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Asymptotics in Quantum Statistics∗
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Observations or measurements taken of a quantum system (a small number of fundamental particles) are
inherently random. If the state of the system depends on unknown parameters, then the distribution of the
outcome depends on these parameters too, and statistical inference problems result. Often one has a choice
of what measurement to take, corresponding to different experimental set-ups or settings of measurement
apparatus. This leads to a design problem—which measurement is best for a given statistical problem. This
paper gives an introduction to this field in the most simple of settings, that of estimating the state of a
spin-half particle given n independent copies of the particle. We show how in some cases asymptotically
optimal measurements can be constructed. Other cases present interesting open problems, connected to the
fact that for some models, quantum Fisher information is in some sense non-additive. In physical terms, we
have non-locality without entanglement.
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1 Introduction

The fields of quantum statistics and quantum probability have a reputation for being esoteric.
However, in our opinion, quantum mechanics is a fascinating source of probabilistic and
statistical models, unjustly little known to ‘ordinary’ statisticians and probabilists.

Quantum mechanics has two main ingredients: one deterministic, one random. In isolation
from the outside world a quantum system evolves deterministically according to Schrödinger’s
equation. That is to say, it is described by a state or wave-function whose time evolution is
the (reversible) solution of a differential equation. On the other hand when this system comes
into interaction with the outside world, as when for instance measurements are made of it
(photons are counted by a photo-detector, tracks of particles observed in a cloud chamber,
etc.) something random and irreversible takes place. The state of the system makes a random
jump and the outside world in some way contains a record of the jump. From the state
of the system at the time of the interaction one can read off, according to certain rules,
the probability distribution of the macroscopic outcomes and the new state of the system.
(See Penrose, 1994, for an eloquent discussion of why there is something paradoxical in the
peaceful coexistence of these two principles; and see Percival (1998) for interesting stochastic
modifications to Schrödinger’s equation which might offer some reconciliation).1

Till recently most predictions made from quantum theory involved such large numbers of
particles that the law of large numbers takes over and predictions are deterministic. However

∗To appear in Festschrift in Honor of Willem van Zwet.
1Also highly recommended: Sheldon Goldstein, ‘Quantum mechanics without observers’, Physics Today,

March, April 1998; letters to the editor, Physics Today, February 1999.



technology is rapidly advancing to the situation that really small quantum systems can be
manipulated and measured (e.g., a single ion in a vacuum-chamber, or a small number of
photons transmitted through an optical communication system). Then the outcomes defi-
nitely are random. The fields of quantum computing, quantum communication, and quantum
cryptography are rapidly developing and depend on the ability to manipulate really small
quantum systems. Theory and conjecture are much further than experiment and technology,
but the latter are following steadily.

In this paper we will introduce as simply as possible the model of quantum statistics and
consider the problem of how best to measure the state of an unknown spin-half system. We
will survey some recent results, in particular, from joint work with O.E. Barndorff-Nielsen
and with S. Massar (Barndorff-Nielsen and Gill, 1998; Gill and Massar, 1998). This work has
been concerned with the problem, posed by Peres and Wootters (1991): can more information
be obtained about the common state of n identical quantum systems from a single measure-
ment on the joint system formed by bringing the n systems together, or does it suffice to
combine separate measurements on the separate systems? A useful tool for our studies is the
quantum Cramér-Rao bound with its companion notion of quantum information, introduced
by C.W. Helstrom in a sequence of papers in the sixties and later refined by among others
A.S. Holevo.

Quantum statistics mainly consists of exact results in various rather special models, see
the books of Helstrom (1976) and Holevo (1982)2. Just as in ordinary statistics, the Cramér-
Rao bound on the variance of an unbiased estimator is rarely achieved exactly (only in so-
called quantum exponential models). In any case, one would not want in practice to restrict
attention to unbiased estimators only. There are results on optimal invariant methods, but
again, not many models have the structure that these results are applicable and even then
the restriction to invariant statistical methods is not entirely compelling.

One might hope that asymptotically it would be possible to achieve the Cramér-Rao
bound. However asymptotic theory is so far very little developed in the theory of quantum
statistics, one reason being that the powerful modern tools of asymptotic statistics (con-
tiguity, local asymptotic normality, and so on) are just not available3 since even if we are
considering measurements of n identical quantum systems, there is no a priori reason to sup-
pose that a particular sequence of measurements on n quantum systems together will satisfy
these conditions. Here, we make a little progress through use of the van Trees inequality (see
Gill and Levit, 1995), a Bayesian Cramér-Rao bound, which will allow us to make asymptotic
optimality statements without assuming or proving local asymptotic normality. Another use-
ful ingredient will be the recent derivation of the quantum Cramér-Rao bound by Braunstein
and Caves (1994), linking quantum information to classical expected Fisher information in a
particularly neat way.

We will show that for certain problems, a new Cramér-Rao type inequality of Gill and
Massar (1998) does provide an asymptotically achievable bound to the quality of an estimator
of unknown parameters. For some other problems the issue remains largely open and we
identify situations where Peres and Wootter’s question has an affirmative answer: there can
be appreciably more information in a joint measurement of several particles than in combining
separate measurements on separate particles. This clarifies an earlier affirmative answer of

2These are both extremely important books, but both extremely difficult to read. Helstrom is a physi-
cist/engineer, Holevo a mathematician. Unreferenced results mentioned in this paper can be found in Holevo’s
book.

3though R. Rebolledo is working on a notion of quantum contiguity
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Massar and Popescu (1995), which turned out only for small samples to improve on separate
measurements. It also clarifies the recent findings of Vidal et al. (1998).

Helstrom wrote in the epilogue to his (1976) book: “Mathematical statisticians are con-
cerned with asymptotic properties of estimators. When the parameters of a quantum density
operator are estimated on the basis of many independent observations, how does the accuracy
of the estimates depend on the number of the observations as that number grows very large?
Under what conditions have the estimators asymptotically normal distributions? Problems
such as these, and still others that doubtless will occur to physicists and mathematicians,
remain to be solved within the framework of the quantum mechanical theory.” More than
twenty years later this programme is still hardly touched (some of the few contributions are
by Brody and Hughston (1998) and earlier papers, and Holevo (1983)) but we feel we have
made a start here.

In 20± ε pages (even when ±ε = +10) it is difficult to give a complete introduction to the
topic, as well as a clear picture of recent results. The classic books by Helstrom and Holevo
mentioned above are still the only books on quantum statistics and they are very difficult
indeed to read for a beginner. A useful resource is the survey paper by Malley and Hornstein
(1993). However the latter authors, as many others, take the stance that the randomness
occuring in quantum physics cannot be caught in a standard Kolmogorovian framework.
We argue elsewhere (Gill, 1998), in a critique of an otherwise excellent introduction to the
related field of quantum probability (Kümmerer and Maassen, 1998), that this is nonsense.
With more space at our disposal we would have included extensive worked examples; however
they have been replaced by exercises so that the reader can supply some of the extra pages
(but—unless you are Willem van Zwet—leave the starred exercises for later).

Some references which we found specially useful in getting to grasps with the mathematical
modelling of quantum phenomena are the books by Peres (1995), and Isham (1995). To get
into quantum probability, we recommend Biane (1995) or Meyer (1986).

This introductory section continues with three subsections summarizing the basic theory:
first the mathematical model of states and measurements; secondly the basic facts about the
most simple model, namely of a two-state system; and thirdly the basic quantum Cramér-Rao
bound. That third subsection finishes with a glimpse of how one might do asymptotically
optimal estimation in one-parameter models: in a preliminary stage obtain a rough estimate
of the parameter from a small number of our n particles. Estimate the so-called quantum
score at this point, and then go on to measure it in the second stage on the remaining
particles. Section 2 states a recent new version of the quantum Cramér-Rao bound which
makes precise how one might trade information between different components of a parameter
vector. Section 3 outlines the procedure for asymptotically optimal estimation of more than
one parameter, again a two-stage procedure. This is work ‘in progress’, so some results are
conjectural, imprecise, or improvable. In a final short section we try to explain how some of
our results are connected to the strange phenomenon of non-locality without entanglement , a
hot topic in the theory of quantum information and computation.

1.1 The basic set-up

Quantum statistics has two basic building blocks: the mathematical specification of the state
of a quantum system, to be denoted by ρ = ρ(θ) as it possibly depends on an unknown
parameter θ, and the mathematical specification of the measurement, denoted by M , to be
carried out on that system. We will give the recipe for the probability distribution of the
observable outcome (a value x of a random variable X say) when measurement M is carried
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out on a system in state ρ. Since the state ρ depends on an unknown parameter θ, the
distribution of X depends on θ too, thereby setting a statistical problem of how best to
estimate or test the value of θ. Since we may in practice have a choice of which measurement
M to take, we have a design problem of choosing the best measurement for our purposes.
(There is also a recipe for the state of the system after measurement, depending on the
outcome, but we do not need it here; Bennett et al., 1998).

For simplicity we restrict attention to finite-dimensional quantum systems. The state of
a d-dimensional quantum system will be modelled or specified by a d × d complex matrix
ρ called the density matrix of the system. For instance, when we measure the spin of an
electron in a particular direction only two different values can occur, conventionally called
‘up’ and ‘down’. One could call this a two-state system, we need a d =two-dimensional state
space. Similarly if we measure whether a photon is polarized in a particular direction by
passing it through a polarization filter, it either passes or does not pass the filter. Again,
polarization measurements on a single photon can be discussed in terms of a two-dimensional
system. If we consider the spins of n electrons, then 2n different outcomes are possible and
the system of n electrons together (or rather, their spins), is described by a d × d matrix ρ
with d = 2n.

Definition 1.1 (Density matrix) The density matrix ρ of a d-dimensional quantum sys-
tem is a d× d self-adjoint, nonnegative matrix of trace 1.

‘Self adjoint’ means that ρ∗ = ρ where the ∗ denotes the complex conjugate and transpose of
the matrix. That ρ is nonnegative means that ψ∗ρψ ≥ 0 for all column vectors ψ (since ρ is
self-adjoint this quadratic form is a real number). We often use the Dirac bra-ket notation
whereby |ψ〉 (called a ket) is written for the column vector ψ and 〈ψ| (a bra) is written for
its adjoint, the row vector containing the complex conjugates of its elements. The quadratic
form ψ∗ρψ is then denoted 〈ψ | ρ | ψ〉.

It follows that the diagonal elements of a density matrix are nonnegative reals adding up
to one. Moreover by the eigenvalue-eigenvector decomposition of self-adjoint matrices we can
write ρ =

∑
i pi |i〉 〈i| where the kets |i〉 are the orthonormal eigenvectors of ρ, 〈i | j〉 = δij ,

and the pi are the eigenvalues: nonnegative real numbers adding up to one. One says that
the density matrix ρ represents the mixed state obtained by taking with probability pi the
system in the pure state |i〉. The state vector of a pure state is also called a wave-function.

Definition 1.2 (Measurement) A measurement M on a d-dimensional quantum system
taking values x in a measurable space (X ,A) is specified by an operator-valued probability
measure or oprom for short, that is, a collection of self-adjoint matrices M(A) : A ∈ A such
that

1. M(X ) = 1, the identity matrix,

2. Each M(A) is non-negative.

3. For disjoint Ai, M(∪iAi) =
∑

iM(Ai).

Note that these three rules are the ordinary axioms of a probability measure on (X ,A),
except that the measure takes values in the self-adjoint matrices instead of the real numbers.
The sample space X might be the real numbers or a subset thereof, with the Borel sigma
algebra, but it could also be anything else.
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Measurements are often called generalised measurements, to contrast them with a special
subclass of measurements called simple measurements which we will introduce in a moment.
In the literature the abbreviations ‘povm’ (positive operator valued measure) and ‘pom’
(probability operator matrices) are often used, which we however find inaccurate.

Now we can give the so-called trace-rule telling us the probability distribution of the
random outcome X when M is used to measure ρ:

Definition 1.3 (trace rule) The probability distribution of the outcome X is given by

Pr{X ∈ A} = trace(ρM(A)), A ∈ A(1)

Exercise 1.1 (legitimacy of trace rule) Prove that (1) indeeds defines a probability mea-
sure on X ,A.

One can argue from basic principles of quantum mechanics that however one measures a
quantum system, the result must be an affine mapping from density matrices to the space
of probability distributions on the outcome space. It is a theorem that any such mapping
can be represented by an oprom. Thus the class of oproms contains all conceivable measure-
ments. On the other hand, as we will see later, any oprom can be realised by some concrete
experimental set-up, at least in principle, so the definition captures exactly what it should.

A special kind of measurements plays a key role in theory and practice, these are the
so-called simple measurements defined as follows:

Definition 1.4 (Simple measurement) A simple measurement Π on a d-dimensional quan-
tum system taking values x in a measurable space (X ,A) is a measurement such that each
Π(A) is idempotent, i.e., is a projector onto a subspace of C d .

It follows that the measurement takes on at most d different values, i.e., there exist
x1, . . . , xk ∈ X with k ≤ d such that Π({x1, . . . , xk}) = 1. Writing Π(xi) as abbreviation for
Π({xi}) the matrices Π(xi) project onto k orthogonal subspaces of C d together spanning the
whole space. Let us now define a self-adjoint matrix X (not to be confused with the random
variable X representing the outcome of the measurement) by X =

∑
i xiΠ(xi). Then the xi

are the eigenvalues of X and the Π(xi) project onto the eigenspaces. Conversely, given a self-
adjoint matrix X one can construct a corresponding simple measurement or projector-valued
probability measure. In this role we call X an observable. It follows that the expected value
of the outcome of a measurement of X is given by trace(ρX). For an ordinary real function
f (e.g., square, inverse, logarithm, . . . ) one defines the same function of the observable X
by f(X) =

∑
i f(xi)Π(xi), and the expected value of the outcome of a measurement of the

observable f(X) is trace(ρf(X)).
Simple measurements are often called von Neumann measurements. We will occasionally

use the term ‘proprom’ (projector-valued probability measure). Physicists generally agree
that any simple measurement could in principle be implemented in practice.

‘Between measurements’ a quantum system evolves deterministically according to the
famous Schrödinger equation, a differential equation for the component pure states |i〉 of a
given mixed system. One thinks of a measurement as taking place instantaneously. After the
measurement, the quantum system jumps to a new state (depending on the outcome x); this
is called ‘the collapse of the wave function’. Again some simple rules specify what happens,
but we will not give them here.

If we bring two separate quantum systems together into some kind of interaction then
their future evolutions will be linked together. Measurements can be made on the ‘joint
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system’, including all the separate measurements on each of the separate systems but many
more besides. Mathematically this is modelled as follows:

Definition 1.5 (product system) Consider two quantum systems, of dimension d and d′,
in states ρ and ρ′ respectively. Together the two are in the state ρ ⊗ ρ′ in C

d ⊗ C
d′ = C

d×d′

where ⊗ denotes the tensor product (of matrices, vectors, or spaces as appropriate).

For the reader who is not familiar with tensor products, the tensor product of C d with C
d′

has as basis the tensor product of each element of a basis of C d with each element of a basis
of C d

′
. One can take linear combinations of tensor products ψ ⊗ ψ′ by expanding bilinearly

in chosen basis’ of the two spaces. Tensor products of matrices are defined in the natural
way by how they operate on products of vectors: X ⊗X ′ ψ ⊗ ψ′ = Xψ ⊗ X ′ψ′. The trace
of a tensor product of two matrices is a product of the traces.

Suppose M and M ′ are measurements on two separate quantum systems ρ and ρ′. Then
we can define a joint measurement M ⊗M ′ on the combined system in the obvious way,
taking values in the product of the outcome spaces of M and M ′.

Exercise 1.2 (product measurement) Show that the outcome of measurement of M⊗M ′

on a system in state ρ ⊗ ρ′ is distributed as independent realisations of measurement of M
and M ′ on ρ and ρ′ respectively.

However the important point is that bringing two quantum systems together allows many
more measurements than just product measurements (which as we saw from exercise 1.2 are
not very interesting).

Product systems are important for two main reasons. Firstly, one of the main themes
of this paper is going to be: if we have n independent systems each in the same state ρ(θ)
(i.e., in identical states all depending on the same unknown parameter θ), can we learn more
about θ from a joint measurement on the dn dimensional combined system ρ⊗n(θ)? In the
next section we will discuss some of the history and other background to this question, which
has been the subject of a series of papers in recent years. Secondly, product systems play
a role in the realisation of generalised measurements. It is a theorem (due to Naimark)
that any generalised measurement whatever can be realised by a simple measurement after a
‘quantum randomisation’. That is to say, given any measurement M there exists a so-called
ancillary system in state ρ′ and a simple measurement Π on the joint system ρ⊗ ρ′ such that
trace(ρM(A)) = trace(ρ⊗ ρ′Π(A)) for all A and whatever ρ.

1.2 Spin half

In order to make the above rather abstract concepts a little more concrete, let us go to the
most simple special case, d = 2. This is the appropriate set-up for studying spin-half systems
like the electron. We will see that we can associate the state of a spin-half system with a real
vector ~a of length less than or equal to 1 in ordinary three dimensional space, and a simple
measurement—which can take on at most two different values—with a direction in space, or
a unit vector ~u. The trace rule (1) will reduce to a very simple formula involving ~a and ~u.
The model applies to the famous Stern-Gerlach experiment, featuring in many introductory
textbooks on quantum physics. In that experiment silver atoms were made to pass through
a strongly varying magnetic field, having a certain direction. Each atom was either deflected
upwards or downwards with respect to the direction of the field. The deflection is due to the
spin of the outermost electron in the silver atom, which can be characterized by a vector ~a.
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The orientation of the magnet determines which measurement is being taken, i.e., the value
of ~u.

First we take some time to study some special features of the 2× 2 self-adjoint matrices.
The properties we find will greatly simplify calculations. Let 1 denote the identity matrix
and define the Pauli spin matrices as follows:

Definition 1.6 (Pauli spin matrices)

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.(2)

These three matrices are self adjoint, each have trace zero and determinant minus one, hence
have eigenvalues ±1. They satisfy (check this yourself!)

σxσy = −σyσx = iσz,
σyσz = −σzσy = iσx,
σzσx = −σxσz = iσy,
σ2
x = σ2

y = σ2
z = 1.

(3)

An arbitrary self-adjoint 2× 2 complex matrix has to be of the form

X =

(
u + z x− iy
x + iy u− z

)
(4)

where x, y, z, u are uniquely determined real numbers. Thus we can write

X = u1 + xσx + yσy + zσz.(5)

Specializing to density matrices, the requirement that trace ρ = 1 imposes the condition
that u = 1

2
. The requirement that ρ is nonnegative is equivalent to its determinant being

nonnegative, or u2 − z2 − x2 − y2 ≥ 0, or x2 + y2 + z2 ≤ 1
2

2
. It is convenient to write

ρ = ρ(~a) =
1

2
(1 + ~a · ~σ)(6)

where ~a = (ax, ay, az) ∈ R3 and satisfies

‖~a‖2 = a2
x + a2

y + a2
z ≤ 1(7)

while ~σ = (σx, σy, σz) (a vector of matrices) and ‘·’ denotes the inner-product. Thus the space
of density matrices of a two-dimensional quantum system can be represented by the closed
unit ball B in three dimensional Euclidean space. The sphere S, or surface of the unit ball,
corresponds to density matrices 1

2
(1 + ~a · ~σ) with ‖~a‖2 = 1 which are singular since their

determinant is zero. Such a density matrix has therefore eigenvalues 0 and 1. It represents a
so-called pure state.

The density matrix of a pure state is a projector matrix, projecting onto a one-dimensional
subspace of C 2 . Letting ~u denote a unit vector in R3 , let us write Π(~u) = ρ(~u) = 1

2
(1+~u·~σ) for

this matrix. Check using (3) that Π(~u) is idempotent, and that Π(~u) and Π(−~u) commute (in
fact, their product is the zero matrix) and add to the identity matrix! Thus the projectors
Π(~u) and Π(−~u) project onto two orthogonal one-dimensional subspaces of C 2 . We will
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specify these spaces exactly in a moment. The only other projector matrices are 0 and 1,
projecting onto the trivial subspace and the whole space of C 2 respectively.

It follows that for an arbitrary density matrix ρ = ρ(~a), defining the unit vector ~u = ~a/‖~a‖
and the probabilities α = ‖~a‖, β = 1− α, we have

ρ(~a) = 1
2
(1 + ~a · ~σ) = ‖~a‖ρ(~a/‖~a‖) + (1− ‖~a‖)ρ(−~a/‖~a‖)

= αρ(~u) + βρ(−~u).
(8)

It has eigenvalues α and β, and its eigenvectors, column vectors in C 2 , generate the spaces
onto which Π(~u) and Π(−~u) project. One may consider the state ρ(~a) as the mixture, with
probabilities α and β, of the pure states ρ(~u) and ρ(−~u) (though this is only one of many
representations of ρ as a mixture of pure states).

So what are these spaces exactly? The vector ~u is a point on the unit sphere in R3 . Let
θ and φ denote its polar coordinates, where θ ∈ [0, π] is the latitude measured from the
North pole (z-axis) and φ ∈ [0, 2π) is the longitude, measured from the x-axis. (We should
really say co-latitude rather than latitude). Thus ~u = (sin θ cosφ, sin θ sin φ, cos θ). Define
the column vector |ψ〉 = |ψ(θ, φ)〉 in C 2 by

|ψ(θ, φ)〉 =

(
e−iφ/2 cos(θ/2)
eiφ/2 sin(θ/2)

)
.(9)

Note that 〈ψ | ψ〉 = 1 while

|ψ〉 〈ψ| =

(
e−iφ/2 cos(θ/2)
eiφ/2 sin(θ/2)

)(
eiφ/2 cos(θ/2)e−iφ/2 sin(θ/2)

)
=

(
cos2(θ/2) e−iφ cos(θ/2) sin(θ/2)

eiφ cos(θ/2) sin(θ/2) sin2(θ/2)

)
= 1

2

(
1 + cos(θ) (cosφ− i sin φ) sin θ

(cos φ + i sin φ) sin θ 1− cos θ

)
= 1

2
(1 + ~u · ~σ) = Π(~u).

(10)

Any complex vector |ξ〉 of length 1 can be written as eiαψ(θ, φ) for some α ∈ [0, 2π) and polar
coordinates θ, φ. Note that |ξ〉 〈ξ| = |ψ〉 〈ψ| = Π(~u), and that |ψ(θ, φ)〉 and |ψ(π − θ, φ + π)〉
are orthogonal. The corresponding points on the unit sphere are opposite to one another.
Combining these facts we obtain:

Rule 1.1 (Spin-half density matrices, projectors) The density matrix ρ(~a), where ~a is
a point in the unit ball in R3 , has eigenvalues ‖~a‖ and 1− ‖~a‖ and normalized eigenvectors
|ψ(θ, φ)〉, |ψ(π − θ, φ + π)〉, where θ and φ are the polar coordinates of ~u = ~a/‖~a‖. The
projector matrix Π(~u) projects onto the one-dimensional subspace of C 2 spanned by |ψ(θ, φ)〉.
The projector onto the space orthogonal to this, spanned by |ψ(π − θ, φ + π)〉, is Π(−~u).

Let ~u and ~v be two unit vectors in R3 and write |~u〉 and |~v〉 for the corresponding unit
vectors in C 2 ; so |~u〉 is an abbreviation for |ψ(θ, φ)〉 where θ, φ are the polar coordinates of
~u. Since Π(~u) = |~u〉 〈~u| we see that trace Π(~u)Π(~v) = trace |~u〉 〈~u| |~v〉 〈~v| = 〈~v | ~u〉 〈~u | ~v〉 =
| 〈~u | ~v〉 |2. On the other hand, using the properties (3) of the Pauli matrices, one readily
computes trace Π(~u)Π(~v) = 1

2
(1 + ~u · ~v). Now ~u · ~v is the cosine of the angle between the

vectors ~u and ~v, hence 1
2
(1 + ~u · ~v) is the squared cosine of half the angle between ~u and ~v.
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Rule 1.2 (Calculation rule) The absolute value of the squared inner product between the
complex vectors |~u〉 and |~v〉 in C

2 is the squared cosine of half the angle between the cor-
responding unit vectors ~u and ~v in R

3 . In particular, opposite points on the unit sphere
correspond to orthogonal vectors in C

2 .

We can now describe the probability distributions of all simple measurements of a spin-
half system.

The state of the system is modelled by a 2×2 density matrix of the form ρ(~a) = 1
2
(1+~a·~σ)

where ~a is a point in the closed unit ball in R3 .
The non-trivial simple measurements take on just two different values. Consider a simple

measurement M = Π taking values in a set X consisting of just two elements, let’s call these
elements ±1. The measurement is determined by the two projectors Π(±), which should
project onto orthogonal one-dimensional subspaces of C 2 . Each subspace is generated by a
vector of the form |~u〉 for some ~u on the unit sphere, and the associated projectors are Π(~u).
Recall that opposite points ±~u on the unit sphere correspond to orthogonal vectors |±~u〉 in
C

2 , and hence to orthogonal projectors Π(±~u). Thus a projector-valued probability measure
for a simple measurement with values in X is given by M(±1) = Π(±~u) = 1

2
(1 ± ~u · ~σ) for

some ~u.
We apply the trace rule (1) to compute the probabilities of the two outcomes ±1 when the

simple measurement M(±1) = Π(±~u) is carried out on a system in the state ρ(~a) = 1
2
(1+~a·~σ).

Using the properties (3) of the Pauli matrices, the reader should verify that these probabilities
are

trace ρ(~a)Π(±~u) =
1

2
(1± ~a · ~u).(11)

Using further rules for the state of the system after measurement, it turns out that after
measurement the system is in the pure state ρ(±~u) according to the outcome ±1. One
can therefore go on to compute probabilities of the series of outcomes of a series of simple
measurements carried out on one particle.

In the Stern-Gerlach experiment, the initial state of the silver atom is described by the
density matrix ρ(~0) = 1

2
1. One can think of this state as corresponding to an electron having

spin in a random direction ~u uniformly distributed over the unit sphere. Indeed, if one takes
the mean of ρ(~u) = 1

2
(1 + ~u · ~σ) with ~u uniformly distributed over the sphere, the matrix 1

2
1

results (though this representation of the ‘completely random’ state ρ(~0) as a mixture of pure
states is not unique; one also finds this state as the result of choosing with equal probabilities
1
2

an electron in either of the orthogonal pure states |±~u〉).

Exercise 1.3 (A generalised measurement of spin-half system) Let
M(A) =

∫
A

Π(~u)d~u/2π where d~u denotes integration with respect to Lebesgue surface measure
on S. Show that M is a generalized measurement on a spin-half system with values in S,
and compute the distribution of the outcome of this measurement on the system ρ(~a). This
measurement would be physically realised by somehow coupling the spin-half system with a
particle moving on the sphere and measuring the position of that particle.

Exercise 1.4 (A generalized measurement of n spin-half systems*) For the state-space
(C 2)⊗n define |~u〉n = |~u〉 ⊗ · · · ⊗ |~u〉 and define Πn(~u) = |~u〉n〈~u|n. Define M(A) = (n +
1)
∫
A

Πn(~u)d~u/4π and show that M(S) is the projector onto the n + 1 dimensional subspace
of vectors, invariant under permutation of the n components of (C 2)⊗n. Call this subspace
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Sn and note that trace ρ⊗nΠSn = 1. Show that M defines a generalized measurement on n
identical copies of a spin-half system with values in S, and compute the distribution of the
outcome of this measurement on the system ρ(~v).

A Stern-Gerlach magnet oriented in the direction ~u implements the simple measurement
M(±1) = Π(±~u). Since for ~a = ~0 the probabilities (11) both equal 1

2
, one will find electrons

with spin in the directions ±~u with equal probabilities. Electrons in the emerging ‘+’ beam
are in the pure state ρ(~u). Sending them through a Stern-Gerlach device with orientation ~v
splits them again, now with probabilities 1

2
(1 ± ~u · ~v) (the squared cosine of half the angle

between the directions ~u and ~v) into two beams of electrons in the states ρ(±~v), and so on.
If the electrons started out in the arbitrary mixed state ρ(~a) then the first Stern-Gerlach

magnet splits them into two output beams in the pure states ρ(±~u) in the proportions
1
2
(1±~a ·~u). So if ~a was unknown, we do learn something about it from counting the numbers

of electrons in each beam. Further operations on the output beams however will not teach
us any more as the state of the electrons in either output beam no longer depends on ~a.

If we are allowed to measure a large number of electrons each in the same mixed state
ρ(~a), we see that a large number of Stern-Gerlach measurements in three linearly independent
directions will enable us to determine ~a. The question we will study in the rest of the paper
is: what is the best way to do this? Will it suffice to use simple measurements on separate
particles or can we do better by using more sophisticated measurements, in particular, joint
measurements on several particles simultaneously?

One can consider rotating a given coordinate system in R3 in such a way as to transform
the vectors ~a and ~u representing a state or a simple measurement into convenient choices,
e.g., we will in the future claim that ‘without loss of generality ~a = (0, 0, a3)’ which makes
ρ(~a) a diagonal matrix. How to do this is given by the following (more difficult) exercise:

Exercise 1.5 (Rotation of coordinate system*) For given unit-vector ~u and angle θ de-
fine U = exp(−iθ~u · ~σ/2). Then UU∗ = U∗U = 1, i.e., U is a unitary transformation of C 2 ,

and Uρ(~a)U∗ = ρ(~b) where ~b ∈ R3 results from ~a by rotation about ~u through an angle θ.

This result really belongs to the representation theory of groups; a major topic having
deep connections with quantum theory. It is a curious fact that if θ = 2π the operator U is
equal to −1. So though U works on a density matrix by a rotation through 360◦, it does not
transform a state vector to itself but to its negative. A rotation through 720◦ or the angle
4π is needed to do this. The fact that two complete revolutions are needed to transform
a state vector into itself whereas one revolution multiplies the state vector by −1 has been
experimentally verified through observation of interference effects.

1.3 Quantum Cramér-Rao inequality

Consider a quantum statistical model whereby the density matrix ρ depends on an unknown
parameter θ. Possibly θ is a vector but we will not emphasize that fact in the notation. In
particular, a spin-half system has a density matrix ρ = ρ(~a) depending on the vector ~a in
the closed unit ball, which we will denote by B. Interesting statistical models could therefore
have a one-, two- or three-dimensional parameter θ, specifying a curve, a surface, or an open
region of B. Of particular interest are one- and two-dimensional pure-state models models,
specifying a curve on the boundary S of the unit sphere B and the whole of S respectively.
Results are strikingly different according to whether the true value of θ corresponds to a point
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in S or in the interior of B. By a mixed-state model we mean a model in the interior of B. By
the full model , pure or mixed, we mean the model: ‘ρ is in S’, and ‘ρ is in the interior of B’
respectively. By the natural parametrization of these models we mean the parametrization
ρ = ρ(~u), ρ = ρ(~a) respectively.4

The quantum Cramér-Rao bound involves a collection of self-adjoint matrices λi called
the quantum score matrices, one for each component of θ, and a quantum information matrix.
These are defined as follows.

Definition 1.7 (Quantum score matrices) Suppose ρ = ρ(θ) depends on parameters θ =
(θ1, . . . , θk). Suppose that ρ is differentiable with respect to θ and define self-adjoint matrices
λi = λi(θ) implicitly by the equation

ρi =
∂ρ(θ)

∂θi
=

1

2
(λiρ + ρλi).(12)

Note that the λi = λi(θ) will also depend on θ. Another name for these matrices is the
symmetric logarithmic derivatives of ρ with respect to θ. If ρ and its derivative ρi with respect
to θi commute, then λi is nothing else than the derivative of log ρ. By using a basis of C d

making ρ diagonal, ρ =
∑

pj |j〉 〈j|, one can solve (12) to obtain

〈j | λi | j′〉 =
2 〈j | ρi | j′〉

pj + pj′
.(13)

If some pj are zero the corresponding elements of λi may be chosen arbitrarily (subject to
self-adjointness) without effect on subsequent calculations. If ρ is a pure state, then ρ2 = ρ
and it follows from differentiating this equation with respect to θi that in this case λi = 2ρi.

Exercise 1.6 (mean quantum score zero) Show that the quantum score has expectation
zero, that is, the distribution of a measurement of the observable λi has mean zero, or
trace(ρλi) = 0.

Exercise 1.7 (Spin half, mixed) Consider the full mixed-state spin-half model d = 2, ρ =
1
2
(1 + ~θ · ~σ), where θ is three-dimensional and satisfies

∑
i θ

2
i < 1. Then ρi = σi for each i.

At the point θ = (0, 0, ξ) the density matrix is diagonal with diagonal elements 1
2
(1± ξ) and

the quantum scores are found from (13) to be σx, σy and (1− ξ)−2(−ξ1 + σz).

Exercise 1.8 (Spin half, pure) The full pure-state spin-half model has everything as in the
previous exercise but now with

∑
i θ

2
i = 1. A two-dimensional parametrization is called for,

using, e.g., the polar coordinates of the unit vector ~θ. However on the Northern hemisphere
we can stick to θ = (θ1, θ2) with θ3 = +(1 − θ2

1 − θ2
2)

1/2 and we find that at θ = (0, 0) the
quantum scores are σx and σy.

Exercise 1.9 (n copies) Suppose ρ(n)(θ) = ρ⊗n(θ). Then the quantum scores are given by

λ
(1)
i ⊗ 1 · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ λ

(1)
i .(14)

Now we can define the quantum information matrix and state the original quantum
Cramér-Rao bound.

4It would be nice to express conditions and results in the language of differential geometry, i.e., independent
of the specific parametrizations of the models under consideration.
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Definition 1.8 (Quantum information matrix) The quantum information matrix IQ is
defined by

(IQ)ii′ =
1

2
trace(ρ(λiλi′ + λi′λi)).(15)

Check that this defines a real, positive semi-definite matrix!

Exercise 1.10 (n copies, continued) Show from (14) and Exercise 1.6 that the quantum

information I
(n)
Q for a parameter θ in the system ρ⊗n is just n times the quantum information

for θ in a single copy of the system.

Theorem 1.1 (Quantum Cramér-Rao bound) Define IM(θ) to be the Fisher informa-
tion matrix for the parameter θ in the distribution of the outcome of a measurement M on
the quantum system ρ(θ). Then (with respect to the usual ordering of symmetric positive
semi-definite matrices) IM(θ) ≤ IQ(θ).

The result in this form was proved by Braunstein and Caves (1994) for a one-dimensional
parameter, but the general result is an easy consequence of this by considering the information
for arbitrary linear combinations. As a corollary one obtains Helstrom’s original form of the
theorem as a lower bound to the variance of an unbiased estimator of θ based on the outcome
of an arbitrary measurement M .

The proof is just as for the ordinary Cramér-Rao bound, an exercise in using the Cauchy-
Schwartz inequality, but now with the complex inner-product traceX∗Y between two self-
adjoint matrices. And just as in the usual proof of the Cramér-Rao inequality, as a by-product
the proof shows that equality holds, for a one-dimensional parameter, if (though not quite if
and only if) M is actually a simple measurement of the observable λ:

Exercise 1.11 (Optimal M for 1-d θ) Show for one-dimensional θ that if M is the simple
measurement of the observable λ, i.e., its values are in one-to-one correspondence with the
eigenspaces of λ and each M(x) is the projection onto the corresponding eigenspace, then
IM = IQ.

There is a complication when using this result. Typically λ will depend on θ, and typically
in such a strong way that the eigenspaces of λ (and not just eigenvalues) depend on θ. Thus
the best measurement of θ in terms of Fisher information depends on the true value of θ.
However things are very simple in the following example:

Exercise 1.12 Suppose all ρ(θ) commute, i.e., have common eigenspaces. Show that the
ρi(θ) then also commute for all i and θ. Show that a simple measurement of the common
eigenspaces of all these matrices has Fisher information equal to the quantum information
for all values of θ.

The above is actually a completely classical model where ρ =
∑

i pi(θ) |i〉 〈i|, i.e., a classical
mixture with mixing distribution depending on θ of the fixed pure states |i〉. The optimal
measurement is to measure which of these pure states the system is in; that can best be done
using the projector-valued probability measure with elements |i〉 〈i| resulting in the outcome
‘i’ with probability pi(θ). The quantum information matrix is the Fisher information matrix
for this distribution.

The result of Exercise 1.11 does gives a lot of hope for a clear solution to the problem of
estimating a one-dimensional parameter, at least, for large n, for the system ρ⊗n(~a(θ)), as was
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first pointed out by Barndorff-Nielsen and Gill (1998). Suppose the parameter θ is identified,
so that there are a finite number of simple measurements, the distributions of whose outcomes
identifies θ. For example, in the spin-half case ρ = 1

2
(1 + ~θ · ~σ), measurements of σ1, σ2, σ3

result in Bernoulli trials with probabilities 1
2
(1±θi). Suppose that from consistent estimators

of the ai(θ) we can construct a consistent estimator of θ. Now, use a growing number
but vanishing proportion of copies of our quantum system with which to ‘pre-estimate’ θ
consistently. Call this preliminary estimator θ̃. Now, compute the quantum score for θ at
θ̃, determine its eigenspaces, and implement the corresponding simple measurement on all
remaining copies of the system. This gives us an i.i.d. sample from some distribution p(·|θ; θ̃).
Estimate θ by maximum likelihood on these observations conditional on the observed value
of θ̃. The result θ̂ will be an estimator approximately normally distributed about θ with
variance approximately 1/nI(θ; θ̃) where I(θ; θ̃) is the Fisher information for θ in one of

these observations, given θ̃. Now for n large we have arranged that θ̃ is close to the true
value of θ. We may hope that the eigenspaces of λ(θ̃) are close to the eigenspaces of λ(θ)

and hence that the Fisher information in one observation (one simple measurement) of λ(θ̃)
is close to that in one observation of λ(θ). But the latter achieves the quantum Cramér-Rao

bound at θ. Thus under suitable smoothness conditions I(θ; θ̃) will be close to IQ(θ) and
hence the asymptotic distribution of our final estimator close to normal about θ with variance
1/nIQ(θ). This is coming close to saying that θ̂ is asymptotically optimal.

We know that no unbiased estimator of θ can have smaller variance. However that does
not tell us no estimator whatever can do better, e.g., in terms of mean square error. Indeed
the phenomenon of super-efficiency is just as present here as in ordinary statistics. In order to
make a compelling optimality statement about our estimator we must either restrict attention
to a sub-class of nicely behaved estimators, or make optimality statements which are of
a Bayesian or a minimax nature. A very useful tool, which can be used in any of these
approaches, is the van Trees inequality which says for a one-dimensional parameter θ with
prior distribution π(dθ), under some regularity conditions, that the expected (with respect
to the prior) mean square error of a completely arbitrary estimator of θ is bounded by one
divided by the expected Fisher information for the parameter plus the information, with
respect to location, in the prior distribution. This writer prefers to restrict the class of
estimators according to some regularity condition. We will go into this in more detail in
the next section, but before that, let us consider the multiparameter case. We will see that
a more fundamental complication arises: at a fixed parameter value, quantum scores for
different components of the parameter may not commute.

Exercise 1.13 (Quantum information for spin-half models) In exercises 1.8 and 1.7
we noted the score matrices for the full pure-state model ρ = ρ(~u) and for the full mixed-state
model ρ = ρ(~a). Show that, at ~u = (0, 0, 1) in the first case and at ~a = (0, 0, ξ) in the second
case, the quantum information matrices for θ = (u1, u2) and for θ = ~a are respectively

IQ =

(
1 0
0 1

)
, IQ =

 1 0 0
0 1 0
0 0 1/(1− ξ)2

 .(16)

Now the approach just sketched for the one-parameter case breaks down. Certainly we
can form a preliminary estimator of θ and thereby ‘estimate’ the quantum score matrices.
Next, in the full pure- and mixed-state models, one can rotate the coordinate system and
reparametrize so that the quantum scores become σx, σy (pure-state model), and σx, σy, a+bσz
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(mixed state model). There is no way, in either model, we can simultaneously measure these
observables since they do not commute. Thus no measurement on a single particle has an
information matrix equal to IQ. The big question is, what is the class of information matrices
IM which are available? And if we can perform measurements on the system obtained by
combining particles, what scaled information matrices I

(n)
M /n become available? The latter

class includes all of the former class, since the joint measurements include n i.i.d. copies of
measurements on separate particles; moreover these classes are convex and bounded.

Though all scaled information matrices I
(n)
M /n are bounded by IQ, we cannot expect them,

for given n, to contain a single ‘best’ information. Which measurement we should choose will
depend on the relative accuracy with which we want to estimate the different components of
θ. For instance if in the pure-state case, close to θ = (0, 0), we are only interested in θ1 we
should simply measure σx on each of our n particles yielding the maximum information on
θ1 but no information at all on θ2. After we have characterized the class of all information
matrices available, we must specify through some loss function the relative importance of the
different parameters and solve some optimization problem.

2 A new Cramér-Rao type bound

In this section we report on recent results of Gill and Massar (1998), concentrating on the
spin-half situation, and within that case, emphasizing the full pure-state model and the full
mixed-state model. There turns out to be a striking difference between these two cases. For
pure states, there is asymptotically no advantage in joint measurements on many particles.
However for mixed states there typically is an advantage. How much is still an open question.
The following result should be called a ‘Theorem’ (in quotes) since we do not specify regularity
conditions and indeed only a ‘Proof’ exists, not yet a Proof.

Theorem 2.1 (Achievable information matrices, n = 1) The set of all information ma-
trices of outcomes of measurements of one spin-half particle for a smooth model ρ(θ) is
{F : trace(I−1

Q F ) ≤ 1}.

The parameter θ could be one-, two- or three-dimensional. We suppose either that we
have a pure-state model, or a strictly mixed-state model. The argument, in Gill and Massar
(1998), has two main parts. In the first part we show that for all M , F = IM satisfies
trace(I−1

Q F ) ≤ d−1 (we do not yet need that d = 2). In the second part we show that, when
d = 2, for any F satisfying this inequality one can construct a measurement M for which
IM = F . For d > 2, not all F satisfying trace(I−1

Q F ) ≤ 1 are achievable, and it remains open
to characterize exactly the class of achievable information matrices.

For the first part a series of preparatory steps are taken to bring us, ‘without loss of
generality’, to a situation that allows exact computations. For simplicity take d = 2. If
ρ(θ) lies in the interior of the unit ball, and θ has dimension one or two, one can augment
θ with other parameters, raising its dimension to 3. This can be done in such a way that
the cross-information elements in the augmented IQ(θ) are all zero. It then suffices to prove
the inequality for θ of dimension 3, and then we may as well use the natural parametrization
ρ(θ) = 1

2
(1+~θ ·~σ) with ‖θ‖ < 1 since the the quantity trace(I−1

Q F ) is invariant under smooth
reparametrization. If on the other hand ρ(θ) is a pure state model we can in the same way
after augmenting θ assume that θ has dimension 2 and after reparametrization the model is
ρ(θ) = 1

2
(1 + ~θ · ~σ) with ‖θ‖ = 1.
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For the next preparatory step we need the concepts of refinement and coarsening of a
measurement.

Definition 2.1 (Coarsening and refinement) A measurement M with sample space X
is a refinement of M ′ with sample space Y (and M ′ is a coarsening of M) if a measurable
function f : X → Y exists with M ′(B) = M(f−1(B)).

The result of measurement of M ′ then has the same distribution as taking f of the outcome
of measurement of M . It follows that the Fisher information in the outcome of M ′ is less than
or equal to that in M since under coarsening of data, Fisher information can only decrease.

Now we show that any measurement M ′ has a refinement M for which M(A) =
∫
A

M(x)µ(dx)
for some nonnegative operator-valued function M and bounded measure µ and for which
M(x) has rank one for all x, thus M(x) = |ψ(x)〉 〈ψ(x)| for some (not necessarily nor-
malised) vector function |ψ(x)〉. Consequently it will suffice to prove the result for such
maximally refined measurements M . Start with the measurement M ′ with sample space Y .
Define a probability measure ν on Y by ν(B) = trace(M ′(B))/d; by taking Radon-Nikodym
derivatives one can define M ′(y) such that M ′(B) =

∫
B

M ′(y)ν(dy). Since the rank of M ′(y)
is finite, M ′(y) =

∑
i Mi(y) where each Mi(y) has rank one. Now refine the original sam-

ple space Y to X = Y × {1, . . . , d}, defining M(A × {i}) =
∫
A

Mi(y)ν(dy). Equivalently
M(A) =

∫
A

Mi(x)µ(dx, di) where µ is the product of ν with counting measure.
This brings us to the situation where the model is either full pure-state or full mixed-state,

and where the measurement is maximally refined. We take the natural parametrization of
either of these models, and without loss of generality work at a point θ where θ = (0, 0) or
(0, 0, ξ). This is possible by the result of Exercise 1.5. Now we have a formula for IQ and for
the derivatives of ρ with respect to the components of θ, both in the pure and the mixed case,
and we have a representation for M in terms of a collection of vectors ψ(x) which must satisfy
the normalization constraint

∫
X |ψ(x)〉 〈ψ(x)|µ(dx) = 1 but which are otherwise arbitrary.

Both ρ and IQ are diagonal. We simply compute trace I−1
Q IM and show that it equals 1 in

the case d = 2. We leave the details as an exercise for the diligent reader—the computation
is not difficult but does not seem all that illuminating either. We would dearly like to know
if there a more insightful way to get this result!

The same arguments work for arbitrary d though the details are more complicated; a full
mixed-state model has 1

2
d(d + 1) parameters, a full pure-state model 1

2
d(d + 1) − (d − 1)

parameters, and a careful parametrization is needed to make IQ diagonal.
In the second part (for d = 2 only) it is shown that for any F satisfying trace(I−1

Q F ) ≤ 1,
one can construct a measurement M for which IM = F . This measurement will be described
in the next section. It typically depends on the point θ so a multi-stage procedure is going to
be necessary to achieve asymptotically this information bound. That will be the main content
of the next section, where we do some quantum asymptotics proving asymptotic optimality
results for n→∞ of the resulting two-stage procedure.

We only have partial results for n > 1. In two special cases the available scaled information
matrices do not increase as n increases. One of these cases is the case of pure-state models.
This case has been much studied in the literature and is of great practical importance. The
other case is when we make a restriction on the class of measurements to measurements of
product form (in the literature also sometimes called an unentangled measurement). We first
define this notion and then explain its significance.

Definition 2.2 (Product-form measurements) We say that a measurement on n copies
of a given quantum system is of product form if M (n)(A) =

∫
A

M (n)(x)µ(dx) for a real measure
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µ and matrix-valued function M (n)(x) where M (n)(x) is of the form M1(x) ⊗ · · · ⊗Mn(x),
with nonnegative components.

We described in the previous section a measurement procedure whereby we first carried
out measurements on some of our n particles, and then depending on the outcome, carried out
other measurements on the remaining particles. Altogether this procedure constitutes one
measurement on the joint system of n particles taking values in some n-fold product space.
One can conceive of more elaborate schemes where depending on the results at any stage, one
decides, possibly with the help of some classical randomisation, which particle to measure next
and how. It would be allowed to measure again a particle which had previously been subject
to measurement. There exists a general description of the state of a quantum system after
measurement, allowing one to piece all the ingredients together into one measurement of the
combined system. A measurement which can be decomposed into separate steps consisting
of measurements on separate particles only, is called a separable measurement.

It turns out that all separable measurements (provided all outcomes of the component
steps are encoded in the overall outcome x) have product-form. On the other hand, product-
form measurements exist which are not separable, see Bennett et al. (1998). The product-form
measurements form a large and interesting class, including all measurements which can be
carried out sequentially on separate particles as well as more besides.

In the notion of separable measurement it is insisted that all intermediate outcomes are
included in the final outcome. If one throws away some of the data, one gets an outcome
whose distribution is the same as the distribution of a coarsening of the original measurement.
Coarsening of a measurement can easily destroy the properties of being separable or being
of product-form. This is some explanation for the complicated restriction to measurements
which can be refined to product-form in the following theorem:

Theorem 2.2 (Achievable information matrices n > 1) The scaled information matri-
ces of measurements on a smooth model ρ⊗n(θ) remain {F : trace(I−1

Q F ) ≤ 1}

1. in a pure-state spin-half model;

2. in a mixed-state spin-half model with the class of measurements restricted to measure-
ments which can be refined to product-form,

The theorem is proved exactly as before, again finishing in an unilluminating calculation.
We have a counterexample to the conjecture that, for mixed states, the bound holds for

all measurements. In the case n = 2, at the point ρ = 1
2
1, there is a measurement for which

trace(I−1
Q I

(2)
M /2) = 3/2, thus 50% more information in an appropriate measurement of two

identical particles than any combination of separate measurements of the two. What the set
of achievable scaled information matrices looks like and whether it continues to grow (and to
what limit) as n grows is completely unknown5.

The measurement has seven elements, the first six of the form 1
2
Π[ψ], and the seventh

Π[ψ]. The various ψ are |+z + z〉, |−z − z〉, |+x + x〉, |−x− x〉, |+y + y〉, |−y − y〉, |S〉. By
|+z + z〉 we mean |+z〉 ⊗ |+z〉 = ψ(~ez)⊗ ψ(~ez) and similarly for the next five. The last ψ is
the so-called singlet state 1√

2
(|+z〉 ⊗ |−z〉 − |−z〉 ⊗ |+z〉). As a pure state of two interacting

5We conjecture that the set of achievable scaled information matrices, in the spin half case, does not
increase anymore after n = 2; cf. the characterization of so-called completely positive maps; Davies, 1976,
Quantum Theorey of Open Systems
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spin-half particles, this is the famous entangled state resulting in the violation of the Bell
inequalities, and hence of locality (according to some interpretations). Here it arises as part
of a measurement of two completely non-interacting particles; however this measurement can
never be implemented by doing separate operations on the separate particles.

Similar examples occur in the paper of Vidal et al. (1998), extending the pure-state results
of Massar and Popescu (1995) to mixed states.

3 Quantum asymptotics

The results of the previous section are in the form of a bound on the information matrix
based on the outcome of any measurement (perhaps restricted to the class of product-form
measurements) on n identical copies of a given spin-half quantum system with state depending
on an unknown parameter θ. We will now explain how such a bound can be used to give
asymptotic bounds on the quality of estimators based on those measurements. Furthermore,
we show how the bounds can be achieved by a two-stage procedure using simple measurements
on separate particles only. As far as achieving the bounds is concerned, only for the full
mixed-state model under the natural parametrization is the problem completely solved. For
the other models, the results are conjectural.

We will discuss two kinds of bounds: firstly, a bound on the limiting scaled mean quadratic
error matrix of a well-behaved sequence of estimators, and secondly, a bound on the mean
quadratic error matrix of the limiting distribution of a well-behaved sequence of estimators.
Each has its advantages and disadvantages. In particular, since the delta-method works
for (the variance of) limiting distributions but not for limiting mean square errors, stronger
conditions are needed to prove optimality of some procedure in the first sense than in the
second sense.

3.1 Two asymptotic bounds

Obviously a bound on the information matrix, by the ordinary Cramér-Rao inequality, im-
mediately implies a bound on the covariance matrix of an unbiased estimator. However this
is not a restriction we want to make. It turns out much more convenient to work via a
Bayesian version of the Cramér-Rao inequality due to van Trees (1968), as generalised to
the multi-parameter case by Gill and Levit (1995). For a one-dimensional parameter the van
Trees inequality is easy to state: the Bayes quadratic risk is bounded by one over expected
information plus information in the prior. In the multiparameter case one has a whole col-
lection of inequalities corresponding to different choices of quadratic loss function and some
other parameters, more difficult to interpret.

Let π(θ) be a prior density for the p-dimensional parameter θ, which we suppose to
be sufficiently smooth and supported by a compact and smoothly bounded region of the
parameter space; see Gill and Levit (1995) for the precise requirements. Let C(θ) be a p× p

symmetric positive definite matrix (C stands for cost function) and let V (n)
M (θ) be the mean

quadratic error matrix of a chosen estimator of θ based on a measurement of n copies of
the quantum system. Letting Θ denote a random drawing from the prior distribution π, it
follows that E trace C(Θ)V

(n)
M (Θ) is the Bayes risk of the estimator with respect to the loss

function (θ̂(n) − θ)>C(θ)(θ̂(n) − θ).

Let D(θ) be another p×p matrix function of θ. Let I
(n)
M (θ) denote the Fisher information
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matrix in the measurement. Then the multivariate van Trees inequality reads

E trace C(Θ)nV
(n)
M (Θ) ≥ (E traceD(Θ))2

E trace C(Θ)−1D(Θ)(I
(n)
M (Θ)/n)D(Θ)> + Ĩ(π)/n

(17)

where

Ĩ(π) =

∫
1

π(θ)

∑
ijkl

C−1
ij (θ)

∂

∂θk
(Dik(θ)π(θ))

∂

∂θl
(Djl(θ)π(θ))dθ.(18)

On invoking Theorem 2.2 we have the bound trace I−1
Q (θ)(I

(n)
M (θ)/n) ≤ 1, (provided that, in

the mixed case, we restrict attention to measurements refinable to product-form). We are
going to assume that our sequence of measurements and estimators is such that the normalized
mean quadratic error matrix V

(n)
M (θ) converges sufficiently regularly to a limit V (θ). Our aim

is to transfer the just mentioned bound to V obtaining the bound trace I−1
Q (θ)V (θ)−1 ≤ 1.

We will do this by making appropriate choices of C and D. We will need regularity
conditions both on the sequence of estimators and on the model ρ(θ) in order to carry over
equation (17) to the limit.

Theorem 3.1 (Asymptotic Cramér-Rao 1) Suppose that on some open set of parameter
values θ:

1. nV(n) converges uniformly to a continuous limit V .

2. IQ(θ) is continuous with bounded partial derivatives.

3. V and IQ are non-singular.

Then the limiting normalised mean quadratic error matrix satisfies

trace I−1
Q (θ)V (θ)−1 ≤ 1.(19)

We outline the proof of the theorem as follows. First of all, we pick a point θ0 and define
V0 = V (θ0). Next we define

C(θ) = V −1
0 I−1

Q (θ)V −1
0 ,(20)

D(θ) = V −1
0 I−1

Q (θ).(21)

With these choices (17) becomes

E trace V −1
0 I−1

Q (Θ)V −1
0 (nV

(n)
M (Θ)) ≥

(E trace V −1
0 I−1

Q (Θ))2

E trace IQ(Θ)−1(I
(n)
M (Θ)/n) + Ĩ(π)/n

.(22)

We can bound the first term in the denominator of the right hand side by 1, by the results
of the last section. The second term in the denominator of the right hand side is finite, by
our third assumption, and for n → ∞ it converges to zero. By our first assumption (22)
converges to

E trace V −1
0 I−1

Q (Θ)V −1
0 V (Θ) ≥ (E trace V −1

0 I−1
Q (Θ))2.(23)
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Now replace the prior density π by one in a sequence of priors, concentrating on smaller and
smaller neighbourhoods of θ0. Using the continuity assumptions on V and IQ, we obtain from
(23) the inequality

trace V −1
0 I−1

Q (θ0)V
−1

0 V0 ≥ (trace V −1
0 I−1

Q (θ))2.

or in other words, with θ = θ0, the required

trace I−1
Q (θ)V −1(θ) ≤ 1.(24)

In some situations it might be more convenient to have a bound on the mean quadratic
error of a limiting distribution, assuming one to exist. At the moment of writing we believe
the following:

Theorem 3.2 (Asymptotic Cramér-Rao 2) Suppose

1. θ̂n is Hájek regular at θ at root n rate.

2. If Z has the limiting distribution of √n(θ̂ − θ), then the mean quadratic error matrix

of the limiting distribution V = E(Z Z>) is non-singular.

3. IQ is non-singular.

Then V satisfies

trace I−1
Q (θ)V (θ)−1 ≤ 1.(25)

The proof should follow the lines of the similar result in Gill and Levit (1995), with a prior
distribution concentrating on a root n neighbourhood of the truth. We will need similar
choices of C and D as in the proof of Theorem 3.1 though the dependence of D on θ can now
be suppressed.

3.2 Achieving the asymptotic bounds

At present we have essentially complete results in the full mixed-state spin-half model with
the natural parametrization. We believe they can be extended to smooth (C1) pure- and
mixed-state models.

Give yourself a target mean quadratic error matrix W (θ) satisfying

trace IQ(θ)−1W (θ)−1 ≤ 1.(26)

Is there a sequence of measurements M (n) satisfying the conditions of Theorems 3.1 or 3.2
with limiting mean quadratic error matrix V (θ) equal to the target?

Possibly we do not start with a target W but with a step earlier, with a quadratic cost
function. For given C(θ) it is straightforward to compute the matrix W (θ) which minimizes
trace C(θ)W (θ) subject to the constraint (26); the solution is

W = trace((I
− 1

2
Q CI

− 1
2

Q )
1
2 )I
− 1

2
Q (I

1
2
QCI

1
2
Q)

1
2 I
− 1

2
Q .

Now we pose the same question again, with the W we have just calculated as target.
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Let us call F = W−1 the target information matrix. First we pretend θ is known and
exhibit a measurement M on a single particle with the target information matrix at the given
parameter value.

In the previous section we omitted explaining how the bound of Theorem 2.1 can be
attained. That theorem stated that, at a given parameter value, for any positive-semidefinite
symmetric F satisfying trace I−1

Q F ≤ 1 there is a measurement M on a single spin-half particle
with IM = F . What is that measurement? We describe it in the case of a full mixed-state
spin-half model with the natural parametrization, thus ρ(θ) = 1

2
(1 + ~θ · ~σ). The matrices IQ

and F are 3× 3.

To start with, we compute the eigenvector-eigenvalue decomposition of I
− 1

2
Q FI

− 1
2

Q , obtain-

ing eigenvectors ~hi and nonnegative eigenvalues γi, say. The condition on F translates to∑
γi ≤ 1. Now define ~gi = I

1
2
Q
~hi and three unit vectors ~ui = gi/‖gi/‖, and finally consider

the measurement M taking seven different values, whose elements are γiΠ(±~ui), i = 1, 2, 3,
and (1−

∑
γi)1.

It turns out by a staightforward computation (carried out, without loss of generality,
at θ = (0, 0, ξ)) that the information matrix for the measurement with the two elements
Π(±~ui) has information matrix ~gi⊗~gi and hence the measurement M has information matrix∑

i γi~gi ⊗ ~gi = F .
This seven-outcome measurement can be implemented as a randomized choice between

three simple measurements: with probability γi measure spin in the direction ~ui, with prob-
ability 1−

∑
γi do nothing.

However in practice this measurement is not available since the directions ~ui and proba-
bilities γi depend on the unknown θ. We therefore take recourse to the following two-stage
measurement procedure.

First measure spin in the x, y and z directions on 1
3
na each of the particles, where 0 < a < 1

is fixed and the numbers are rounded to whole numbers. The expected relative frequency of
‘up’ particles in each direction is 1

2
(1 + θi), i = 1, 2, 3, so solving observed equals expected

yields a consistent preliminary estimator θ̃ of θ. If the estimate lies outside the unit-ball
project onto the ball and stop. With large probability no projection is necessary. We can

compute the eigenvalue-eigenvector decomposition of I
− 1

2
Q (θ̃)F (θ̃)I

− 1
2

Q (θ̃), leading to fractions
γi and directions ~ui as above. Measure the spin of a fraction γi of the remaining particles
in the direction ~ui. Solve again the three (linear) equations ‘observed relative frequency
equals expected’ treating the ~ui as fixed. Project onto the unit ball if necessary, yielding an
estimator θ̂.

Our claim is that this procedure exhibits a measurement M (n) on the n particles, and
an estimator θ̂(n) based on its outcome, which satisfies the conditions of Theorem 3.1, with
V (θ) equal to the target W (θ). Thus the bound of Theorem 3.1 is also achievable, and a
measurement which does this has been explicitly described above. Apart from projecting
onto the unit ball the estimator involves only linear operations on binomial variables so is
not difficult to analyse explicitly. We need a preliminary sample size ñ of order na and not, for
example, of order log n, in order to control the scaled mean quadratic error of the estimator.
There is an exponentially small probability—in ñ, not in n—that the preliminary estimate
is outside of a given neighbourhood of the truth, and hence that the scaled quadratic error
is of order n.

One can further check that the estimator we have described also satisfies the conditions
of Theorem 3.2.
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Possibly one is interested in a different parametrization of the model. Under a smooth
(C1) reparametrization, the delta method allows us to maintain optimality in the sense of
Theorem 3.2. However optimality in the sense of Theorem 3.1 could be destroyed; in order for
it to be maintained the reparametrization should also be bounded. Alternatively one must
modify the estimator by a truncation at a level increasing slowly enough to infinity with n,
cf. Schipper (1997; section 4.4) or Levit and Oudshoorn (1993) for examples of the technique.

This approach can be extended to other spin-half models. The difficulties are exempli-
fied by the case of the two-parameter full pure-state spin-half model. Locally, consider the
natural parametrization θ = (θ1, θ2), θ3 = (1 − θ2

1 − θ2
2)

1/2, ρ = ρ(~θ) at the point θ = (0, 0).
The quantum information matrix for three parameters θ1, θ2, θ3 contains an infinite element.
However the recipe outlined above continues to work if we add to a given 2× 2 target infor-
mation matrix a third zero row and column—infinities always get multiplied by zero. The
third fraction γ3 = 0 so simple measurements in just two directions suffice.

The resulting procedure involves linear operations on binomial counts, projecting onto S,
and reparametrization. Under some smoothness we should finish with an estimator optimal
in the sense of Theorem 3.2; under further smoothness, boundedness, and a sufficiently large
preliminary sample also optimality in the sense of Theorem 3.1 should hold.

If the target information matrix includes some zeros, i.e., one is not interested at all in
certain parameters, the results should still go through; the preliminary sample should be
of size of order na, 1

2
< a < 1, in order that the uncertainty in the initial estimate of the

‘nuisance parameters’ does not contaminate the final result.

4 Non-locality without entanglement

It would take us too far afield here to explain the notions of entanglement and of non-
locality. For some kind of introduction see Kümmerer and Maassen (1998) and Gill (1998),
and Gill (1995a, 1995b); see also the books of Peres (1995), Isham (1995), Penrose (1994),
Maudlin (1994). However we would like to discuss whether or not our finding, that non-
separable joint measurements on several independent (non-entangled) quantum particles can
yield more information that any separate measurements on the separate particles, should be
considered surprising or not. Recall that separable measurements, cf. Bennett et al. (1998),
are measurements which can be decomposed into a sequence of measurements on separate
particles, each measurement possibly depending on the outcome of the preceding ones, and
whereby it is allowed to measure further a particle which has already been measured (and
hence its state has been altered in a particular way) at an earlier step.

From a mathematical point of view there should not be much surprise. The class of
separable measurements is contained in the class of product-form measurements, which is
clearly a very small part of the space of all measurements whatsoever. The optimisation
problem of maximising Fisher information (more precisely, some scalar functional thereof)
must only be expected to have a larger outcome when we optimise over a larger space.
The surprise for the mathematician is rather that for pure states, and for one dimensional
parameters, there is no gain in joint measurements. And it is strange that mixed states should
exhibit this phenomenon whereas pure states do not: the differenence is classical probabilistic
mixing which should not lead to nonclassical behaviour.

However physicists are and should be surprised. The reason is connected to the feeling
of many physicists that the randomness in measurement of a quantum system should have a
deterministic explanation (Einstein: “God does not throw dice”) . We appreciate very well
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that tossing a coin is essentially a completely deterministic process. It is only uncontrolled
variability in initial conditions which lead to the outcome appearing to be completely random.
Might it be the case also that the randomness in the outcome of a measurement of a quantum
system might be ‘merely’ the reflection of statistical variability in some initial conditions?
So-called hidden variables because at present no physicist is aware what these lower level
variables are and there is no known way directly to measure them?

In fact there already exist arguments aplenty that if there is a deterministic hidden
layer beneath quantum theory, it violates other cherished physical intuitions, in particular
the principle of locality; see again Kümmerer and Maassen (1998), Gill (1998) for some
introduction to the phenomenon of entanglement, and further references. But let us ignore
that evidence and consider the new evidence from the present results. Consider two identical
copies of a given quantum state. Suppose there were a hidden deterministic explanation for
the randomness in the outcome of any measurement on either or both of these particles. Such
an explanation would involve hidden variables ω1, ω2 specifying the hidden state of the two
particles. Since applying separate measurements to the two systems produces independent
outcomes, and since the outcomes of the same measurements are identically distributed, one
would naturally suppose that these two variables are independent and identically distributed.
Their distributions would of course depend on the unknown parameter θ. Now when we
measure the joint system, there could be other sources of randomness in our experiment,
possibly even quantum randomness, but still it would not have a distribution depending
on θ. So let us assume there is a third random element ωM such that the outcome of
the measurement M on the system ρ(θ) ⊗ ρ(θ) is a deterministic function of ω1, ω2 and
ωM ; the first two are independent and identically distributed, with marginal distributions
depending on θ, while the distribution of ωM given the other two is independent of θ. Thus
the random outcome X of the measurement of M is just X(ω1, ω2, ωM), a random variable
on the probability space (Ω × Ω × ΩM ), ((Pθ × Pθ) ∗ PM ) where PM is some Markov kernel
from Ω×Ω to ΩM . Now it is well-known from ordinary statistics that the Fisher information
in θ from the distribution of any random variable defined on this space is less than twice the
information in one observation of ω1 itself seen as a random variable defined on (Ω, Pθ). Thus
if one could realise any ΩM , PM and any X whatsover by suitable choice of measurement M ,
achievable Fisher information would be additive!

What can we conclude from the fact that achievable Fisher information is not additive?
We cannot rule out hidden variable models such as the above. But apparently, the hidden
variables are so well hidden that we cannot uncover them from any measurements on single
particles. i.e., it is not possible to realise any (ΩM , PM) and any X whatever by appropriate
choice of experimental set-up. However we can uncover the hidden variables better, appar-
ently, from appropriate measurements on several particles brought together, even though
these particles have nothing whatever to do with one another—their hidden variables are
independent and identically distributed. Alternatively the explanation must be found in
some pathological non-measurability or non-regularity of the statistical model we have just
introduced. Whatever escape-route one chooses, it is clear that if there is a deterministic
explanation for quantum randomness, it is a very very weird explanation. God throws rather
peculiar dice.

Acknowledgements. This paper is based on work in progress together with O.E. Barndorff-
Nielsen and with S. Massar. I am grateful for the hospitality of the Department of Mathe-
matics and Statistics, University of Western Australia. I would like to thank Boris Levit for
his patient advice.

22



REFERENCES

My www site gives many further useful links, see especially
http://www.math.uu.nl/people/gill/Onderwijs/SemQStoch

Barndorff-Nielsen, O.E. and Gill, R.D. (1998). An example of non-attainability of expected
quantum information.
Preprint quant-ph/9808009, http://xxx.lanl.gov;
http://www.math.uu.nl/people/gill/Preprints/unattain.ps.gz

Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A.,
and Wootters, W.K. (1998). Quantum nonlocality without entanglement.
Preprint quant-ph/9804053, http://xxx.lanl.gov.

Biane, P. (1995). Calcul stochastique non-commutatief. pp. 4–96 in: Lectures on Probability
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Probabilités XX, ed. J. Azéma and M. Yor, Springer Lecture Notes in Mathematics
1204.

Penrose, R. (1994). Shadows of the Mind: a Search for the Missing Science of Consciousness.
Oxford University Press.

Percival, I. (1998). Quantum State Diffusion. Cambridge University Press.

Peres, A. (1995). Quantum Theory: Concepts and Methods. Kluwer, Dordrecht.

Peres, A. and Wootters, W.K. (1991). Optimal detection of quantum information. Physical
Review Letters 66 1119–1122.

Schipper, C.M.A. (1997). Sharp Asymptotics in Nonparametric Estimation. PhD thesis,
University Utrecht, ISBN 90-393-1208-7.

van Trees, H.L. (1968). Detection, Estimation and Modulation Theory (Part 1). Wiley, New
York.

Vidal, G., Latorre, J.I., Pascual, P., and Tarrach, R. (1998). Optimal minimal measurements
of mixed states.
Preprint quant-ph/9812068, http://xxx.lanl.gov.

Mathematical Institute

University Utrecht

P.O. Box 80010

3508 TA Utrecht

Netherlands

gill@math.uu.nl

24


