This iteration scheme is based on one used by Pé&irfsae [Al, pp.
177-180]) to obtain a change of coordinates which linearizes (1.6). The fact that if one
eigenvalue ofB(E) has a positive real part then another has real partl is relevant
here. Our observablE is in first approximation roughly a quantization of a component
of w in (1.7) which decays aexp (A7) with Re\ < —1.

[II) Using Mourre theory we prove an uncertainty principle lemma for two self-
adjoint operatorg® and@ satisfyingi[P, Q] > ¢I, ¢ > 0, and some technical conditions.
The lemma states that #ff < 6, andg; and g, are two bounded compactly supported
functions then

s (0} () =

If ¢ is normalized this bound implies that the localizations of I) and II) are incompatible.

The basic theme of our paper may be phrased as absence of certain quantum
mechanical states which are present in the corresponding classical model. Notice
that given any critical pointy; € C, (restricting for convenience the discussion to
the potential model) there are indeed classical orbits with— oo andi — wj; in
particular this is the case for any given local maximum or saddle point. Intuitively,
Theorem 1.1 is true because the associated classical orbits occur for only a “rare” set
of initial conditions as fixed by the stable manifold theorem. Alternatively, for some
components ofz, £) the convergence tfw;, £1) is “too fast” thus being incompatible
with the uncertainty principle in Quantum Mechanics. These two different explanations
are actually connected.

For another example of this theme we refer to [G2], [S1] and [S2].

We addressed the problem of Theorem 1.2 in a previous work, [HS1], where we
proved (1.14) at local maxima but only had a partial result for saddle points (using a



different method). In the two-dimensional case with homogeneous potential a related
result concerning distributional eigenfunctions was proved in [HMV].

A generalization

Before getting into the details of the proof of Theorems 1.1 and 1.2, we consider
possible generalizations of the homogeneity conditioW i (z, &) = 0. We will focus
our discussion on the structure of the classical mechanics of our models and leave to
the reader a formulation of the quantum problem.

The above homogeneity condition is best understood as the invariance of the
Hamiltonian under the flow generated by the vector field, &) = > x;0/0x;, or
infinitesimally

(1.15) wvh(x,&) = 0.

Our goal is thus to find invariance conditions (1.15) which will

(a) reduce the dimension of phase space by two giving an autonomous dynamical
system in dimensiorzn — 2 (usually not Hamiltonian)

(b) give a natural framework for discussing stability of orbits which do not lie in a
compact set. It will turn out that stability is not measured using any preexisting metric
in the phase space but rather using bundles of orbits of the vectorfigdrounding
a given orbit of the Hamiltonian vector fieldy,.

The vector fieldv(z, §) = > 2;0/0z; does not generate a symplectic flow but does
satisfy a crucial property. Namel§,w = w whereL, is the Lie derivative in direction
v andw is the symplectic form. It will turn out (see Lemma 1.3) that a geometric
condition such as this (although more restrictive than necessary) will guarantee that
IS a suitable vector field.

We will require v to satisfy certain conditions relative to,, where v, is a
Hamiltonian vector field on a symplectic manifald/, w) with Hamiltonianh:

1) In a neighborhood of a pointy € M, the local flowgy(-) generated by exists
for all t € (—e, o) for somee > 0 and there exists a surfadecontainingz, transverse
to v, and a diffeomorphisnr : B — S, where B is a ball inR?**~! centered ab,
such that the map

B x (=€,00) 3 (w,t) — ¢{(0(w))

is a diffeomorphism onto its imagé;,. We also assume and v, are parallel (and
nonzero) along the positive orbit ef originating atxzg.

2) There are smooth function$ and v such that
[v, vp] = Bup +yv in Ky,

3) vh = 0in K.
Condition 1) allows us to assume (after a change of coordinates)kihat
B x (—€,00), gy = (0,0), andv = (0,---,0,1) in Ko. With the notationz;, =



(w1,-++,w9,-1) for x € R?", condition 2) implies

(vn) L (&) = k() (vn) (21, 0)

for some positive:(-) so that introducing the new time variabtewith dr/dt = k(z(t))
the first2n — 1 of Hamilton’s equations become

)

dr
As long asdh(xy) # 0, using condition 3) we can eliminate one more variable using
energy conservatior(z) = h(x,0) = E. For example ifoh/0x2,—1 # 0 we obtain
Top—1 = g(u, E) with u = (x1,-- -, x9,—2). Here we assumg., E) is in a neighborhood
of (0, Ey), Ey = h(xp) = h(0). We obtain

(1.16) % = f(u,E),

wheref(u, E) = ((vg); (u, g(u, E)), -+, (vp)9,_o(u, g(u, E))). The orbit ofv, alongv
corresponds ta = 0, E = Ej (in which casef (0, Ey) = 0). If det (0f;/0u;(0, Ey)) #
0 there will be a smooth family of fixed points of (1.16)= «(F), in a neighborhood
of Ey (with u(Ep) = 0). This situation is entirely analogous to the cage,{) =
> x;0/0x; discussed above and we can define stability of orbitd/irin terms of the
stability of the fixed pointsu(E).

If a proof of absence of channels is contemplated along the lines carried out in this
paper, it is necessary that low order “resonances” do not occur at more than a discrete set
of energies. In particular, the equations (1.16) should not have a Hamiltonian structure.

The only place where the Hamiltonian nature of the equations appeared above was
where we used conservation of energy. To bring in the symplectic dome introduce
what turns out to be a more restrictive but more geometric condition:

Lemma 1.3 Fix an open set/ C M.

a) SupposeC,w = aw in U for some smooth function. Suppose in addition that
vh = 0in U. Then[v,v;] = —awvy, in U.

b) Suppose is nonzero inU and for any smooth functioh on U satisfyinguh = 0
in a neighborhood of a point df, v satisfiedv, v;] = —awy, in this neighborhood. Then
Low = aw in U.

This paper is organized as follows: In Section 2 we elaborate on all technical
conditions needed for Theorem 1.1 and give a more detailed outline of its proof, cf.
the steps I)-lll) indicated above. In Section 3 we have collected a few technical
preliminaries. In Section 4 we prove the’—localization, cf. step 1), while the
localization ofI" is given in Section 5. Finally, Section 6 is devoted to the Mourre
theory for this observable. We complete the proof of Theorem 1.1 in Section 7 and
give a few missing details of the proof of Theorem 1.2 in Section 8.
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2 Technical conditions and outline of proof

We fix (wo, &) € S™~! x R™ and a small open neighborhodglof Ey = h(rwy, &)
as in Section 1. We shall elaborate on conditions on the real-valued symbd),
see (H1)-(H8) below. For convenience we remove a possible singularity=at0
caused by the imposed (local) homogeneity assumption of Section 1. This may be done
as follows. LetAN, be as small open neighborhood @f,&;). We shall now and
henceforth assume that for somg > 0

h(Z‘,f) = h(?"().’i’,é) in CO = {(xaf)K:iaE) € JV’O) |3;’| > 7‘0},
h e C®(R" x R").

(H1)

Notice that this modification intuitively is irrelevant for the issue of Theorem 1.1 (which
concerns states propagating linearly in time in configuration space).

We assume that for somel > 0

(H2) b e S((&) @) 90)s g0 = () Pda? +d6? () = (1+ o) """

and that
(H3) H = h"(z,p) is essentially self-adjoint o'5°(R").

(See Section 3 for notation.)

Remark There is some freedom in choosing a global condition like (H2), for
example it suffices to have (H2) withy replaced by(a:>_251dx2 + (a:)mdf? with
0 <6 < b1 < 1.

We assume
(H4) (1.2)—(1.4) forE € I.

We definew,(F) = w(E) and pick smooth functions;(E), - -, w,—1(E) € "1
such thatwi(E),---,w,(E) are mutually orthogonal. We define, cf. (1.5); =
z-wji(E) for j < n, uj = xj/z, andn; = (£ —E(F)) - w;(E) for j < n—1 and
B = (6 - §<E)) ) wn(E)' Letw = (%77) = (ula Ty Un—1,M1, 0 0 ann—l)'

As for the matrix B(E) of (1.7) in these coordinates we need the condition:

(H5) The real part of all eigenvalues &(E) is nonzero forE € I,

Let us order the eigenvalues &§(E),---,3:.(E), B{(E), -, 3% (E) where
Re(ﬁ;(E)) < 0 (8(E) are the stable ones) and @(E)) > 0 (8;(E) are the un-
stable ones). LeB(E) refer to theC?"~2-vector of eigenvalue&s;(E), -, 3% (E))
counted with multiplicity.



We are interested in the case the hyperbolic case
(H6) n* = n“(E) > 1.

Let V¥(F) and V¥(E) be the sum of the generalized eigenspace®QF) cor-
reponding to stable and unstable eigenvalues, respectively. Then we have the decom-
position

C’ 2 =VSE)a VYE).

Using basis vectors respecting this structure we can find a smdégth, (C)—valued

function T'(E) such that

(2.1) T(E)"'B(E)T(E) = diag B*(E), BYE)).

We may assume the following @& = E,: Corresponding to the decomposition
into generalized eigenspaces

Cr"2=VaoV'=Vo - -eVieWa oV,
T(Eo) ' B(Eo)T(Ey) = diag Bf, -, Bi),
where for all entriest = BJ# — ﬁf(EO)Idim(v#) is strictly lower triangular. Given
any e > 0 we may assume (by rescaling the basis vectors) that

(22) |INF|| < e
We introduce a vector of new variables= (v*,7") = (71, -, Y2n—2)
(23) 7= y(w(E),E) = T(E)"'w(E),
wherey* and y* are the vectors of coordinates of the partwfE) in V¥(E) and

V*(E), respectively.
We shall make the assumption (usinig

LLNT

to denote transposed):

(H7) There exists a smooth eigenvectd#) of B(E)" in E € I,
such that Re\(E)) < —1 for the corresponding eigenvalug¢E).
See Remark 2.2 below for an alternative condition.
The ordering of the eigenvalues may be chosen such that

24) Bi(E) = AE).

It may also be assumed thatE) is the first row of '(E) . Clearly by (2.4)3;(E)
is smoothE € I.

We call Ey a resonance of orden € {2,3,---} for an eigenvalueﬁ’f(Eo) if for
somea = (ay,---ag,_3) € (NU{O})*" 72 with |a| = m,

(25) B (Eo) = B(Ey) - .



We assume that
(H8)  Ey is not a resonance of ordex my for 3] (Ep).

Here my may be extracted from the bulk of the paper; the condition

1+ Re(B(Eo)) 1+Rdﬁzs<Eo)>>
—Re(B(Ev)) = —Re(B5.(Eo))

mo > max (4,

suffices.

We shall build a (classical) observable from the first coordinatey; =
11(w(E), E) = v(E) - w(E) of v° = v*(w(F), E)

(2.6) T = m(w(E),E)+O((w(E),E)P).

In the study of an analogous quantum observable we consider in detail the case
where for somel < [ < n -1

(2.7)  Iymi(w, Eo)jypmg # 0
We notice that if (2.7) is not true then for some< [ < n —1
(2.8) aul’yl(w,Eo)leO 7§ 0.

The construction of the quantuiin in the case of (2.7) and an elaboration of its
decay properties will be given in Section 5. A Mourre esimate is given in Section 6,
and we complete the proof of Theorem 1.1 in this case in Section 7. We refer the
reader to Remarks 5.3, 6.3 and 7.2 for the modifications needed for showing Theorem
1.1 in the case of (2.8).

Outline of proof of Theorem 1.1

Consider a classical orbit withz(t),£(t)) — (w(E),&(E)) for t — oo (and E
nearbyFy). How do we prove the bounfd| + |n| < Ct~° for some positives?

We consider the observables
29) =P "= =¢"—¢ " ="+ =]~
Using (1.6) and (2.1) we compute

(2.10) £v = ZL{(B*(E)y*, BY(E)") + O(¢*) }.

Tn

For e > 0 small enough in (2.2) the equation (2.10) leads to

(2.11) Fa™ = 2R, {57 ) g = 2REY, 77 ) gur = 677N



for some positive)~ (which may be chosen independentiofclose enough td,) and
for all ¢ > t= (with ¢t~ large enough).

In particularg™ is increasing and hence
(212) ¢~ < 0; t > t~.

Using (2.10), (2.12) and the Cauchy-Schwarz inequality we compute
(2.13) j—tqs = 2Re<’ys,j—t’ys>cns < 285t~ 1g8

for some positived® and allt > ¢°.
Integrating (2.13) yields

(2.14) ¢° < Ct72 ¢ > 5.
Finally from (2.12) and (2.14) we conclude thgt < 2Ct~2%" and therefore that
(2.15) |y| < Ct7%; 6 < 6°

Remarks 2.11) We may choose the positivein (2.15) as close to the (optimal)
exponentuin (Re(— G5 (Ey)), - - -, R&(—35:(Ep))) as we wish (provided is taken close
enough toEp). 2) Although not needed, one may easily prove using similar differential
inequalities that indeegl" = O((qs)2) in complete agreement with the stable manifold
theorem.

ClassicalT’
We shall for eachn € {1,---,mg} construct ay(™) of the form (2.6) such that

(2.16) LA(m) — %fﬁf{v(m +O(|v|m+1)}; g7 = Bi(E).
Specifically we shall require

217) YV =4, andy™ =y + ¥ o™ m > 2,
2<]|a|<m

with 4 = 4t - 452", (It will follow from the construction below that the coeffi-
cientsc, = co(E) will be smooth; this will be important for “quantizing” the symbol.)

We proceed inductively. Clearly by (2.10) we have (2.16)fo= 1. Now suppose

we have constructed a functiod”~ Y = Y ¢,4® obeying
|a| <m—1

d d,h
& (m=1) _ Zplgs | (m—1) L im+1
=7 ol (7 + ) day +O(|7| ))

|la|=m
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then we add tey(™~1) a function of the form 3° ¢,7* and we need to solve

|a|=m

> (ca—da)y* +0(™).

al=m

(2.18) & - cwa:%ﬁf|

|a|=m

For that we compute the derivative using again (2.10). Let us denotg;bthe
ij'th entry of the matrix diagB*(E)"", B“(E)""). Then (2.18) reduces to solvin
J y ) g

(2.19) > Y a@iBicar TS = 55 Y (ca — da)??,

|a|=m i,j |a|=m

which in turn reduces to solving the system of algebraic equations

(2.20) > (i +1—0ij)Bijcatei—e; = Bi(ca —da); |a| = m.

i!j
Heree; ande; denote canonical basis vectorsd™~2 andé;; is the Kronecker symbol.

_ Clearly (2.20) amounts to showing thaf is not an eigenvalue of the linear map
B on C" with

1=t € Ot ) - 222

(2n — 3)Im!

cn Sc= (ca)a — (BC) = (Z (Ozi +1-— 6ij)3ijca+€i€j) S C".

ij N

Since;; = f;;(£) depends continuously off € I, we only need to show that

(2.21) B(Ey) — B;(Ey)I is invertible.

By the condition (H8) indeed (2.21) holds sinee< mg and the spectrum
o(B(Ey)) = {B(Eo) - al |o| = m}.

The latter is obvious if diaéBS(Eo)”, B“(E@”) is diagonal. In general the spectrum
may be computed by a perturbation argument, see [N, p. 37].
Finally we define

I'= y(mo).

If we havemq so large that(mg + 1) > —3{(E) whereé is given as in (2.15) we
infer by integrating (2.16) (sinctéim t% = 1) that

(222) T =7 +O(}P) = o(tﬁf(EHe’); ¢ > 0.

11



Remark 2.2We could have used a different observable constructed by a similar iteration
using asy) a component ofy corresponding to an eigenvector with eigenval(&)

having R¢A(E)) > 0. We would again need smoothness of the eigenvector and a
non-resonance condition for( Ey), cf. (H7) and (H8). The analogous observabl&’
decreases as?(™+1) with no upper bound om (assuminggy is not a resonance of any
order). But as we will see below, the correspondence between classical and quantum
behavior is not so precise as to allow a similar statement in Quantum Mechanics. Thus
it does not much matter which of these observables is used.

Quantum I'

To get a statement like (2.22) in Quantum Mechanics we need to quantize the
classical symboh(™ = (™) (z ¢). We choose a quantization that takes into account
localizations of the stateg = f(H )y obeying (1.8) and (1.9). We fix. = myg
depending on an analogue of the classical bound (2.15), cf. the classical case discussed
above. Without going into details, in the case of (2.7) this operator takes the form

I =T(t) = (p—&(Ey)) - wi(Ey) + Bi(t); Bi(t) bounded.

Strictly speaking to get this expression we first make the modification of the classical
I' of dividing by the constant; = 9,,v1(w, E0)|w=0 and then taking the real part; we
shall not discuss the case of (2.8) here. We show the following analogue of (2.22):

Giveno > 0 we have for somé of this form the strong localization
(2.23) |[1pe1,00)(ITDe™ || — 0 for t — oc.

We notice that (2.23) is a weaker bound than (2.22); to control various commutators
we need to haver positive. On the other hand it may appear somewhat surprising
that such localization result can be proved at all fox 2~!'. According to folklore
wisdom there is usually a strong connection for pseudodifferential operators between the
functional calculus and the pseudodifferential calculus, see for example [DG, Appendix
D]. In our case one might think that (2.23) is equivalent to a statement like

ey x al (z, p)e” ) for t — oo,

where the symbal; = h(tl_"Regcl_lfy(mo))) for suitableh € C5°(R) andy(™) given

by the classical symbol (possibly modified by cut-offs) discussed above. However for
o < 27! such symbolsz; do not fit into any standard (parameter-dependent) pseu-
dodifferential calculus which essentially would require the uniform bou?fﬁ‘at =

O (t*181=é1lel} with 6, < 6;. As a consequence we shall base our proof of (2.23) on
a functional calculus approach. Using a differengguality related to (2.16) we can
indeed bound certain quantum errors in a calculus evemw fer2~'. It is important
that we can taker small; see the next subsection. Somewhat related problems were
studied in [G1] and [CHS1].

Remark Although suppressed in the above discussionimigortantfrom a calculus
point of view that the localization similar to the classical bound (2.15) used to define
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I' and proving (2.23) is “somewhat weak” (to be specified later); in particular it must
be weaker than that used (and being of the same type) in the uncertainty principle
argument of the next subsection, see (2.24).

Implementing the uncertainty principle

The last step in our proof of Theorem 1.1 is the decisive one; here Quantum
Mechanics enters crucially. We show that a localization similar to the classical bound
(2.15) and (2.23) are incompatible unlegs= 0. First fix 6 > 0 in agreement with
(2.15). More precisely we need the localization

(2.24) e~y x hy (A)e_itHw — 0 fort — oo,
for somehy € C§°(R) and some operator of the form
A=Y+ By(t); Ba(t) = O(t"), w1 = 2 - w(Fo).
Then fix anyo € (0,6) and introduce witH" as in (2.23) the operatdd = t!~°T.
We prove a global Mourre estimate
(2.25) i[H,A] > 271
Abstract Mourre theory and (2.25) lead to the bound
(2.26) [|ha(A)hy (=7 H)|| < Ct=9/2,

valid for all 2y, hy € C§°(R).

Finally picking localization functions in agreement with (2.24) and (2.23) we
conclude from (2.26) that

e 2 by (fl)hl (t‘s_gﬁ) ey — 0 for t — o,

completing the proof.

3 Preliminaries

We use the notatio® (m, g) for the space of operators given by quantizing symbols
in the symbol classS(m, g) as defined by [H0, (18.4.6)]. For the weight functions
and metricsg relevant for this paper it does not matter here whether “quantize” refers
to Weyl or Kohn-Nirenberg quantization. Faerc S(m, g) we use the notation” (zx, p)
to denote the Weyl quantization of We refer the reader to [DG, Appendix D] and
[HO, Chapter 18] for a detailed account of the calculus of pseudodifferential operators.
We shall deal with various kinds of parameter-dependent symbols. In one case the
parameter is time > 1 and for that we introduce the following shorthand notation.

13



Definition 3.1 A family {a;|t > 1} of symbols inS(m, ¢) is said to be uniform in
S(m, g) if for all semi-norms|| - ||, on S(m, g) (cf. [HO, (18.4.6)])sup ||as||r < o0. In
t

this case we write; € Synif(m, g) andaf’(z,p) € Vynir(m, g).
Given this uniformity property various bounds from the calculus of pseudodiffer-
ential operators are uniform in the parameter (by continuity properties of the calculus).

We shall also deal with parameter-dependent metrics. Specifically we shall consider
for0 < 69 < 6y <1landt >1

B1) g = gt =t Wrda? 4 1224g2,

Similarly to Definition 3.1 we shall write (for gived € R), a; € Sunis(t, 9t)
and a}’(z,p) € \Ilum-f(tl,gt) meaning that for all (time-dependent) semi-norms
sup ||a¢|¢x < oo. Also in this case various bounds from the calculus of pseudo-

dffferential operators will be uniform in the parameter. Some extensions of this idea
will be used without further comments.

One may verify that (1.10) follows from (1.8) by applying a partition of unity to
the f of any statey = f(H)y of (1.8) to decompose it a6 = > f; and by noticing
that (1.8) remains valid for the sharper localized states ; = f;(H)v. (Notice that
if supp(f;) is located nea®; this leads tot—'z ~ k(E;)w(E;) andp ~ £(E;) along
¥i(t).) The latter follows readily upon commutation and applying Lemma 3.2 stated
below. The same argument shows that indeé&dis H—reducing. (This property may
also be verified without appealing to Lemma 3.2.)

Pick real-valuedy, 1, §; € C5°(R™) such thay; = 1 in a (small) neighborhood of
k(Eq)wg, §1 = 1 in neighborhood of sudg;) andg, = 1 in neighborhood of sugg ).
Similarly, pick real-valuedys, 2, §5 € C3°(R™) such thatgs = 1 in neighborhood of
€0, §2 = 1 in neighborhood of sufg,) andj, = 1 in neighborhood of sugg.). We
suppose sup@;) x supp(g;) C Uy (with Uy given as in (1.9)), and in fact that the
supports are so small that for some> 1 the symbol

(3.2)  hy(z, ) == h(z, &) G (t7 2)G2(&) = h(ro, &) g1 (t712) G2(); ¢ > to,

cf. (H1). By the assumption (H2) we then have

(3.3) i € Sunis(1,60) N Sunir (1,67°).

Lemma 3.2 For all f € C§°(R) the family

(34) f(h};)(x,p)) € \Ilum'f(la gO) N \Ijum'f<1a 9%’0)

and

(3:5) lg1(t7 ) ga(p){f (hi*(,p)) — FUHDHI = O(t7).
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Proof As for (3.4) we may proceed as in the proofs of [DG, Propositions D.4.7 and
D.11.2]. (One verifies the Beals criterion using the representation (3.10) given below
and the calculus of pseudodifferential operators.)

For (3.5) we letB = h*(x,p) andG = h*(x, p) — h¥(z, p). By (3.10)
@6) (o)~ f(H) = 1] (07)(2)(B = 2)"'G(H — 2)dudo.
For any largem € N we may decompose
(37) (B-2)'G= éjl ad(G)(B —2) "+ (B —2) 'adB(G)(B—2)"",

yielding (by the calculus)

m

g B-2)'¢=SN "R.B 27"
8 a1 (') g2(p)( ) ; K )

+01(t7'2) g2(p)(B — 2) "l adB(G)(B — 2)"; Ry, = O(t~).
By (H2), ad(G) € \I/unif((a:>l_m, go> and thereforaud}(G) = O (#=™), whence
3.9 g1 (t7'2)g2()(B — 2)7'G|| < Ot |Imz|~(m+D)

uniformly in z € sup;(f).
Clearly (3.5) follows from (3.6) and (3.9). O

Remark 3.3 The statements of Lemma 3.2 extend to any smooth fungtiaith
k
45 f(A) = O(A™~F) (for fixed m € R); in particular Lemma 3.2 holds fof()) = A.

Definition 3.4 Let F; denote the largest set df = F; € C*°(R), such that
0SF<L,F>0FeCP((3.3)F3)=0F&)=1andV1-F, VF, VF ¢
C*, which is stable under the maps— F™ andF — 1— (1 — F)™; m € N. Let F_
denote the set of functionfs. = 1 — F; whereF, € F,.

We shall in Section 5 use a modification of the abstract calculus [D, Lemma A.3
(b)], see also [DG, Appendix C], [G1, Appendix] or [Mg].

Lemma 3.5 Suppose/ and B are self-adjoint operators on a complex Hilbert
spaceH , and that{B(t)|t > t¢} is a family of self-adjoint operators oK with the
common domairD(B(t)) = D(B). Suppose thaff is bounded, that the commutator
formi[H, B(t)| defined orD(B) is a symmetric operator with same (operator) domain
D(B) and that theB(H)-valued functionB(¢)(B — i)~" is continuously differentiable.
Then
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(A) For any givenF € Cg°(R) we let F € C$°(C) denote an almost analytic
extension. In particular

(3.10) F(B(t) =1/ (a‘ﬁ) (2)(B(t) — )" 'dudv, z = u + iv.
C

The B('H)-valued functionF'(B(t)) is continuously differentiable, and introducing
the Heisenberg derivativ® = & + i[H, -], the form £ F(B(t)) + i[H, F(B(t))] is
given by the bounded operator

(3.11) DF(B(t)) = —%C (éﬁ) (2)(B(t) — 2) " {DB)(B(t) — 2)~ " dudv.

In particular if DB(t) is bounded then for any> 0 (with (z) = (1 + |z|2)%)

(312) IDF(BW®)|| < Cesup ()7 Im:| 2 (9F ) (2)]) IDB(1)].
zeC
(B) Suppose in addition that we can splidB(t) = D(t) + D.(t), where
D(t) and D,(t) are symmetric operators oR(5) and that the form*adl; ,\ (D(t)) =
i[ik_lad%_(tl)(D(t)), B(t)} for k = 1 defined orD(B) is a symmetric operator oR(B);
“dOB(t (D(t)) = D(t). (No assumption is made for the form whien= 2.) Then the
contribution fromD(¢) to (3.11) can be written as

(3.13) = (F(BO)D() + D) (B(1) + Ba(0);

I
S~
&
—~
~
S
=
S~
S
=
+
=
[S]
=

) .
(3.14) RQ(t):2—1W—2//<5f (22)(F ) (1) (B(t) = 22) ™ (B(t) = 21) "
C C

adgy (D) (B(t) = 21) 7 (B(t) — 22) ™" duydvyduadvy.

(C) Suppose in addition to previous assumptions that fortatb ¢y the form

i[D(t), B(t)] extends fromD(B) to a bounded self-adjoint operator. Similarly suppose
the operatorD,.(t) extends to a bounded self-adjoint operator. Then forRlE F
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the B(H)-valued functionF'(B(t))(B — i)~ " is continuously differentiable, and there is
an almost analytic extension with

(315) |(9F)(2)| < (=)™ Himaf; k € N,

yielding the representation

(3.16) DF(B(t)) = F'z(B(t))D(t)F'z(B(t)) + Ri(t) + Ra(t) + Rs(t),

where R;(¢) is given by (3.13),Ry(t) by (3.14) withf = F' and R3(¢) is the

contribution fromD,(¢) to (3.11).

Remarks 1) The left hand side of (3.16) is initially defined as a form D(B)
while the terms on the right hand side are bounded operators. We shall use the stated
representation formulas for bounding these operators in an application in the proof of
Proposition 5.1; this will be in the spirit of (3.12) although somewhat more sophisticated.
2) There are versions of Lemma 3.4 without the assumptiobe bounded; they are
not needed in this paper.

4 t—9—]ocalization

Let ¢» = f(H)v be any state obeying (1.8) and (1.9) withsupported in a very
small neighborhood ofj (in agreement with the smallness of the neighborhfpdf
Theorem 1.1). Ley, g1, g2, G2 € C5°(R™) be given as in (3.2) and (3.5). In particular
we haveg (k(E)w(E))f(E) = f(E) and g2(§(E))f(E) = f(E).

Consider fort,x > 1 symbols

(41) a= at’,i(x,f) = Fy ("fq_<xa§))§1 (t_lx)§2(§)a

where F, is given as in Definition 3.4 ang™ is built from theq™ of (2.9) by writing
¢~ = ¢ (w(FE), E) and substituting folZ the symbolh(ryz, ) cf. (3.2),

(4.2) q = q (w(h(ro%,5)), h(rot,§)).

We shall consider € [1,¢"] with » > 0. To have a good calculus for the symbol
a we needv < 1/2. Notice that

(43) at .k € Sunif (L gtl_l/’l/) :

Denoting by(-), the expectation in the statg(t) = e~ we have the following
localization.

Lemma 4.1 For all v € (0,2/5)

(4.4) <a@1jty(x,p)>t — 0fort — oc.
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Proof We shall use a scheme of proof from [D]. Let
(45) Ay = Li(t) af (z,p)L1(t); L1(t) = g1(t"2)g2(p).

From (1.10) and the calculus of pseudodifferential operators we immediately con-
clude that for fixedx

(As k), — 0 for s — oo,

yielding

(4.6) —(Aix), =

(DA&,@)Sds,

whereD refers to the Heisenberg derivati¥® = % +i[H,-]. We shall show that the
expectation ofDA; ,, is essentially positive (in agreement with (2.11)). Up to terms
O(s~°) we may replaced by Dy = 4 + i[h¥(z,p), ], cf. Remark 3.3. First we
notice that

4.7)  g2(p)gi(s™'z)(Dsa?(z,p)) g1 (57 2) g2(p) > —Cs™73,

whereC' > 0 is independent ok € [1,t"].

This bound follows from the calculus. The classical Poisson bracket contributes
by a positive symbol when differentiating«,£). The Fefferman-Phong inequality
(see [HO, Theorem 18.6.8 and Lemma 18.6.10]) for this term yields the lower bound

O<8V—l(32u—1)2) _ O<85u—3)_
Hence (uniformly ink)
DAg, > {T +T*} - Cs™ 73,

T = gs(p)g1 (s 'w)al (x,p)Ds (91 (s ) g2(p)).
For the contribution from the first term on the right hand side we invoke (1.9) after
symmetrizing. We conclude that

(4.8) [ (DA,.),ds > o(t?) — Ct*~2 uniformly in & € [1,¢"].
t

Pick k = t¥.
By combining (4.6) and (4.8) we infer that
<At,t”>t — 0 fort — o0,

and therefore (4.4). O
Let ¢, ¢° andq™ be given as in (2.9) upon substitutidgby the symbol(r, &),
cf. the use ofg~ above. We introduce the symbols

atl = ty_lq_(xa f)F_/{_ (tyq_<x7 6)).&1 (t_1$)§2(§),

ai = " g (@, F, (g (2,€)) g1 (t7 ) G2(8).
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We get the following integral estimate from the above proof employing the uniform
boundedness of the family of “propagation observablés;., cf. a standard argument
of scattering theory see for example [D, Lemma A.1 (b)].

Lemma 4.2 In the statey(t) = Li(t)¥(t)

/ a)"(@.p)) |+ 1{(a}) " (@.p)) |)dt < .

Proof We substitutex = ¢” in the construction (4.5). Then up to integrable terms
the left hand side of (4.7) (with = ¢t) is given byc}’(z,p) with

e, €) = 92621 (7 2)* (vt g (0, €) + 1t {h(, €), ¢ (2, ) }) Fy (g (,€)),

where {-, -} signifies Poisson bracket.
We have the bounds for songe > 0 and all large enough

C™ei(2,€) < g2(€)2 01 (t72) (al (2, €) + a2 (x,€)) < Cer(x, €),

from which we readily get the lemma by the Fefferman-Phong inequality. U

Remark 4.3 We shall not use Lemma 4.2. However the proof will be important.
In particular we shall need the non-negativity of the above sympol

Let fort,x > 1 and0 < 26 < min (»,26%) with » < 2/5 andé6® as in (2.13) (this
number may be taken independentmfclose toEy, cf. Remarks 2.1 1)),

bian(@,€) = Fi (K720 (2, ) ) F- (#747 (2,€)31 (¢72) 32(€) € Sumir (191 ™")

Lemma 4.4 For all ¢ > 0
(4.9) <b§‘jte(x,p)>t — 0fort — oo.

Proof We shall use another scheme of proof from [D]. Let
(4.10) Bi, = Ly(t)*be(e.p) i (2),

cf. (4.5), and write for any (largel

t
(4.11) (Bix), = (Bigu)y, + [ (DB k) ds.
to
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To show that the left hand side of (4.11) vanishes as oo (with x = ¢€) we look
at the integrand on the right hand side: As in the proof of Lemma 4.1 we may replace
D by D, up to a termr,, such that

t
/Ts,nds — 0 uniformly in k > 1 andt > ty asty — oo.

to

Using (1.9) and Remark 4.3 we may estimate the integrand up to terms of this type as

< (L) () ) () |

S

where
bh (e, €) = 1% (265714 (,€) + {1, ), 4" (2, €)}) coun(, €);
Conl@,€) = Fy (1716%0%(@,€) ) F- ("0 (2. ) (s7'2) 32(O)
We compute, cf. (2.13), that for all largeand a large constardt > 0
. 0826—1/—1 . CSQé_qu(Z‘, f)cs,n(l', g)
< by, €) < O — O (2, €) g (w, €),

from which we conclude that

¢
(4.12) limsup sup [ (DBsy),ds < 0.
to—oo k2>1,t>t0t,

As for the first term on the right hand side of (4.11), obviously for fixgd
(4.13) (Big)y, — 0forx — oo.
Combining (4.12) and (4.13) we conclude (by first fixifig that

limsup (Bi ), <0,

t—o00

whence we infer (4.9). O
Next we “absorb” the: of Lemma 4.4 into thé and introduce the symbols

bil,€) = F- (2°(@,8)) F- (™ (v, €)1 (t™'2) 32(€),
(4.14)

b, €) = =t FL (120" (@, €) ) P (07 (2,€)) 31 (t7') 32(€),
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where0 < 26 < min (v, 26%) with v < 2/5 andé® as in (2.13). Clearly

bt($,§) S Sunf(langl_y”yl) g Sunif(lagtl_yﬁy); V/ =v—0.

We have the following integral estimate.
Lemma 4.5 In the statey;(¢t) = Lqi(t)y(t)

(4.15) :fo|<(bt1)w(a:,p)>t|dt < oo.

Proof We use the proofs of Lemmas 4.2 and 4.4. Notice that to leading order “the
derivative” of the symbol

Fy (#2002, €) ) P (4 (2,€)) 31 (1) 2 (€)
is indeed non-positive, and that, = —F” . O

By combining Lemmas 4.1 and 4.4 we conclude the following localization result.

Proposition 4.6For any state) = f(H )i obeying (1.8) and (1.9) witli € C5°(1)
where [ is a sufficiently small neighborhood @i,

(4.16) ||w(t) — b2 (x, p)o()|| — 0fort — oo,

Using the symbob;(x, &) we can bound powers of, cf. (2.16). If we define
v = (z,§) as in (2.3) upon substituting by the symbolsi(ryz, ) we may consider
the symbol

(4.17) +2(z,€) = vz, )by(z,€); o € (NU{0})*" 2

We have the bounds

(4.18) ||(5)" (2, p)|| = O(¢~01e1).

5T and its localization

With the assumption (2.7) we define operatérandI" as follows: The right hand
side of (2.17) is of the form

A =+ Y e
2<]a|<mo

herec, and~«* depend smoothly off. As done in (4.17) we substitute

(5.1) FE = h(roz,§)

21



and multiply suitably by the factors (t~z) and g, (¢) as introduced in Section 3 (with
small supports). Precisely we pi¢k< n — 1 such that (2.7) holds and write

M = a(§ — §(Eo)) - wi(Eo) + r(x,£); ¢ = Opy1(w, Eo)jy=g-
Then we define the operat¢t = G; = ~;°(z, p) by the symbol
Ve, €) = 7 (2, €) + 77 (, 6);

v, ) = (€ — E(Ev)) - wi(Eo),
(5.2)

W (2,6) = () (rE(x, O+ > cwa(x,o) g1 (t7 1) g5(6).

2<|a|<mo

For the second term the substitution (5.1) is used. ILet I'; = ReG).
Clearly the quantization of this second teda(t) = (v7)" (z,p) is bounded.
We shall assume that

(5.3) 6(mog+1) > 1,

whereé < 27 min (v, 26;) is given as in Proposition 4.6.

We shall use the operatat(¢) given in (4.5). Let us introduce the notation
Lo(t) = b}’ (x, p) for the quantization of the first symbol of (4.14). Let us also introduce
the “bigger” localization operator

Ly(t) = ()" (w0
bila,§) = F- (272" (@,€) ) F- (27 "¢ (2, ) (') 32(6).

Notice that also
51 €) € Sunir (1,017 ); o/ = v —
and that indeed for example
(5.4) (I - Ls(t)L2(t)Li(t) = O(t™).
We obtain from (2.16), (5.3) and bounds like (4.18) that
(5.5) Lsi[H,G|Ls = —L3t~'GL3 + O(t72),

wheret is omitted in the notation anti™! is the Weyl quantization of the symbol

Ouh(x, &) o1 \%
ot )1 (712)52(0)

We may assume that the supportsggfandj; are so small that

(5.6) Rei™!) > t~'Re(f, (12)5n(p) + O(t2).
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We have the following localization result.

Proposition 5.1 Let ¢, v and é be given as in Proposition 4.6 and suppose (5.3).
Then for allo € (V,1—V'), v = v — 6§, and withP = P, = GG* + G*G where
G = Gy is given as above

(5.7) ||F+ (2727 P)y(t)|| — 0fort — oo.

Proof Using the calculus we compute (with some patience)
Lsi[H, P]Ls = 2Re(L3i|H, G| LsG* + G* L3i[H, G| L3)

+ Re(Lsi[H, G]|G*, L3] — [G*, Ls)i[H, G]L3)

+ Re(Lsi[H, G*[G, L] — [G, Ls)i[H, G*|Ls)

= 9Re(L3i|H, G|L3G* + G*LsilH, G L3) + ¥ (x, p) + 0(t2”’—3),
where

c(x, &) = = 2Re({5t, {i)t,%}}{h, ’Nyt}) € Suns (t?”’l 3’gt1 v v )
Applying (5.5) to the first two terms on the right hand side and symmetrizing yields

Lsi[H, P|L3
(5.8)

= —Ly{PRe(f™!) + h.c.} Ly + Re(GO (%) + G*O(t72)) + O£ 7%).
Notice that the contribution from’(x, p) disappears and that we use

(5.9) PRe(t™!) + h.c. = 2GRe(I71)G* + 2G*Re(t71)G + O(t73).

We shall use the scheme of the proof of Lemma 4.4. Consider avitht¢ for a
small ¢ > 0 the observable

A(t, k) = Li(t)" Fi(B() La () Fi (B(8)) L (8);

B(t) = B(t;k) = GG* + G*G, G = G(t; k) = s H79G,.
As before we first compute the Heisenberg derivative treatiag a parameter and
split (with L; = L;(t))
DA(t, k) = T1(t, k) + Ta(t, k) + T3(t, k);

Ty = LiFy(B(t)) L3(DF.(B(t)))L1 + h.c.,
Ty = L{F(B(t))(DL3) Ly Fy (B(t)) Ly,
Ty = LYF(B(t))L3F(B(t))DL; + h.c.
The analogue of (4.11) is

(5.10) (A(t, k), = (A(to, )¢, + jt" (T1(s, &) + Ta(s, k) + T3(s, K)) yds.

to
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We shall prove that

¢
(5.11) limsupsup [ (Ti(s,k)),ds < 0; i = 1,2,3.

to—oo t>tg to

To do this we may replacP by the modified Heisenberg derivative

d _ _
D3 — %—FZ[H,}, H:LgHL3, L3 :L3(t)a

cf. (5.4) and arguments below for (5.17).
With this modification we first look at the most interesting bound (5.11) withl.
We use (3.16) to write

1

Dy Fy(B(1)) = FiZ(B()D()F2 (B(1)) + Ri(t) + R(t) + Rs(t);

_2—20
ot

(5.12)
D(t)

B(t) — L3y{B(t)Re(tf ') + h.c.} L.

Notice that hereRs(t) is given by the integral representation (3.11) of Lemma 3.5 in
terms of the bounded operatd.(t) = D3 B(t) — D(t) which by (5.8) is of the form

d

D, (t) = k22720 P 4+ {k 22729 L3 Hi[L3, P] + h.c.

51z 20 P oHills, Pl + o}
+ 172272 [Re(GO(17)) + RGO (t72)) + O (2 7#) |.

First we examine the contribution from the expectation of the term

o~ La(s)*{Ry(s) + Ra(s)} L1 (s) + h.c.

of the integrand of (5.11) (after substituting (5.12)). We may write, omitting here and
henceforth the argument,

i[D, B] = —i[L3{ BRe(f *) + h.c.} L3, B]
(5.14) = —(L3{BRe(t™") + h.c.}i[L3, B] + h.c.)
— L3{BRe(i[t ™!, B]) + h.c.} Ls.

Substituted into the representation formulas (3.13) and (3.14) of Lemma 3.5 the first
term to the right can be shown to contribute by terms of the ferfO (s=>°) (using the

factors of L; and L, and commutation), however the boumdlo(s”'_l_g) suffices.

Here and hencefortty (s~¢) refers to a term bounded hys~¢ uniformly in ¢ (recall
that B contains a factor=2 = t~2¢). To demonstrate this weaker bound we compute

i|L3, B] = s 77i[L3, G|G* + v 's' 77 G*i[L3, G] + h.c.,

i[L3, G| = O(SV’—l).
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Since the middle factor Ré~!) = O(s™!) we get the boun@t_lO(sl—a)O<5V'—2) -

k~10(s”'~1=7). We used that?, G* and B may be considered as bounded in
combination with the resolvents @&f; explicitly we exploited the uniform bounds (after
commutation)

_ IR 4 (2)'/?
.15 1GB =27 L IG"(B =) < Oy

(B =27l < Climz| ™! [|B(B —2) 7| < C.
Similarly, since
(5.16) Rdi[t™!,B]) = x7'0(s7'77)G* + k1O(s7177)G + hec.

the second term to the right in (5.14) contributes by a term of the forh® (s~!7).
Using the representation fdt; = R3(s) and commutation we claim the bound

(517) o L%R?,Ll + h.c. = /{3_10(3_1) + 5_10(8_1_0) + H_2O(S2VI_1_20),

The contributions from the first two terms of (5.13) are*O(s~) and therefore in
particulars~*O(s™1). Let us elaborate on this weaker bound for the first term: Write

5_232_2"iP = lgl=e éiG* + G*iG + h.c. ¢,
ds ds ds

and compute the time-derivative of the symbgl(s~'z) that defines the time-
dependence of the symbol ¢f

d

250 (3_193) = s 2. (Vf]l) (s_lx).

The contribution from this expression is treated by using the fagt¢s—'z) of L.

First we may insert thg'th power of F' = g; (s~'z) next to a factoL;. Then we place

one factor of F' next to any of the factors of the time-derivative @fby commuting
through the resolvent aB, and repeat successively this procedure for the “errors” given
in terms of intermediary commutators. At each step a factordfs” — = O(s”""

will be gained. (In fact for the first term of (5.13) treated here we have the stronger
estimateO(s~7).) This means that if we put’ = o — v/ thenh = s~ will be an
“effective Planck constant”. Notice that

z[(B - z)_l,F]
=k 1s!79(B - z)_l{GO (s”’_1> + C*O(s",_l) + h.c.}(B — )N

Repeated commutation through such an expression by factofs mbvides eventu-
ally the powerh! = s=77. Again the finite numbers of factors liké(B — z)_l
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and G*(B — 2)"! may be estimated by (5.15) before integrating with respect to the
z—variable. We choosg so large that'(j +1) > 1.

The contribution to (5.17) from the second term of (5.13) may be treated very
similarly.

Clearly the last term of (5.13) contributes by terms of the form of the last two
terms to the right in (5.17).

Next we move the factors di; next to those of.; (and other commutation) for the
contribution to (5.11) from the first term to the right in (5.12) yielding, as a conclusion,
that

(T1(s,k)), < <J},D(3)1Z> + 5_10(3_1) + O(s”1_2>;

(5.18)
o = (F})*(B(s))La(s)L1(s)¥(s).

Notice that commutation of D(s) with the factors of La(s),

1 1
Fi2(B(s)) and (FZ)?(B(s)) (when symmetrizing) involves the calculus of
Lemma 3.4 and the effective Planck constant s in a similar fashion as above.

For the first term on the right hand side of (5.18) we infer from (5.6) and (5.9) that

1
2

(5.19) <1Z,D(s)zz> < C1r72s71720 4 Oys72,

By combining (5.18) and (5.19) we finally conclude (5.11) for 1.

As for (5.11) fori = 2 we use Remark 4.3, the integral estimate of Lemma 4.5
and the factors of.;. Notice that the leading (classical) term from differentiating the
symbolb; may be written as a sum of three terms: The contribution from “differentiat-
ing” the factor F_ (t”q_(x,g)) is non-positive, cf. Remark 4.3. The contribution from
“differentiating” the first factorF_ (t*°¢*(z,£)) may after a symmetrization be treated
by Lemma 4.5. The commutation through the factorsef{ B(s)) (when symmetriz-
ing) involves the calculus of Lemma 3.4 in a similar fashion as above. Finally the
contribution from “differentiating” the last two factors are integrable due to the factors
of Li. We omit further details.

As for (5.11) fori = 3 we use the integral estimate (1.9) and commutation. We
omit the details.

We conclude (5.11), and therefore by Proposition 4.6 the bound (5.7) firstowith
replaced by +¢ and then (sinceis arbitrary) by any as specified in the propositionl

Corollary 5.2 Under the conditions of Proposition 5.1 and with= T'; = Re(G)
(5.20) ||Fy(t'7|T])v()|| — 0 fort — oo.

Proof Let o € (2//,1) be given. Fixo; € (2//,0). By Proposition 5.1 it suffices
to show that

|E (£ |D)) F= (272 P) || = O(t 7).
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Clearly by the spectral theorem this estimate follows from
||t1_01FF_ (t2—201p)|| < 1’
which in turn follows from substituting” = 27(G + G*) and then estimating
||t1—01FF_ (t2—201p)||
<27 GE ()| + 27 [T G R ()]
<2 Y|P ()GGE-()[[V? 4+ 27 [P P () GG F- ()|
< PO PE_()|[V2 < 1.

O

Remark 5.3 In the case of (2.8) we define as follows: We pickl < n — 1 such
that (2.8) holds and write

X
n=c=—: wi(Eo) + rt,5(z,€);

Cl = ul"yl(w, E0)|w:0, i’n = tk(EO)

The operatolG = G; = ;*(z, p) is given by the symbol (using the substitution (5.1))

(@, &) =7 (, &) + 77 (2, §);
(@, &) =tz wi(Ey),

(5.21) L
R, = M2 <rt,E<x,g>+ > cw%x,f))él(tlx)ég(@,

2<|a|<mo

cf. (5.2). One proves Proposition 5.1 with this in the same way as before. Let
I' = RgG). We have (5.20) for thig",

6 Mourre theory for T

LetI" be as in Section 5 (assuming first (2.7)). The of (5.2) is here considered
as arbitrary (but fixed); the condition (5.3) (needed before for dynamical statements)
is not imposed.

We introduce for0 < § < 1 the operators

H=t"T, A=a}(z,p);

61 ° - s
ay(x,6) = t°7 (v - wi(Bo) + {z - wi(h(@,€)) — - wi(Eo)}g1 (t7 ) g(€))-
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We shall need a specific construction of the functigpsindg, in the definition of
H and A above in terms of a small parameter- 0:

The factorg, (t~1z) is the product of the: functions

F_(€_3|t_133' w](EO)Da J=1-,n-1

(62) F (6_2|t_1x . wn<EO) — k(EO)D

The factorg,(¢) is the product of the: functions

F_(e72|(€ — &(Ep)) - wi(Eo)]),
(6.3) F_(e*|(€—&(B0)) wi(BEo)|); j=1,---,n—1, j #1,
F_(e7(€ — &(Ep)) - wn(Ey)|).-

€

€

1/2

We have the following result (witfA) = (14 A2) /7).

Lemma 6.1 There existgy > 0 such that for all positive < ¢j there exist constants
to,C > 1 such that for allt > t; andh € C§°(R)

6.4) [(A) " h(H)(A) || < Cllhl|z.

Proof We shall use the abstract theory of [M] with the conjugate operdtdo
obtain a globally uniform resolvent bound.

We claim that for all small enough
(6.5) i[H,A] > 271 ¢ >ty = to(e).

To see this we notice that clearly the first term in (5.2) and the first term of the
symbol a contribute by

|70 () (o p), e wi(By)| =1,
So it remains to estimate
(66) [li[t'=* (Re(12))" (. p). A|[| < 4715t > to,
and

6.7) ({17 (") (@, p) A= a (B[ < 47 1 > 1o,

Let us denote by, (z, &) the Weyl symbol of the operator in (6.6) or the one in
(6.7). We have in both cases thate S, (1, gtl’0 , SO it suffices to show (cf. [Bl
Theorem 18.6.3] and the proof of [DG, Proposition D.5.1]) that

6.8)  suwp a(z,6) < w,
z,£€R™ 1>t
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where 1y is a (universal) small positive constant associated for example to the
L?—boundedness result [Ho, Theorem 18.6.3].

For (6.8) we note the uniform bounds
h(xz,€) — Eg = O(e*),
00, h(x,€) = O(€),
O, h(x, &) = O(e?) for j < n —1, 9, h(z, &) = O(),
72, €) = O(e), 107(w, €) = O(e°), 9(x.€) = O(¢),

on the support of the functiofy (t‘lx)f]Q(.g) given by (6.2) and (6.3). Here we used
(12.3) and (1.4), and the notation

xj =z wj(Ey), § =& - wj(Ep).

By estimating the leading term of the symbol using these bounds we may show
(with some patience) that

(6.9) sup  Jag(z,§)] < Ce,
z,EER™ 1>t

from which (6.8) and (therefore) (6.5) follow.

As for the boundedness of second commutators required by the Mourre theory we
have the bound

(6.10) [lifi[#, 4], A]|| = O(#1) = O(1).

Using (6.5) and (6.10) we readily obtain by keeping track of constants in the method
of [M] that for some positive constartt’

(6.11) [(A)(H—2) AT < C; Imz#0, t > t.

Representing (H) = 7! hfg [ h()\)lm((H —A— z‘e)_l)d/\ and then using (6.11)
we conclude (6.4). O

Remark Although stated for concrete operatdisand A clearly there is an abstract
version of Lemma 6.1; the important properties are (6.5) and (6.10).

Corollary 6.2 Supposé:;,hs € C§°(R) and0 < o < § < 1. Then there exists
€o > 0 such that for all positive < ¢ there existg” > 0 such that for allt > 1

(6.12) |71 (A)hs (tg_"H)H < otlo=9)/2,
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Remark 6.3 In the case of (2.8) we introduce (withas in Remark 5.3)

H=1+"7T, 4A=a"(z,p);
(6.13) giy(x, &) = t* ((p — ) - wi(Eo) + bz, )7y (t2) 32(€)),
b(x,8) = (p— §(h($, 5))) ~wi(h(@, €)) — (p — £(Eb)) - wi(Eo).-
Here the factor, (t~!z) is the product of the: functions
F_(e7 21t o - wi(By))),
F_(e?ft e wi(BEy)|); j=1,,n—1,j#1,
F_ (7|t e - wa(Eo) — k(Ey)]),
while the factorg,(¢) is the product of
F(e72I(¢ = €(Eo)) - wj(Eo)l); 5 =1,-++,m = 1,
F_(e7*(€ — &(Ey)) - wn(E0)]).

One verifies (6.12) under the same conditions as in Corollary 6.2 along the same
line as before.

7 Proof of Theorem 1.1

The proof of Theorem 1.1 is based on Proposition 4.6, and Corollaries 5.2 and 6.2
(with the assumption (2.7)).

We recall the assumptions of Proposition 406< 26 < min (v, 26%) with v < 2/5
and 6° as in (2.13).

Lemma 7.1 With A = A, given in terms of any (smalp > 0 and of§ = § (with 6
as above) by either (6.1) (in the case of (2.7)) or (6.13) (in the case of (2.8))

(7.1)  lim ||Fy (| )] = o,

wherey) = f(H)v is given as in Proposition 4.6 (witi strongly supported depending
on e).

Proof We fix §; such thaté < 26; < min (v, 26%). Let by (x,&) be given by (4.14)
in terms of §; andwv.

By Proposition 4.6 it suffices to show that
[1F, (JA)b¢ (2. p)]| — 0 for t — oo,
and therefore in turn

146 (@, p)l| = O (7).
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For the latter bound one easily check that the symbaoli&f(z, p) belongs to

Suns (#7091~ ); v/ = v — 61,

Now, we first fix§ as above and conclude from Lemma 7.1 that
(7.2)  [lw(t) — F-(JA)w(t)]| — 0 fort — oo,

wherey = f(H)y is given as in Proposition 4.6. This holds fére C3°(1y); I =
Ip(e).
Next we fix anyo € (0, ) in agreement with Corollary 5.2 which means that

(7.3)  ||[FL(t"T))¥(t)]] — 0 for t — <.

Here the input ob in Proposition 5.1 say; (needed to fix then, in the definition of the
I" of Corollary 5.2) is different; we need to have> v/, v/ = vy — 61, for which §; < §
is needed. The construction of tHisdepends on the sameas above, cf. Section 6.

Combining (7.2) and (7.3) leads to
(7.4) |v(t) — F-(JA])F-([t'=°T)(t)]| — 0 for t — oc.

By combining Corollary 6.2 and (7.4) we conclude (by finally fixiag> 0
sufficiently small) that

(7.5)  [[v@®)]] = 0fort — oo,

and therefore that) = 0 proving Theorem 1.1.

Remark 7.2 With the assumption (2.8) we proceed similarly using Remarks 5.3
and 6.3, and Lemma 7.1.

8 Proof of Theorem 1.2

We shall here elaborate on the derivation of Theorem 1.2 from our general result
Theorem 1.1.

First we remove the singularity at = 0 by defining
h(z,€) =276 + V(2); V(z) = Fy(ja])V (@),

where (as before) is a Morse function ors™~!. (See Remarks 8.3 for extensions.)
In this case clearly the hypotheses (H1)—(H3) of Section 2 are satisfied, and (H4) holds
for any critical pointw; € C, and energyE’ > V(w;) upon puttingw(E) = w;, {(E) =

k(E)w and k(E) = +/2(E —V(w1)).
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For (1.6) we put

g(u, 1, B) = /2B — V() — /2B — 2 — 2V (wy + u),

yielding (1.7) with

@),
A(E) = k(B)™! (V 20( 2 2)

We may choose an orthonormal basiz{dm}L C R" for which V(2)(wl) is diagonal,
sayV®)(w;) = diagq, -+, ¢a_1). The eigenvalues oB(E) take the form

57(B) = —5 + 33/1 26/ (E ~ V() or
(8.1)
57 (B) = —5 = 3\/1- 205/ (B = V(w),

say with /¢ := i/—C if ¢ < 0.

Clearly the hypothesis (H.5) is the non-degeneracy conditign# 0 for all 7,
while hypothesis (H.6) amounts t9 < 0 for somej, i.e. w; be a local maximum or
a saddle point ofV.

As for (H.7) one easily checks that there exists a smooth basis of eigenvectors of
B(E)" for B — V(w;) € (0,00)\{2q1, ", 2¢n_1}.

Elementary analyticity arguments show that given amye {2,3,---} the set of
resonances of order for any of the eigenvalues dB(F) is discrete in(V (w;), o0).

In conclusion, the hypotheses (H1)—(H8) are satisfied for any local maximum or
saddle pointy; of a Morse functionV for Ey € (V(w;), o0)\D whereD is discrete
in (V(wy), o0).

Due to the possible existence of boundstates we change the definitigrasfto be

P =s- tlim 6itHXl(£)e_itHEac(H)’
—00

where E,.(H) is the orthogonal projection onto the absolutely continuous subspace of
H, see [H] and [ACH, Theorem C.1]. This gives (1.12) with the left hand side replaced
by E..(H).

Now, to get (1.14) it suffices by Theorem 1.1 to verify (1.13) for aby €
(V(w;), o0). Invoking the discreteness of the set of eigenvalue§ oih the complement
of the set of critical values oV, cf. [ACH, Theorem C.1], one may easily conclude
(1.13) from the following statement:

Consider any open sé§ C (V(w;), o0) such thatly N (o,,(H) UV (C,)) = 0. Let
Hy be the closure of the subspace of states: f(H)v, f € C§°(Iy), obeying (1.8)
and (1.9). Then for alt) = P,f(H)y where f € C§°(Ip)

(8.2) ¥ € Hy.
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We shall verify (8.2) by showing that indeed= P,f(H )« obeys (1.8) and (1.9).
We shall proceed a little more general than needed in that we here assume that the
of (1.9) is given by

Uy=U.=C. x R";
Cc = {z e R"\{0}|& € C.}, C. = {we S w—w| < e},

wheree > 0 is taken so small that. N C, = {w;}.

Pick f € Cg°(Ip) such thatd < f < 1 and f = 1 in a neighborhood of sug).
Let » € C*°(R"™) be given in terms of any, € F by

||
(8.3) r(x) = 0fF+(s)ds + Ole_(s)ds.

(Notice thatr

e

z) = |z| for |z| > 1.) Let

(Vrp+hc.), b = f(H)p, f(H).

N | —

P =

Lemma 8.1 Let x; € Cg°(Cc) be given with0 < y; < 1 andy; = 1in a
neighborhood ofy;, and g> € Cg°(R) by ga(s) = f(271s* + V(wi))1(g00)(s). Let
real-valuedg; , g7 € C§°(R) be given with

¢ < s ¢ = sup (supp(gp)), & = inf (SUPHZ)),
¢ > ¢q; o =inf (supp(gy)), é+ = sup (Supga)).
Let Fy € Fy, F_ € F_ and
C > 2+/2(sup (SUpf f)) — min (V).
Then, in the state)(t) = e "7 P f(H)y

8.4) [(r™'70),dt < o056 > 0,

(8.5) f|<p-r(2)p>t|dt < o0,

(8.6) f<r|VV|2>tdt < 0,

@.7) [ (fur (o +u?) rE) di < o0i ¥ = @) P (r),

8.8) [—t"NFL(C™'™r)),dt < o,
1

(8.9) :fot_ng(ﬁn)F— (™M r)w(t)]]Pdt < oo: g € C§°((=00,0)), § =g,

(8.10) :fo (1 = g2 (7)) F= (O™ ) o ()| Pt < oo,

33



(8.11) 7“° B (O (®)|2dt < 00 B() = g (1) 23y,
(8.12) :fo 7Y B ()| Pdt < ooy BY(t) = g7 (t717)G2(5))).-

Proof For (8.4), (8.5) and (8.6) we refer to [H] and [ACH, Theorem C.1]. The
bound (8.7) follows from those estimates by Taylor expansion.

As for (8.8) we consider the “propagation observable”
®(t) = f(H)F_(C~ ' 1) f(H).
We may bound its Heisenberg derivative as
DO(t) > —et L f(H)F (CTH ) f(H)+ O(t72%); € > 0.
As for (8.9) we consider the observable
() = F(H)g(p))t~ ' rF-(C1 " r) g (fy) F(H).
We write its Heisenberg derivative as
DO(t) =T + Ty + T3,
Ty = f(H)(Dyg ()t rF-(C™ " r)g(fy) F(H) + he.
Ty =27 f(H)g(py)t ' r(DF_(C 't 'r))g(p)) f(H) + hec.,

T3 =27 f(H)g(py) (D ') F=(C™ ) g () f(H) + hec.,

and notice the identities

Using (8.4), (8.5), the second identity of (8.13) and (3.11) we readily obtain after
symmetrization that

(8.14) [ [{Ty),ldt < oo.
1
As for the the termil; we use the first identity of (8.13) and (8.8) to derive
(8.15) [ |(Ta),|dt < oo.
1

For the term73 we compute using the first identity of (8.13) and (3.11)

Ty = Re(t™1F(H)g (5)) (py) — t™7) P (C™H7 M) o (3y)) F() ) + O (t72)

(8.16) I RN o
< —et f(H)g(pH)F_(C t r)g(p||)f(H)+O(t );e>0.
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We conclude (8.9) from (8.14), (8.15) and (8.16).

The bound (8.10) follows from elementary energy bounds, Taylor expansion and
the previous estimates. (For this we need (8.9) to deal with the “region” \Miffpre
energetically has the right size, bpt < 0.)

As for (8.11) we consider

S

®(t) = f(H)g2(p)) F(t7'r) 52 (5)) f(H); F(s') = / g7 (s)*ds.

We write its Heisenberg derivative as
Do(t) = T1 + T,
Ty = f(H)(Dga () £ (t'r) 32 (5y) £ (H) + hc,
Ty = F(H)2(5)) (DF (7)) g2 (5y) £ (H).

Using (8.4), (8.5), the second identity of (8.13) and (3.11) as for (8.9) we obtain that
(8.17) [ |{Ty),ldt < oo.
1

As for the the termil; we compute using the first identity of (8.13) and (3.11)
Ty =t f(H)B~(t)"(p — t~'7) B~ (t) f(H) + O(t %)
(8.18) >t1B~(t)" (ﬁnl[gim) (By) - c;f(H)Q)B‘(t) +0(t7?)
> et 'B"(t)"B”(t) + O(t?); e =é- — ¢}

Clearly (8.11) follows by combining (8.17) and (8.18).
As for (8.12) we may proceed similarly using

o(t) = f(H)g2 (b)) F (t ') g2 (B))) F(H); F(s) = / gt (s)%ds.

—00

O

Corollary 8.2 Let v, x; € C§°(Ce) and g2 be given as in Lemma 8.1. Let
g1 € C§°(R) be given such that < gy < 1 andg; =1 in an open interval containing
Supggz). Then

(8.19) [10(t) — g1 (=) g (5 (@) FLH V()| — 0 for £ — oo,
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Proof From the very definition ofy) we have

[¥(t) — xi(@) fF(H)p(t)]| — 0 for t — oc.
Next, from [H, Theorems 4.10 and 4.12] we learn that

(8:20) [|v:(t) — G (By) a(@) F(H)(1)|| — 0 for t — oc.
Whence to show (8.19) it suffices to verify that
1{g1(¢717) = 91(By) } 92 (B)) F(H)$()]| — 0 for ¢ — o0,

which in turn is reduced (by a standard density argument using that the energy bounds
the momentum) to verifying that for all big constarits

8.21) [[F_(C7 ' ) {gi(t7 ) — g1 (P))) } G2 (B))) F(H)w(t)|| — 0 for t — .

For (8.21) we consider the observable

De(t) = FIH)G () F-(C74 ) (by — t74) P (1) o () F (D).

Using Lemma 8.1 as well as the proof of this lemma we easily show that

oo

[ 15 @y, [H@om)d < .
1

1

from which we conclude that along some sequefice- oo indeed(®¢(tr)),, — 0,
and then in turn that

(8.22) (®c(1)), — 0.

We easily obtain (8.21) using (8.22), (3.10) and commutation. O

Now, one may easily verify (8.2) for = P,f(H)y as follows: We introduce a
partition f = > f; of sharply localizedf;’s and for each of these a “slightly larger”
fi. Using these functions and the staigs= P,f;(H)¢ as input in Corollary 8.2 the
bounds (1.8) follow from the conclusion of the corollary and [H, Theorems 4.10 and
4.12]. As for (1.9) we may use the same partition and then conclude the result from
Lemma 8.1 (applied withf replaced byf;).

Remarks 8.31) Using the Mourre estimate [ACH, Theorem C.1] one may easily
include a short-range perturbatidn = O (|z|17?), § > 0, 09V; = O(|z|72), |a| = 2,
to the HamiltonianH. In particular Theorem 1.2 holds for the strictly homogeneous
case as discussed in Section 1.

2) The non-degeneracy condition.atis important for the method of proof presented
in this paper. However it is not important that the set of critical pofritds finite; it
suffices thatu; is an isolated non-degenerate critical point and that;) is countable.
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3) At a local maximum we proved a somewhat better result in [HS1] (by a different
method): A larger class of perturbations was included and we imposed a somewhat
weaker condition than the non-degeneracy condition. The method of [HS1] yielded
only a limited result at saddle points. Although there are indications that this method
of proof might be extended to included Theorem 1.2 (by using a certain complicated
iteration scheme) the proof presented in this paper is probably much simpler.

4) The components of the of (2.3) may be taken of the form
v =i+ 2(E = V(w))8T (E)u;,

where ﬁ]#(E) is given by one of the expressions of (8.1). In particular both of the
conditions (2.7) and (2.8) are satisfied in the potential case.

5) We applied the Sternberg linearization procedure in [HS2] to the equations (1.6) in
the case of a local minimum. In this case the union of all resonances (of all orders and for
all eigenvalues) is discrete div (w;), o). One needs to exclude this set of resonances
to construct a smooth Sternberg diffeomorphism, see for example [N, Theorem 9]. The
construction of the symbol(™) in (2.17) may be viewed as a rudiment of this procedure.
However, the union of all resonances at a local maximum or a saddlepamdense
in (V(wy),00), and for that reason the smooth Sternberg diffeomorphism (defined at
non-resonance energies) would not be suited for quantization. Although not elaborated,
one may essentially view” as being constructed by@&” Sternberg diffeomorphism.
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