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Abstract. In this paper we describe a new, direct and mathematically exact method
for the reconstruction of the isotropic conductivity in a plane body from static electric
measurements on the boundary of the body. The method is inspired by a unique-
ness proof for the inverse conductivity problem due to Brown–Uhlmann and covers
conductivities having essentially one derivative. Moreover, we give a numerical imple-
mentation of the algorithm and test the performance on a simple, synthetic example.
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1. Introduction

The inverse conductivity problem is the mathematical formulation of the general

problem in Electrical Impedance Tomography (EIT), i.e. the imaging of an unknown

conductivity distribution in a body from static electric measurements on the boundary of

the body. To pose the mathematical problem we introduce the bounded and smooth set

Ω ⊂ Rn (n = 2, 3), which models the body we want to image. The boundary of the body

is denoted by ∂Ω. We assume that the conductivity distribution inside Ω is isotropic

and hence described by a strictly positive and bounded function γ defined in Ω. For

simplicity we assume that γ = 1 near ∂Ω. In the mathematical language it is convenient

to describe the boundary measurements by functions, which are continuously defined

on ∂Ω (we do not attempt to model electrode configurations etc.). The experiments are

performed by inducing a voltage potential f on ∂Ω and then measuring the resulting

current flux through the boundary. This quantity is given by

g = (ν1, ν2) · (∇u)|∂Ω,

where (ν1, ν2) is the outward unit normal to ∂Ω and u is the voltage potential inside Ω

defined as the unique solution to

∇ · γ∇u = 0, in Ω, u = f, on ∂Ω. (1)
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Taking all possible boundary fields f and then measuring the resulting current fluxes

g gives the knowledge of the so-called Dirichlet-to-Neumann map or voltage-to-current

map Λγ defined by

Λγf = g.

This map encodes all possible boundary measurements, which can in principle be

considered for EIT.

The inverse conductivity problem, as it was posed in (Calderón 1980), consists

of two parts. First, the question of uniqueness: if for two conductivity distributions

(γ1, γ2) all boundary measurements agree (Λγ1 = Λγ2), can we then conclude that the

conductivities must be the same (γ1 = γ2)? Second, the question of reconstruction:

assuming that uniqueness holds, how should we compute the conductivity γ from the

boundary measurements Λγ?

For the three-dimensional problem the uniqueness question was answered

affirmatively in (Sylvester & Uhlmann 1987) for conductivities having essentially two

derivatives, and a reconstruction algorithm was given independently in (Nachman

1988) and (Novikov 1988). For the two-dimensional problem the uniqueness and

reconstruction questions were solved in (Nachman 1996) for conductivities having

essentially two derivatives. The method of proof was based on the ∂-method of inverse

scattering. The reconstruction algorithm has since been implemented numerically

(Siltanen, Mueller & Isaacson 2000, Siltanen, Mueller & Isaacson 2001a, Siltanen,

Mueller & Isaacson 2001b, Mueller & Siltanen n.d.). More recently in (Brown &

Uhlmann 1997) an affirmative answer was given to the uniqueness question for the

two-dimensional problem for conductivities having essentially one derivative. Again

the ∂-method of inverse scattering was the essential tool. Several extensions of these

results exist in the literature (see (Uhlmann 1999)), but surprisingly enough only

little is known, when the conductivity is not assumed to have a certain amount of

smoothness. The general problem of unique determination and reconstruction of an

arbitrary (discontinuous) conductivity still remains to be solved.

In this paper we will consider the reconstruction issue for the two-dimensional

problem and discuss a recent direct reconstruction method obtained jointly in (Knudsen

& Tamasan 2001). The algorithm is based on the uniqueness proof of Brown and

Uhlmann and gives a mathematically exact way to reconstruct conductivities, which

are assumed to have essentially one derivative. In some sense the algorithm generalizes

Nachman’s algorithm; in particular the method attacks directly the full nonlinear

problem, and hence it is not based on linearization or iterative schemes. For these other

types of algorithms we refer to (Cheney, Isaacson & Newell 1999) and (Borcea 2002).

In the next section we will explain the theory behind the reconstruction algorithm.

Then in section 3 we will give a numerical implementation of the algorithm, and finally

in section 4 we will test the algorithm on a synthetic example.
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2. The reconstruction algorithm

Extend the conductivity outside Ω by γ = 1 and let u be a solution to the conductivity

equation (1) in R2. Introduce the vector (v, w) = γ1/2(∂u, ∂u), where

∂ =
∂

∂z
=

1

2
(∂x1 − i∂x2), ∂ =

∂

∂z
=

1

2
(∂x1 + i∂x2). (2)

Here and in the sequel we identify the complex number z = x1 + ix2 ∈ C and

(x1, x2) ∈ R2. Since u solves (1) it follows that (v, w) solves the system

∂v = qw, ∂w = qv, (3)

where q = −γ−1/2∂γ1/2. Note that q is well-defined when γ admits one derivative. Note

further that q is supported inside Ω, i.e. q = 0 in R2 \ Ω.

The idea is now to apply the ∂-method of inverse scattering to the system (3). This

method was introduced by Beals and Coifman in a series of papers; the analysis of (3)

was given in (Beals & Coifman 1985, Beals & Coifman 1988). For any fixed k ∈ C we

look for a special exponentially growing solution Ψ(z, k) = (Ψ1, Ψ2)(z, k) to the system

(3), which has the asymptotics

e−izkΨ(z, k) → (1, 0) as |z| → ∞. (4)

To elaborate on this definition let e(z, k) = exp(i(zk + zk)) = exp(i2Re(zk)) and

introduce m(z, k) = e−izkΨ(z, k) and the linear combination

m±(z, k) = m1(z, k)±m2(z, k)e(z,−k). (5)

Since Ψ satisfies (3) and has the asymptotics (4), m± satisfies

∂m±(z, k) = ±q(z)e(z,−k)m±(z, k)

together with the asymptotic condition m±(z, k) → 1 as |z| → ∞. Equivalently m±
satisfies the weakly singular integral equation

m±(z, k) = 1± 1

π

∫
Ω

q(z′)e(z′,−k)

z − z′
m±(z′, k)dx′1dx′2, (6)

which can be solved uniquely for m± in a certain function space.

Associated with the system (3) is then the function

S(k) = − i

π

∫
Ω

e(z, k)q(z)m1(z, k)dx1dx2, (7)

the so-called non-physical scattering transform of the potential q. Even though the

scattering transform is not observable in experiments, it is very useful as an intermediate

object when solving the inverse problem. The usefulness is two-fold. First, the

scattering transform can be computed from the boundary measurements, and second,

the conductivity can be computed from the scattering transform. This gives a

reconstruction procedure consisting of the two steps

Λγ → S → γ.

This decomposition was used first in (Brown & Uhlmann 1997), who proved that Λγ

determines S uniquely and that S determines γ uniquely. Also the stability analysis in
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(Barceló, Barceló & Ruiz 2001) is based on the decomposition. They showed essentially

that the first step is unstable, while the second step is stable.

We will in the following two subsections more carefully describe each step in this

reconstruction procedure. For complete proofs we refer to (Knudsen & Tamasan 2001).

2.1. From Λγ to S

Since Ψ solves (3) and q is supported in Ω, integrating by parts in (7) shows that

S(k) = − i

2π

∫
∂Ω

eizkν(z)Ψ2(z, k)dS, k ∈ C, (8)

where ν(z) = ν1(z)− iν2(z) ∈ C and dS is the surface element of the boundary. Hence

to compute S from Λγ we have to compute the boundary values of Ψ. To do so we will

derive equations on ∂Ω, which describe Ψ|∂Ω uniquely.

First, we consider the behavior of Ψ outside Ω. Define the exponentially growing

Green’s function gk for ∂ by

gk(z) =
1

π

e−ikz

z
.

Let z ∈ ∂Ω and define the single layer potentials Sk, Sk by

Skf(z) = p.v.

∫
∂Ω

f(ζ)gk(ζ − z)dζ, Skf(z) = p.v.

∫
∂Ω

f(ζ)gk(ζ − z)dζ.

Here p.v. (principal value) indicates that the integral is given meaning by a certain

limiting procedure. the important observation is now that any vector Φ, which is a

solution to (3) outside Ω and has exponential growth described by e−izkΦ → (1, 0) for

|z| → ∞, must satisfy the equations

(I − iSk)Φ1 = 2eizk, (I + iSk)Φ2 = 0 (9)

on ∂Ω. In particular Ψ|∂Ω satisfies (9).

Second, we consider the behavior inside Ω. Let ∂τ be the derivative along ∂Ω and

let ∂−1
τ be its inverse (defined on a suitable space up to an additive constant). Define

Hγ = Λγ∂
−1
τ . Then any vector Φ, which solves (3) inside Ω, must satisfy the equation

(iHγ − I)νΦ1 = (iHγ + I)νΦ2 (10)

on ∂Ω. Again Ψ|∂Ω is one such solution.

It can now be shown that Ψ|∂Ω is the only function that satisfies both (9) and

(10) (see (Knudsen & Tamasan 2001)). Hence to find Ψ2|∂Ω we have to solve (9)–(10)

simultaneously, and then insert the function into (8). This gives a method for computing

S from Λγ.

2.2. From S to γ

To compute γ from S the crucial observation is that with respect to the variable k,

m(z, k) satisfies a differential equation. Indeed, the function m±(z, k) = m1(z, k) ±
m2(z, k) can for any fixed z ∈ Ω be seen to satisfy

∂km
±(z, k) = ±S(k)e(z,−k)m±(z, k)
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and the asymptotic condition m±(z, k) → 1 for |k| → ∞. Here ∂k denotes the derivative

with respect to the complex variable k, cf. (2). Equivalently m± satisfies the integral

equation

m±(z, k) = 1± 1

π

∫
R2

S(k′)e(z,−k′)
k − k′

m±(z, k′)dk′1dk′2,

which is uniquely solvable (note the similarity between this equation and (6)). This gives

a method for the computation of m from S. Eventually, we can then from m compute q

and γ. A theoretical result shows, however, that if we instead compute the solution m̃+

to

m̃+(z, k) = 1 +
1

π

∫
R2

S(−k′)e(z,−k′)
k − k′

m̃+(z, k′)dk′1dk′2, (11)

then we simply find

γ(z) = (Re(m̃+(z, 0)))2. (12)

Hence by knowing S, we can solve (11) and then obtain the conductivity γ from (12).

3. Implementation of the algorithm

In this section we give a numerical implementation of the algorithm described in

section 2. The special example we will analyze below in section 4 is a radial conductivity

on the ball B(0, 1) = {z ∈ R2 | |z| ≤ 1}, i.e. a conductivity γ with γ(z) = γ(|z|). We

will occasionally take this into account in the design of the implementation

3.1. Computing the scattering transform from boundary data

As noted in (Sylvester 1992) in the case of a radial conductivity on B(0, 1), the

eigenfunctions of the Dirichlet-to-Neumann map is the Fourier basis einθ, n ∈ Z, i.e.

Λγe
inθ = λneinθ.

where the eigenvalues {λn} are positive real numbers. Thus the Dirichlet-to-Neumann

map is conveniently represented by its eigenvalues. Also for the operator ∂−1
τ is easily

represented in a Fourier basis represented

∂−1
τ einθ =

1

in
einθ, n 6= 0.

Hence the operator Hγ can be implemented in a Fourier basis by

Hγe
inθ =

λn

in
einθ.

This formula can be used in setting up a matrix for the linear operator Hγ, which acts

on discrete functions on the boundary.

The equations (9)–(10) are a complete characterization of Ψ|∂Ω. To compute Ψ|∂Ω

from this equation numerically, a suggestion could be to discretize the boundary

operators involved as a matrix A and the right hand side in the equation as a vector
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b, and then solve the linear system Ax = b numerically. This idea has in preliminary

tests caused difficulties, due to the fact that when the equations (9)–(10) are solved

numerically, the exponentially growing part Ψ1|∂Ω will dominate the solution. However,

the computation of S by (8) involves only Ψ2|∂Ω, which is small and dominated by

computational errors.

To overcome the difficulty we suggest to use the asymptotic value Ψ1(z, k) ≈ eizk

in the equation (10) and hence consider the equation

(iHγ + I)νΨa
2 = (iHγ − I)νeizk (13)

for an approximation Ψa
2 to Ψ2. This linear equation can easily be solved numerically

(in the least squares sense).

Having found the approximation Ψa
2|∂Ω, we can by integrating along the boundary

compute an approximation of the scattering transform by

Sa(k) = − i

2π

∫
∂Ω

eizkΨa
2(z, k)ν(z)dS. (14)

3.2. Computing the conductivity from the scattering transform

In section 2 a weakly singular integral equation appears both in the forward problem

(6) and in the inverse problem (11). In our numerical test solving (6) is necessary in the

computation of the exact S from the known potential, while solving (11) is an essential

step in the reconstruction algorithm. Both equations have the generic form

m(v, p) = 1 +
1

π

∫
R2

T (v′, p)

v − v′
m(v′, p)dµ(v′), (15)

where v is the variable (z, k, respectively), p is the parameter (k, z, respectively),

T : C × C 7→ C is the multiplier in the equation (±q(z)e(z,−k), S(−k)e(z,−k),

respectively). In the following we will suppress the dependency on the parameter p.

To solve (15) numerically we adapt a general method described in (Vainikko 1993)

for solving such integral equations. This method has previously been used for

solving Lippmann-Schwinger type equations numerically, see (Vainikko 2000, Mueller

& Siltanen n.d., Hohage 2001). We will only sketch the method; for complete details

and convergence analysis we refer to the forthcoming paper (Knudsen, Mueller &

Siltanen 2003).

We will assume that the coefficient T is compactly supported inside an open set D.

In the forward problem (6) this assumption holds, since q is compactly supported, but

in the inverse problem the scattering transform S is not of compact support. In that

case we will have to cut-off the scattering transform by putting S(k) = 0 for |k| > R

sufficiently large. This cut-off introduces a systematic error, which, however, can be

neglected if R is large.

The solution m is computed on the support D of T. Assume for simplicity that

D = [−1, 1]2 (the general case can be treated similarly). Let n be a positive integer and

let

Z
2
n = {(z1, z2) ∈ Z

2 | − 2n−1 ≤ zj ≤ 2n−1, j = 1, 2}.
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Fix the discretization level h = 21−n. Then hZ2
n is a uniform grid on D consisting of

(2n + 1)2 points. The grid approximation of a function f on D is defined by

fj,h = f(jh), j ∈ Z
2
n.

Then (15) is approximated by the matrix equation

mj,h + (Thm·,h)j,h = 1, j ∈ Z
2
n,

where

(Thφ·,h)j,h =
∑

k∈Z2
n, j 6=k

gj−k,h(Tk,hφk,h),

and g(z) = 1/(πz). The advantage of this implementation is that the convolution

structure of the operator is preserved. Hence Th can be implemented using fast Fourier

transform, i.e. by computing as matrices

(Thφ·,h)·,h = iFFT(FFT(g·,h). ∗ FFT(T·,hφ·,h))

where .∗ denotes pointwise multiplication of matrices. This method gives a complexity

O(N2 log N) for one application of the convolution operator. Having implemented the

convolution operator, the equation can be solved numerically using an iterative linear

solver. It can can be shown (Knudsen et al. 2003) that the convergence rate for the

particular implementation described here is O(h). Concerning computational speed and

accuracy we note that in (Vainikko 2000), a multi-grid extension of the general solution

method is described. The implementation and analysis of this method for the particular

equation (15) is given in (Knudsen et al. 2003).

4. Numerical results

Our test example is the radial conductivity

γ(z) =

{
(1 + 10F (|z|)), |z| < 3/4,

1, |z| ≥ 3/4,

where

F (t) = |t2 − ρ2|1.1|t2 − ρ2/4|1.1 cos(4πt/3).

This defines a sufficiently regular conductivity with γ(z) = 1 for |z| > 3/4. A plot of

the test conductivity and the associated potential can be seen in Figure 1.

For this conductivity we compute the eigenvalues of the Dirichlet-to-Neumann

map. In (Siltanen et al. 2000) a direct method for doing so is given. The idea

is to approximate a radial conductivity from below and above by piecewise constant

conductivities and then compute by explicit formulas the eigenvalues for the Dirichlet-

to-Neumann associated the approximate conductivities. This gives upper and lower

bounds for the eigenvalues λn, which are then approximated by taking the average of

the bounds. We have used this method in the computation of the eigenvalues for our

specific example.
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Figure 1. Profile of the conductivity and potential.

We first compute the scattering transform by solving the forward problem. To

compute S from q we solve the equation (6) for m± and the linear system (5) for m1,

and then we integrate in (7). In the implementation we use the method for solving

integral equations equations of the form (15) numerically outlined above. We have

chosen the discretization parameter n = 7. In Figure 2 the scattering transform along

the real axis is displayed. Given the exact scattering transform we can solve (11) and

0 5 10 15 20 25 30 35 40 45 50
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
Scattering transform

k

S
(k

)

Figure 2. The true scattering transform along the axis k > 0.

then compute the conductivity using (12). The result of this inversion is displayed in

Figure 3 together with the true conductivity. Moreover, we have plotted the relative

error |γ(x)−γrec(x)|/|γ(x)|. We see that the reconstruction is very accurate. This shows

that the difficulty part in the reconstruction algorithm is to compute from the boundary

measurements a good approximation of the scattering transform.

Next, we consider the approximation Sa. From the precomputed eigenvalues we have

computed a matrix version of Hγ. Then we solved (13) for Ψa
2 and finally computed Sa



Reconstruction of plane conductivities 9

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

1.6

Reconstructed conductivity, truncation |k| <50

|z|

γ(
z)

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Relative error

|z|

Figure 3. The reconstructed conductivities. Dotted curve is the true conductivity
and solid curve is the conductivity reconstructed from S(k), k < 50.

by integrating numerically in (14). In Figure 4 we have displayed Sa(k) together with

the true scattering transform S. Moreover, the error S(k) − Sa is displayed. The axis

is truncated at k = 20, since Sa becomes highly inaccurate beyond k = 15 due to

numerical errors. We note that below this value the approximation seems accurate. To
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Figure 4. The scattering transforms S (solid) and Sa (dashed).

reconstruct from the approximate scattering transform Sa, we will have to truncate this

function before doing the inversion. This truncation can be seen as a regularization

strategy (Mueller & Siltanen n.d.), and to illustrate this effect for our example, we have

chosen to truncate at the values k = 10, 15, and then reconstruct from the truncated Sa.

In Figure 5 – 6 the reconstructions are displayed together with the true conductivity.

Furthermore, we have for comparison displayed the reconstructed conductivity based on

the same truncation of the true S. We see from the figures that when the k = 10, then

the inversion gives a low frequency approximation of the conductivity. The quality of
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the reconstruction obtained from Sa is comparable to the one obtained from S. When

we cut-off at k = 15, the reconstruction is more accurate.
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Figure 5. The reconstructed conductivities. Dashed curve is the conductivity
reconstructed from Sa(k), k < 10, solid curve is the conductivity reconstructed from
the true S, k < 10, and dotted curve is the true conductivity.
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Figure 6. The reconstructed conductivities. Dashed curve is the conductivity
reconstructed from Sa(k), k < 15, solid curve is the conductivity reconstructed from
the true S, k < 15, and dotted curve is the true conductivity.

5. Conclusion

In this paper we have described a direct and mathematically exact method for the

reconstruction of conductivities from boundary measurements. Moreover, we have

given a numerical implementation of the algorithm, which have been tested on a simple

example. The conclusions are as follows:
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Concerning the computation of the scattering transform from the Dirichlet-to-

Neumann map, it is not yet clear how to compute most accurately the function Ψ2

from the equations (9)–(10). The suggested method based on solving (13) seems to give

a reasonable approximation Sa to the scattering transform, but a better understanding

of the approximation is needed. An important issue in this context concerns the choice

of cut-off parameter for truncating the scattering transform before the inversion is done.

We have seen that this choice has a great impact on the reconstructions.

The numerical solution of the integral equation (15) is important both when

computing the scattering transform from a known potential and when solving the inverse

problem. The implementation given here is relatively fast and accurate (though not real-

time), and it shows that this part of the algorithm is stable.

It is too soon to draw any definite conclusions concerning the practical value of the

algorithm. The results based on a very simple test example are promising, and it will

be interesting to see how well the algorithm performs on more realistic examples and

eventually on real data.
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