
Solving Stochastic Jump Di�erential Equations

P.V. Gapeev

We present a reducibility criterion for stochastic di�erential equations driven by both

a Wiener process and a Poisson random measure to equations with linear di�usion coef-

�cients having explicit solutions or reducible to ordinary equations. We construct jump

analogues of continuous di�usions satisfying equations of the type mentioned above and

show that the obtained processes have the same supports of marginal distributions as the

initial processes. We also illustrate the action of this method on some di�usions.

1 Introduction

Stochastic di�erential equations play a central role in the theory of stochastic processes and
are often used in the modelling of various random processes in nature. In the case of Lipschitz
linearly growing coe�cients, by means of Picard approximations one can construct a pathwise
unique process called a strong solution of the given stochastic di�erential equation. But in
a special case of linear di�usion coe�cients it can admit an explicit solution (see Gard [7;
Chapter IV]) or at least can be reduced to an ordinary di�erential equation (see �ksendal [11;
Chapter V]). Such stochastic di�erential equations will be called solvable (in a closed form).

Often de�ned as strong solutions of stochastic di�erential equations, di�usion processes are
widely used in stochastic modelling. Bach�elier [1] constructed a discrete pre-image of Brownian
motion for the description of stock prices on a �nancial market. Uhlenbeck and Ornstein [15]
used their process for the analysis of velocity of a particle in a uid under the bombardment by
molecules. Samuelson [13] introduced geometric Brownian motion for modelling the behavior of
�nancial assets. After Vasi�cek [16] applied Ornstein-Uhlenbeck type process for the description
of interest rate evolution, a dozen of di�usion models was used for the modelling interest rates
(see Bj�ork [3] or Shiryaev [14; Chapter III, Section 4] for a review). Also di�usions processes
appear, e.g., in models of nonlinear �ltering (see Liptser and Shiryaev [10; Chapter IX]) and in
stochastic population modelling (see �ksendal [11; Chapter V, Example 5.15]).

In the recent years jump processes were also used for modelling the behavior of assets on
�nancial markets (see Bj�ork, Kabanov, and Runggaldier [4] and references therein). De�ned
as the stochastic exponent of a jump-di�usion process, generalized geometric Brownian motion
was applied for the description of stock prices evolution. Barndor�-Nielsen [2] proposed the
idea for generalizing di�usion processes by means of changing the driving Wiener process by
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a L�evy process and de�ned the so-called background driven Ornstein-Uhlenbeck type process.
For a review of jump-di�usion models and their applications in �nancial mathematics we refer
to Runggaldier [12]. The use of jump-di�usion processes for the interest rates modelling was
also pointed out in Shiryaev [14; Chapter III, Section 4].

In the present paper we consider stochastic di�erential equations driven by both a Wiener
process and a Poisson random measure with �nite intensity (further called stochastic jump
di�erential equations) and study the question of �nding closed form solutions for such equations.
We also propose a method for constructing the jump analogues of di�usions satisfying stochastic
jump di�erential equations which are reducible to the equations solvable in a closed form by
means of smooth invertible transformations.

The paper is organized as follows. In Section 2, by means of the arguments in [7; Chap-
ter IV] we show that a linear stochastic jump di�erential equation admits an explicit solution,
and using the method from [11; Chapter V, Example 5.16] we read that a stochastic equa-
tion with Lipschitz linearly growing drift and special type linear di�usion coe�cients by both
continuous and jump parts can be reduced to an ordinary di�erential equation by means of
introducing an integrating factor process. In Section 3 we propose an enlargement of the set of
solvable stochastic jump di�erential equations by means of smooth invertible transformations.
Following the arguments in [7; Chapter IV], we prove a sought-after reducibility criterion for
such equations and give the related transformations for some di�usions. In Section 4 we de-
scribe our method for construction of jump analogues for di�usions being closed form solutions
of related stochastic jump di�erential equations. We show that the constructed jump-di�usion
processes have the same supports of marginal distributions as the initial continuous processes
and illustrate the action of the method on some di�usions.

2 Solvable stochastic jump di�erential equations

Suppose that on some complete stochastic base (
;F ; (Ft)t�0; P ) there exist a standard Wiener
process W = (Wt)t�0 and a homogeneous Poisson random measure �(dt; dv) on B(R+)
B(R)
with the intensity measure (compensator) �(dt; dv) = dt 
 F (dv), where F (dv) is a positive
�nite measure on R such that F (f0g) = 0 and F (R)<1 (see, e.g., [8; Chapter II, Section 1]),
and W and � are assumed to be independent.

2.1. Let us consider the stochastic di�erential equation

dXt = �(t;Xt)dt+ (t;Xt)dWt +

Z
�(t;Xt�; v)�(dt; dv); X0 = x; (2.1)

where �(t; x), (t; x) and �(t; x; v) are some Borel functions on R+ � R and R+ � R� R,
respectively, the integral is taken over R, and for all t � 0 we haveZ t

0

�
j�(s;Xs)j+ 2(s;Xs) +

Z
j�(s;Xs; v)jF (dv)

�
ds <1 (P � a.s.): (2.2)

We will assume that the functions �(t; x) and (t; x) satisfy Lipschitz and linear growth con-
ditions, i.e., there exists a constant C > 0 such that

j�(t; x)� �(t; x0)j+ j(t; x)� (t; x0)j � Cjx� x0j; (2.3)

j�(t; x)j+ j(t; x)j � C(1 + jxj) (2.4)
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for all t � 0 and x; x0 2 R. Note that condition F (R) < 1 implies �([0; t]� A) < 1 for all
t � 0 and A 2 B(R), and thus, the Poisson random measure � has only �nite number of jumps
on each �nite time interval (P -a.s.). Therefore, according to the arguments in [8; Chapter III,
Section 2], we conclude that under conditions (2.3) - (2.4) equation (2.1) has a unique strong
solution, i.e., there exists a (pathwise) unique process X = (Xt)t�0 satisfying (2.1).

Let us suppose that (t; x) = 0(t) + 1(t) � x and �(t; x; v) = �0(t; v) + �1(t; v) � x for all
t � 0, x 2 R, v 2 R and some continuous functions i(t) and �i(t; v), i = 0; 1, satisfying

�1(t; v) > �1 (2.5)

for v 2 R andZ t

0

Z �
j�0(t; v)j+ j�1(t; v)j+ j�1(t; v)j+ �21(t; v)

1 + �1(t; v)
+ j log(1 + �1(s; v))j

�
F (dv)ds <1 (2.6)

for all t � 0. Then the equation (2.1) takes the form

dXt = �(t;Xt)dt+ (0(t) + 1(t)Xt)dWt +

Z
(�0(t; v) + �1(t; v)Xt�)�(dt; dv); X0 = x: (2.7)

2.2. First, following the arguments in [7; Chapter IV], we show that if

�(t; x) = �0(t) + �1(t) � x (2.8)

for all t � 0 and x 2 R, then the stochastic di�erential equation (2.7) can be solved in the
explicit form. For this, let us introduce the integrating factor process Z = (Zt)t�0 de�ned as

Zt = exp

�Z t

0

21(s)

2
ds �

Z t

0

1(s)dWs �
Z t

0

Z
log(1 + �1(s; v))�(ds; dv)

�
: (2.9)

Then applying Itô's formula ([8; Chapter I, Theorem 4.57]) to (2.9), we get that the process Z
has the expression

dZt = Zt�

�
21(t)dt� 1(t)dWt �

Z
�1(t; v)

1 + �1(t; v)
�(dt; dv)

�
; Z0 = 1; (2.10)

and hence, from (2.7) with (2.8) it follows that the process F = (Ft)t�0 ,

Ft = e�
R
t

0
�1(s)dsZtXt; (2.11)

admits the representation

dFt =e
�
R
t

0
�1(s)ds[Zt�dXt +Xt�dZt + dhZc;Xcit +�Zt�Xt � Zt�Xt��1(t)dt] (2.12)

=e�
R
t

0
�1(s)ds

�
Zt�

�
(�0(t) + �1(t)Xt�)dt+ (0(t) + 1(t)Xt�)dWt

+

Z
(�0(t; v) + �1(t; v)Xt�)�(dt; dv)

�

+ Zt�Xt�

�
21(t)dt� 1(t)dWt �

Z
�1(t; v)

1 + �1(t; v)
�(dt; dv)

�

�Zt�(0(t)1(t) + 21(t)Xt�)dt� Zt�Xt�

Z
�21(t; v)

1 + �1(t; v)
�(dt; dv)� Zt�Xt��1(t)dt

�

=e�
R
t

0
�1(s)dsZt�

�
[�0(t)� 0(t)1(t)]dt+ 0(t)dWt +

Z
�0(t; v)�(dt; dv)

�
:
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Therefore, from (2.11) and (2.12) we obtain that the process X = (Xt)t�0 given by

Xt =Z
�1
t

�
e
R
t

0
�1(s)dsx+

Z t

0

e
R
t

s
�1(u)duZs[�0(s)� 0(s)1(s)]ds (2.13)

+

Z t

0

e
R
t

s
�1(u)duZs0(s)dWs +

Z t

0

e
R
t

s
�1(u)duZs�

Z
�0(s; v)�(ds; dv)

�

is a (unique strong) solution of the equation (2.7) with (2.8).

Example 2.1. (Ornstein-Uhlenbeck type process with jumps [2]) Suppose that in (2.7)
with (2.8) we have 1(t) = �1(t; v) = 0 for all t � 0 and v 2 R. Then the solution X is given
by (2.13) with Zt = 1 for all t � 0.

Example 2.2. (Generalized geometric Brownian motion [12]) Suppose that in (2.7) with
(2.8) we have �0(t) = 0(t) = �0(t; v) = 0 for all t � 0 and v 2 R. Then the solution X has
the form Xt = xZ�1

t , t � 0.

2.3. Now, following the arguments in [11; Chapter V, Example 5.16], we show that if

0(t) = �0(t; v) = 0 (2.14)

for all t � 0 and v 2 R, then the stochastic di�erential equation (2.7) can be reduced to an
ordinary di�erential equation. For this, we apply Itô's formula to the process G = (Gt)t�0 ,

Gt = ZtXt; (2.15)

and using (2.7) with (2.10) and (2.14), we get the representation

dGt =Zt�dXt +Xt�dZt + dhZc;Xcit +�Zt�Xt (2.16)

=Zt�

�
�(t;Xt�)dt+ 1(t)Xt�dWt +Xt�

Z
�1(t; v)�(dt; dv)

�

+ Zt�Xt�

�
21(t)dt� 1(t)dWt �

Z
�1(t; v)

1 + �1(t; v)
�(dt; dv)

�

� Zt�Xt�
2
1(t)dt� Zt�Xt�

Z
�21(t; v)

1 + �1(t; v)
�(dt; dv)

=Zt��(t; Z
�1
t�Gt�)dt:

Therefore, if �(t; x) satisfy conditions (2.3) - (2.4), then the (unique strong) solution X is
determined from (2.15), where for all ! 2 
 the process G(!) = (Gt(!))t�0 is a unique
solution of the ordinary di�erential equation

dGt(!) = Zt(!)�(t; Z
�1
t (!)Gt(!))dt; G0(!) = x: (2.17)

Example 2.3. (Equation with power drift and linear di�usion [11; Example 5.16 (d)])
Suppose that in (2.7) with (2.14) we have �(t; x) = x� , t � 0, x > 0, and � < 1. Then the
solution X is given by

Xt = Z�1
t

�
x1�� + (1� �)

Z t

0

Z1��
s ds

�1=(1��)

:
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3 Reducibility to solvable equations

3.1. Let us consider the stochastic di�erential equation

dYt = �(t; Yt)dt+ �(t; Yt)dWt +

Z
�(t; Yt�; v)�(dt; dv); Y0 = y; (3.1)

where �(t; y), �(t; y) and �(t; y; v) are some Borel functions on R+ � R and R+ � R� R,
respectively, the integral is taken over R, and for all t � 0 we haveZ t

0

�
j�(s; Ys)j+ �2(s; Ys) +

Z
j�(s; Ys; v)jF (dv)

�
ds <1 (P � a.s.): (3.2)

Suppose that f(t; y) is an invertible function from the class C1;2(R+;R), i.e., there exists a
function g(t; x) such that f(t; g(t; x)) = x and g(t; f(t; y)) = y for all t � 0, x; y 2 R. Then,
denoting Xt = f(t; Yt), by means of Itô's formula we get that

dXt =ft(t; Yt)dt+ fy(t; Yt)dYt + (fyy(t; Yt)=2)dhY c; Y cit (3.3)

+ [f(t; Yt� +�Yt)� f(t; Yt�)� fy(t; Yt�)�Yt]

=[ft(t; Yt) + fy(t; Yt)�(t; Yt) + (fyy(t; Yt)=2)�
2(t; Yt)]dt

+ fy(t; Yt)�(t; Yt)dWt +

Z
[f(t; Yt� + �(t; Yt�; v))� f(t; Yt�)]�(dt; dv);

and thus, using Yt = g(t;Xt), we see that the equation (3.1) is reduced to (2.1) with

�(t; x) = ft(t; g(t; x)) + �(t; g(t; x))fy(t; g(t; x)) + �2(t; g(t; x))fyy(t; g(t; x))=2; (3.4)

(t; x) = �(t; g(t; x))fy(t; g(t; x)); (3.5)

�(t; x; v) = f(t; g(t; x) + �(t; g(t; x); v))� f(t; g(t; x)): (3.6)

Therefore, if the functions �(t; x) and (t; x) from (3.4) and (3.5) satisfy conditions (2.3) -
(2.4), then by virtue of invertibility of the function f(t; y) we conclude that the equation (3.1)
has a unique (strong) solution Y = (Yt)t�0 .

From (3.3) it is easily seen that if f(t; y) solves the equations

ft(t; y) + �(t; y)fy(t; y) + �2(t; y)fyy(t; y)=2 = �(t; f(t; y)); (3.7)

�(t; y)fy(t; y) = 0(t) + 1(t)f(t; y); (3.8)

f(t; y + �(t; y; v))� f(t; y) = �0(t; v) + �1(t; v)f(t; y); (3.9)

with some continuous functions �(t; x), i(t) and �i(t; v), i = 0; 1, t � 0, x; y 2 R, v 2 R,
satisfying conditions (2.2), (2.3) - (2.4) and (2.5) - (2.6), then the equation (3.1) is reduced to
the equation (2.7), which is solvable in a closed form under conditions (2.8) or (2.14).

Example 3.1. (Black-Karasinski process [5]) Suppose that in (3.1) we have �(t; y) =
y(�0(t) + �1(t) log y), �(t; y) = �0(t)y and �(t; y; v) = 0 for all t � 0, y > 0 and v 2 R.
Then the function f(t; y) = log y , y > 0, (with the inverse g(t; x) = ex , x 2 R) reduces (3.1)
to the equation (2.7) with (2.8), where �0(t) = �0(t) � �2

0(t)=2, �1(t) = �1(t), 0(t) = �0(t),
1(t) = �i(t; v) = 0, i = 0; 1, for all t � 0 and v 2 R (see Example 2.1).
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Example 3.2. (Stochastic population model [11; Chapter V, Example 5.15]) Suppose
that in (3.1) we have �(t; y) = �0(t)y(�1(t) � y), �0(t) > 0, �1(t) > 0, �(t; y) = �0(t)y and
�(t; y; v) = 0 for all t � 0, y > 0 and v 2 R. Then the function f(t; y) = 1=y , y > 0,
(with the inverse g(t; x) = 1=x, x > 0) reduces (3.1) to the equation (2.7) with (2.8), where
�0(t) = �0(t), �1(t) = �2

0(t) � �0(t)�1(t), 1(t) = ��0(t), 0(t) = �i(t; v) = 0, i = 0; 1, for all
t � 0 and v 2 R.

Remark 3.1. Observe that in Examples 3.1 and 3.2 the function �(t; y) does not satisfy
the condition (2.4), but we see that the equation (3.1) has a unique solution, since it is reducible
to the linear equation (2.7) with (2.8).

3.2. In the rest of the section we describe the transformations of (3.1) to solvable equations
in the time-homogeneous case, i.e., we suppose that �(t; y) = �(y), �(t; y) = �(y), �(t; y; v) =
�(y; v), �(t; x) = �(x), i(t) = i , �i(t; v) = �i(v), i = 0; 1, and f(t; y) = f(y), g(t; x) = g(x)
for all t � 0, x; y 2 R and v 2 R. We will assume that �(y) 6= 0 for y 2 R, all the derivatives
below exist and the integrals are well-de�ned.

Solving the homogeneous variant of the equation (3.8), in particular, we get that

f(y) = ce1r(y) � 0=1 (3.10)

is turned out to be a solution when 1 6= 0, and

f(y) = 0r(y) (3.11)

when 1 = 0, where c 6= 0 is some constant and

r(y) =

Z y dy0

�(y0)
: (3.12)

Following the arguments from [7; Chapter IV, pages 115-116], namely, substituting the
expression (3.10) + (3.12) for f(y) into (3.7) with (2.8), we get that

[1p(y) + 21=2 � �1]e
1r(y) = (1�0 � 0�1)=(c1); (3.13)

where

p(y) = �(y)=�(y)� �y(y)=2: (3.14)

Di�erentiating (3.13) and using (3.14), we get [(1p(y) + 21=2� �1)=�(y)+ py(y)]1e1r(y) = 0,
wherefrom after multiplying both parts by �(y)e�1r(y)=1 and di�erentiating again we see that
1py(y)+[�py]y(y) = 0. Hence, we conclude that if (3.7) - (3.8) are satis�ed then (for all y 2 R)

either py(y) = 0 or ([�py]y=py)y (y) = 0: (3.15)

Substituting the expression (3.11) + (3.12) for f(y) into (3.7), we see that if 1 = 0,
then the choice of f(y) as in (3.11) similarly leads to the reducibility condition [�py]y(y) = 0,
implying also (3.15).

Conversely, if py(y) = 0 for all y 2 R, then there exists 1 6= 0 and �1 2 R such that f(y)
has the form (3.10) with 0 = 0, and (3.7) is satis�ed with (2.8) and �0 = 0. If py(y) 6= 0,
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but [�py]y(y) = 0 for all y 2 R, then f(y) has the form (3.11) with an arbitrary 0 6= 0. If
py(y) 6= 0 and [�py]y(y) 6= 0, but the latter part of (3.15) is satis�ed for all y 2 R, then f(y)
has the form (3.10) with 0 = 0 and 1 = �[�py]y(y)=py(y).

By analogy with the arguments above, substituting the expression (3.10) + (3.12) for f(y)
into (3.9), we get that

[q(y; v)� (1 + �1(v))] e
1r(y) = (1�0(v)� 0�1(v))=(c1); (3.16)

where

q(y; v) = 1 exp

 Z y+�(y;v)

y

dy0

�(y0)

!
: (3.17)

Then, di�erentiating (3.16), we get that [(q(y; v)� (1+ �1(v)))=�(y)+ qy(y; v)=1]1e1r(y) = 0,
wherefrom after multiplying both parts by �(y)e�1r(y)=1 and di�erentiating again we see that
1qy(y; v) + [�qy]y(y; v) = 0. Hence, we conclude that if (3.8) - (3.9) are satis�ed, then (for all
y 2 R and v 2 R)

either qy(y; v) = 0 or ([�qy]y=qy)y(y; v) = 0: (3.18)

Substituting the expression (3.11) + (3.12) for f(y) into (3.9), we see that if 1 = 0, then
the choice of f(y) as in (3.11) similarly leads to the reducibility condition

([�qy]=q)y(y; v) = 0: (3.19)

Conversely, if qy(y; v) = 0 for all y 2 R and v 2 R, then there exists 1 6= 0 and �1 2 R
such that f(y) has the form (3.10) with 0 = 0, and (3.9) is satis�ed with (2.8) and �0(v) = 0
for all v 2 R. If qy(y; v) 6= 0, but ([�qy]=q)y(y; v) = 0 for all y 2 R and v 2 R, then f(y) has
the form (3.11) with an arbitrary 0 6= 0. If qy(y) 6= 0, but the latter part of (3.18) is satis�ed
for all y 2 R and v 2 R, then f(y) has the form (3.10) with 0 = 0 and 1 = �[�qy]y(y)=qy(y).

Now we summarize the assertions above into the following sought-after reducibility criterion
for the jump-di�usion processes.

Theorem 3.1. Under regularity conditions above the following assertions hold:
(i) if conditions (3.15), and (3.18) or (3.19), are satis�ed with p(y) and q(y) given by

(3.14) and (3.17), respectively, then the homogeneous variant of the equation (3.1) is reducible
to (2.7) with (2.8), which is solvable in the explicit form (2.13);

(ii) if conditions (3.18) or (3.19) are satis�ed with q(y) from (3.17), and after taking f(y)
as in (3.10) with 0 = 0, we receive a Lipschitz function �(x), x 2 R, then the equation (3.1)
is reducible to (2.7) with (2.14), which is reducible to the ordinary di�erential equation (2.17).

We �nish the section by giving some examples of di�usions and related transformations.

Example 3.3. (Cox-Ingersoll-Ross process I [6]) Suppose that in (3.1) we have �(y) =
�0 + �1y , �(y) = �0

p
y , �0 � �2

0=2, and �(y; v) = 0 for all y > 0 and v 2 R. Then the
function f(y) = exp(2

p
y), y > 0 (with the inverse g(x) = (log x=2)2 , x > 1) reduces (3.1) to

the equation (2.7) with (2.14), where �(x) = x[2�0 log
2 x+ �1 log

4 x=2+ 2�2
0(log x� 1)]= log3 x,

1 = �0 and �1(v) = 0 for all x > 1 and v 2 R.
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Example 3.4. (Cox-Ingersoll-Ross process II [6]) Suppose that in (3.1) we have �(y) = 0,
�(y) = �0

p
y3 and �(y; v) = 0 for all y > 0 and v 2 R. Then the function f(y) = exp(�2=py),

y > 0 (with the inverse g(x) = (�2= log x)2 , x 2 h0; 1i) reduces (3.1) to the equation (2.7)
with (2.14), where �(x) = �2

0x(1 + 3= log x)=2, 1 = �0 and �1(v) = 0 for all x 2 h0; 1i and
v 2 R.

Example 3.5. (A nonlinear �lter process [10; Chapter IX]) Suppose that in (3.1) we have
�(y) = �0(1 � y), �(y) = �0y(1 � y) and �(y; v) = 0 for all y 2 h0; 1i and v 2 R. Then the
function f(y) = y=(1� y), y 2 h0; 1i (with the inverse g(x) = x=(1 + x), x > 0) reduces (3.1)
to the equation (2.7) with (2.14), where �(x) = �0(1+x)+�2

0x
2=(1+x), 1 = �0 and �1(v) = 0

for all x > 0 and v 2 R.
Example 3.6. (Jacobi di�usion [9; p. 335]) Suppose that in (3.1) we have �(y) = �2

0[�0(1�
y)� �1y]=2, �(y) = �0

p
y(1� y), �0 � 1, �1 � 1, and �(y; v) = 0 for all y 2 h0; 1i and v 2 R.

Then the function f(y) = exp(2 arcsin
p
y), y 2 h0; 1i (with the inverse g(x) = sin2(log

p
x),

x 2 h1; e�i) reduces (3.1) to the equation (2.7) with (2.14), where �(x) = �2
0x[�0 cos

2(log
p
x)�

�1 sin
2(log

p
x) + (sin(2 log

p
x) � cos(2 log

p
x))=2]= sin(2 log

p
x), 1 = �0 and �1(v) = 0 for

all x 2 h1; e�i and v 2 R.

4 Constructing jump analogues of some di�usions

In this section we will suppose that on the initial stochastic base there exist a Wiener process
W 0 = (W 0

t)t�0 and a Poisson random measure �0(dt; dv) with the same compensator �(dt; dv) =
dt
 F (dv), where W 0 and �0 are assumed to be independent also from W and �.

4.1. Let Y = (Yt)t�0 be a continuous process solving the stochastic di�erential equation
(3.1) with �(t; y; v) = 0, t � 0, y 2 R, v 2 R. Suppose that there exists an invertible
transformation f(t; y) 2 C1;2(R+;R) satisfying (3.7) - (3.9) and such that the process X =
(Xt)t�0 , Xt = f(t; Yt), solves the equation (2.7) with �i(t; v) = 0, i = 0; 1, t � 0, v 2 R.
Let us take some continuous functions �0i(t; v), i = 0; 1, satisfying conditions (2.5) - (2.6) with
�i(t; v) replaced by �0i(t; v) and the rule

�0i(t; v) 6= 0 if and only if i(t) 6= 0 (4.1)

for i = 0; 1 and all t � 0, v 2 R, and consider the stochastic di�erential equation

dX 0
t = �(t;X 0

t)dt+ (0(t) + 1(t)X
0
t)dW

0
t +

Z
(�00(t; v) + �01(t; v)X

0
t�)�

0(dt; dv); X 0
0 = x; (4.2)

where �(t; x) satis�es (2.8) or the condition

0(t) = �00(t; v) = 0 (4.3)

holds for all t � 0 and v 2 R. Then according to the arguments in Section 2, we conclude
that equation (4.2) is solvable in a closed form, and applying to the solution X 0 = (X 0

t)t�0 the
inverse transformation g(t; x), t � 0, x 2 R, we obtain that the process Y 0

t = g(t;X 0
t) solves

the equation

dY 0
t = �(t; Y 0

t )dt+ �(t; Y 0
t )dW

0
t +

Z
�0(t; Y 0

t�; v)�
0(dt; dv); Y 0

0 = y; (4.4)

8



with

�0(t; y; v) = g(t; �00(t; v) + (1 + �01(t; v))f(t; y))� g(t; f(t; y)): (4.5)

We will call such process Y 0 = (Y 0
t )t�0 a jump analogue of the di�usion process Y = (Yt)t�0 .

In order to prove that the method for construction of jump analogues presented above is
correct, we show that the supports of marginal distributions of the constructed jump-di�usion
process and of the initial continuous process happen to coincide.

Theorem 4.1. Suppose that in the assumptions of this section �(t; x) satis�es (2.8) or the
condition (4.3) holds for all t � 0 and v 2 R. Then SuppfL(Y 0

t )g = SuppfL(Yt)g � R for all
t � 0.

Proof. Since the transformations f(t; y) and g(t; x) are supposed to be mutually invert-
ible, it remains us to prove that if (4.1) is satis�ed with (2.8) or (4.3), then SuppfL(X 0

t)g =
SuppfL(Xt)g for all t � 0. For this, let us introduce the process Z 0 = (Z 0

t)t�0 de�ned as

Z 0
t = exp

�Z t

0

21(s)

2
ds�

Z t

0

1(s)dW
0
s �

Z t

0

Z
log(1 + �01(s; v))�

0(ds; dv)

�
; (4.6)

and observe that if in the equation (4.2) the function �(t; x) satis�es (2.8), then by means of the
arguments in (2.11) - (2.13) we get that the solution X 0 = (X 0

t)t�0 admits the representation

X 0
t =Z

0
t
�1

�
e
R
t

0
�1(s)dsx+

Z t

0

e
R
t

s
�1(u)duZ 0

s[�0(s)� 0(s)1(s)]ds (4.7)

+

Z t

0

e
R
t

s
�1(u)duZ 0

s0(s)dW
0
s +

Z t

0

e
R
t

s
�1(u)duZ 0

s�

Z
�00(s; v)�

0(ds; dv)

�
;

and if in (4.2) we have (4.3), then applying Itô's formula to the process G0 = (G0
t)t�0 given by

G0
t = Z 0

tX
0
t; (4.8)

by analogy with the arguments in (2.15) - (2.17), we obtain that for all ! 2 
 the process
G0(!) = (G0

t(!))t�0 is a unique solution of the ordinary di�erential equation

dG0
t(!) = Z 0

t(!)�(t; Z
0
t
�1
(!)G0

t(!))dt; G0
0(!) = x: (4.9)

Note that since �([0; t]� A) < 1 for all t � 0 and A 2 B(R), the Poisson random measure
�0(dt; dv) as well as the processes Z 0 , X 0 and Y 0 have a �nite number of jumps on each �nite
time interval. Also we recall that conditions (2.5) - (2.6) are satis�ed with �0i(t; v) instead of
�i(t; v), and in the assumptions of this section �i(t; v) = 0, i = 0; 1, t � 0, v 2 R.

Observe that if in (4.2) we have (2.8) and for given and �xed t > 0 there exists a
set B � [0; t] with �(B) > 0 (by � we denote the Lebesgue measure on R+) such that
0(s) 6= 0 and �00(s; v) 6= 0 for all s 2 B and v 2 R, then the structure of the solutions
X from (2.13) and X 0 from (4.7) implies that the random variables Xt and X 0

t have ab-
solutely continuous distributions on R (with respect to the Lebesgue measure), and hence
SuppfL(X 0

t)g = SuppfL(Xt)g = R.
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Now we suppose that in (4.2) the property (4.3) holds for �-a.e. t � 0 and �x some point
a 2 SuppfL(X 0

t)g, i.e., such that for an arbitrary � > 0 we have P [a�� < X 0
t < a+�] > 0. Let

us introduce the sets �(D) := fj log Z 0
sj � D; j log Zsj � D; jX 0

sj � D; jXsj � D; s 2 [0; t]g � 

and �(") := fjZ 0

t � Ztj < ";
R t

0
jZ 0

s � Zsjds < "g � 
. Then from the sample path properties
of the Wiener process and independence of W 0 , �0 and W , for su�ciently large D > 0 and
arbitrarily small " > 0 we have P [fa� � < X 0

t < a+ �g \ �(D) \ �(")] > 0.
Observe that from (2.15) + (2.17) and (4.8) - (4.9) it follows that for all ! 2 


Xt(!) = Z�1
t (!)x+

Z t

0

Zs(!)�(s;Xs(!))ds (4.10)

and

X 0
t(!) = Z 0

t
�1(!)x+

Z t

0

Z 0
s(!)�(s;X

0
s(!))ds: (4.11)

Then for ! 2 �(D) \ �(") we have

jX 0
t(!)�Xt(!)j �jZ 0

t
�1
(!)� Z�1

t (!)jjxj (4.12)

+

����Z 0
t
�1
(!)

Z t

0

Z 0
s(!)�(s;X

0
s(!))ds� Z�1

t (!)

Z t

0

Zs(!)�(s;Xs(!))ds

����
�jZ 0

t
�1
(!)� Z�1

t (!)j
�
jxj+

Z t

0

jZ 0
s(!)jj�(s;X 0

s(!))jds
�

+ jZ�1
t (!)j

Z t

0

jZ 0
s(!)� Zs(!)jj�(s;X 0

s(!))jds

+ jZ�1
t (!)j

Z t

0

jZs(!)jj�(s;X 0
s(!))� �(s;Xs(!))jds;

where by means of Lipschitz and linear growth conditions (2.3) - (2.4) we get that

jX 0
t(!)�Xt(!)j � "[(1 +D)(1 + Ce2Dt)eD +De2D] + Ce2D

Z t

0

jX 0
s(!)�Xs(!)jds; (4.13)

and applying the Gronwall inequality (see, e.g., [11; Chapter V, Example 5.17]) we obtain that

jX 0
t(!)�Xt(!)j � "[(1 +D)(1 + Ce2Dt)eD +De2D] exp(Ce2Dt) (4.14)

for all ! 2 �(D)\�("). Taking " := �[(1+D)(1+Ce2Dt)eD+De2D]�1 exp(�Ce2Dt), we receive
that fa� � < X 0

t < a+ �g \�(D) \�(") � fjX 0
t �Xtj � �g \ fa� � < X 0

t < a+ �g \�(D) �
fa � 2� < Xt < a + 2�g, and thus, we obtain that the property P [a � � < X 0

t < a + �] > 0
implies P [a � 2� < Xt < a + 2�] > 0 for an arbitrary � > 0, i.e., a 2 SuppfL(Xt)g.
Therefore, we get that SuppfL(X 0

t)g � SuppfL(Xt)g, t � 0, and since the inverse inclusion
SuppfL(Xt)g � SuppfL(X 0

t)g easily follows from the fact that the process X 0 may have no
jumps on the interval [0; t] (with a positive probability), we conclude that SuppfL(Xt)g =
SuppfL(X 0

t)g, and hence, the invertibility of transformations f(t; y) and g(t; x) implies that
SuppfL(Yt)g = SuppfL(Y 0

t )g for all t � 0.
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Remark 4.1. After constructing the jump analogue Y 0 = (Y 0
t )t�0 of the given di�usion

process Y = (Yt)t�0 we can also de�ne a pure jump analogue Y 00 = (Y 00
t )t�0 of Y = (Yt)t�0 by

setting �(t; y) = 0 in (4.4) for all t � 0 and y 2 R, i.e., as a process solving the equation

dY 00
t = �(t; Y 00

t )dt+

Z
�0(t; Y 00

t�; v)�(dt; dv); Y 00
0 = y; (4.15)

with �0(t; y; v) given by (4.5). In this case, from the arguments of the proof of Theorem 4.1 we
easily deduce that SuppfL(Y 00

t )g � SuppfL(Y 0
t )g = SuppfL(Yt)g � R for all t � 0.

4.2. In the rest of the section we give some examples of jump analogues of di�usion processes
cited in Section 3. Actually, �rst of them were considered in Examples 2.1 - 2.3 above.

Example 4.1. Suppose that in (4.4) we have the same �(t; y) and �(t; y) as in Example 3.1.
Then for a jump analogue in (4.5) we can take �01(t; v) = 0, and thus �0(t; y; v) = y[exp(�00(t; v))�
1] for all t � 0, y > 0 and v 2 R.

Example 4.2. Suppose that in (4.4) we have the same �(t; y) and �(t; y) as in Example 3.2.
Then for a jump analogue in (4.5) we can take �00(t; v) = 0, and thus �0(t; y; v) = �y[�01(t; v)=(1+
�01(t; v))] for all t � 0, y > 0 and v 2 R.

Example 4.3. Suppose that in (4.4) we have the same �(y) and �(y) as in Example 3.3.
Then for a jump analogue in (4.5) we can take �0(y; v) =

p
y log(1 + �01(v)) + log2(1 + �01(v))=4

for all y > 0 and v 2 R.
Example 4.4. Suppose that in (4.4) we have the same �(y) and �(y) as in Exam-

ple 3.4. Then for a jump analogue in (4.5) we can take �0(y; v) = y
p
y log

p
1 + �01(v)(2 �p

y log
p
1 + �01(v))=(

p
y log

p
1 + �01(v)� 1)2 for all y > 0 and v 2 R.

Example 4.5. Suppose that in (4.4) we have the same �(y) and �(y) as in Example 3.5.
Then for a jump analogue in (4.5) we can take �0(y; v) = y(1 � y)�01(v)=(1 + y�01(v)) for all
y 2 h0; 1i and v 2 R (see [10; Chapter XIX]).

Example 4.6. Suppose that in (4.4) we have the same �(y) and �(y) as in Ex-
ample 3.6. Then for a jump analogue in (4.5) we can take �0(y; v) = sin[2 arcsin

p
y +

log
p
1 + �01(v)] sin[log

p
1 + �01(v)] for all y 2 h0; 1i and v 2 R.
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