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Abstract. We study the spectrum of the monodromy operator for an N-body quantum system in
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1. Introduction and results

In this paper we consider a quantum system consisting of N interacting �-dimensional particles,
placed in a time-periodic electric �eld ~E with zero mean

~E 2 L1loc(R;R
� ); ~E(t+ 1) = ~E(t) a.e. and

Z 1

0

~E(s)ds = 0:

This includes in particular the cases of linearly polarized �elds, also called AC-Stark �elds, and
circularly polarized �elds. The choice of 1 as period is made for convenience. The family of time-
dependent Hamiltonians for such a system is given by

~h(t) =
NX
i=1

�
p2i
2mi

� qi ~E(t) � xi

�
+ v; v(x1; : : : ; xN ) =

X
1�i<j�N

vij(xi � xj): (1.1)

Here xi, mi and qi are the position, mass and charge of the i'th particle and pi = �irxi is its

momentum. Note that ~h(t) are operators on L2(R�N ). We consider three sets of conditions on the
pair-potentials vij , see Conditions 1.1{1.3 given below.

The model arises as a dipole approximation of the Hamiltonian

NX
i=1

1

2mi

�
pi � qiA

i
t

�2
+ v:

Here Ait denotes multiplication by At(xi), where At solves the wave equation. Under the assumption
that the �eld varies slowly on atomic length scales one replaces At(xi) by At(0) (the dipole approx-

imation). After the time-dependent transformation f ! e�iAt(0)�
PN

i=1 qixif one arrives at (1.1) with

electric �eld ~E(t) = � _At(0). See for example the monograph [SSL]. The requirement that the �eld
is periodic corresponds to the requirement that the electromagnetic �eld only contain modes which
are multiples of 2�! for some frequency ! > 0 (here put equal to 1).

Our aim is to study the evolution generated by the family of Hamiltonians (1.1).

We write ~U(t; s) for the two-parameter family of unitary operators (the evolution) which solves
the time-dependent Schr�odinger equation

i
d

dt
~U(t; s) = ~h(t) ~U(t; s); ~U(s; s) = I: (1.2)

See Remark 1.4 below. The solution satis�es the Chapman Kolmogorov equations

~U(s; r) ~U(r; t) = ~U(s; t); r; s; t 2 R (1.3)

and a periodicity equation

~U(t+ 1; s+ 1) = ~U(t; s); s; t 2 R: (1.4)

We will as usual formulate the model in a more convenient form (see [Hu1] for more details) using
the inner product

x � y =
NX
i=1

2mi(xi; yi);
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where (�; �) is the inner product on R� , x = (x1; : : : ; xN ) and y = (y1; : : : yN ). We will consider the
system in its center of mass frame

X =

(
x 2 R3N :

NX
i=1

mixi = 0

)
:

Then R�N = X �XCM, where XCM = fx : x1 = � � � = xNg. We have the splitting

~h(t) = hCM(t)
 I + I 
 h(t); on L2(XCM)
 L2(X);

where
hCM(t) = p2CM � ECM(t) � x; and h(t) = p2 � E(t) � x+ v:

Here

ECM =
Q

2M

�
~E ; : : : ; ~E

�
and E =

��
q1
2m1

�
Q

2M

�
~E ; : : : ;

�
qN
2mN

�
Q

2M

�
~E

�
; (1.5)

where Q = q1 + � � �+ qN and M = m1 + � � �+mN are the total charge and mass of the system. In
the special case where all the particles have identical charge to mass ratio, we see that the center
of mass Hamiltonian is just an ordinary time-independent N -body Hamiltonian. We can solve the
time-dependent Schr�odinger equation (1.2) for hCM(t) and h(t) as well and we write UCM(t; s) and
U(t; s) for the respective two-parameter families, cf. Remark 1.4. The evolutions UCM and U also
satisfy (1.3) and (1.4), and furthermore

~U(t; s) = UCM(t; s)
 U(t; s): (1.6)

In this paper we are interested in the spectral study of the monodromy (or period) operator
U(1; 0), for the system in its center of mass frame. For a time-periodic problem, this replaces
the spectral study usually done directly on the Hamiltonian for a time-independent system. See
for example [Ya1], [How1] and [KiY2]. In particular we will study the structure of thresholds,
eigenvalues and the continuous spectrum.

We will work in the framework of generalized N -body systems, which we review brie
y. Let A
be a �nite index set and X a �nite dimensional real vector-space with inner product. There is an
injective map from A into the subspaces of X , A 3 a ! Xa � X , and we write Xa = (Xa)?. We
introduce a partial ordering on A:

a � b, Xa � Xb (1.7)

and assume the following

(1) There exist amin; amax 2 A with Xamin = f0g and Xamax = X .
(2) For each a; b 2 A there exists c = a [ b 2 A with Xa \Xb = Xc.

We will write xa and xa for the orthogonal projection of a vector x onto the subspaces Xa and Xa

respectively.

The physical problem above �ts into this framework as follows. Here A is the set of all cluster
partitions a = fC1; : : : ; C#ag, 1 � #a � N , each given by splitting the set of particles f1; : : : ; Ng
into non-empty disjoint clusters Ci. The spaces Xa, a 2 A, are the spaces of con�gurations of the
#a centers of mass of the clusters Ci (in the center of mass frame). The complement

Xa = XC1 � � � � �XC#a

is the space of relative con�gurations within each of the clusters Ci. More precisely

XCi = fx 2 X : xj = 0; j 62 Cig and Xa = fx 2 X : k; l 2 Ci ) xk = xlg :
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Notice that a � b if and only if any cluster C 2 a is contained in some cluster C 0 2 b. We furthermore
see that amin = f(1); : : : ; (N)g, amax = f(1; : : : ; N)g and a [ b is the smallest c such that a � c and
b � c.

We will work with three classes of generalized potentials

V (t; x) =
X
a2A

Va(t; x
a);

where Va is a function on R �Xa. In our example above the Va's are independent of t and Va = 0
if #a 6= N � 1. Since Vamin is a constant, we can �x it to be zero. The �rst class consists of regular
potentials, with an explicit time-dependence.

Condition 1.1. For each a 6= amin the following holds. The pair-potential R�X
a 3 (t; y)! Va(t; y)

is a continuous real-valued function satisfying

i) Periodicity: Va(t+ 1; �) = Va(t; �), t 2 R.
ii) Regularity: Va 2 C1(R �Xa) and for each t 2 R, (@kt @

�
y Va)(t; �) 2 C

1(Xa), k + j�j = 1.

iii) Bounds at in�nity: jVa(t; y)j+jy�ryVa(t; y)j = o(1), jjyjj�j@kt @
�
y Va(t; y)j = O(1) for 0 � k � 1

and k + j�j � 2.

Here o(1) means o(1)! 0, for jyj ! 1, uniformly in t. (Similarly for O(1).)

The second class consists of time-independent potentials with Lp singularities. This class just
fails to include the case of Coulomb interactions

Condition 1.2. We assume Va = V 1
a + V 2

a , a 6= amin, is time-independent and V 1
a satis�es Condi-

tion 1.1 ii) and iii) (or equivalently Condition 1.3 ii)). As for the V 2
a 's we assume that they have

compact support and for each a, there exist p, with p � 2 and p > dim(Xa), and � > 0 such that

V 2
a ; jrV

2
a j

1
2 2 Lp(Xa), and for j�j = 1

@�V 2

a (� � ya)� @�V 2
a (�)




L
p
2 (Xa)

= O (jyaj�) ; as ya ! 0:

Finally we consider the following class of time-independent potentials which includes atomic and
molecular potentials, given by vij(x) = cij jxj�1 in (1.1).

Condition 1.3. We assume Va = V 1
a + V 2

a is time-independent. For each a 6= amin:

i) If dim(Xa) < 3 then V 2
a = 0.

ii) V 1
a 2 C

2(Xa), jV 1
a (y)j+ jy � rV 1

a (y)j = o(1) and jjyjj�j@�V 1
a (y)j = O(1), for j�j � 2.

iii) V 2
a 2 C

2(Xanf0g) and has compact support. There exists C > 0 such that

j@�V 2
a (y)j �

C

jyjj�j+1
for 0 � j�j � 2:

We also consider a generalized �eld (instead of the particular �eld given by (1.5))

E 2 L1loc(R;X); E(t+ 1) = E(t); a.e. and

Z 1

0

E(t)dt = 0: (1.8)

Some of our results for Coulomb interactions will require the stronger assumption

E 2 L1(R;X); E(t+ 1) = E(t); a.e. and

Z 1

0

E(t)dt = 0: (1.9)
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Remark 1.4. We note that under Condition 1.1, 1.2 or 1.3, and (1.8), the time-dependent potential

(t; x)! Vc(t; x) = V (t; x+2
R t
0

R s
0
E(r)drds) satis�es the assumptions of [Ya2]. This yields a solution

to the time-dependent Schr�odinger equation (1.2) for the operator family p2 + Vc(t; �). Note that
equation (1.2) should be considered in the strong sense, see [M�, Appendix B]. The Avron-Herbst
formula, which is a time-dependent change of coordinates (see [CFKS]) now yields the existence of
a solution to (1.2) for the family h(t). See [M�, Proposition 4.3] for details. A similar argument

gives solutions to (1.2) for the operator families ~h(t) and hCM(t). The solutions are unique within a
class of absolutely continuous operator-valued functions, which implies (1.3), (1.4) and (1.6). (See
also [CMR] for a simpler argument which works for more regular �elds.)

For a 2 A, we have a natural splitting of the Hilbert space into a tensor product L2(X) =
L2(Xa)
 L2(Xa). We introduce the Hamiltonians

h(t) = p2 � E(t) � x+ V and ha(t) = p2 � E(t) � x+ V a; V a =
X
b�a

Vb:

We have a splitting of ha with respect to the tensor structure of L2(X)

ha(t) = (p2a � E(t)a � xa)
 I + I 
 ha(t); ha(t) = (pa)2 � E(t)a � xa + V a:

Note that ha(t) and h
a(t) are also generalized (families of) Schr�odinger operators.

The set of thresholds is

F(U(1; 0)) =
[

a6=amax

e�i�a�pp(U
a(1; 0)); (1.10)

where Ua(t; s) is the solution to (1.2) for the operator family ha(t) (see Remark 1.4) and �pp(�)
refers to pure point spectrum. We use the convention �pp(U

amin(1; 0)) = f1g. The numbers �a will
be introduced later, see (1.21). We just note here that �a = 0 if Ea = 0.

Our main results for the monodromy operator are the following.

Theorem 1.5. Suppose V satis�es either Condition 1.1, 1.2 or 1.3, and E is as in (1.8). The thresh-
old set F(U(1; 0)) is closed and countable, and non-threshold eigenvalues z 2 �pp(U(1; 0))nF(U(1; 0))
have �nite multiplicity and can only accumulate at the threshold set.

It is not important for this result, in the case of Condition 1.3, that the singularity is located at the
origin. In fact, the theorem remains true for potentials of the form V (x) = V1(x�z1)+� � �+Vk(x�zk),
zi 2 X , where the Vi's satisfy Condition 1.3. This remark extends the class of potentials to include
the Born-Oppenheimer approximation for a molecular potential. Our next two results however, do
require the singularity to be located at the origin.

Theorem 1.6. Suppose one of the following two assumptions hold

i) V satis�es either Condition 1.1 or 1.2 and E is as in (1.8).
ii) V satis�es Condition 1.3 and E is as in (1.9).

Then the singular continuous spectrum �sc(U(1; 0)) = ;.

In the case of the two-body problem, the theorems above extend those of [Ya1] in two ways (see
also [KuY] and [Yo]). The most signi�cant is that we include the physical model of Hydrogen. The
second extension is that we handle a more general class of electric �elds. (Note that our Avron-
Herbst type transformation, to be presented below, combines with [Ya1] to cover the larger class of
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�elds.) The spectral theory for the two-body problem was also considered in [Ko2]. In the case of
the many-body problem however, our results are new. Asymptotic completeness for the two-body
problem was proved in [Ya1], by stationary methods, and for more general time-dependent problems
in [KiY1], using the Enss method. In [N] Nakamura proved an asymptotic completeness result for
the three-body problem using Faddeev's method. A similar result was proven in [Ko1]. Asymptotic
completeness for N -body AC-Stark systems (and the more general models considered in this paper)
remains an open problem.

As a consequence of our analysis we also get the following basic integral propagation estimate.

Theorem 1.7. Assume V and E is as in Theorem 1.6. Let s > 1
2 > r � 0 and let g be a bounded

Borel-measurable function on the unit-circle with support away from �pp(U(1; 0))[F(U(1; 0)). Then
there exists C > 0 such thatZ 1

�1

k(1 + p2)r=2(1 + x2)�s=2U(t; 0)g(U(1; 0)) k2dt � Ck k2;

for all  2 L2(X).

As for decay of eigenfunctions we have the following theorem.

Theorem 1.8. Assume V satis�es Condition 1.3 and E is as in (1.8). Let e�iE 2 �pp(U(1; 0)) and
' 2 L2(X) satisfy U(1; 0)' = e�iE'. Then ' 2 D(p) and if furthermore e�iE 62 F(U(1; 0)) then
for every � > 0 with

E + �2 < inf
�
� > E : e�i� 2 F(U(1; 0))

	
we have e�jxj' 2 L2(X).

Polynomial decay has previously been proven for the two-body problem in [Ko2] and [KuY]. (In
[KuY] the estimate was for the associated Floquet Hamiltonian only, see below.) Our result on
exponential decay seems to be the �rst of its kind for the AC-Stark model (or models with more
general time-periodic potentials). An exponential decay estimate was proved in [M�] and [A] for the
case of time-periodic electric �elds with nonzero mean (used to prove absence of eigenfunctions in
that framework). Our proof of Theorem 1.8 also works for the molecular Born-Oppenheimer model
and also with Condition 1.3 replaced by Condition 1.1 or 1.2.

Our last result is concerned with perturbation theory. We write

h�(t) = p2 � (E0(t) + �E(t)) � x+ V; (1.11)

where V is time-independent and � is a small real perturbation parameter. Write U�(1; 0) for the
corresponding monodromy operator.

We work here only under the physically most interesting assumption, Condition 1.3 and (1.9),
although one could also consider the cases of Condition 1.1 and Condition 1.2. We study what
happens to non-threshold eigenvalues of U0(1; 0) when the perturbing �eld is turned on; i.e. for small
nonzero �. We refer the reader to Theorem 9.5 for the precise statement of the result. Although
the �eld is classical, we use a standard interpretation of the model as that of an atom coupled
to a reservoir of photons of energies 2�n, n 2 N. The coupling strength of photons with energy
2�n is of the order �

n jÊnj. Here Ên is the n'th Fourier coeÆcient of E as a function on [0; 1]. By
reservoir we mean that the model does not keep track of the number of photons of a given energy,
but rather assumes an unlimited supply. Our results can, in the case E0 = 0, be interpreted as an
analysis of the e�ect of one-photon and some two-photon processes on the bound state energies of
a molecular system. In Appendix A we develop an analytic perturbation theory in the case E0 = 0.
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In the case of the two-body problem, with E(t) = E0 cos(2�t) (the AC-Stark �eld) and a dilation
analytic potential, the result stated in Theorem 9.5 is due to Yajima, see [Ya3]. Yajima furthermore
de�nes resonances and compute them to any order in the perturbation parameter; see also [How2].

Note that for the AC-Stark �eld, only Ê�1 are nonzero. In the case of a circularly polarized �eld
E(t) = (cos(2�t); sin(2�t); 0) and a dilation analytic two-body potential, the result is due to Tip, see
[Ti]. (See also references in [Ti].)

For recent works on N -body systems in a quantized �eld we refer to [BFS] and [BFSS].

Floquet Theory:

We will now in two steps simplify the problem. The �rst step formulates the problem in terms of
Floquet theory and the second step consists of a periodic Avron-Herbst type transformation which
moves the time-dependence into the potential. (The two steps are interchangeable.)

The Floquet Hamiltonian associated with h(t) is

H = � + h(t); on H = L2
�
[0; 1];L2(X)

�
:

Here � is the self-adjoint realization of �i ddt , with periodic boundary conditions. It is well known
that the spectral properties of the monodromy operator and the Floquet Hamiltonian are equivalent.
We have the following relations

�pp(U(1; 0)) = e�i�pp(H); �ac(U(1; 0)) = e�i�ac(H); �sc(U(1; 0)) = e�i�sc(H) (1.12)

and the multiplicity of an eigenvalue z = e�i� of U(1; 0) is equal to the multiplicity of � as an
eigenvalue of H (regardless of the choice of �). See [Ya1], [How1] and [M�]. We note that the
Floquet Hamiltonian is the self-adjoint generator of the strongly continuous unitary one-parameter
group on H given by

(e�isH )(t) = U(t; t� s) (t� s� [t� s]); (1.13)

where [r] is the integer part of r. This construction is based on (1.3) and (1.4). (In fact this is how
one should interpret the 'sum' � + h(t) if E 62 L2loc(R;X), see [M�, Example 3.7].) The potentials
considered in this paper are all (� + p2 � E � x)-bounded with relative bound 0, see Theorem 6.2.
This appears to be a new result in the case of Coulomb interactions. We note that the Coulomb
potential jxj�1 fails to be (� + p2)-compact in � � 3 dimensions (cf. Section 6) and this singularity
is therefore at the borderline for relative boundedness.

A time-dependent transformation:

The second simpli�cation of the problem makes use of an idea of [M�]. One can construct time-
periodic coordinate changes Sa(t), a 6= amin, such that the time-dependency in the new frame is
in the potential only. This coordinate change should be compared with the Avron-Herbst formula,
see [CFKS]. A closely related formula was introduced by H.A.Kramers in [Kr]. See also [A] for an

application of the transformation of [M�] to the N -body case with
R 1
0 E(t)dt 6= 0.

For a 2 A we introduce cluster Floquet Hamiltonians

Ha = � + ha(t) on L2([0; 1];L2(Xa))

and the following functions

b(t) =

Z t

0

E(s)ds � b0; b0 =

Z 1

0

Z t

0

E(s)dsdt

c(t) = 2

Z t

0

b(s)ds� c0; c0 = 2

Z 1

0

Z t

0

b(s)dsdt (1.14)

�a(t) =

Z t

0

jb(s)aj2ds� t�a0 ; �a0 =

Z 1

0

jb(s)aj2ds:
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The transformations are

Sa(t) = e�i�
a(t) exp(ib(t)a � xa) exp(�ic(t)a � pa) (1.15)

and
Sa�HaSa = � + (pa)2 + V a(t; xa + c(t)a) + �a0 : (1.16)

Here (Sa )(t) = Sa(t) (t). In terms of the physical problem this corresponds to the identities

Sa(t)�Ua(t; s)Sa(s) = ei(s�t)�
a
0Uac (t; s); (1.17)

where Uac solves (1.2) for the operator family (pa)2 + V a(t; xa + c(t)a).

The equation (1.16) and the periodicity of the transformations (Sa(1) = Sa(0)) show that, up to
a translation/rotation, the spectral structure of the two systems are equivalent. We note that in the
case of a circularly polarized �eld (in 3 dimensions), one can bring the Hamiltonian onto the time-
independent form (p�a)2+V �2�L3, where a = (a1; 0; 0) is a constant vector and L3 = x1p2�x2p1,
the third component of the angular momentum observable. This observation was used in [Ti]. In
the following we will, in the light of (1.16), assume E = 0 and instead work with operators of the
form

H = � + h(t); where h(t) = p2 + V; (1.18)

and the pair potentials (t; xa) ! Va(t; x
a) are time-periodic. Note that if E is as in (1.8) and V

satis�es Condition 1.1, then so does the potential (t; x)! V (t; x+ c(t)).

We now proceed to discuss the structure of the transformed Floquet Hamiltonian H . For a 2 A,
we have a natural splitting of the Hilbert space H into a tensor product

H = L2(Xa)
H
a; where Ha = L2

�
[0; 1];L2(Xa)

�
:

In particular Hamin = L2([0; 1]; C ). We introduce Hamiltonians respecting the tensor structure of H

Ha = p2a 
 I + I 
Ha:

Note that Ha is the Floquet Hamiltonian for the generalized Schr�odinger operator ha(t). In partic-
ular Hamin = � .

We note that our perturbation problem (1.11), in the framework of Floquet theory and in the
new set of coordinates, takes the form

H� = H0+W�; H0 = � + p2+V (�+ c0) and W�(t; x) = V (x+ c�(t))�V (x+ c0(t)); (1.19)

where c� = c0 + �c and the functions c0 and c are given by E0 and E respectively.

We introduce thresholds for the Floquet Hamiltonian (without electric �eld)

F(H) =
[

a6=amax

�pp(H
a);

which is a 2�-periodic set containing �pp(H
amin) = 2�Z.

In the case of time-independent pair-potentials we have the well-known threshold set F(h) =
[a 6=amax�pp(h

a), �pp(h
amin) := f0g. In this particular case there is the following relation.

F(H) = F(h) + 2�Z: (1.20)
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The constants appearing in (1.10) are

�a = �amax
0 � �a0 =

Z 1

0

jb(s)aj
2ds: (1.21)

With this de�nition it follows from (1.12) and (1.16) that Theorems 1.5, 1.6 and 9.5 are consequences
of the corresponding results phrased with U(1; 0) replaced by H .

We note that considering periods T > 0 other than 1, amounts to replacing � by T�1� . The
e�ect of this is that the spectrum of H becomes 2�=T periodic. In view of perturbation theory,
Theorem 9.5, this has two consequences. One can tune the period of the �eld such as to trigger
oscillations between two or more bound states (with possible ionization coming in at lower order in
�, i.e. at longer time scales). Secondly, by choosing the period small enough, we �nd that Fermi's
Golden Rule governs the ionization process to the order �2, i.e. at the leading ionization time-scale.
See the discussion at the end of Section 9 and [Ya3].

Ideas and techniques:

Our approach to the study of the spectrum of H is a Mourre theoretical analysis of the Floquet
Hamiltonian H . It seems reasonable to expect that one can use, for example, the generator of
dilations A = 1

2 (x � p + p � x), as a conjugate operator for H . This is due to the similarity of the
geometric structure of the Floquet problem and the usual N -body problem. There is however a
central technical obstruction, which appears already in the two-body case. Here we have

i[H;A] = 2p2 � x � rV:

It is easy to see that this is indeed positive, modulo a compact error, when localized away from the
threshold set 2�Z. (Note that F (jxj < R) is H-compact, see [Ya1].) The right-hand side is however
not H-bounded, nor is the second commutator bounded as a form on D(H). This problem was
overcome for the two-body problem by Yokoyama in [Yo], who considered the following modi�cation
of A

~A =
1

2

�
x �

p

1 + p2
+

p

1 + p2
� x

�
:

The problems now disappear and one can use standard Mourre theory. (Following for example [Mo],
[PSS] or [ABG1].)

In the existing proofs of the Mourre estimate for a time-independent N -body operator, one uses
a reduction to subsystems argument, where the property that

A = Aa +Aa; Aa =
1

2
(xa � pa + pa � xa) and Aa =

1

2
(xa � pa + pa � xa);

is important. See [PSS], [FH] and [Hu1]. A modi�cation like the one considered by Yokoyama would
here have to be introduced in a much more subtle way, in order to preserve some kind of reduction
argument. We have not been able to follow this approach.

Instead we turn to an idea of [Sk], where the form boundedness, with respect to H , of the second
commutator was replaced by boundedness with respect to the H-unbounded part, M , of the �rst
commutator. We use a splitting

i[H;A] =M +G;

where G is H-bounded and M > Æ > 0 is not H-bounded. The crucial properties used in [Sk] was,
roughly speaking, that

i[H;M ] is H-bounded and i[M;A] is M -bounded: (1.22)
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The following Mourre type commutator estimate was considered in [Sk]

M + f(H)Gf(H) � 
f(H)2 �K � C(1� f(H))2; (1.23)

for some 
 > 0, C > 0 and compact K, provided f is supported nearby some �xed energy.
The motivation for using this (weaker looking) estimate instead of the standard Mourre estimate,
f(H)i[H;A]f(H) � 
f(H)2 �K, lies in the use of Mourre's di�erential inequality technique. One
is lead to consider the resolvent family

Rz(�) = (H � i�(M + f(H)Gf(H))� z)�1 (1.24)

instead of the usual resolvent family (H � i�f(H)i[H;A]f(H)� z)�1. One should notice that Rz(�)
has improved properties because M appears without energy localization.

Our case does not �t into the models covered by [Sk]. In the case of Condition 1.1 we want to use
A, the generator of dilation, as conjugate operator and we take M = 2p2 + Æ, Æ > 0. We note that

i[M;A] isM -bounded as required in [Sk] but i[H;M ] is not H-bounded. It is howeverM
1
2 -bounded

and this may be used to make sense of the resolvent (1.24) (notice at this point the symmetry between
H and M). This observation would enable us to prove a Limiting Absorption Principle for H , using
ideas similar to the ones employed in [Sk]. However, in order to encompass local singularities, we
develop a more re�ned theory involving a weaker condition on the commutator i[H;M ] than the
ones discussed above. In the case of Condition 1.3 we will have to replace the generator of dilation
with the operator A1 = 1=2((x + c) � p + p � (x + c)), where t ! c(t) is the function appearing in
the transformation (1.15). This is necessary and convenient in order to handle second commutators.
Nevertheless, since the Coulomb singularity is the border-line for H0-boundedness (in R

� , � � 3),
one still needs some weaker assumption. See Assumption 2.1 for the precise formulation.

Our Limiting Absorption Principle (LAP) is of the form

sup
Im z 6=0;Re z2V

khAi��M�(H � z)�1M�hAi��k <1; (1.25)

where V � R is an open neighbourhood, not containing thresholds nor eigenvalues, � > 1
2 and � <

1
2 .

The fact that we can handle the extra weight M� comes from our choice of commutator estimate
(1.23), see also (1.24). As a consequence we furthermore get a LAP with hAi��M� replaced by
hxi�shpir, s > 1

2 and r < 1
2 . (The presence of the M

� factors, with � > 1
4 , is crucial for obtaining

a LAP with x-weights.) One should note that the well-de�nedness of the expression above is not

immediately clear, even for �xed z, Im z 6= 0, since M
1
2 is not H-bounded. This type of LAP was

also considered in [Hos], for some 'unperturbed' problems and in [KuY] for two-body time-periodic
systems. The paper by [KuY] uses a method of H�ormander and is in the framework of Besov spaces.
In both of these papers the LAP, with x-weights, is proved with the critical exponent r = 1

2 . Our use

of Mourre's di�erential inequality technique does not allow us to include the critical cases � = r = 1
2 .

We note that an extension in the spirit of [ABG1] of the abstract approach to the LAP as
formulated in [Sk] is being developed in [GGM]. This extension does not cover the results obtained
here.

It is well-known that a LAP implies absence of singular continuous spectrum, see [RS, Section
XIII.7]. In particular Theorem 1.6 with U(1; 0) replaced by H follows from (1.25).

As a consequence of the LAP with x-weights we get Theorem 1.7, cf. [KiY2]. We note that in
order to replace the A-weights with x-weights we use that hAishpi�shxi�s is bounded.

We furthermore show that the limit of the resolvents hAi��M�(H � E � i0)�1M�hAi�� exist
and are H�older continuous in E; cf. Proposition 9.1 (for the case of x-weights see the remark after
Proposition 9.1). This will be used in the context of second order perturbation theory.
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Our proof of the commutator estimate (1.23) follows a proof given by Hunziker in [Hu1], for the
usual N -body problem. In order to do the threshold analysis of [Hu1], we show that eigenfunctions
are a priori in the domain of the momentum operator p. In our context this is a non-trivial statement;
notice that D(p) 6� D(H). The fact that the Hamiltonian is bounded from below is used in [Hu1]
at a critical point of the reduction argument. Our Hamiltonian is not bounded from below but
instead we utilize that its spectrum is 2�-periodic. This observation also plays an important role
for an argument given in [KuY] and [A]. We �nally note that replacing energy localizations f(H)
with f(Ha), up to a compact error, is not as easy here as in the time-independent problem (if at all
possible). Instead we take advantage of the robustness of the commutator estimate (1.23); it allows
for a non-compact error of the form ��p2, with � > 0 small. This will also be important for our
threshold analysis and for treating the Coulomb singularity. As in Hunziker's paper, Theorem 1.5
with U(1; 0) replaced by H is veri�ed simultaneously with the commutator estimate (1.23).

We employ a Froese-Herbst type argument to show exponential decay of non-threshold eigenfunc-
tions for the Floquet operator, cf. [FH2], [CFKS] and [DG]. We furthermore argue that �rst order
derivatives of these eigenfunctions also decay exponentially, which is used to obtain exponential
decay of the corresponding non-threshold eigenfunctions for U(1; 0).

As for our result on perturbation theory, we follow an approach used in the paper [AHS] to study
embedded (non-threshold) eigenvalues of N -body Schr�odinger operators. Note that �(H) = R, so in
our problem all eigenvalues are embedded. In particular we verify Fermi's Golden Rule. In Appendix
A we develop an analytic perturbation theory which is valid for weak �elds.

The paper is organized as follows. In Section 2 we present the abstract positive commutator
method and prove the Limiting Absorption Principle (1.25). In Section 3 we verify that our example,
under Condition 1.1, satis�es the technical assumptions used in Section 2 and in Section 4 we prove
the commutator estimate (1.23). In Section 5 we discuss how to extend the results of the previous
sections to include potentials with Lp singularities, see Condition 1.2. In Section 6 we extend the
results of the previous sections to potentials satisfying Condition 1.3. In Section 7 we derive the
Limiting Absorption Principle with x-weights and prove an integral propagation estimate for the
physical system, cf. Theorem 1.7. In Section 8 we prove exponential decay of eigenfunctions and in
Section 9 we study the perturbation problem (1.19). Finally in Appendix A an analytic perturbation
theory is considered.

Acknowledgement: J. S. M�ller would like to thank V. Bach for hospitality at Johannes Gutenberg
Universit�at-Mainz.
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2. Abstract theory

For a self-adjoint operator T on a Hilbert space we denote by D(T ) and �(T ) its domain and
resolvent set, respectively. We use the notation E
(T ) for the spectral projection corresponding to
any given Borel set 
. For � 2 D(T ) let hT i� = h�; T�i. Let F0 denote the set of smooth real-valued
functions �(t) on R with the property���� dkdtk �(t)

���� � Ck(1 + jtj)�k; k 2 N [ f0g:

Assumption 2.1. Let H;H0;M;A;An; n 2 N be self-adjoint operators on a Hilbert space H with
M � ÆI for some positive number Æ. Suppose D(H) = D(H0) and V = H�H0 is �-bounded relatively
to H. Suppose that for some core C of A with C � D(An) the identity limn!1 An� = A� holds for

all � 2 C. Suppose D(M
1
2 ) � D(An) and:

1) (Compatibility) The set D = D(H0) \ D(M) is dense in D(H0) as well as in D(M). The
form i[M;H0] de�ned on D extends to an M-bounded operator, and D(H0) is preserved by
M�1. Moreover for all � 2 F0 the form i[M;�(H)] de�ned on D may be identi�ed as a sum

of operators i[M;�(H)] = T1 + T2, where T1 is M
1
2 -bounded and T2 is H-bounded.

2) (First commutators) Let for all n 2 N the form i[H;An] de�ned on D
1
2 = D(H)\D(M

1
2 ) be

denoted by Hn. There exists an H-bounded (symmetric) form G such that for all �1; �2 2 D
1
2

lim
n!1

h�1; Hn�2i = h�1; (M +G)�2i:

3) (Second commutators) For all n 2 N the form i[M;An] de�ned on D(M) extends to an
M-bounded operator Mn. It holds that

sup
n



MnM
�1


 =: CM <1:

For all real-valued f 2 C10 (R)

sup
n




M� 1
2 i[f(H)Gf(H); An]M

� 1
2




 <1:

4) (Positivity at E) For a given E 2 R there exist 
 > 0, an open neighbourhood U of E and a
compact operator K such that for all real-valued f 2 C10 (U) the form inequality

M + f(H)Gf(H) � 
I � f(H)Kf(H)� (I � f(H))L(I � f(H))

holds on D for some symmetric and H-bounded form L = L(f).

Remarks 2.2.

1) The condition of Assumption 2.1 1) that D(H0) is preserved by M
�1 is an alternative to the

condition of [Mo], that
sup
j�j<1



Mei�H0M�1


 <1:

Given the condition on the form i[M;H0] stated in Assumption 2.1 1) those conditions are
equivalent, cf. [GG, Lemma 2].

2) The condition D(M
1
2 ) � D(An) is convenient for the examples discussed in this paper

particularly in the context of inclusion of local singularities, however, there are di�erent
but somewhat similar extensions of [Mo] which do not have this requirement. Notice for
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example that it does not appear in [Sk] (for good reasons). The requirement that A is
self-adjoint was relaxed in [Sk], but this is not needed for the examples of this paper. On
the other hand as mentioned in Section 1 the explicit H-boundedness assumption of i[M;H ]
appearing in [Sk] does not comply with our examples. The stated somewhat weaker condition
of Assumption 2.1 1) (involving the commutator with �(H)) will be a useful substitute in
the present context.

3) By repeated use of the form inequality

2RefD�
1BD2g � �D�

1D1 + ��1kBk2D�
2D2; � > 0; (2.1)

one veri�es readily that the following two statements (with the inequality meant to hold on

D or equivalently on D
1
2 ) and Assumption 2.1 4) are equivalent (for �xed given E 2 R).

Assumption 2.1 4)'

9
 > 09 open nbh. UE9 compact operator K :

M +G � 
I �K �EcLEc;

Ec = ERnUE(H); L is a symmetric and H-bnd. form.

Assumption 2.1 4)"

9
 > 09fE 2 C
1
0 (R); fE = 1 on a nbh. of E and real-valued:

M + fE(H)GfE(H) � 
fE(H)2 �K � (I � fE(H))L(I � fE(H));

K is a compact operator, L is a symmetric and H-bnd. form.

Similarly, if alsoM is an H-bounded form then Assumption 2.1 4) reduces to the standard
Mourre estimate of [Mo] (by putting H = H0;M = I; An = n2A(n2+A2)�1 and C = D(A));
consequently indeed the theory of this section is an extension of the one of [Mo].

Lemma 2.3 (Virial type theorem). Suppose Assumption 2.1 2) and 4). Suppose f�mg � D(H)
is a sequence of eigenstates, (H � Em)�m = 0; k�mk = 1, such that �m ! 0 weakly and Em ! E.

Then there exists m0 2 N such that �m =2 D(M
1
2 ) for m � m0.

Proof. We pick f 2 C10 (U) equal to one on a neighbourhood of E and compute for �m 2 D(M
1
2 )

the expectation
hM +Gi�m = lim

n!1
hHni�m = 0:

On the other hand if m is large enough

hM +Gi�m � 
 � hKi�m �



2

yielding a contradiction. �

We de�ne and use throughout this section the notation

hT i = (�2 + T 2)
1
2 ; � � 2CM + 1 �xed, (2.2)

where the constant CM is given in Assumption 2.1 3).

Our main result is
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Theorem 2.4 (LAP). Suppose Assumption 2.1 with E not being an eigenvalue of H. Then there
exists a neighbourhood V of E such that for 0 � � < 1

2 < � � 1

sup
Im z 6=0;Re z2V



hAi��M�(H � z)�1M�hAi��


 <1: (2.3)

We remark that the correct interpretation of (2.3) is in terms of extension by continuity as a form
from D(M�). This extension makes sense by the following result.

Lemma 2.5. Suppose Assumption 2.1 3) and 0 < �; � � 1. Then

M�hAi��M�� is bounded.

Proof. By interpolation we may assume that � = 1. We notice that

An ! A in the strong resolvent sense. (2.4)

To show this we let z with Im z 6= 0 and � 2 C1 := (A� z)C be given. Then

(An � z)�1�� (A� z)�1� = (An � z)�1(A�An) ; where  = (A� z)�1�;

and since  2 C the right hand side converges to zero in norm. Since C1 is dense in H we conclude
(2.4).

As a consequence of (2.4) it suÆces to show that

sup
n



�M; hAni
��
�
M�1



 <1:

For that we represent

hAni
�� = c

Z 1

0

t�
�
2 (A2

n + �2 + t)�1dt

= c

Z 1

0

t�
�
2

(�2 + t)
1
2

Im
�
An � i(�2 + t)

1
2

��1
dt; c = c

�
�
�

2

�
;

(2.5)

yielding by Assumption 2.1 3) and the proof of [Mo, Proposition II.3]�
M; hAni

��
�
M�1 = S1 + S2;

S1 =
c

2

Z 1

0

t�
�
2

(�2 + t)
1
2

�
An � i(�2 + t)

1
2

��1
Mn

�
An � i(�2 + t)

1
2

��1
M�1dt;

S2 =
c

2

Z 1

0

�t�
�
2

(�2 + t)
1
2

�
An + i(�2 + t)

1
2

��1
Mn

�
An + i(�2 + t)

1
2

��1
M�1dt:

By the same ingredients



M �
An � (+)i(�2 + t)

1
2

��1
M�1





 � 2(�2 + t)�
1
2 : (2.6)

We insert I = M�1M in front of the last resolvent of the integrands and estimate yielding in
conjunction with (2.6) the bound

2CM t
��

2 (�2 + t)�
3
2 (2.7)
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for both integrands. Clearly the integral of this bound is of the form C��1��, in particular �nite
and independent of n. �

Remarks.

(1) It is important for the uniform estimate (2.6) that the number (�2 + t)
1
2 is large (here

accomplished by the requirement (2.2)). For example, there does not exist a uniform bound

in the plus case for the example of Section 3 if (�2 + t)
1
2 < 2. (Closely related to this point

we notice that the identity [PSS, (6.5)] is wrong.)
(2) Our proof of (2.3) exhibits a H�older continuity property (for the operator that is uniformly

bounded) which will be useful in the context of perturbation theory in Section 9. We refer
to Proposition 9.1.

In order to prove Theorem 2.4 we need various preliminary results.

Lemma 2.6. Suppose Assumption 2.1 1). Consider, for � 2 Rnf0g, H(�) = H�i�M on the domain
D = D(H) \ D(M). The operator is closed and the adjoint is given by

H(�)� = H(��):

In particular z 2 �(H(�)) for either Im z and � both positive or both negative. Moreover in these
cases the resolvent R0

z(�) = (H(�)� z)�1 obeys the bounds

R0
z(�)



 � j Im z + Æ�j�1; (2.8)


M 1
2R0

z(�)



 � j�j�

1
2 j Im z + Æ�j�

1
2 : (2.9)

(Here Æ refers to the delta of Assumption 2.1.)

Proof. By [RS, Theorem X.50] it suÆces except for the statement (2.9) to know the lemma with H
replaced by H0. We refer to the proof of [Sk, Lemma 2.6] which readily may be modi�ed under the
present conditions. (Notice that the direct analogue of [Sk, Lemma 2.6] would require that i[M;H0]
is H0-bounded and not M -bounded.) As for (2.9), the estimate follows from (2.8) by squaring and
using the identity

R0
z(�)

�(2i�M + z � �z)R0
z(�) = R0

z(�)�R0
z(�)

�: (2.10)

�

The following result is a modi�ed version of [Sk, Lemma 2.7]. The estimate is weaker than the
one of [Sk] which re
ects the weaker input of Assumption 2.1 1), cf. Remark 2.2 2).

Lemma 2.7. Suppose the assumption of Lemma 2.6 and that f 2 C10 (R) is equal to one on a
neighbourhood of a real number E. Then there exist constants C; �0 > 0 and a neighbourhood V of
E such that 


hHi 12 (I � f(H))R0

z(�)hHi
1
2




 � C

provided j�j � �0; � Im z > 0 and Re z 2 V.

Proof. Let Vr = (E � r; E + r) for r > 0. Pick r > 0 such that f is one on V2r and de�ne
V = Vr. Decompose I = ��+�0+�+ in terms of non-negative functions in F0 with the properties:
�0 2 C10 (V2r), �� supported in (�1; E � r), and �+ supported in (E + r;1).

For any � 2 D(hHi
1
2 ) let  = R0

z(�)hHi
1
2�. We de�ne for � 6= 0, � Im z > 0 and Re z 2 V

gz(�) =



jH �Re zj

1
2��(H) 




2 + 


jH � Re zj
1
2�+(H) 




2
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and compute

gz(�) = Reh ; �2�f(H � i�M � z) + i�Mg i �Reh ; �2+f(H � i�M � z) + i�Mg i:

In accordance with Assumption 2.1 1) there are bounded operators B�
1 and B�

2 corresponding to
�� 2 F0 given by

B�
1 = T�1 M

� 1
2 and B�

2 = hHi�
1
2 T�2 hHi

� 1
2 ; where i[M;��] = T�1 + T�2 :

We introduce operators B+
1 and B+

2 in a similar fashion by replacing �� by �+.

Then estimating by the Cauchy Schwarz inequality yields for any � > 0

gz(�) �



hHi 12�� 


 k���k+ 


hHi 12�+ 


 k�+�k
+
���
i�[M;�2�]

�
 

���+ ���
i�[M;�2+]
�
 

���
� �

�


hHi 12�� 


2 + 


hHi 12�+ 


�+ ��1k�k2

+


�B�

1



 k�� k


M 1
2 



+ 

�B�

2



 


hHi 12�� 


 


hHi 12 



+


�B+

1



 k�+ k


M 1
2 



+ 

�B+

2



 


hHi 12�+ 


 


hHi 12 



� 2�

�


hHi 12�� 


2 + 


hHi 12�+ 


2�+ ��1k�k2

+ C��1



�M 1

2 



2 + C 0��1




�hHi 12 


2 :

(2.11)

We use (2.10) to obtain


�M 1
2 



2 � 2

���� ImDhHi 12�;R0
z(�)hHi

1
2 �
E��� � 2k�k




�hHi 12 


 � k�k2 +



�hHi 12 


2 :

This bound is inserted into the right hand side of (2.11). Next we use the estimate


hHi 12 


 � 


hHi 12�� 


+ 


hHi 12�0 


+ 


hHi 12�� 



to get 


�hHi 12 


2 � 3

�


�hHi 12�� 


2 + 


�hHi 12�0 


2 + 


�hHi 12�� 


2� : (2.12)

Finally, we conclude from (2.12) and the previous estimates that

gz(�) �
�
2�+ 3�2��1(C + C 0)

��


hHi 12�� 


2 + 


hHi 12�+ 


2�
+��1(1 + C)k�k2 + 3��1(C + C 0)




�hHi 12�0 


2 : (2.13)

Obviously we can estimate


hHi 12�� 


2 + 


hHi 12�+ 


2 � C 00gz(�)
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uniformly in Re z 2 V .

Consequently we obtain from (2.13) by a subtraction and by choosing and henceforth �xing � > 0
small that there exists C > 0 such that for all � with j�j suÆciently small and for all z with Re z 2 V

gz(�) � C
�
k�k2 + k� k2

�
: (2.14)

Now suppose we can show that
k� k � C 0k�k: (2.15)

Then by (2.14) the lemma follows since D(hHi
1
2 ) is dense in H.

To show (2.15) we repeat the above arguments with  replaced by  = R0
z(�)�. Notice that in

this case (2.15) follows from (2.8). Now we prove (2.15) by the analogue of (2.14) (with the new  )
and another application of (2.8):

k� k �



�R0

z(�)hHi
1
2���




+ 


�R0
z(�)hHi

1
2�0�




+ 


�R0
z(�)hHi

1
2�+�





� C

�


�hHi 12��R0
�z(��)




+ 1 +



�hHi 12�+R0

�z(��)



� k�k

� C 0k�k:

�

In the rest of this section we impose Assumption 2.1 with E not being an eigenvalue of H . We
pick a real-valued f 2 C10 (R) equal to one on a neighbourhood of E such that the form inequality

M + f(H)Gf(H) �



2
I � (I � f(H))L(I � f(H)) (2.16)

holds on D. We shall prove analogues of Lemmas 2.6 and 2.7 for the perturbed operator H(�) �
i�f(H)Gf(H). Introducing the notation

Rz(�) = (H � i�(M + f(H)Gf(H))� z)�1

for its resolvent we have

Lemma 2.8. There exists constants C; �0 > 0 and a neighbourhood V of E such that

kRz(�)k � Cj Im z + Æ�j�1; (2.17)


M 1
2Rz(�)




 � Cj�j�
1
2 j Im z + Æ�j�

1
2 ; (2.18)


hHi 12 (I � f(H))Rz(�)hHi

1
2




 � C; (2.19)


hHi 12 (I � f(H))Rz(�)M
�



 � Cj�j�� ; � 2

�
0;
1

2

�
; (2.20)

provided j�j � �0, � Im z > 0 and Re z 2 V.

Proof. It is not obvious that the resolvent exists for all z in question. Clearly, a perturbation
argument based on (2.8) gives the existence for large values of j Im zj. Below we shall prove (2.17)
in a domain of the desired form assuming that the resolvent exists. Then by a simple connectedness
argument it follows that it exists in the whole domain.
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So suppose z is given such that Rz(�) exists. Then from

Rz(�) = R0
z(�)(I + i�f(H)Gf(H)Rz(�)) (2.21)

and Lemma 2.7 we obtain 


hHi 12 (I � f(H))Rz(�)



 � C1(1 + j�jkRz(�)k): (2.22)

Here and henceforth Re z 2 V with �0 and V chosen in agreement with Lemma 2.7.

By Lemma 2.6 the analogue of (2.10) for Rz(�) is

Rz(�)
�(2i�(M + f(H)Gf(H)) + z � �z)Rz(�) = Rz(�)�Rz(�)

�: (2.23)

By (2.16) and (2.23)

Rz(�)
�Rz(�) �

2




�
ImRz(�)

�
+Rz(�)

�(I � f(H))L(I � f(H))Rz(�)

�
; (2.24)

yielding

kRz(�)k
2 � C2

�
kRz(�)k

j�j
+



hHi 12 (I � f(H))Rz(�)




2� : (2.25)

Combining (2.22) and (2.25) we obtain

kRz(�)k
2 � C2

�
kRz(�)k

j�j
+ C2

1 (1 + j�jkRz(�)k)
2

�
: (2.26)

We may assume that C2
1C2�

2
0 < 1. Then (by subtraction) (2.26) implies the bound kRz(�)k �

Cj�j�1, which in conjunction with (2.21) and (2.8) yields (2.17).

Upon combining with (2.9) we get (2.18).

As for (2.19) we use


Rz(�)hHi 12 


 � 


Rz(�)f(H)hHi
1
2




+ 


Rz(�)(I � f(H))hHi
1
2





and (2.22) to estimate


hHi 12 (I � f(H))Rz(�)hHi

1
2




 � C1

�
1 + j�j




Rz(�)hHi 12 


�
� C2

�
1 + j�j




hHi 12 (I � f(H))R�z(��)



�

� C3:

The estimate (2.20) for � = 1
2


hHi 12 (I � f(H))Rz(�)M

1
2




 � Cj�j�
1
2 (2.27)

follows by squaring and using (2.23) in combination with (2.19).

Finally, the general case (2.20) follows by interpolating (2.19) and (2.27). �

With Rz(�) given as in Lemma 2.8 we introduce the operator

Fz(�) = hAi�1M�Rz(�)M
�hAi�1;

for � < 1
2 .
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Lemma 2.9. In addition to the bounds of Lemma 2.8 we have (with a possibly larger constant C)


M 1
2Rz(�)M

�hAi�1



 � Cj�j�

1
2 (1 + kFz(�)k)

1
2 ; (2.28)


hHi 12Rz(�)M�hAi�1




 � Cj�j�
1
2 (1 + kFz(�)k)

� 1
2 ; (2.29)

for all � and z given as in the lemma. In particular

kFz(�)k � Cj�j�1: (2.30)

Proof. We shall prove that 

Rz(�)M�hAi�1


 � Cj�j�

1
2 (1 + kFz(�)k)

1
2 : (2.31)

Given (2.31), the estimate (2.28) follows by squaring and using (2.23).

To prove (2.31) we let for any � 2 D(M�);  = Rz(�)M
�hAi�1�. The expectation of (2.24) in

the state M�hAi�1� gives

k k2 �
2




�
kFz(�)k

j�j
k�k2 + C1




hHi 12 (I � f(H)) 



2� :

Upon combining with (2.27) we thus obtain

k k2 �

�
2




kFz(�)k

j�j
+ j�j�1C2

�
k�k2; (2.32)

which clearly gives (2.31).

The statements (2.29) and (2.30) follow from (2.20) and (2.28). �

Proof of Theorem 2.4 for � = 1.

We shall only consider the case � = 1 in detail. The general case follows by modifying the proof
below mimicking [PPS] and will be outlined at the end of this section.

Obviously we may assume that Im z > 0.

We shall use Lemmas 2.8 and 2.9 to prove the di�erential inequality



 dd�Fz(�)




 � C��

1
2��(1 + kFz(�)k); for � > 0: (2.33)

In conjunction with (2.30) this will give Theorem 2.4 by repeated integrations with respect to �
using the fact that for any �1; �2 2 D

lim
�!0+

h�1; Rz(�)�2i =


�1; (H � z)�1�2

�
; (2.34)

which in turn follows by the following computation using in the last step Assumption 2.1 1) with
�(t) = (t� �z)�1:


�1;
�
Rz(�)� (H � z)�1

�
�2
�
= i�



�1; (H � z)�1(M + f(H)Gf(H))Rz(�)�2

�
= i�



M(H � �z)�1�1; Rz(�)�2

�
+O(�)

= O(�):
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To prove (2.33) we compute (for � > 0)

d

d�
Fz(�) = hAi�1M�Rz(�)i(M + f(H)Gf(H))Rz(�)M

�hAi�1: (2.35)

The middle term is rewritten as

M + f(H)Gf(H) = (M +G)� (I � f(H))Gf(H)�G(I � f(H)): (2.36)

Upon substituting (2.36) into the right hand side of (2.35) we obtain three terms. The second
and third terms are bounded by

C��
1
2��(1 + kFz(�)k)

1
2

�
� C��

1
2��(1 + kFz(�)k)

�
(2.37)

by (2.20) and (2.29).

It remains to bound the operator

hAi�1M�Rz(�)i(M +G)Rz(�)M
�hAi�1

in accordance with (2.33). For that we introduce

B(�) = hAi�1M�
�Rz(�)i(M +G)Rz(�)M

�
� hAi

�1; (2.38)

where (symbolically)

M�
� = (1 + �M)�1M� ; for � > 0:

By the density of C1 := hAiC in H it suÆces to show the bound

lim
�!0

jh�1; B(�)�2ij � C��
1
2��(1 + kFz(�)k)k�1kk�2k; for �1; �2 2 C1: (2.39)

We substitute into (2.38) (cf. Assumption 2.1 2))

M +G = lim
n!1

Hn; Hn = T 1
n + T 2

n + T 3
n ;

T 1
n = i[H � i�(M + f(H)Gf(H)); An];

T 2
n = ��[M;An];

T 3
n = ��[f(H)Gf(H); An]:

(2.40)

The contribution to the inner product h�1; B(�)�2i from T 1
n (before letting n!1) is given by


�1; hAi
�1M�

� [Rz(�); An]M
�
� hAi

�1�2
�

=
D
M

1
2R�z(��)M

�
� hAi

�1�1; B(�; n)�2

E
�
D
B(�; n)�1;M

1
2Rz(�)M

�
� hAi

�1�2

E
;

(2.41)

where B(�; n) =M� 1
2AnM

�
� hAi

�1, and hence it is bounded by


M 1
2R�z(��)M

�
� hAi

�1�1




 kB(�; n)�2k+ kB(�; n)�1k



M 1

2Rz(�)M
�
� hAi

�1�2




 : (2.42)
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We claim that
lim sup
�!0

lim sup
n!1

kB(�; n)�jk � Ck�jk; for j = 1; 2: (2.43)

Given (2.43) we conclude by taking the limit of (2.42) and using the estimate (2.28) that

lim sup
�!0

lim sup
n!1

��
R�z(��)M
�
� hAi

�1�1; T
1
nRz(�)M

�
� hAi

�1�2
���

� C��
1
2 (1 + kFz(�)k)

1
2 k�1kk�2k:

To show (2.43) we write

B(�; n) =M�
kM

� 1
2AnhAi

�1 +M� 1
2

�
An;M

�
�

�
hAi�1:

We apply this identity to �2. For the �rst term on the right hand side we use the fact that �2 2 C1
and Assumption 2.1 to conclude that

lim
�!0

lim
n!1

M�
�M

� 1
2AnhAi

�1�2 = lim
�!0

M�
�M

� 1
2AhAi�1�2 =M�� 1

2AhAi�1�2:

Since � < 1
2 we therefore only need to bound the contribution from the second term on the right

hand side:

We compute

M� 1
2

�
An;M

�
�

�
= S1 + S2;

S1 = �M� 1
2 (1 + �M)�1�[An;M ](1 + �M)�1M�;

S2 = �c�M
� 1
2 (1 + �M)�1

Z 1

0

t�(M + t)�1[An;M ](M + t)�1dt;

cf. (2.5).

Clearly

S1 = �i(1 + �M)�1
�
M� 1

2MnM
� 1
2

�
(1 + �M)�1�M

1
2+�

which in conjunction with the �rst bound of Assumption 2.1 3) (interpolated) yields an upper bound
of the norm of S1 that is independent of n and �.

We notice that

S2 = �ic�

Z 1

0

t�(M + t)�1(1 + �M)�1M� 1
2Mn(M + t)�1dt:

By inserting I =M� 1
2M

1
2 in front of the last factor in the integrand and using Assumption 2.1 3)

again we infer the following uniform bound:

t�


(M + t)�1



 


M� 1
2MnM

� 1
2




 


M 1
2 (M + t)�1




 � Ct�(Æ + t)�
3
2




M� 1
2MnM

� 1
2





� CCM t

�(Æ + t)�
3
2 :

Upon integrating we obtain a �nite bound of the norm of S2 that is independent of n and �, and
therefore we conclude the favourable bound (2.43) for j = 2.

Obviously by symmetry (2.43) also holds for j = 1. We are left with bounding the contributions
to h�1; B(�)�2i from T 2

n and T 3
n .
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As for the contribution from T 2
n we use Assumption 2.1 3) and (2.28) to estimate

lim sup
�!0

lim sup
n!1

��
R�z(��)M
�
� hAi

�1�1; T
2
nRz(�)M

�
� hAi

�1�2
���

� �CM




M 1
2R�z(��)M

�hAi�1�1




 


M 1
2Rz(�)M

�hAi�1�2





� C(1 + kFz(�)k)k�1kk�2k:

To get the same bound for the contribution from the term T 3
n we write

�[f(H)Gf(H); An] = �M
1
2

�
M� 1

2 [f(H)Gf(H); An]M
� 1

2

�
M

1
2

and estimate the middle factor on the right hand side by using the second estimate of Assumption 2.1
3). Then we use (2.28) again to get the desired bound. We have shown (2.39). �

Sketch of proof of Theorem 2.4 for the case � 2
�
1
2 ; 1
�
.

Following [PSS] we introduce the operator

Fz(�) = D(�)M�Rz(�)M
�D(�); where D(�) = hAi��h�Ai��1:

The results of Lemma 2.9 hold upon replacing hAi�1 by D(�).

We shall show that



 dd�Fz(�)




 � ��

1
2�max(�;1��)C(1 + kFz(�)k); for � > 0: (2.44)

Notice that we can then again integrate to obtain boundedness of Fz(�). To apply (2.34) in a
similar way as before we need the property

s� lim
�!0+

M�(D(�)�D(0))M�� = 0;

which follow from Lemma 2.5 and its proof. (Notice that the bounding constant (2.7) contains a
factor � when replacing An by �An.)

To show (2.44) we proceed as before:

The contribution from the term T 1
n contains (after estimating) an extra factor

kAD(�)k � C���1;

which is in agreement with (2.44).

To deal with the "new terms"�
d

d�
D(�)

�
M�Rz(�)M

�D(�) and D(�)M�Rz(�)M
�

�
d

d�
D(�)

�
;

we use that 



 dd�D(�)




 � C���1

and the analogue of (2.28). We end up with bounds in agreement with (2.44). �
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3. Our example (smooth case)

In this section we impose Condition 1.1. Singularities of Lp-type and Coulomb-type will be
treated in Sections 5 and 6 respectively.

The notation hT i is used for (1 + T 2)
1
2 . (Notice that (2.2) is slightly di�erent.)

We consider the following inputs in Assumption 2.1:

H = L2([0; 1])
 L2(X)

H0 = � + h0;

� = �i
d

dt
with periodic boundary condition; h0 = p2; p = �ir;

H = � + h = H0 + V;

M = 2p2 + Æ;

G = �x � rV � Æ (Æ > 0 arbitrary),

A =
1

2
(x � p+ p � x);

An =
1

2
(Fn � p+ p � Fn);

Fn = Fn(x) = hx=ni�1x;

C = F 
 S(X);

where for the latter de�nition F is the set of 1-periodic trigonometric polynomials, S(X) is the set
of Schwartz functions on X and the tensor product is the algebraic one.

We claim that Assumption 2.1 holds for E outside a set of thresholds. Leaving the veri�cation of
Assumption 2.1 4) to Section 4 we shall here give the arguments for Assumption 2.1 1)-3):

First of all by Nelson's commutator theorem [RS, Theorem X.37], C is a core of both A and An
and the identity limn!1An� = A� holds for all � 2 C. Obviously D(M

1
2 ) � D(An).

Also we notice that C � D = D(H0) \ D(M) = D(�) \ D(M) is a core of both H and M .

Computing in the representation where the operator � is diagonalized it follows that

i[M;H0] = 0 is M -bounded,

and
(H0 � i)M�1(H0 � i)�1 =M�1 is bounded:

As a form on D
i[M;�(H)] = 2i[H � � � V; �(H)] = �2i[� + V; �(H)]:

We pick an almost analytic extension ~� 2 C1(C ) of � 2 F0 with a certain decay property so that
we can represent (suitably interpreted), cf. [DG, Appendix C.3],

�(H)� =
1

�

Z
C

(�@ ~�)(�)(H � �)�1� dudv; where � = u+ iv: (3.1)

This yields the representation

�2i[�; �(H)] =
2

�

Z
C

(�@ ~�)(�)(H � �)�1
�
@

@t
V

�
(H � �)�1dudv:
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The right hand side is identi�ed as a bounded operator. Clearly �2i[V; �(H)] is bounded. We have
now veri�ed Assumption 2.1 1).

As for Assumption 2.1 2) we compute using again the representation where the operator � is
diagonalized

i[H0; An] = p � 2F 0np�
1

2
�(r � Fn) and F 0n = hx=ni�1

�
I �

jx=nihx=nj

hx=ni2

�
: (3.2)

Clearly Fn(x) = nF ( xn ), where F and all its derivatives are bounded. Consequently the second term

on the right hand side of (3.2) is O(n�2). For the �rst term we notice that F 0n ! I in the strong

sense by the Lebesgue dominated convergence theorem. We conclude that for all �1; �2 2 D
1
2

lim
n!1

h�1; i[H0; An]�2i = lim
n!1

hp�1; 2F
0
np�2i = h�1; (M � Æ)�2i: (3.3)

For the potential part we compute

i[V;An] = �Fn � rV; (3.4)

leading to the limit
lim
n!1

h�1; i[V;An]�2i = h�1;�x � rV �2i: (3.5)

We conclude from (3.3) and (3.5) that for all �1; �2 2 D
1
2

lim
n!1

h�1; Hn�2i = h�1; (M +G)�2i: (3.6)

As for Assumption 2.1 3) we use that the form i[M;An] may be computed to be twice the
expression on the right hand sides of (3.2). By a commutation we conclude that Mn exists as an
M -bounded operator and that the �rst uniformity bound of Assumption 2.1 3) holds.

For the last bound of Assumption 2.1 3) we proceed in a fashion that to some extent anticipates
inclusion of local singularities later on. We notice that for � > 0 and Im � 6= 0



 pl
I � i�pl

(H � �)�1hpi�1




 � j Im �j�1



plhpi�1

+ 



(H � �)�1
�
H;

pl
I � i�pl

�
(H � �)�1hpi�1






� j Im �j�1



plhpi�1

+ 

(H � �)�1(I � i�pl)
�1(@lV )(I � i�pl)

�1(H � �)�1hpi�1




� j Im �j�1


plhpi�1

+ 

(H � �)�1(H0 + i)



 

(H0 + i)�1@lV (H0 � i)�1


 

(H0 � i)(H � �)�1




� j Im �j�1



plhpi�1

+ C

�
1 + j�j

j Im �j

�2 

(H0 + i)�1@lV (H0 � i)�1


 :

Letting �! 0 we get



hpi(H � �)�1hpi�1


 � C1

�
1 + j�j

j Im �j

�2

; where C1 = C2

�
1 +




jrxV j 12 hH0i
�1



2� : (3.7)

At �rst we show that
sup
n



hpi�1i[f(H); An]Gf(H)hpi�1


 <1: (3.8)

We represent as a form on D(M
1
2 )

i[f(H); An] = �
1

�

Z
C

(�@ ~f)(�)(H � �)�1Hn(H � �)�1dudv;
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cf. (3.1).

We substitute the expressions (3.2) and (3.4) into this formula. For the contribution from (3.2)
only the �rst term on the right hand side needs elaboration. Using (3.7), its derivation and the
condition that G is an H-bounded operator it suÆces to show that

sup
�>0





(H + i)�1
pl

I � i�pl
Gf(H)hpi�1





 <1:

Obviously by commutation using (3.7) again this may be veri�ed under the weak assumption

jrxGj
1
2 hH0i

�1 is bounded. (3.9)

As for the contribution to (3.8) from (3.4) we factorize

hpi�1(H + i)�1Fn � rV (H � i)�1 = B�
nB;

Bn = (H � i)fn(H � i)�1hpi�1;

B = (H + i)�1x � rV (H � i)�1;

(3.10)

and use the fact that Bn is uniformly bounded, cf. (3.7) (in fact Bn ! hpi�1 in the strong sense).
Clearly for this step we also need B bounded, or equivalently

hH0i
�1x � rV hH0i

�1 is bounded: (3.11)

We have veri�ed (3.8) under the C2-conditions in a fashion that allows inclusion of certain local
singularities as exhibited by the bounds (3.7), (3.9) and (3.11). In addition we used the condition
that G is an H-bounded operator. As for the latter we remark that in the context of inclusion of
Lp-singularities in Section 5 it is relevant to consider G as an H-bounded form. Although we shall
not elaborate, the arguments above can be modi�ed under this form-boundedness assumption at the
expense of strengthening (3.7) and (3.11) as follows

jrxV j
1
2 hH0i

� 1
2 and jx � rxV j

1
2 hH0i

� 1
2 are bounded. (3.12)

Next we show that
sup
n



hpi�1f(H)i[G;An]f(H)hpi�1


 <1: (3.13)

We factorize using notation of (3.10)

hpi�1(H + i)�1Fn � rG(H � i)�1 = B�
nB

0;

B0 = (H + i)�1x � rG(H � i)�1;

yielding for a constant C independent of n (but depending on the bound on the right hand side of
(3.7)) 

hpi�1f(H)i[G;An]f(H)hpi�1



 � CkB0k: (3.14)

Finiteness of the right hand side of (3.14) requires

hH0i
�1x � rGhH0i

�1 is bounded: (3.15)

We have completed the veri�cation of (3.13) and hence Assumption 2.1 3) under C2-conditions.
We obtained bounds that will be useful for inclusion of local singularities.
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4. The commutator estimate

In this section we prove the commutator estimate in Assumption 2.1 4) for the example presented
in Section 3. We will again work with regular N -body systems, that is, we suppose V satis�es
Condition 1.1.

We introduce the reguralization operators

TR =
�
1� i

�

R

��1
and eTR = T �RTR =

�
1 +

� �
R

�2��1
: (4.1)

We note the properties

s� lim
R!1

TR = I and (H0 + i)�1TR = TR(H0 + i)�1: (4.2)

This reguralization will be used on several occasions to compute commutator forms.

We start with the following result (see also [Sk, Theorem 3.1])

Proposition 4.1. Let P be an eigenprojection corresponding to an eigenvalue E 2 �pp(H). Then
pP is bounded (in fact with norm uniformly bounded in E).

Proof. For n > 0 and R > 1 we consider 'vector-�elds'

Fn;R = Fn;R(x; �) = eTRhx=ni�1x:
We compute the 'x-derivative' (cf. (3.2))

F 0n;R = eTRhx=ni�1�I � jx=nihx=nj

hx=ni2

�
and write

An;R =
1

2
(Fn;R � p+ p � Fn;R):

The cut-o�s ensure that An;R is H-bounded.

We compute as a form on D = D(�) \ D(p2)

i[� + p2; An;R] = 2ptRefF 0n;Rgp�
1

2
Ref�(r � Fn;R)g: (4.3)

Here
sup
R>1

k�(r � Fn;R)k � Cn�2: (4.4)

As for the potential we have

i[V;An;R] = �RefFn;R � rV g+ 2R�1Re
neTRRen �

R
@tV

o
An;R

o
: (4.5)

When sandwiched between resolvents the second term on the right-hand side can be estimated as

2R�1



 eTRRen �

R
@tV

o
An;R(H0 + i)�1




 � CR�
1
2n: (4.6)
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For  2 D we combine (4.3)-(4.6) to get the lower bound

h ; i[H;An;R] i

� 2


p ; F 0n;Rp 

�
� h ;Re fFn;R � rV g i � C

�
n�2 +R�

1
2 n
��
kH k2 + k k2

�
:

Replacing  by TS', ' 2 D(H), and taking the limit S ! 1 implies, see (4.2), that the above
estimate holds in the sense of forms on D(H) as well. We now use, cf. (4.1), that F 0n;R � F 0n;R0 , for

a �xed R0 < R. We thus obtain for ' 2 D(H)

lim inf
n!1

lim inf
R!1

h'; i[H;An;R]'i � 2



eT 1

2

R0p'



2 � h'; x � rV 'i; R0 > 1: (4.7)

Now let ' be an eigenfunction for H . Then the left-hand side is identically zero and hence, by the
Lebesgue monotone convergence theorem, we have

kp'k2 �
1

2
sup

t2[0;1];x2X
jx � rV (t; x)jk'k2:

By Condition 1.1 iii), this completes the proof. �

We introduce the distance, d(E), to the nearest threshold below E

d(E) = inf
E02F(H);E0�E

(E �E0):

For a 2 Anfamaxg we write da for the distance function associated naturally with the Hamiltonian
Ha and its threshold set F(Ha). Let d0 denote the analogous distance function for the usual N -body
problem. From (1.20) we get in this case the relation

d(E) = inf
n2Z

d0(E + 2�n):

We will abbreviate

M = 2p2; G = �x � rV; Ma = 2(pa)2 and Ga = �xa � rV a; a 6= amin; amax:

We will furthermore write

D = D(H) \ D(M) and Da = D(Ha) \ D(Ma); a 6= amin; amax:

Let f0;1 2 C10 (R) satisfy

0 � f0;1 � 1 f0;1(s) = 0; jsj > 1 and f0;1 = 1; jsj �
1

2
:

For E 2 R and � > 0 we write fE;�(s) = f0;1((s�E)=�).

The following theorem combined with the results of Section 3 and Remarks 2.2 3) will imply
Assumption 2.1 for any E 62 F(H). Notice that given E 62 F(H) it suÆces to verify Assumption 2.1
4)" for M and G given as above, cf. (2.1).
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Theorem 4.2. Suppose V satis�es Condition 1.1. Let E 2 R and � > 0. There exist � > 0, C � 0
and a compact self-adjoint operator K such that

i) We have the commutator estimate, as forms on D,

M + fE;�(H)GfE;�(H) � 2(d(E)� �)fE;�(H)2 �K � C(I � fE;�(H))2:

ii) The threshold set F(H) is closed and countable, and non-threshold eigenvalues of H have
�nite multiplicity and can at most accumulate at F(H).

The strategy of the proof will be the same as the one employed by Hunziker in [Hu1] for the usual
N -body problem. In the following K will denote compact self-adjoint operators.

Lemma 4.3. Assume i) is given. Suppose furthermore that ii) holds with H replaced by Ha for
every a 6= amin; amax. Then ii) holds as well.

Proof. First we note that F(H) is closed and countable, by the assumption on the subsystems.
Let fEngn2N � �pp(H)nF(H) with corresponding eigenfunctions f'ngn2N. Suppose En ! E and
'n ! 0 weakly. By i), Lemma 2.3 and Proposition 4.1 we �nd that E 2 F(H). This proves the
lemma. �

Proof of Theorem 4.2 in the case 'N=2'.

By 'N=2' we mean A = famin; amaxg. We start by proving i). Let � > 0 and E 2 R. In this case
G is H-compact, see [Ya1] and [M�], and we estimate for � small

M + fE;�(H)GfE;�(H) � fE;�(H0)MfE;�(H0)�K

� 2(d(E) � �)fE;�(H0)
2 �K

= 2(d(E) � �)fE;�(H)2 �K:

In the last step we used an almost analytic extension of f0;1, see (3.1), to verify that fE;�(H0) �
fE;�(H) is compact. This argument is similar to the one used in [Yo]. Note that C = 0 in this case.

As for ii), we remark that F(H) = 2�Z is closed and countable and the result follows from
Lemma 4.3. �

We will proceed by induction, with respect to the ordering (1.7) on A.

Induction Hypothesis. For any a 6= amin; amax the following holds: Let E 2 R and � > 0. There
exist � > 0, C � 0 and a compact self-adjoint operator Ka such that

i) We have the commutator estimate, as forms on Da,

Ma + fE;�(H
a)GafE;�(H

a) � 2(da(E)� �)fE;�(H
a)2 �Ka � C(I � fE;�(H

a))2: (4.8)

ii) The threshold set F(Ha) is closed and countable, and non-threshold eigenvalues of Ha have
�nite multiplicity and can at most accumulate at F(Ha).

By Lemma 4.3 it is enough to prove Theorem 4.2 i).

We will break the proof into several steps, following the structure of [Hu1]. The �rst step contains
the main diÆculty, compared to Hunziker's proof.

We will frequently use the estimate (often with H replaced by Ha)

2Ref(I � fE;�(H))BfE;�(H)g � �~��1kBk2(I � fE;�(H))2 � ~�fE;�(H)2; (4.9)

which holds for every bounded operator B and every ~� > 0. This is a special case of the estimate
(2.1).
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Lemma 4.4. Let a 6= amin; amax, E 2 R and � > 0. There exist � > 0 and C > 0, such that

Ma + fE;�(H
a)GafE;�(H

a) � 2(d(E)� �)fE;�(H
a)2 � C(I � fE;�(H

a))2;

as forms on Da.

Proof. In the case E 62 �pp(H
a), the estimate follows easily from the induction hypothesis (4.8),

since fE;�0(H
a) ! 0 strongly, as �0 ! 0: First we estimate the second term on the right-hand side

of (4.8) (with � replaced by �=3)

�Ka � �fE;�0(H
a)KafE;�0(H

a)�
�

6
fE;�0(H

a)2 � C(�)(I � fE;�0(H
a))2

� �
�

3
fE;�0(H

a)2 � C(�)(I � fE;�0(H
a))2:

Next we use (4.9) repeatedly to replace fE;�(H
a) by fE;�0(H

a) in (4.8).

Let E 2 �pp(Ha) and abbreviate

BaE;� =Ma + fE;�(H
a)GafE;�(H

a):

Since 2(pa)2 = BaE;��fE;�(H
a)GafE;�(H

a) it follows that it suÆce to prove the following statement:
Let � > 0 and � > 0. There exist � > 0 and C > 0 such that

BaE;� � ��fE;�(H
a)2 � �(pa)2 � C(I � fE;�(H

a))2: (4.10)

(We substitute the expression for (pa)2 and isolate BaE;� assuming that � > 0 is small.)

Let �0 = �=50. Write P for the eigenprojection associated with E and pick a sequence fPng of
�nite rank projections with Pn � P , such that Pn ! P strongly. We note that

PnB
a
E;�Pn = PnB

a
E;�(P � Pn) = 0:

This follows from the Virial Theorem (cf. Lemma 2.3 and Proposition 4.1). We can now compute

BaE;� = 2RefPnB
a
E;�(I � P )g+ (I � Pn)B

a
E;�(I � Pn): (4.11)

We now use Proposition 4.1 and the induction hypothesis (4.8) (extended from D to D
1
2 ), with �

replaced by �0, on the last term and obtain

(I � Pn)B
a
E;�(I � Pn) � �2�0fE;�(H

a)2 � (I � Pn)K(I � Pn)� C1(I � fE;�(H
a))2

� �3�0fE;�0(H
a)2 � fE;�0(H

a)(I � P )K(I � P )fE;�0(H
a)

� 2Ref(P � Pn)K(I � P )g � (P � Pn)K(P � Pn)

� C2(I � fE;�0(H
a))2: (4.12)

In the second step we used again (4.9) repeatedly. We are now in a position to choose the parameters
n and �0.

Pick n large such that k(P � Pn)Kk � �0. By (4.9) this implies

2Ref(P � Pn)K(I � P )g+ (P � Pn)K(P � Pn) � 4�0fE;�0(H
a)2 + C(I � fE;�0(H

a))2: (4.13)
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As for the �rst term in (4.11) we introduce the indicator function �� for the interval [��;1). We
rewrite

PnB
a
E;�(I � P ) = Pn��B

a
E;�(I � P ) + Pn(I � ��)B

a
E;�(I � P )

= Pn��B
a
E;�(I � fE;�0(H

a)) + Pn��B
a
E;�(I � P )fE;�0(H

a)

+ Pn(I � ��)B
a
E;�(I � P ): (4.14)

First we consider the third term on the right-hand side. Using Proposition 4.1, (2.1) and the
compactness of Pnp we get

2RefPn(I � ��)B
a
E;�(I � P )g = o�(1)� 4RefPn(I � ��)p

a � pag

� o�(1)� �(pa)2;

where o�(1)! 0 for � !1. Pick � large enough such that jo�(1)j � �0. To treat the two �rst terms
on the right-hand side of (4.14) we use that (pa)2��(H

a � i)�1 is bounded: Choose �0 so small that
the norm of the second term is smaller than �0. Then apply (4.9) to the �rst term. In conclusion

2RefPnB
a
E;�(I � P )g � �4�0fE;�0(H

a)2 � �(pa)2 � C(I � fE;�0(H
a))2: (4.15)

By possibly choosing �0 smaller we obtain in addition to (4.15) the estimate

�fE;�0(H
a)(I � P )K(I � P )fE;�0(H

a) � ��0fE;�0(H
a)2:

Combining this with (4.11), (4.12), (4.13) and (4.15) proves (4.10), and hence the lemma. �

Notice that the distance function d satis�es

d(E +E0) � d(E) +E0; E0 � 0; (4.16)

just as for the usual N -body case. This will be used in the following

Lemma 4.5. Let a 6= amin; amax and � > 0. There exist � > 0 and C > 0, such that for all E 2 R
we have, as forms on Da,

BaE;� � 2(d(E + �)� 2�)fE;�(H
a)2 � C(I � fE;�(H

a))2:

Remark. Uniformity in E follows from local uniformity due to the periodic structure of the problem.
More precisely because

e�i2�ntHei2�nt = H + 2�n; for n 2 Z:

This observation was also used in [KuY] and [A].

Proof. First we note that Lemma 4.4 and (4.16) imply

BaE;� � 2(d(E)� �)fE;�(H
a)2 � C(I � fE;�(H

a))2

� 2(d(E + �)� 2�)fE;�(H
a)2 � C(I � fE;�(H

a))2:

Here � = �(E) and C = C(E). What is left to prove is that we can choose � and C independently
of E. By the remark above it is enough to choose them independently of E 2 [0; 2�].
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Assume the lemma to be false. For �n = n�1 and Cn = n there exists En 2 [0; 2�] such that
the estimate in the lemma does not hold. We extract a subsequence such that En ! E 2 [0; 2�],
�n ! 0 and Cn !1 as n!1.

By Lemma 4.4 we have a �0 > 0 and a C0 � 0 such that

BaE;�0 � 2(d(E)� �=3)fE;�0(H
a)2 � C0(I � fE;�0(H

a))2: (4.17)

Choose n so large that jE �Enj < �=3,

[En � �n; En + �n] � [E � �0=2; E + �0=2] (4.18)

and

Cn � C0 + (1 + 3��1Ca)Ca; Ca = sup
t2[0;1];y2Xa

jGa(t; y)j+ sup
n

2jd(En + �)� 5�=3j: (4.19)

(Note that d(E) � 2�.) By (4.16) we have

d(E) � d(En + �)� �+E �En � d(En + �)� 4�=3:

Combining this with (4.17) we get

BaE;�0 � 2(d(En + �)� 5�=3)fE;�0(H
a)2 � C0(I � fE;�0(H

a))2:

By (4.18) we have

fE;�0 = fEn;�n + fE;�0(1� fEn;�n) and 1� fE;�0 � 1� fEn;�n :

This, together with (4.9), applied with ~� = �=3 and B = �fE;�0(H
a)(Ga � 2(d(En + �) � 5�=3)),

implies

BaEn;�n � 2(d(En + �)� 2�)fEn;�n(H
a)2 � (C0 + (1 + 3��1Ca)Ca)(I � fEn;�n(H

a))2;

which contradicts our assumption by (4.19). �

In the next lemma we use the uniformity of the estimates above

Lemma 4.6. Let E 2 R and � > 0. There exist � > 0 and C > 0 such that for all a 6= amin; amax,
as forms on D,

M + fE;�(Ha)G
afE;�(Ha) � 2(d(E + �)� 2�)fE;�(Ha)

2 � C(I � fE;�(Ha))
2:

Proof. By (4.9) it suÆces to show the bound in the lemma for a �xed a 6= amin; amax, cf. the proof
of Lemma 4.5.

Let � > 0 and C � 0 be given by Lemma 4.5. Let Fa denote the partial Fourier transform with
respect to xa. For  2 D = D(�)\D(M) � H ' L2(Xa;Ha), we estimate, noting that Fa (k) 2 Da

almost everywhere,

hM + fE;�(Ha)G
afE;�(Ha)i =

Z
Xa



BaE�k2;� + 2k2

�
(Fa )(k)

dk

�

Z
Xa

�
2(d(E � k2 + �)� 2�) + 2k2

	
kfE�k2;�(H

a)(Fa )(k)k
2dk

� C

Z
Xa

k(I � fE�k2;�(H
a))(Fa )(k)k

2dk:
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Here we used that k ! k(Fa )(k) = (Fapa )(k) and k ! (Ma)
1
2 (Fa )(k) are in L2(Xa;Ha) to

make sense of the �rst equality. Applying (4.16), with E replaced by E � k2 + � and E0 = k2,
concludes the proof. �

Proof of Theorem 4.2.

As previously mentioned it suÆces to show Theorem 4.2 i). As in the proof of Lemma 4.4, cf.
(4.10), we �nd that it is enough to prove the following statement: For E 2 R , � > 0 and � > 0,
there exist � > 0, C > 0 and K compact such that

M + fE;�(H)GfE;�(H) � 2(d(E)� �)fE;�(H)2 �K � �p2 � C(I � fE;�(H))2: (4.20)

Let �0 = �
6jAj .

Let fjaga6=amax � C1(X) be a partition of unity satisfying that

X
a6=amax

j2a = 1 and sup
x2X

hxi

hxbi
ja <1; b 6� a: (4.21)

The functions ja should furthermore be homogeneous of degree zero outside a compact set.

By the IMS localization formula (cf. [CFKS]) we get for f 2 C10 (R)

M + fE;�(H)GfE;�(H) =
X

a6=amax

jaMja + fE;�(H)jaGjafE;�(H)� jrjaj
2:

As for the localization error we write

jrjaj
2 = K + (I � fE;�(H))jrjaj

2j(I � fE;�(H));

with K compact. Using this and the observation that jax � rVbja, b 6� a, is H-compact (see (4.21))
we get

M + fE;�(H)GfE;�(H) �
X

a6=amax

(jaMja + fE;�(H)jaG
ajafE;�(H))�K � C(I � fE;�(H))2:

In the proof of the Mourre estimate for the usual N -body problem one uses here compactness of
fE;�(H)ja� jafE;�(Ha), which is not an obvious statement for our problem (if true at all). Here we
take a simpler path. Let T (�) = (H � �)�1ja � ja(Ha � �)�1, Im � 6= 0. Write Ia = V � V a for the
intercluster potential. We compute

T (�) = (H � �)�1(�jaIa + 2iRefrja � pg)(Ha � �)�1

= K1(�) +

dimXX
j=1

K1
j (�)pj

= K2(�) +

dimXX
j=1

pjK
2
j (�); (4.22)

where the Ki(�)'s and the Ki
j(�)'s are compact operators with

kKi(�)k+ kKi
j(�)k � C

�
1 + j�j

j Im �j

�3

: (4.23)
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This bound follows from (3.7). Let ~f be an almost analytic extension of f0;1, see (3.1). Then for
B 2 B(H)

Ref(fE;�(H)ja � jafE;�(Ha))Bg = �Re

�
1

�

Z
C

(�@ ~f)(�)T (E + ��)B dudv

�
� ��0p2 �K: (4.24)

Here � = u+ iv. Using this argument with B = GajafE;�(H) and B = GafE;�(Ha)ja yields

M + fE;�(H)GfE;�(H)

�
X

a6=amax

ja(M + fE;�(Ha)G
afE;�(Ha))ja � 2jAj�0p2 �K � C(I � fE;�(H))2:

(4.25)

We now �x � > 0 and C > 0 in accordance with Lemma 4.6 so that

M + fE;�(H)GfE;�(H) � 2(d(E + �)� 2�)
X

a 6=amax

jafE;�(Ha)
2ja

� 2jAj�0p2 �K � C
X
a

ja(I � fE;�(Ha))
2ja;

with the convention that jamax = 1. Using (4.24) on the �rst and the last term on the right-hand
side (for a 6= amax) yields �nally

M + fE;�(H)GfE;�(H) � 2(d(E + �)� 2�)fE;�(H)2 �K � 6jAj�0p2 � C(I � fE;�(H))2:

The estimate (4.20), and hence Theorem 4.2 i), now follows since d(E + �) � 2� = d(E) � � for �
small enough, provided E 62 F(H). Here we used that F(H) is a closed set, which follows from
Theorem 4.2 ii), applied with a 6= amax. �

In the following section, we will discuss how to extend our methods to potentials with Lp-type
singularities. See Condition 1.2. As for Proposition 4.1, we refer the reader to the corresponding
result in the case of Coulomb singularities, cf. Theorem 6.3. The crucial property is the H0-

boundedness of jrV 2
a j

1
2 , which follows from Lemma 5.1. As for Theorem 4.2, the proof is the

same as above apart from two remarks: 1) Note that G is form H0-compact in the two-body case
and that jaG

aja is form H0-compact in the general case. This follows from (5.4). 2) Replace
supt2[0;1];y2Xa jGa(t; x)j by kfE;1(Ha)GafE;1(H

a)k in (4.19).
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5. Singularities of Lp-type

In this section we impose Condition 1.2.

We shall outline a modi�cation of the theory of Section 2 under this condition leading again to
Theorem 2.4.

The principal tool will be the following boundedness result which applies to the Lp-functions V a2
and jrV a2 j

1
2 . We use notation from Section 3.

Lemma 5.1. There exists a constant C such that for all W 2 Lp(Xa) with p as in Condition 1.2

kW a((�+ c(t))a)hH0i
� 1

2 k � CkW akLp(Xa): (5.1)

Proof. We mimic the proof of [HMS, Lemma 6.5 (1)]: We abbreviate f = f(x; t) = W ((x + c(t))a)
and estimate with fs = f(x; t� s)


fe�is(H0���i
)f




 � 


fe�isp2fs


 e�s
 � kW ak2Lp(Xa) (4�s)
�

dim(Xa)
p e�s
 : (5.2)

Using (5.2) as input we can from this point proceed exactly as in [HMS]. �

Remark. The �niteness of the left hand side of (5.1) is presumably wrong for the Coulomb singu-
larity (in dimension � 3). The above proof just misses to include that singularity. A similar problem
was encountered in [HMS].

We can use Lemma 5.1 to mimic most of Section 3. For example Assumption 2.1 1) and 2) may
easily be veri�ed along the line of Section 3. However, for the last condition of Assumption 2.1 3) we
meet problems at (3.9) and (3.15). (On the other hand clearly (3.12) is satis�ed.) Those conditions
are second order conditions and do not comply with Condition 1.2. In order to circumvent this
problem we follow the idea of [ABG1, 2] and [Ta] that amounts to smearing out the singularities of
G (due to those of V a2 ) in terms of the parameter � that enters into the theory of Section 2. To be
speci�c we de�ne for a �xed �a 2 C10 (Xa) with

R
�adxa = 1

V a� = V a1 + �a� � V
a
2 ; �a� (x

a) = j�j�dim(Xa)�a(j�j�1xa);

G� = �
X
a2A

x � rV a� ((�+ c(t))a)� Æ: (5.3)

By Condition 1.2 and (5.1)




hH0i
� 1

2 (G� �G)hH0i
� 1

2




 = O (j�j�) and





hH0i
� 1

2
d

d�
G�hH0i

� 1
2





 = O
�
j�j��1

�
: (5.4)

In particular for all f 2 C10 (R)

kf(H)(G� �G)f(H)k ! 0 for �! 0:

Hence since Assumption 2.1 4) is known for a �xed energy E for potentials of the form of this section
(see the discussion at the end of Section 4) we may assume (2.16) with the factor G on the left hand
side replaced by G� and with the right hand side independent of � (assuming j�j small ).
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Motivated by this observation we de�ne

Rz(�) = (H � i�(M + f(H)G�F (H))� z)
�1

and mimic from this point the remaining part of Section 2.

Clearly the right hand side of (2.35) will now contain two error terms. One term comes from
replacing G by G� � G and the other comes from di�erentiating G� with respect to �. These new
terms are treated by (5.4) and Lemma 2.9.

Continuing as before we get the conditions (3.9) and (3.15) now with G� (and not G). Using
Condition 1.2 and (5.1) again, cf. (5.4), yields an additional factor C���1 to the bound C(1+kFz(�)k)
obtained at the end of the proof of Theorem 2.4 (for � = 1) in Section 2 for the term T 3

n . In the
process we need the bound

sup
�>0




hH0i
� 1

2G�hH0i
� 1

2




 <1;

cf. (5.4). Again we obtain a favourable di�erential inequality.
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6. The Coulomb singularity

In this section we impose Condition 1.3. Here the potential has the form V (t; x) = V (x + c(t)),
after the transformation Samax (see (1.15)).

We start by proving that the Coulomb singularity is relatively bounded with respect to the free
Floquet Hamiltonian (with relative bound zero). Secondly we show how to extend our commutator
estimate, and hence our result on the structure of the point spectrum, to systems with Coulomb
singularities. Finally we prove the Limiting Absorption Principle. As a consequence we have absence
of singular continuous spectrum. For the last part we need to impose the stronger condition (1.9)
on the electric �eld.

We will use the integral kernel for the resolvent of the free Laplacian on R3�
p2 + �2

��1
(x; y) = (4�)�1

e��jx�yj

jx� yj
; (6.1)

and the following Hardy inequality 



 1

jxj

1

jpj






B(L2(R3))

<1; (6.2)

see [RSII]. Let � 2 C10 (R3 ). We recall the following well-known estimate, see for example [Sa],


� �p2 � �� i�
��1

�




B(L2(R3))

� Ch�i�
1
2 ; (6.3)

which holds uniformly in � > 1. Here � is considered as a multiplication operator and we use again
the notation h�i = (1 + �2)1=2.

Lemma 6.1. Let � 2 R, � > 1 and � 2 C10 (R3 ). Then there exists C > 0 independent of � and �
such that 


� �p2 � �� i�

��1



B(L2(R3))

� Ch�i�
1
4 ��

1
2 (6.4)

and 



 1

jxj

�
p2 � �� ih�i

1
2 �

1
2

��1




B(L2(R3))

� Ch�i�
1
4��

1
4 : (6.5)

Proof. The estimate (6.4) follows from (6.3) after an application of the C�-identity and the �rst
resolvent formula.

As for (6.5) we employ a trick from [HMS], which is originally due to Agmon. By the C�-identity
and the �rst resolvent formula, we get,



 1

jxj

�
p2 � �� ih�i

1
2�

1
2

��1




B(L2(R3))

� h�i�
1
4��

1
4





 1

jxj

�
p2 � �� ih�i

1
2 �

1
2

��1 1

jxj





 1
2

B(L2(R3))

:

Using the explicit formula (6.1) for the integral kernel of the resolvent we can estimate



 1

jxj

�
p2 � �� ih�i

1
2�

1
2

��1 1

jxj






B(L2(R3))

�





 1

jxj

�
p2
��1 1

jxj






B(L2(R3))

;

which by (6.2) is �nite. �

Let Y � X and suppose dimY � 3. Write PY for the orthogonal projection on Y . Let V be a
measurable function on Y which satis�es

jV (y)j � Cmax

�
1;

1

jyj

�
;

for some C > 0. Recall the functions b and c appearing in the transformation (1.15). We have
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Theorem 6.2. Let Y and V be as above and let E be as in (1.8). Then V 0, given by V 0(t; x) =
V (PY (x + c(t)), satis�es the estimate


V 0

�
� + p2 + i�

��1



B(H)

� Cj�j�
1
4 ; for j�j > 1:

In particular V 0 is H0-bounded with relative bound 0, where H0 = � + p2.

Remark. We note that (under Condition 1.3) this result together with the second resolvent equation
implies the estimate 

V 0(H � �)�1



 � Cmax
n
j Im �j�1; j Im �j�

1
4

o
; (6.6)

uniformly in � 2 C . This follows from Theorem 6.2 and the following application (6.7) of the remark
after Lemma 4.5. Let L be an H-bounded operator which satisfy

ei2�tLe�i2�t = L:

Then (with Im � �xed)

sup
Re �2R



L(H � �)�1


 = sup

Re �2[0;2�]



L(H � �)�1


 ; (6.7)

and consequently
sup
E2R

kL(H �E � i)�1k <1: (6.8)

Proof. We start by reducing the problem. Write Y = Y1 � Y2 where dimY1 = 3 and y = (y1; y2).
Let PY1 denote the orthogonal projection on Y1. We use a cuto� of the form �(y) = �1(y1)�2(y2),
with �i 2 C10 (Yi) and �i(0) = 1. We write �0(t; y) = �(y + PY c(t)) (and similarly for �1). By
boundedness at in�nity, it is suÆcient to consider �0V 0 instead of V 0 (c is bounded). We estimate,
for � > 1, using the assumption and the estimate 1

jyj �
1
jy1j

, for y = (y1; y2) 2 Y :



�0V 0(� + p2 � i�)�1



B(H)

� C





 �01
jy1 + PY1c(t)j

�
� + p2 � i�

��1




B(H)

:

We diagonalize the part of p acting on L2(X 	 Y1) and use the coordinate change exp(iPY1c(t) �
PY1p), to move the time-dependence out of the potential and into the free energy.

�0V 0(� + p2 � i�)�1




B(H)

� C sup
��0





 �1jy1j �� + p2 + 2PY1b(t) � p+ � � i�
��1





B(L2([0;1];L2(Y1)))

:

Recall that 2b = _c. By (6.7), it is enough to consider � 2 [0; 2�] and hence it suÆces to show that



 �jxj �� + p2 + 2b � p� i�
��1





B(L2([0;1];L2(R3))

� C��
1
4 ; (6.9)

where b : [0; 1]! R3 is a periodic and absolutely continuous function and � 2 C10 (R3 ).

Abbreviate

R0(�) :=
�
� + p2 � ih�i

1
2�

1
2

��1
and Rb(�) :=

�
� + (p� b)2 � i�

��1
:
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We write, using (6.5) in the last step,

�

jxj
Rb(�) =

1

jxj
R0(�)

�
� + p2 � ih�i

1
2 �

1
2

�
�Rb(�)

=
1

jxj
R0(�)

n�
2b � p� jbj2 � ih�i

1
2�

1
2 � i�

�
�� 2i(p� b) � r�+��

o
Rb(�)

+
1

jxj
R0(�)�

=
1

jxj
R0(�)

n
2b � p�+ ih�i

1
2�

1
2�� 2ip � r�

o
Rb(�) +O

�
��

1
4

�
: (6.10)

By (6.5) we also get (abbreviating k � k := k � kB(L2([0;1];L2(R3))))



 1

jxj
R0(�)hpi

1
2





 � 



 1

jxj
R0(�)hpi

1
2F (p2 > 2j� j)





+ 



 1

jxj
R0(�)

Dp
2j� j

E 1
2






=





 1

jxj
R0(�)hpi

1
2F (p2 > 2j� j)





+O
�
��

1
4

�
:

As for the �rst term we use Hardy's inequality (6.2) and estimate



 1

jxj
R0(�)hpi

1
2F (p2 > 2j� j)





 � C sup
��0

�
h�i3

1
4�

4 + �

� 1
2

= O
�
��

1
8

�
:

In particular 



 1

jxj
R0(�)hpi

1
2





 = O(1): (6.11)

By (6.5), (6.10) and (6.11), it suÆces to show the following two estimates

khpi
1
2�Rb(�)k � C��

1
4

kh�i
1
4�Rb(�)k � C��

1
2 :

(6.12)

As for the �rst estimate we conjugate with the unitary operator eic(t)�p and use that hpi
1
2�(x +

c(t))hpi�
1
2 is bounded, to estimate


hpi 12�Rb(�)


 � C




hpi 12 ~� �� + p2 � i�
��1


 ;

where ~� 2 C10 is chosen such that ~�(x)�(x + c(t)) = �(x+ c(t)).

Using the IMS localization formula, the C�-identity and (6.4), we get the following estimate
(viewing � as a real parameter)


hpi 12 ~� �� + p2 � i�

��1


4
B(L2(R3))

�



~� �� + p2 � i�

��1


2
B(L2(R3))

�



�� + p2 + i�

��1
~�
�
p2 + 1

�
~�
�
� + p2 � i�

��1



B(L2(R3))

� C1h�i
� 1

2��1




�� + p2 + i�

��1�1
2

�
p2 ~�2 + ~�2p2

�
+ ~�2 + jr~�j2

��
� + p2 � i�

��1




B(L2(R3))

� C2�
�1: (6.13)
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This proves the �rst estimate of (6.12).

As for the second estimate we again conjugate with eic(t)�p and notice that we get the term

h� + 2b(t) � pi
1
4 . By interpolation and the estimate (� + 2b(t) � p)2 � C(�2 + p2) we �nd that

h� + 2b(t) � pi
1
4 (1 + �2 + p2)�

1
8 2 B(L2([0; 1];L2(R3 ))):

Since (1 + �2 + p2)
1
8 � h�i

1
4 + hpi

1
4 we are reduced to the two estimates


hpi 14 ~�(� + p2 � i�)�1




 � C��
1
2


h�i 14 ~�(� + p2 � i�)�1




 � C��
1
2 :

The �rst estimate obviously follow from the �rst estimate in (6.12) (applied with b = 0). The second
follows from (6.4). �

Remark. Before we continue with verifying the positive commutator estimate we pause to show
that the Coulomb potential is not H0-compact. This is in contrast with singularities of Lp-type (cf.
Lemma 5.1). Let  2 C10 (R� ), � � 3, and write

 n = Dn 2 L
2(R� ) and 'n = e�i2�nt n 2 L

2
�
[0; 1];L2(R� )

�
;

where (Dn )(x) = n��=2 (x=n). Then

k'nkL2([0;1];L2(R�)) = 1 and w� lim
n!1

'n = 0:

On the other hand we compute, for n > 0,





�� + p2 � i
��1 1

jxj
'n





2
L2([0;1];L2(R�))

=





�p2 � 2�n� i
��1 1

jxj
 n





2
L2(R�)

=
1

n





�p2 � 2� � in�1
��1 1

jxj
 





2
L2(R�)

=

�
Im
n�
p2 � 2� � in�1

��1o 1

jxj
 ;

1

jxj
 

�
L2(R�)

:

By the Limiting Absorption Principle for p2 we thus have

lim
n!1





�� + p2 � i
��1 1

jxj
'n





2
L2([0;1];L2(R�))

= �

�
Æ
�
p2 � 2�

� 1

jxj
 ;

1

jxj
 

�
L2(R�)

and hence, 1
jxj is not H0-compact. (Note that the Coulomb singularity is in L2loc(R

� ) for � � 3.)

As a consequence of this remark potentials V satisfying jxjV (x) ! 1 as jxj ! 0 are not H0-
bounded. (If V was H0-bounded, then by a simple argument jxj�1 would be relatively compact.)

We have the following result, which implies Theorem 1.5 in the case of Condition 1.3.
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Theorem 6.3. Suppose V satis�es Condition 1.3 and E is as in (1.8). Then the consequences of
Proposition 4.1 and Theorem 4.2 hold for H = � + p2 + V (x+ c(t)).

Proof. As for Proposition 4.1 we proceed in the same manner. The only place were we need to pay
special attention is when treating the term i[V;An;R], viewed as a form on D = D(�) \ D(p2). See
(4.5).

The �rst part of the problem is computational. Here we note that An;R maps D into D(p).
This together with (6.2) shows that (4.5) holds for V 's satisfying Condition 1.3 as well. Using the
reguralization TS, as in the proof of Proposition 4.1, we get as a form on D(H) (see (4.2))

i[V;An;R] = lim
S!1

T �Si[V;An;R]TS

= �RefFn;R � rV g+ 2R�1Re
neTR Re

n �
R
b � rV

o
An;R

o
: (6.14)

Here we used Theorem 6.2. The next step will be to verify that the second term on the right-hand
side vanishes when the cuto�s in x and � are removed. Note that the estimate (4.6) cannot be
expected to hold. Consider the operators on D(H)

B1
k(R) =

p
jb � rV j

� �
R

�k eTR; for k 2 f0; 1g:

By Condition 1.3 iii) and Theorem 6.2 we �nd that

sup
R>1

kB1
k(R)(H0 + i)�1k <1; for k 2 f0; 1g: (6.15)

As for the remaining part of the second term of (6.14) we write

B2
k(n;R) =

np
jb � rV jhpi�1

o� h�i
R

� �
R

�k eTR��h�i�1hpiAn	 ; for k 2 f0; 1g;

as operators on D(H). Here An = Refhx=ni�1x � pg. The term in the �rst bracket is bounded
by Condition 1.3 iii) and Hardy's inequality (6.2). As for the term in the second bracket, we note
that it goes strongly to 0 as R ! 1. The term in the last bracket, which is independent of R, is
H-bounded. Hence for k 2 f0; 1g

B2
k(n;R) ! 0; for R!1;

for any  2 D(H) and n. This together with (6.15) shows that the second term of (6.14) vanishes
in the limit R!1.

As for the �rst term of (6.14) we note that Fn;R �rV ! hx=ni�1x �rV as R!1 in the sense of
forms on D(H). Finally hx=ni�1x � rV ! x � rV as n ! 1 again in the sense of forms on D(H).
(We used here the Lebesgue dominated convergence theorem twice.)

We have thus veri�ed that the estimate (4.7) holds under Condition 1.3 as well, and hence also
Proposition 4.1.

As for Theorem 4.2, there are two problems we need to address. The �rst comes from the fact that
we cannot expect G to have good compactness properties, as a form on D(H). See the discussion
after the proof of Theorem 6.2. It enters at three places. We treat the �rst two occurrences of
the problem simultaneously. Let ~G denote G in the 'N = 2' case and jaGaja in the general case.
In the proof of Theorem 4.2 for regular potentials, we used that f(H) ~Gf(H) was compact. Here

we proceed di�erently. Let R0 > 0 be such that ~G is C2 outside BR0 , the ball of radius R0. Let
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� 2 C10 (B2R0), � = 1 on BR0 . Write for R > 1: �R(x) = �(x=R). Then, for f 2 C10 (R), (see
(3.1)):

f(H) ~Gf(H) = f(H) ~G�Rf(H)�K

= f(H) ~G[�R; f(H)]�K

=
1

�

Z
C

(�@ ~f)(�)f(H) ~G(H � �)�12(r�R) � p(H � �)�1dudv �K

= �R�1B �
dimXX
i=1

Kipi �K: (6.17)

Here we used Theorem 6.2 and Condition 1.3 iii) in the last step. The operators Ki and K are
compact and B 2 B(H), with norms bounded uniformly in R > 1. We can now estimate (see also
(4.24)),

f(H) ~Gf(H) � �
C(f)

R
� �p2 �K;

for some C(f) > 0 and any � > 0 (note that K = K(R; �)). Choosing R large enough (depending
on E) solves the problem.

The third occurrence of the compactness problem appears in the veri�cation of (4.24), with
singular potentials. Here one should replace ja by ja;R(x) = ja(x=R). Instead of (4.22) (with ja
replaced by ja;R) we write

TR(�) = (H � �)�1

8<:K1(�) +R�1B1(�;R) +

dimXX
j=1

K1
j (�;R)pj

9=;
=

8<:K2(�) + R�1B2(�;R) +

dimXX
j=1

pjK
2
j (�;R)

9=; (Ha � �)�1

where the Ki(�)'s and the Ki
j(�)'s are compact, B

i(�;R) 2 B(H) and they all satisfy the bound

(4.23), uniformly in R > 1. Let S = S(R) be an H-bounded operator with kS(H0 + i)�1k bounded
uniformly in R > 1. We can now proceed as above, using the representation of TR(�) above, instead
of (4.22). We replace the estimate (4.24) by

Re f(fE;�(H)ja � jafE;�(Ha))Sg � �
C(�)

R
� �0p2 �K: (6.18)

Applied with S = Gaja;RfE;�(H) and S = GafE;�(Ha)ja;R, this estimate yields (4.25) with an

extra �C(�)
R fE;�(H)2 term. By choosing R large (after having �xed �) completes the handling of

the compactness problem in the proof of Theorem 4.2.

The remaining point is to replace supt;y jG
a(t; y)j by Ca = kfE;1(Ha)GafE;1(H

a)k in (4.19). By
(6.8), Ca is bounded uniformly in E. �

As for the Limiting Absorption Principle Theorem 2.4, we observe that the Coulomb singularity is
too strong for H;A to satisfy Assumption 2.1 3). Furthermore, the procedure described in Section 5
to circumvent this problem for Lp singularities fails as well. We elect instead to replace the generator
of dilation by the operator

A1 =
1

2
((x+ c) � p+ p � (x+ c)): (6.19)

(The reader should not confuse A1 with the �rst element of the approximating family An.)
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We consider, for Æ0 � 0, decompositions of the commutator

i[H;A1] =M + Ĝ1 =M1 +G1;

where

M = 2p2; Ĝ1 = �(x+ c) � rV (�+ c) + 2b � p;

M1 = 2p2 + 2b � p+ Æ0 and G1 = �(x+ c) � rV (�+ c)� Æ0:

We �x Æ0 large enough, such that there exists Æ > 0 (cf. Assumption 2.1) with

M1 � Æ(M + I) � ÆI: (6.20)

We have

Proposition 6.4. Let E 2 R and � > 0. There exist � > 0, a compact operator K and a constant
C > 0 such that as forms on D(H) \ D(M)

M + fE;�(H)Ĝ1fE;�(H) � 2(d(E)� �)fE;�(H)2 �K � C(1� fE;�(H))2 (6.21)

and
M1 + fE;�(H)G1fE;�(H) � 2(d(E)� �)fE;�(H)2 �K � C(1� fE;�(H))2: (6.22)

Proof. We start with (6.21) and follow the proof of the commutator estimate in Theorem 6.3.

Note �rst that Ĝ1 is not H-bounded. Instead we compute (as a form on D(p))

f(H)b � pf(H) = f(H)bf(H) � p+ f(H)b � [p; f(H)]: (6.23)

Let fbng � C1([0; 1];X) with b0n(0) = b0n(1) be chosen such that bn ! b in L1([0; 1];X). Then
f(H)bnf(H) ! f(H)bf(H) in operator norm. On the other hand the Fourier series for each bn
converge to bn in L

1([0; 1];X) and hence by the �rst remark after Lemma 4.5 we �nd f(H)bf(H) = 0

if the support of f is suÆciently narrow. Since [p; f(H)] is bounded we �nd that f(H)Ĝ1f(H) is
bounded if the support of f is suÆciently narrow.

Next we consider the two-body problem. Let �R be as in (6.17). Write, for R > 0 large enough,

i[p; f(H)] = i[p; f(H)� f(H0)]

=
1

�

Z
C

(�@ ~f)(�)f�(H � �)�1rV (H � �)�1V hpi�1 + (H � �)�1rV hpi�1g

� fhpi�R(H0 � �)�1hpi�1gdu dvhpi+K2

= K1hpi+K2;

where K1 and K2 are compact operators. Here we used (6.2) and Theorem 6.2 to bound the term
in the �rst pair of brackets and the fact that the term in the second pair of brackets is compact.
Combining this with (6.23) we get, for any � > 0, a compact K = K(�) such that

f(H) b � p f(H) � ��p2 �K:

This implies the commutator estimate for the two-body problem.
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As for the commutator estimate in the general case, we focus on the reduction to subsystems
argument, which is the only place where a problem occurs. More precisely, we need to estimate the
following term in addition to (6.18)

T : = f(H)ja;R b � p ja;Rf(H)� ja;Rf(Ha) b
a � pa f(Ha)ja;R

= 2Re fja;Rf(Ha) b � p (ja;Rf(H)� f(Ha)ja;R)g

+ (ja;Rf(H)� f(Ha)ja;R) b � p (ja;Rf(H)� f(Ha)ja;R):

We used here that f(Ha)ba � paf(Ha) = 0 if the support of f is suÆciently narrow. We recall that
ja;R(x) = ja(x=R). By the �rst equality in (4.22) one can verify that for any � > 0, there exist
C = C(f) > 0 and compact K = K(�;R; f) such that

T � �

�
C

R
+ �

�
p2 �K:

This estimate is of the same type as (6.18) and thus implies (6.21).

As for (6.22) we estimate for any � > 0, using (2.1) and (6.20),

M1 + f(H)G1f(H)�M � f(H)Ĝ1f(H)

= Æ0(I � f(H)2)� (b � p� f(H)b � pf(H))

� ��f(H)2 �
�

Æ
M1 � C(�)(I � f(H))2;

for some C(�) > 0. From this estimate we �nd that (6.22) is a consequence of (6.21). See the
argument leading up to (4.10). �

We have the following result, which implies Theorem 1.6 in the case of Condition 1.3.

Theorem 6.5. Suppose V satis�es Condition 1.3 and E is as in (1.9). For any E 62 �pp(H)[F(H)
the Limiting Absorption Principle (2.3) with A replaced by A1 holds.

Proof. We verify the technical conditions 1)-3) of Assumption 2.1 for the pairM1; G1. The result is
then a consequence of (6.22) and Theorem 2.4.

As approximating family we take

A1;n = Reffn(x)(x + c(t)) � pg;

where fn(x) = hx=ni�1 as in Section 3.

As for 1) we compute, as a form on D(H0) \ D(M1) = D(�) \ D(p2),

i[M1; H0] = 2i[b � p; � ] = �2E � p:

Hence, i[M1; H0] extends from a form on D to an M1-bounded operator. By viewing p as a multi-
plication operator, we �nd that M�1

1 : D(H0)! D(H0).

Before we continue we recall a property of the almost analytic extension ~�, where � 2 F0. See
Assumption 2.1 for the function class F0. We have, writing � = u+ iv,

j�@ ~�(�)j � CN h�i
�N�1jvjN ; (6.24)

for any N 2 N [ f0g.



44 J. S.M�LLER AND E. SKIBSTED

We compute for � 2 F0, see (3.1), as a form on D:

i[M1; �(H)] = i[�2� � 2V + 2b � p; �(H)]: (6.25)

In order to handle the right-hand side, we need to be more careful than in Section 3. Since D(H) =
D(H0) and [�;H0] = 0 we �nd that (� + i)�1 leaves D(H) invariant. We will again need the
regularization operator TR, see (4.1). We compute, using (3.1) and the identity �TR = iR(I � TR):

i[�TR; �(H)] = �
1

�

Z
C

�@ ~�(�)(H � �)�1i[�TR; V ](H � �)�1dudv

= iR
1

�

Z
C

�@ ~�(�)(H � �)�1i[TR; V ](H � �)�1dudv

=
1

�

Z
C

�@ ~�(�)(H � �)�1TRb � rV TR(H � �)�1dudv:

Here we used (6.6) with V 0 = V and (6.24) to make sense of the �rst equality. Note that the term
under the integral is bounded but not obviously integrable, cf. (6.24). Instead we write

(H � �)�1TRb � rV TR(H � �)�1

=
�
(H � �)�1(H0 � �)

	
TR
�
(H0 � �)�1b � rV

�
H0 + i)�1gTR

�
�
(H0 + i)(H + i)�1

	
(H � �)�1(H + i):

We thus �nd, by (4.2), (6.24), (6.6) (with V 0 = jb � rV j
1
2 ) and the Lebesgue dominated convergence

theorem, that the form i[�; �(H)] extends to an H-bounded operator. (Note that it is important
that we use the decay in Im � coming from (6.6).) We thus take, see (6.25),

T 02 = �2i[�; �(H)]� i[V; �(H)]: (6.26)

Note that the last term is bounded.

As for i[b � p; �(H)] = b � i[p; �(H)] + [b; �(H)] � p. The last term is clearly M
1
2
1 -bounded and we

take
T1 = 2i[b; �(H)] � p:

We are reduced to considering [pi; �(H)] as a form on D, since (multiplication with) bi leaves D
invariant. We proceed exactly as for i[�; �(H)] and conclude that the form extends to an H-bounded
operator. See also the argument which led up to (3.7). We �nally take

T2 = T 02 + 2b(t) � [p; �(H)]:

This concludes the veri�cation of 1).

The condition 2) follows from Theorem 6.2.

The �rst part of 3) is clear. As for the last part of 3) we note that it is enough to verify (3.8).
This follows since i[G1; An] is no more singular than V itself and hence H-bounded (uniformly in
n). The estimate (3.8) can be veri�ed in exactly the same manner as in Section 3, since (3.7) and
(3.9) (with G replaced by G1) both hold for potentials satisfying Condition 1.3. �
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7. Smoothness results

Let x; p and A be given as in Section 3, under Conditions 1.1 and 1.2; and A = A1 be given by
(6.19), under Condition 1.3. We introduce hxi = (1 + x2)

1
2 ; hpi = (1 + p2)

1
2 while hAi is given as in

Theorem 2.4. We shall prove the following technical result and then use it to change the weights in
the Limiting Absorption Principle statement which in turn implies two smoothness statements.

Lemma 7.1. For all s 2 [0;1)

hAishpi�shxi�s is bounded on H: (7.1)

Proof. We introduce the following (standard) class of smooth symbols on X :

a 2 Sml $ j@�x @
�
� a(x; �)j � C�;�hxi

l�j�jh�im�j�j; x 2 X; � 2 X 0:

For a a 2 Sml the notation aw(x; p) signi�es the corresponding Weyl-quantization. See [H�o,
Chapter 18] for de�nition and properties of this class of operators (treated in a more general context).

Using that A is the Weyl-quantization of the symbol x � � 2 S11 (or (x + c) � �) (7.1) for s even
follows by the calculus [H�o, Theorems 18.5.4 and 18.6.3]. (Notice that in this case hAis is the Weyl-
quantization of a symbol in Sss .) By the same arguments it suÆce to prove (7.1) for s 2 (0; 2) which
in turn goes as follows:

Consider the analytic family

B(z) = ez
2

hAizhpi�zhxi�z

on the strip 0 � Re z � 2. We notice that by the calculus the operator

hAi2hpi�(2+iy)hxi�2

is polynomially bounded in y 2 R. On the other hand the �rst factor ez
2

is rapidly decaying as
z !1 in the strip. Consequently we infer from the three line theorem, cf. [RS, Appendix to IX.4],
that indeed B(s) is bounded. �

Remark. The above proof is due to Jensen [J]. It replaces our own and somewhat longer proof (based
on a parametric construction) which appeared in a preliminary version of this paper. Although (7.1)
appears in the literature we have not there been able to �nd a correct proof. The result is stated in
[JMP] without proof and with an improper reference. Moreover another interpolation proof is given
in [Hos], but it is wrong.

Corollary 7.2 (LAP). For the examples of Sections 3, 5 and 6 suppose E is not an eigenvalue
nor a threshold of H. Then there exists a neighbourhood V of E such that for 0 � r < 1

2 < s � 1

sup
Im z 6=0;Re z2V



hpirhxi�s(H � z)�1hxi�shpir


 <1: (7.2)

Proof. We may assume that r < 1 � s (cf. [H�o, Theorems 18.5.4 and 18.6.3]). Let � = s and
� = 2�1(r + s). For any function � 2 C = F 
 S(X) (as de�ned in Section 3) we compute

hAi�M��hxi�shpir� = B2B1�;
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where B1 = bw1 (x; p) for b1 2 S00 and B2 = hAishpi�shxi�s. In particular B1 and B2 are bounded.
We compute for  2 C using (3.7) an Lemma 2.5


 ; (H � z)�1hxi�shpir�
�

=


hAi��M�(H � �z)�1 ;B2B1�

�
= lim
k!0



 ; (H � z)�1M�hAi��(1 + �M)�1B2B1�

�
:

Putting now  = hxi�shpir ~� and repeating this argument we obtainD
hxi�shpir ~�; (H � z)�1hxi�shpir�

E
= lim

~�!0
lim
�!0

D
(1 + ~�M)�1B2B1

~�; Fz(0)(1 + �M)�1B2B1�
E
;

Fz(0) = hAi��M�(H � z)�1M�hAi��

Notice that we used (3.7) and Lemma 2.5 again (the latter with � replaced by � + 1
2 ).

Obviously we can apply this representation in combination with Theorem 2.4 to conclude that
indeed ���Dhxi�shpir ~�; (H � z)�1hxi�shpir�

E��� � Ck~�kk�k:

�

For an account of Kato's theory of smooth operators we refer to [RS, Section XIII.7]. The following
result is a consequence of Corollary 7.2 and [RS, Theorems XIII.25 and XIII.30].

Corollary 7.3. Under the condition of Corollary 7.2 on r and s the operator hpirhxi�s is H-smooth
on any closed 2�-periodic Borel set 
 not containing eigenvalues nor thresholds. In particular for
any bounded Borel-measurable 2�-periodic function f supported in 
Z 1

�1



hpirhxi�se�i�Hf(H)�


2 d� � Ck�k2: (7.3)

A small computation similar to the one in the proof of [KiY2, Theorem 2.4] converts the bound
(7.3) to a similar one for the propagator U(t; 0) generated by the family h(t) given by (1.18).

Corollary 7.4. Under the conditions of Corollary 7.2 on r and s, for any  2 L2(X) and function
g on the unit-circle with the property that f(E) = g(e�iE) ful�lls the requirements of Corollary 7.3Z 1

�1

khpirhxi�sU(t; 0)g(U(1; 0)) k2dt � Ck k2:

Remark. By a conjugation, cf. (1.17), we obtain Theorem 1.7 from Corollary 7.4.
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8. Decay properties of eigenfunctions

In this section we prove Theorem 1.8 and derive some regularity properties of eigenfunctions. We
will work under Condition 1.3 and (1.8) and �rst study eigenfunctions of the Floquet Hamiltonian
(1.18).

We introduce regularized weights

�m(t) =
t

1 + t
m

; m � 1;

and compute the t-derivative

�0m(t) = �(1)m (t) =

�
1 +

t

m

��2
: (8.1)

The notation �m and �
(k)
m will denote (multiplication by) the functions �m(hxi) and �

(k)
m (hxi) respec-

tively. Note that we have the following properties uniformly in m � 1

�0m�
�1
m � hxi�1 and j@�x �mj � C�hxi

1�j�j: (8.2)

We introduce furthermore

�m(t) = ��;Æm (t) = �t+ Æ�m(t); �; Æ � 0;

and write as above �m and �
(k)
m for �m(hxi) and �

(k)
m (hxi).

We write Es(�; �) = Es(�; �;m;n; �; Æ) : [0; 1]�X ! R, s 2 R, for smooth bounded function families
indexed by n � m � 1 and �; Æ � 0 satisfying

j(@kt @
�
xEs)(t; x)j � Ck;�hxi

s�j�j; (8.3)

uniformly in n � m � 1 and locally uniformly in �; Æ � 0. Note that EsEt = Es+t.

We abbreviate x̂ = x=hxi and introduce some observables

A =
1

2
(x � p+ p � x); B =

1

2
(x̂ � p+ p � x̂);

An =
1

2
(Fn � p+ p � Fn) ; Fn = hx=ni�1x;

eAn = 1

2
(�nx̂ � p+ p � x̂�n) ; eBm =

1

2
(�0

mx̂ � p+ p � x̂�0
m) :

We have the properties, see (8.2) and (8.3),

An = B
hxi

hx=ni
+ iE0 =

hxi

hx=ni
B � iE0; (8.4)

eAn = B�n + iE0 = �nB � iE0; (8.5)eBm = B�0
m + iE�1 = �0

mB � iE�1; (8.6)

( eBm)2 = B(�0
m)

2B +E�2: (8.7)

Using the identity i[H;�m] = 2 eBm and (8.2) we get, for � 2 R and  2 C

i(H � �� �2)e�m = ie�m(H � �) +
n
2 eBm + i(Æ2(�0m)

2 + 2�Æ�0m)x̂
2 � i�2hxi�2

o
e�m 

= ie�m(H � �) +
n
2 eBm + iÆE0 + iE�2

o
e�m : (8.8)

Here C is as in Section 3.

In the following we write  m = e�m , for  2 D(e�hxi). We will furthermore use the notation
�S for �S(x) = �(x=S) where � 2 C10 , 0 � � � 1 and �(x) = 1 for jxj < 1. We have
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Lemma 8.1. Let � = 0 and Æ � 0.

i) We have the inequality between forms on C

RefAn eBmg � ÆB
hxi�0m
hx=ni

B �E�1; for n � m � 1:

ii) Let � > 0. There exists C > 0 independent of m � 1 such that for  2 C

k(H � �) mk
2 � C(m)k(H � �) k2 + �Æ

�
B
hxi�0m
hx=ni

B

�
 m

+ C
�
k mk

2 + kp k2
�
:

(The constants C and C(m) can be chosen locally uniformly in Æ � 0.)

Proof. We estimate using (8.3), (8.4) and (8.6)

RefAn eBmg = ÆRe fAn�
0
mBg �

1

2
i[An; E�1]

= ÆB
hxi�0m
hx=ni

B �
Æ

2
i[B;E0]�E�1

� ÆB
hxi�0m
hx=mi

B �E�1

Here we used monotonicity of n! hx=ni�1 in the last step. This proves i).

As for ii) we estimate �rst using (8.1)

(�0m)
2 � hxi�1

hxi�0m
hx=mi

� S�1
hxi�0m
hx=mi

+ �S : (8.9)

Now use (8.3), (8.7) and (8.8) to estimate

k(H � �) mk
2 � 3keÆ�m(H � �) k2 + 12k eBm mk2 + 3k(ÆE0 +E�2) mk

2

� C(m)k(H � �) k2 + 12hÆ2B(�0m)
2Bi m + Ck mk

2:

The result now follows by inserting (8.9) and choosing S large enough. �

Proposition 8.2. Let E 2 �pp(H) and ' 2 D(H) with H' = E'. Suppose there exists Æ > 0 such

that eÆjxj' 2 H. Then eÆjxjp' 2 H.

Proof. We �rst derive two a priori estimates.

The �rst is an estimate of the regularized commutator. By (8.8) and Lemma 8.1 i) we get for
 2 C, writing E0 for ÆE0 +E�2

hi[H;An]i m = �2RehAn m; e
Æ�mi(H �E) i � 4RehAn eBmi m � hi[An; E0]i m

� �4Æ

�
B
hxi�0m
hx=ni

B

�
 m

+ 2kAn mkke
Æ�m(H �E) k+ hE0i m (8.10)

� kp mk
2 � 4Æ

�
B
hxi�0m
hx=ni

B

�
 m

+ C
�
k mk

2 + kp k2
�
+ C(m;n)k(H �E) k2:
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As for the second a priori estimate we use Theorem 6.2, (3.2) and (3.4) and obtain

2


ptF 0np

�
 m

� hi[H;An]i m + Ck mk
2 + C0k(H �E) mk

2: (8.11)

We note that a similar estimate was used in the proof of Proposition 4.1 in the case of Coulomb
singularities (cf. the proof of Theorem 6.3). We now apply Lemma 8.1 ii) with � = 4=C0 and obtain

2


ptF 0np

�
 m

� hi[H;An]i m+4Æ

�
B
hxi�0m
hx=ni

B

�
 m

+C(k mk
2+kp k2)+C(m)k(H�E) k2: (8.12)

Combining (8.10) and (8.13) we get

2


ptF 0np

�
 m

� kp mk
2 + C

�
k mk

2 + kp k2
�
+ C(m;n)k(H �E) k2: (8.13)

Let f�`g`2N � C, such that �` converge to ' (the eigenfunction) in D(H). In order to deal with
the kp�`k term, we introduce the two-parameter sequence TR�` 2 C, cf. (4.1) and (4.2). We have
(using that TR = (H0 + i)�1TR(H0 + i) and that pTR and peÆ�mTR are H-bounded) the following
limits

lim
R!1

lim
`!1

(H �E)TR�` = lim
R!1

(H �E)TR' = (H �E)' = 0;

lim
R!1

lim
`!1

pTR�` = lim
R!1

pTR' = lim
R!1

TRp' = p';

lim
R!1

lim
`!1

peÆ�mTR�` = lim
R!1

TRp'm = p'm; (8.14)

where as above 'm = eÆ�m'.

Substituting  = TR�` and applying these limits to (8.13) and subsequently taking the limit
n!1 on the left-hand side yields (note that s� limn!1 F 0n = I)

kp'mk
2 � C

�
k'mk

2 + kp'k2
�
:

The observation k[p; eÆ�m ]'k � Ck'mk now implies the result by letting m go to in�nity. �

Lemma 8.3. Let � � 0 and 0 � Æ � 1.

i) We have the inequality between forms on C

Ref eAn eBmg � B�m�
0
mB � (� + Æ)E�1; for n � m � 1:

ii) Let �; �0 > 0 and 0 < �l < �u. There exist C1; C2 > 0 such that for  2 C

k(H � �� �2) mk
2

� C(m)ke�hxi(H � �) k2 + (�+ ÆC1)k mk
2 + �0 hB�m�

0
mBi m + C2

�
k k2 + kp k2

�
:

The constants C1 and C2 can be chosen independently of n � m � 1, 0 � Æ � 1 and
� 2 f0g [ [�l; �u].
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Proof. As for i) observe �rst using (8.3) that

i[ eAn; Es] = (� + Æ)Es and i[B;�0
mE0] = (� + Æ)E�1: (8.15)

Now use this observation (with s = �1), (8.5) and (8.6) together with monotonicity of n ! �n as
in the proof of Lemma 8.1 i).

As for ii) we estimate �rst for � 2 [�l; �u], 0 � Æ � 1 and S > 1

(�0
m)

2 �
� + Æ

�
hxi�1�m�

0
m �

�u + 1

�lS
�m�

0
m + C(�l; �u)�S : (8.16)

For � = 0 we estimate using (8.2)

(�0
m)

2 � hxi�1�m�
0
m � S�1�m�

0
m + C�S : (8.17)

Secondly we use (8.7) and (8.8) to estimate

k(H � �� �2) mk
2 � 4ke�m(H � �) k2 + 16k eBm mk2 + 4Æ2kE0 mk

2 + 4kE�2 mk
2

� C(m)ke�hxi(H � �) k2 + 16hB(�0
m)

2Bi m + hE�2i m + ÆCk mk
2:

Write E�2 = (1 � �S)E�2 + �SE�2. The result now follows by inserting (8.16) if � 2 [�l; �u] and
(8.17) if � = 0, and subsequently choosing S large enough. �

Proposition 8.4. Let E 2 �pp(H)nF(H) and suppose ' 2 D(H) satis�es H' = E'. Then for

any � > 0 satisfying E + �2 < inffF(H) \ (E;1)g we have e�jxj' 2 H.

Proof. Let E and ' be as in the formulation of the proposition. De�ne

�0 = sup
n
� � 0 : e�jxj' 2 H

o
: (8.18)

Assume that �0 < �1 = (inffF(H) \ (E;1)g �E)1=2. Below we will work with � of the form

� = 0 if �0 = 0 and
�0
2
� � < �0 if �0 > 0:

The lower bound �0=2 is chosen for convenience. Let �0 = (� + �0)=2. (Note that � � �0 � �0 with
equalities if and only if �0 = 0.)

We will use the commutator estimate in Theorem 6.3. Since E + �2 62 F(H) there exist 
 > 0,
� > 0, C � 0 and a compact operator K(�) such that the commutator estimate

M + fE+�2;�(H)GfE+�2;�(H) � 
fE+�2;�(H)2 �K(�)� C(I � fE+�2;�(H))2 (8.19)

holds. Note that we can choose 
 = d(E), � and C independently of �0=2 � � � �0, cf. (2.1) and a
compactness argument.

We start with two a priori estimates which are uniform in n � m � 1, �0=2 � � � �0 and
0 < Æ � 1.
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The �rst is an estimate of the regularized commutator. By the �rst part of (8.15) (applied with
s 2 f0;�2g), (8.8) and Lemma 8.3 i) we get for  2 C

hi[H; eAn]i m = �2Reh eAn m; e�mi(H �E) i � 4Reh eAn eBmi m � hi[ eAn; ÆE0 +E�2]i m

� �4 hB�m�
0
mBi m + 2k eAn mkke�m(H �E) k+ (� + Æ)hÆE0 +E�1i m

� �4 hB�m�
0
mBi m + (� + Æ)

� 

10

+ ÆC1

�
k mk

2 + C2(ke
�0hxi k2 + ke�

0hxip k2)

+ C(m;n; �)ke�hxi(H � E) k2: (8.20)

In the last step we used that j(1� �S)E�1j � 
=10 for S large enough and the estimate

�ne
�hxi �

(
nC �0 = 0

(�0 � �)�1Ce�
0hxi �0 > 0

:

The second a priori estimate uses (8.19) and the support properties of f = fE+�2;�. We obtain
for  2 C

k mk
2 � 2kf(H) mk

2 + 2k(I � f(H)) mk
2

�
2



hM + f(H)Gf(H)i m + hK(�)i m + Ck(H �E � �2) mk

2:

Here we have absorbed 2=
 into the compact operator K(�). Write

f(H)Gf(H) = G� (I � f(H))G(I � f(H))� 2Reff(H)G(I � f(H))g:

This identity, (2.1) and form boundedness of G on D(H) imply

k mk
2 �

2



hM +Gi m +

1

10
k mk

2 + hK(�)i m + C0k(H �E � �2) mk
2:

Using Lemma 8.3 ii) with � = 1=(10C0) and �
0 = 8=(
C0(�0 + 1)) now gives

k mk
2 �

2



hM +Gi m +

8


(� + Æ)
hB�m�

0
mBi m +

�
1

5
+ ÆC3

�
k mk

2 + hK(�)i m

+ C4(k k
2 + kp k2) + C(m)ke�hxi(H �E) k2: (8.21)

Here we used that (�0 + 1)�1 � (� + Æ)�1.

Let f�`g`2N � C, such that �` converge to ' (the eigenfunction) in D(H). In order to deal with
the error terms, we introduce the three-parameter sequence �STR�` 2 C, cf. (4.1) and (4.2). We
have (using that TR = (H0 + i)�1TR(H0 + i) and that p�STR is H-bounded) the following limits

lim
`!1

e�hxi(H �E)�STR�` = e�hxi�S(H �E)TR'� 2iTRe
�hxiRefr�S � pg'

lim
`!1

e�
0hxip�STR�` = e�

0hxi�STRp'� ie�
0hxir�STR'

lim
`!1

hM +Gie�m�STR�` = hM +Gi�STR'm

lim
`!1

hB�m�
0
mBie�m�STR�` = hB�m�

0
mBi�STR'm

lim
`!1

hi[H; eAn]ie�m�STR�` = hi[H; eAn]i�STR'm ;
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where 'm = e�m'. Removing the cuto�s using that r�S = O(S�1) and Proposition 8.2 we obtain

lim
S!1

lim
R!1

lim
`!1

e�hxi(H �E)�STR�` = � lim
S!1

2ie�hxiRefr�S � pg' = 0

lim
S!1

lim
R!1

lim
`!1

e�
0hxip�STR�` = lim

S!1

�
e�
0hxi�Sp'� ie�

0hxir�S'
�
= e�

0hxip'

lim
S!1

lim
R!1

lim
`!1

hM +Gie�m�STR�` = hM +Gi'm

lim
S!1

lim
R!1

lim
`!1

hB�m�
0
mBie�m�STR�` = hB�m�

0
mBi'm

lim
S!1

lim
R!1

lim
`!1

hi[H; eAn]ie�m�STR�` = hi[H; eAn]i'm : (8.22)

Substituting  = �STR�` and applying �rst these limits to the two a priori estimates (8.20) and
(8.21) and subsequently the limit n!1 yields

hM+Gi'm � �
4

� + Æ
hB�m�

0
mBi'm+

� 

10

+ ÆC1

�
k'mk

2+
C2

� + Æ
(ke�

0hxi'k2+ke�
0hxip'k2) (8.23)

and

k'mk
2 �

2



hM +Gi'm +

8


(� + Æ)
hB�m�

0
mBi'm

+

�
1

5
+ ÆC3

�
k'mk

2 + hK(�)i'm + C4(k'k
2 + kp'k2): (8.24)

Here we used that limn!1hi[H; eAn]i'm = (� + Æ)hM +Gi'm .

Now choose 0 < Æ � 1 such that

Æ

�
2C1



+ C3

�
�

1

5
: (8.25)

If �0 > 0 we furthermore choose � such that

�0
2
� � < �0 < � + Æ: (8.26)

There exists (since � has now been �xed) S > 0 large such that

hK(�)i'm = hK(�)(I � �S)i'm + hK(�)�Si'm �
1

5
k'mk

2 + Ck'k2: (8.27)

Combining (8.23){(8.25) and (8.27) yields uniformly in m � 1

1

5
k'mk

2 � C(ke�
0hxi'k2 + ke�

0hxip'k2):

This proves, cf. Proposition 8.2, that e(�+Æ)jxj' 2 H.

By (8.18) and (8.26) we have thus arrived at a contradiction. �

We are now in a position to translate the exponential decay estimate obtained for non-threshold
eigenfunctions of H into a statement for non-threshold eigenfunctions of the monodromy operator
U(1; 0).
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Proof of Theorem 1.8.

By (1.17) is suÆces to prove the statement with U(1; 0) given by the monodromy operator asso-
ciated with h(t) given by (1.18).

Recall from [Ya1] that any eigenfunction  of H with eigenvalue E can be written as

 (t) = eitEU(t; 0)'; (8.28)

where U(1; 0)' = e�iE'. In particular, by strong continuity of the map t ! U(t; 0) we �nd that
t!  (t) is continuous.

Since  2 D(p), there exists t such that  (t) 2 D(p). Furthermore we note that by [Ya2] and an
interpolation argument, the map

t! U(t; 0) 2 B(Hs(X)); 0 � s � 2; (8.29)

(and its adjoint) is strongly continuous. Here Hs(X) = hpi�sL2(X), s � 0, are Sobolev spaces. By
(8.28) we conclude ' 2 D(p) and that t! (p )(t) is continuous.

Let 0 � Æ < (inffF(H)\ (E;1)g�E)1=2. There exists, by Proposition 8.4, 0 � t0 � 1 such that
eÆhxi (t0) 2 L2(X) and hence

sup
m�1

keÆ�m (t0)kL2(X) <1: (8.30)

We write �m(t) = keÆ�m (t)k2 and �m;�(t) = k(1 + �p2)�
1
2 eÆ�m (t)k2. Due to the presence of the

resolvent of �p2 we get from [Ya2] that �m;� is C
1 and

d

dt
�m;�(t) =

D
 (t);

�
T1 + �

1
2T2

�
 (t)

E
;

where
T1 = 4Re

�
Re
�
r
�
eÆ�m

�
� p
	
(1 + �p2)�1eÆ�m

	
T2 = eÆ�m(1 + �p2)�1i

h
�
1
2 p2; V

i
(1 + �p2)�1eÆ�m :

Note that both T1 and T2 are bounded uniformly in 0 < � < 1 as forms on H1(X). This follows

from (6.2) and uniform boundedness of �
1
2 hpi(1 + �p2)�1. By strong continuity of the map (8.29)

(with s = 1) and the Lebesgue dominated convergence theorem we thus �nd that �m is C1 and

�m(t) =

Z t

t0



 (s); 2Re

�
p � r(e2Æ�m)

	
 (s)

�
ds+ �m(t0):

From this identity we get the estimate

�m(t) � C
�
keÆhxi k2 + keÆhxip k2

�
+ sup
m�1

�m(t0):

By Propositions 8.2 and 8.4, (8.30) and the Lebesgue monotone convergence theorem we thus obtain
the result. �

We end this section with a regularity result for eigenfunctions which will be useful (in the case of
non-threshold eigenfunctions) in the following section on perturbation theory.

Let g 2 C1(R) obey

g0 � 0; g(t) =

8><>:
2 for t > 3

t for jtj < 1

�2 for t < �3

and
p
tg0g 2 C10 (R): (8.31)
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We are in the following going to use a procedure which was introduced in [FS] for a technically
somewhat similar problem.

Let h(t) = g(t)=t. We pick an almost analytic extension of h, denoted by ~h, with the properties:

8N : j�@~h(�)j � CN h�i
�N�2jvjN and ~h(�) =

(
2=� for u > 6; jvj < �(u� 6)

�2=� for u < �6; jvj < �(6� u)
; (8.32)

for some � > 0 (recall from (3.1) the notation � = u + iv). We furthermore choose ~h such that
~h(�) = ~h(��). This gives the representation, cf. (3.1),

g(t) =
1

�

Z
C

(�@~h)(�)t(t� �)�1du dv:

We will use the following observables in addition to A and B

A1 =
1

2
((x + c) � p+ p � (x+ c)); B1 =

1

2
([x+ c � p+ p �[x+ c);

A1;n =
1

2
(F1;n � p+ p � F1;n) ; F1;n =

x+ c

h(x+ c)=ni
:

Let gm(t) = mg(t=m), for m � 1. We note that by a commutator argument of [Mo], cf. the proof
of Lemma 2.5, there exists � > 0 such that for jvj � �=m: (B1=m��)�1 and (A1=m��)�1 preserve
D(p2) and D(hxi) and we have the estimates




hpi2

�
B1

m
� �

��1
hpi�2






+





hpi2

�
A1

m
� �

��1
hpi�2






 � Cjvj�1 (8.33)

and 




hxi
�
B1

m
� �

��1
hxi�1






+





hxi

�
A1

m
� �

��1
hxi�1






 � Cjvj�1 (8.34)

uniformly in m � 1 and � with jvj � �=m. This motivates the decomposition into smooth bounded
real valued functions gm = g1m + g2m, where

g1m(t) =
m

�

Z
jvj>�=m

(�@~h)(�)

 
1 + �

�
t

m
� �

��1!
du dv

g2m(t) =
m

�

Z
jvj��=m

(�@~h)(�)

 
1 + �

�
t

m
� �

��1!
du dv: (8.35)

Note that due to (8.32), the integral in the expression for g2m is over a compact (and shrinking) set.
This implies the properties

sup
t2R

jg2m(t)j � C <1 and sup
t2R

tk+1jg
(k)
2m(t)j � Ck <1 for k � 1: (8.36)

(In fact the two suprema are O(m�N ) for any N .)

We have
g1m(B1); g1m(A1) maps C into D(�) \ D(p2); (8.37)

which will be used without comment in the following to make sense of forms on C. This observation
is a consequence of (8.33), in fact
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Lemma 8.5. Let 0 � s � 2. There exists C > 0 independent of m such that


hpis�j�j[g1m(B1); p
�]hpi�s




 +



hpis�j�j[g1m(A1); p

�]hpi�s



 � C;

for any multiindex � with 1 � j�j � 2.

Remark. The weighted commutators above should be viewed as the extension by continuity of
forms on D(p2).

Proof. We have as a form on D(p2), cf. (8.35),

hpis�j�j[g1m(B1); p
�]hpi�s

= �
1

�

Z
jvj>�=m

(�@~h)(�)�hpis�j�j
�
B1

m
� �

��1
[B1; p

�]

�
B1

m
� �

��1
hpi�sdu dv:

We bound the expression under the integral using (8.32) (with N = 2) and (8.33) by a constant
times h�i�3. This implies the lemma in the case of B1. The statement with A1 follows similarly. �

In the following we will again use the notation Es, see (8.3). Only the parameters n and m are
needed here and the estimate in (8.3) should be uniform in n;m � 1.

Lemma 8.6. Let � > 0. There exists C > 0 independent of n;m � 1 such that the following
estimates hold in the sense of forms on C

Re
�
g1m(B1)A1;ni[p

2; g1m(B1)]
	
� �Chpi2 � �g1m(B1)p

2g1m(B1) (8.38)

and

Re
�
g1m(A1)A1;ni[p

2; g1m(A1)]
	
� �Chpi2 � �g1m(A1)p

2g1m(A1): (8.39)

Proof. We drop the subscript 1 from A1, A1;n and B1 for the purpose of this proof.

First we compute (see also (3.2) and (8.11))

i[p2; g1m(B)] = �
1

�

Z
jvj>�=m

(�@~h)(�)�

�
B

m
� �

��1 �
ptT (1)p+E�3

	�B
m
� �

��1
du dv; (8.40)

where

T (n) =
1

h(x + c)=ni

�
I �

jx+ cihx+ cj

hx+ ci2

�
� 0: (8.41)

We proceed in several steps.

Step I: Estimate using (8.32){(8.34)

�
1

�
Re

(Z
jvj>�=m

(�@~h)(�)�g1m(B)An

�
B

m
� �

��1
E�3

�
B

m
� �

��1
du dv

)
� �Chpi2: (8.42)
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Step II: Write An = Bhx + cih(x+ c)=ni�1 + iE0 (see (8.4)). Since ~h(�) = ~h(��) we can write

1

�
Im

(Z
jvj>�=m

(�@~h)(�)�g1m(B)E0

�
B

m
� �

��1
ptT (1)p

�
B

m
� �

��1
du dv

)

= �
i

2�

Z
jvj>�=m

(�@~h)(�)�

(
g1m(B)E0

�
B

m
� �

��1
ptT (1)p

�
B

m
� �

��1

�

�
B

m
� �

��1
ptT (1)p

�
B

m
� �

��1
E0g1m(B)

)
du dv: (8.43)

When reversing the order of the operators constituting the �rst term in the brackets above, we
get a number of commutators which all remove one power of B, cf. Lemma 8.5 and the identity
B = mf(B=m � �) + �g. We are thus left with two powers of p. Applying (8.32), (8.33) and
combining with (8.42) now yields

Re
�
g1m(B)Ani[p

2; g1m(B)]
	

� �
1

�
Re

(Z
jvj>�=m

(�@~h)(�)�g1m(B)B
hx + ci

h(x + c)=ni

�
B

m
� �

��1
ptT (1)p

�
B

m
� �

��1
du dv

)
� Chpi2: (8.44)

Step III: We proceed by moving pt to the left, p to the right and collecting functions of B to
the left of functions of x. Arguing as for (8.43) we �nd that all errors come in the form of double
commutators as indicated by the identity LST + TSL = SLT + TLS + [[L; S]; T ]. Each double
commutator will remove two powers of B from the expression under the integral in (8.44). (We
leave the somewhat tedious details to the reader.) We thus get

Re
�
g1m(B)Ani[p

2; g1m(B)]
	
� ptRe fBg01m(B)g1m(B)T (n)g p� Cp2: (8.45)

Here we used that hx + cih(x+ c)=ni�1T (1) = T (n), cf. (8.41), and the identity

g01m(t) = �
1

�

Z
jvj>�=m

(�@~h)(�)�

�
t

m
� �

��2
du dv: (8.46)

Step IV: Abbreviate Sm =
p
tg0mgm 2 C10 (R) and write g1m = gm � g2m and g01m = g0m � g02m.

By (8.36) we get for any � > 0

ptRe fBg01m(B)g1m(B)T (n)g p � ptRe
�
Sm(B)

2T (n)
	
p

� ptRe fBg0m(B)g2m(B)T (n)g p� Cp2

� ptRe
�
Sm(B)

2T (n)
	
p� �pt (Bg0m(B))

2
p� C(�)p2:

(8.47)

There exists, cf. (8.31), Cg > 0 such that

(tg0m(t))
2
� Cggm(t)

2: (8.48)
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We furthermore estimate

ptgm(B)
2p � 2ptg1m(B)

2p+ Cp2 � 2g1m(B)p
2g1m(B) + Cp2:

In the last step we used an argument similar to the one used to obtain (8.45). Inserting this estimate
and (8.48) into (8.47) (applied with � = �=(2Cg)) gives

ptRe fBg01m(B)g1m(B)T (n)g p � ptRe
�
Sm(B)

2T (n)
	
p� �g1m(B)p

2g1m(B)� Chpi2: (8.49)

To complete the proof we pick an almost analytic extension of Sm and symmetrize

Re
�
Sm(B)

2T (n)
	
� Sm(B)T (n)Sm(B)� C � �C:

Here we used (8.41) in the last step. This estimate in conjunction with (8.49) and (8.45) yields
(8.38).

The second estimate (8.39) is proved similarly and we leave it to the reader. �

Proposition 8.7. Let ' be an eigenfunction of H with eigenvalue E. We have

i) p' 2 D(B1).
ii) If E 62 F(H), then p' 2 D(A1).

Proof. For  2 H we abbreviate  m = g1m(B) .

We compute (as forms on C)

g1m(B1)A1;ni[H; g1m(B1)] = g1m(B1)A1;n

�
i[�; g1m(B1)] + i[p2; g1m(B1)] + i[V; g1m(B1)]

	
: (8.50)

Using the identity

i[�; B1] = 2Re

�
hx+ ci�1bt

�
I �

jx+ cihx+ cj

hx+ ci2

�
p

�
together with (8.32){(8.35) gives

Refg1m(B1)A1;ni[�; g1m(B1)]g � �
1

12
g1m(B1)p

2g1m(B1)� Chpi2: (8.51)

As for the commutator with the potential we use (6.2) to write

i[V;B1] = hxi�1
�

hxi

hx+ ci
(x+ c) � rV hpi�1

�
hpi

and obtain as above

Refg1m(B1)A1;ni[V; g1m(B1)]g � �
1

12
g1m(B1)p

2g1m(B1)� Chpi2: (8.52)

Let  2 C. Using (8.50){(8.52) in conjunction with (8.38) (applied with � = 1=12) yields the
following estimate

hi[H;A1;n]i m = �2Re fhA1;n m; g1m(B)i(H �E) ig � 2 hRe fg1m(B)A1;ni[H; g1m(B)]gi 

�
1

2
kp mk

2 + C(k mk
2 + k k2 + kp k2) + C(m;n)k(H �E) k2: (8.54)
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Here we used that kA1;n mk � C(n)kB1 mk+ Ck mk � C(m;n)(k mk+ k k+ kp k).

Next we estimate as for (8.11) but using (6.2) instead of Theorem 6.2. This gives

2


ptF 01;np

�
 m

� hi[H;A1;n]i m +
1

2
kp mk

2 + Ck mk
2: (8.55)

Note that F 01;n(x) = F 0n(x+ c), cf. (3.2). Inserting (8.54) into (8.55) yields

2


ptF 01;np

�
 m

� kp mk
2 + C

�
k k2 + kp k2

�
+ C(m;n)k(H �E) k2: (8.56)

Here we used in addition that k mk2 � C(k k2 + kp k2).

Using the two �rst limits in (8.14) to replace  with ' in (8.56) and subsequently taking the limit
n!1 gives

kp'mk
2 � C(k'k2 + kp'k2):

This implies, cf. (8.36) and Lemma 8.5, the estimate

kgm(B1)p'k
2 � C(k'k2 + kp'k2)

(uniformly in m � 1) from which i) follows.

As for ii) we note that the estimate (8.54) (with an extra khx+ cih(x+ c)=ni�1p k2 term on the
right-hand side) can be proved in a similar fashion with  m = g1m(B1) replaced by g1m(A1) , using
(8.39) instead of (8.38). As above this together with Propositions 8.2 and 8.4 implies p' 2 D(A1).

�
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9. Perturbation theory

In this section we study the perturbation problem, (1.19), for the Floquet Hamiltonian and in
the end our results are translated into a statement about the perturbation problem, (1.11), for the
physical system. We use perturbation theory following [AHS]; this approach appears more suited
for the N -body problem than the well-known Feshback method applied in, for example, [DJ].

Throughout the section it is assumed that V satis�es Condition 1.3 (although the same methods
would give similar results under Conditions 1.1 or 1.2) and �elds (1.9). More speci�c let E0 and
E be given �elds obeying (1.9). We de�ne b0 = b0(t), c0 = c0(t) and b = b(t), c = c(t) to be
the corresponding integrated �elds, cf. (1.14). We are going to study an eigenvalue perturbation
problem de�ned in terms of the �elds E� = E0 + �E with � a real (perturbation) parameter. The
corresponding integrated �elds are b� = b0 + �b and c� = c0 + �c. The corresponding Floquet
Hamiltonians are given by H� = � + h�(t), where h�(t) = p2 + V (� + c�), cf. (1.11), (1.18) and
(1.19). Now let

E0 2 �pp(H0)nF(H0) (9.1)

be given. The corresponding �nite-dimensional projection is denoted P0. We will study the eigen-
value perturbation problem for H� at E0 using three ingredients from previous sections: 1) The
Mourre estimate from Section 6. 2) Decay properties of P0 from Section 8. 3) A uniform LAP
obtained from the method of Section 2.

It is convenient �rst to change frame, x ! x � c�, as in the proof of Theorem 6.2: Thus we
consider the operators

H1
� = e�ip�c�H�e

ip�c� = � + p2 + 2b� � p+ V;

where V = V (x) is independent of t. (Here and in the following the superindex 1 is used without
parentheses.) Similarly we introduce P 1

0 = e�ip�c0P0e
ip�c0 . By the results of Section 8

hpiAP 1
0 ; hpihxi

2P 1
0 2 B(H): (9.2)

Here B(H) signi�es the bounded operators on the Floquet Hilbert space H, and A is the generator
of dilations as given in Section 3.

We introduce eH1
0 = H1

0 + P 1
0 ; and eH1

� = H1
� + P 1

0 :

Note that eH1
0 has no eigenvalues in a small open neighbourhood V of E0. We write

i[ eH1
�; A] =M� + eG;

where
M� = 2p2 + 2b� � p+ Æ0 and eG = �x � rV (x) + i[P 1

0 ; A]� Æ0:

Here Æ0 > 0 is �xed such that (6.20) holds for M1 replaced by M� uniformly in � 2 [�1; 1]. By
(9.2) and the �niteness of m0 = dimRange(P 1

0 ), we conclude that [P
1
0 ; A] and hpi

�1[[P 1
0 ; A]; A]hpi

�1

extend to compact operators. In particular, seen by �rst conjugating (6.22) by e�ip�c0 , there exist
� > 0, 
 > 0 and C > 0 such that:

M0 + fE0;�( eH1
0 )
eGfE0;�( eH1

0 ) � 
I � C(I � fE0;�( eH1
0 ))

2: (9.3)

Here we used that fE0;�( eH1
0 )� fE0;�(H

1
0 ) is compact and that s� lim�!0 fE0;�( eH1

0 ) = 0. Clearly the

technical conditions Assumption 2.1 1)-3) are satis�ed for eH1
�; A;M� and eG for j�j � 1 (see Section

6).
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As in [AHS] we may perturb (9.3) as to obtain the existence of �0 > 0, � > 0, 
 > 0 and C > 0
(with a new 
 > 0 and a new C > 0) such that for all � with j�j � �0 we have:

M� + fE0;�( eH1
�)
eGfE0;�( eH1

�) � 
I � C(I � fE0;�( eH1
�))

2: (9.4)

Notice for example that for the term

T = fE0;�( eH1
�) eGfE0;�( eH1

�)� fE0;�( eH1
0 ) eGfE0;�( eH1

0 ); (9.5)

we may write T = hpiT 0 + T 0hpi where
kT 0k � Cj�j (9.6)

and then estimate by the Cauchy-Schwarz inequality, cf. (4.10).

Consequently Assumption 2.1 is veri�ed, and the Limiting Absorption Principle of Theorem 2.4

holds for eH1
� in a small neighbourhood V of E0 , cf. the Virial Theorem and Proposition 4.1. Due

to the uniformity of (9.4) with respect to � 2 [��0; �0] we may obtain resolvent bounds from the
method of Section 2 that are uniform in numerically small �, see Lemma 9.2 stated below.

We will also need the following abstract H�older continuity statement. If Q is a densely de�ned
form which extends from D(Q) to a bounded form we write Q0 for the corresponding bounded
operator.

Proposition 9.1. Suppose Assumption 2.1 is satis�ed for some E = E0 that is not an eigenvalue
of H. Let V� = fz 2 C : Re z 2 V ;� Im z � 0g where V is a small neighbourhood of E0, and let
0 � � < 1

2 < � � 1. Then (in addition to the conclusion of Theorem 2.4) the maps

V� 3 z !
�
hAi��M�(H � z)�1M�hAi��

�0
2 B(H)

are uniformly H�older continuous with exponent � := 1�2maxf�;1��g
3�2maxf�;1��g . Consequently, the limits

hAi��M�(H �E � i0)�1M�hAi�� := lim
�!0

�
hAi��M�(H �E � i�)�1M�hAi��

�0
exist and are uniformly H�older continuous in E 2 V with exponent �.

Remark. Under the conditions of Corollary 7.2 (in particular 0 � r < 1=2 < s � 1) we obtain from
Lemma 7.1 and Proposition 9.1 that the maps

E ! hpirhxi�s(H �E � i0)�1hxi�shpir

are uniformly H�older continuous on V with exponent �.

Proof. We only consider the case of V+. Let z; z0 2 V+ with z 6= z0 and let � = jz � z0j
 where

 = 2

3�2� and � = maxf�; 1 � �g. By (2.44) and the comments accompanying (2.44) we have,

uniformly in z 2 V+,

kFz � Fz(�)k � C�
1
2��; (9.7)

where

Fz =
�
hAi��M�(H � z)�1M�hAi��

�0
and Fz(�) = D(�)M�Rz(�)M

�D(�):

Recall that D(�) = hAi��h�Ai��1. From Lemma 2.9 we furthermore �nd that

kFz(�)� Fz0(�)k � C��1jz � z0j: (9.8)

Combining (9.7) and (9.8) we get

kFz � Fz0k � C(�
1
2�� + ��1jz � z0j) = Cjz � z0j�:

�

Taking the uniformity of (9.4) into account, the proof of Proposition 9.1 yields uniform H�older
continuity results for our problem. We are only going to need the result for the case � = 0 and
� = 1.
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Lemma 9.2. There exists a neighbourhood V of E0 and �0 > 0 such for j�j � �0 the maps

V� 3 z ! hAi�1( eH1
� � z)�1hAi�1 2 B(H)

are H�older continuous with exponent 1=3, uniformly in z 2 V� and � with j�j � �0. Consequently,
the limits

hAi�1( eH1
� �E � i0)�1hAi�1 := lim

�!0
hAi�1( eH� �E � i�)�1hAi�1

exist and are H�older continuous with exponent 1=3, uniformly for E 2 V and j�j � �0.

We are going to use Lemma 9.2 as follows. We de�ne the following operator on the �nite dimen-
sional space Range(P 1

0 ):

Q�(z) = P 1
0 ( eH1

� � z)�1P 1
0 ; z 2 V+ [ V�:

By (9.2) and Lemma 9.2 the limits Q�(E � i0) = lim�!0Q�(E � i�) exist.

We have the formula

(H1
� � z)�1P 1

0 (I �Q�(z)) = ( eH1
� � z)�1P 1

0 ;

which relates the resolvents of H1
� and eH1

�. It implies that the non-existence of an eigenvalue at
E 2 V is equivalent to the invertibility of I �Q�(E + i0) as an operator on Range(P 1

0 ) (see [AHS]).
We are thus led to study the operator Q�(z).

Expanding the resolvent we get

Q�(z) = 
zP
1
0 � 2�
2zP

1
0 p � bP

1
0 + 4�2
2zP

1
0 p � b( eH1

� � z)�1p � bP 1
0 ; (9.9)

where 
z = (1 +E0 � z)�1. Note that (9.2) and Lemma 9.2 imply the existence of the limits of all
the terms on the right hand side of (9.9) as Im z ! �0.

We estimate the last term on the right hand side of (9.9).

Lemma 9.3. There exist a small neighbourhood V of E0 and C; �0 > 0 such that for E 2 V and
j�j � �0 


P 1

0 p � b( eH1
� �E � i0)�1p � bP 1

0 � P 1
0 p � b( eH1

0 �E � i0)�1p � bP 1
0




 � Cj�j1=3:

Proof. We only give the proof for the "minus case"; it goes along the same line as the one of

Proposition 9.1. Let � = j�j
2
3 . We use (9.2) and (9.7) with � = 0 and � = 1 to estimate (uniformly

in z 2 V+ and � 2 [��0; �0])


P 1
0 p � b( eH1

� � z)�1p � bP 1
0 � P 1

0 p � b ~R
1
�;z(�)p � bP

1
0




 � C�
1
2 : (9.10)

Compute
~R1
�;z(�)�

~R1
0;z(�) = ~R1

�;z(�)f�2(1� i�)�p � b+ i�Tg ~R1
0;z(�);

where T is given by (9.5).

Combining this with (9.2) and (2.28) yields


P 1
0 p � b ~R

1
�;z(�)p � bP

1
0 � P 1

0 p � b ~R
1
0;z(�)p � bP

1
0




 � Cj�j��1; (9.11)
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uniformly in z 2 V+. �

Using Lemma 9.2, Lemma 9.3 and (9.9) we may write

I �Q�(E + i0) (9.12)

= (1� 
E)I + 
2E�A
(1) + 
E

2�2A(2) � i
E
2�2B +O(j�j

7
3 ) + jE �E0j

1
3O(�2);

where (considered as operators on Range(P 1
0 ))

A(1) = 2P 1
0 b � pP

1
0 ; A

(2) = �4RefP 1
0 b � p( eH1

0 �E0 � i0)�1b � pP 1
0 g (9.13)

and
B = 4 ImfP 1

0 b � p( eH1
0 �E0 � i0)�1b � pP 1

0 g: (9.14)

We conclude from (9.12), using the fact that B is non-negative, that indeed the left hand side
is invertible if B is invertible (for � numerically small and E 2 R close to E0). More generally
it follows that the nullspace of the operator on the left hand side is a subset of the nullspace of
its (negative) imaginary part, and from this and the invariance of the pure point spectrum (i.e.
�pp(H�) = �pp(H

1
�)) one readily obtains the following result.

Proposition 9.4. There exist �0 > 0, a neighbourhood V of E0 and C > 0 such that for 0 < j�j � �0
we have

(1) If 0 62 �(B), then �pp(H�) \ V = ;.
(2) Any E 2 �pp(H�) \ V must satisfy��E �E0 � �E1

� � (�E1
�)

2
�� � Cj�j

7
3

for some

E1
� 2 �

�
A(1) + �A(2)

�
:

We can readily translate Proposition 9.4 into a statement for the monodromy operator U�(1; 0)
for the physical problem; see Section 1 (in particular (1.10), (1.12) and (1.16)). Let

�� = 2�

Z 1

0

b0 � b(s)ds+ �2
Z 1

0

jb(s)j2ds:

Theorem 9.5. Suppose Condition 1.3 and (1.9). Let e�i�0 2 �pp(U0(1; 0))nF(U0(1; 0)) and set

E0 = �0 �
R 1
0 jb0(s)j

2ds. There exist �0 > 0, a neighbourhood V of �0 and C > 0 such that for

0 < j�j � �0 we have, with A(1); A(2) and B speci�ed in (9.13) and (9.14),

(1) If 0 62 �(B), then �pp(U�(1; 0)) \ e
�iV = ;.

(2) Any e�i� 2 �pp(U�(1; 0)) \ e�iV must satisfy���e�i� � e�i(�0+��+�E
1
�+(�E

1
�)

2)
��� � Cj�j

7
3

for some

E1
� 2 �

�
A(1) + �A(2)

�
:
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Remarks 9.6. One may view Theorem 9.5 as a �rst step in an attempt to show that U(1; 0) for
a "generic" �eld E has purely absolutely continuous spectrum, cf. [AHS]. Progress in this direction
would depend on veri�cation of the condition of (1), 0 62 �(B), for a perturbation �b. We remark
that [Ya3] has a discussion on absence of eigenvalues for generic frequencies in the two-body problem.
The techniques of this section could also be used to discuss perturbation in frequency, although we
have �xed the frequency to be one throughout the paper. Finally, in Appendix A we indicated how
the statements of Theorem 9.5 for the special case b0 = 0 can be obtained in a di�erent way under
an additional dilation-analyticity assumption on the potential. One virtue of that method is that
expansions to higher order comes out easily; in fact it follows (for example) that any perturbed
eigenvalue (that persists as an eigenvalue for all numerically small �) is analytic in �.

We end this section with a brief discussion of a physical interpretation of Theorem 9.5 for the case
b0 = 0. See [Ya3] for a related discussion of what is there phrased as the "photon property" of the
electro-magnetic �eld. Since b0 = 0 the operator h0 = p2 + V is just the usual (time-independent)
Hamiltonian with its threshold set F(h0) de�ned as usual, see (1.20). The condition (9.1) reads

E0 2 (�pp(h0) + 2�Z)n(F(h0) + 2�Z):

In the interpretation of an atom (or more general a system of molecules) coupled to a reservoir of
photons of energies 2�n, this choice of unperturbed boundstate energy implies that any number of
emissions or absorptions of photons does not land the atom at a threshold energy. We write

b =
X
n2Z

b̂ne
i2�nt; where b̂n =

Z 1

0

e�i2�ntb(t)dt:

Note that b̂0 = 0 and b̂n =
�̂
b�n. Motivated by the following explicit formulas for the operators

A(1); A(2) and B of (9.13) and (9.14) we interpret the absolute value of the b̂n's, n > 0, as the
strength with which "photons" of energy kn = 2�n couple with the atom. The sign of n distinguishes
between emission and absorption of a photon of energy kjnj. In terms of the n'th Fourier coeÆcient

of E , b̂n = 1
2�in Ên. Let P = (E0 + 2�Z)\ �pp(h0). The operators A(1), A(2) and B are considered

as acting on the space

EP (h0)L
2(X) = ��2PEf�g(h0)L

2(X) (' Range(P0))

.

We have
A(1) = fA

(1)
�1;�2

g�1;�22P

where
A
(1)
�1;�2

= 2Ef�1g(h0)b̂(2�)�1(�2��1) � pEf�2g(h0):

This term can be interpreted as describing 1-photon interaction between di�erent eigenspaces:

�2
kn�! �1 = �2 � 2�n:

Note that A(1) = 0 if jPj = 1.

Secondly

A(2) = fA
(2)
�1;�2

g�1;�22P

where
A
(2)
�1;�2

= �4Re
X
n;m2Z

2�(n+m)=�2��1

Ef�1g(h0)b̂n � p ~r0(�2 � 2�m) b̂m � pEf�2g(h0):
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with
~r0(�) =

�
h0 +Ef�g(h0)� �� i0

��1
:

This term accounts for 2-photon interactions between eigenstates:

�2
km;kn
�! �1 = �2 � 2�(m+ n):

Finally we have
B = fB�1;�2g�1;�22P

where
B�1;�2 = 4 Im

X
n;m2Z

2�(n+m)=�2��1

Ef�1g(h0)b̂n � p ~r0(�2 � 2�m) b̂m � pEf�2g(h0):

This term describes interactions between two eigenstates via the absolutely continuous spectrum:

�2
km�! �2 � 2�m (2 �ac(h0) \ (E0 + 2�Z))

kn�! �1 = �2 � 2�(m+ n):
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Appendix A. An analytic perturbation theory

In this appendix we shall outline an analytic perturbation theory valid in the small �eld regime
and under an additional dilation-analyticity assumption on the potential. In particular the theory
leads to an alternative proof of Proposition 9.4 (and therefore also of Theorem 9.5) in the case
b0 = 0, see (9.14). As in Section 9 we consider E obeying (1.9). We are going to study the spectrum
of operators of the form

H1 = � + p2 + 2b � p+ V; (A.1)

where b = b(t) is the integrated �eld, cf. (1.14), and V is independent of t. We shall replace b by �b
and study corresponding eigenvalue problems, cf. Section 9.

First we study properties of H1 given without any parameter-dependence (and with b arbitrary).
We do not need V to be local. Our assumption on V is given in terms of the Combes class introduced
using the notation Aa = Refxa � pag and Ha

2 = ((pa)2) + 1)�1L2(Xa)

De�nition A.1. Fix � > 0. A symmetric operator Va on L2(Xa) is in C� if and only if:

(1) D((pa)2) � D(Va).
(2) Va((p

a)2) + 1)�1 is compact.
(3) The B(Ha

2 ; L
2(Xa))-valued function

R 3 � ! Va(�) = ei�A
a

Vae
�i�Aa 2 B(Ha

2 ; L
2(Xa))

has an analytic extension to the strip f�j j Im �j < �g. (This extension is henceforth denoted
by Va(�).)

We impose the condition that for some � 2 (0; �2 )

V =
X
a2A

Va; where Va 2 C�: (A.2)

Under the above conditions the family of operators h(t) = p2+2b �p+V on L2(X) has a dynamics
U that preserves D(p2), cf. [RS, Theorem X.70] (or [CMR]). Consequently by (1.13) H1 is essentially
self-adjoint on the subspace D(�) \ D(p2) of H. Next we consider the family of dilated operators

H1(�) = � + e�2�p2 + 2e��b � p+ V (�); (A.3)

where 0 � Im � < � and V (�) =
P
a2A Va(�). For 0 < Im � < �,

D(H1(�)) = D(H1(�)�) = D(�) \ D(p2):

Also note that for � 2 R, ei�AH1(�)e�i�A = H1(� + �).

We need the class of analytic vectors N�: A vector � 2 H is in N� if and only if the H-valued
function

R 3 � !  (�) = ei�A 2 H

has an analytic extension (denoted by  (�)) to the strip f�j j Im �j < �g.

Lemma A.2. Let C > 0 be given. There exists �0 2 (0; �) such that if kbkL1 � C, Im � 2 [0; �0]
and Im z � 1, then z 2 �(H1(�)) with 

(H1(�)� z)�1



 � 3; (A.4)
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and for all  2 N�
h ; (H1 � z)�1 i = h (��); (H1(�)� z)�1 (�)i: (A.5)

Proof. We mimic a numerical range argument of [HS]. It suÆces to consider � ! i� with Im � = 0.
Let  2 D(H1(i�)) be any given normalized vector. We abbreviate h ;A i = hAi for relevant
operators A.

ImhH1(i�)� zi = sin(�2�)hp2i + 2 sin(��)hb � pi + ImhV (i�)� V (0)i � Im z: (A.6)

We assume � � �
2 . Then sin(�2�) � � 4�

� and j sin(��)j � �; and (by a Cauchy estimate and
interpolation) for all y0 > 1

j ImhV (i�)� V (0)i j � � sup
0��0��





(p2 + y0)�
1
2
d

d�0
V (i�0)(p2 + y0)�

1
2





 hp2 + y0i 

� �C(y0)hp2 + y0i ; C(y
0) =

24

�
sup

j�j� 2
3�



V (�)(p2 + y0)�1


 : (A.7)

Clearly C(y0)! 0 for y0 !1.

From (A.6), (A.7) and the Cauchy-Schwarz inequality we get the estimate

ImhH1(i�)� zi � ��

�
4

�
� 1� C(y0)

�
hp2i + � kbk2L1 + �C(y0)y0 � Im z:

Now we �x a large y0 such that C(y0) � 4
� � 1 making the �rst term on the right hand side

non-positive. Then �1=3 is a total upper bound for all � � �0 where

�0 = min

�
�

2
;

1

3C(y0)y0
;

1

3C2

�
;

yielding (A.4). As for (A.5) we consider for given z with Im z � 1 and b with kbkL1 � C the
function

� !


 (��); (H1(�)� z)�1 (�)

�
:

It is analytic and constant on the open strip f� 2 C j Im � 2 (0; �0)g. Using the fact that D(�)\D(p
2)

is a core for H1 one readily obtains in combination with (A.4) that

s� lim
�#0

(H1(i�)� z)�1 = (H1 � z)�1;

which (together with a similar argument for � " �0) shows (A.5) in the case Im z � 1. �

Now we replace b by b� = �b in (A.1) and let E0 be given as in (9.1) (using the same notation
as in Section 9). To obtain an alternative proof of Proposition 9.4 in this case we need to extend
the formula (A.5) for �xed �, say � = i�0, and all real, numerically small � to z 2 S� = fzj Im z >
0; Re z 2 [��+E0; E0+�]g. Here � > 0 is chosen such that [��+E0; E0+�]\(F(h0)+2�Z) = ;. Our
argument is perturbative. It follows from [BC] that E0 is a discrete eigenvalue of H

1
0 (i�0) and that

�(H1
0 (i�0))\fzj Im z > 0g = ;. Since 2e�i�0b� �p is a relatively bounded (and analytic) perturbation

we may pick a small circle CÆ centered at E0 and a small �0 > 0 such that CÆ \ �(H
1
�(i�0)) = ; for

j�j � �0. The dimension of the range of the corresponding Riesz projection

i

2�

Z
CÆ

(H1
�(i�0)� z)�1dz
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is exactly equal to the multiplicitym0 of the eigenvalue E0 ofH
1
0 . In particular if E 2 S�\�(H1

�(i�0))
then E is a discrete eigenvalue of H1

�(i�0). By extending (A.5) to a small neighbourhood of E
(excluding E) and invoking the density of N� we then conclude that indeed such E cannot exist.
Thus the formula 


 ; (H1
� � z)�1 

�
=


 (�i�0); (H

1
�(i�0)� z)�1 (i�0)

�
(A.8)

is valid for z 2 S� and for all real � with j�j � �0. Mimicking [Si] under use of (A.8) leads to the
following conclusion. Note that the operator B of (9.14) is well-de�ned in the present context too.

Proposition A.3. There exist �0 > 0 and a neighbourhood V of E0 such that for all real � with
0 < j�j � �0 we have

(1) If 0 62 �(B), then �pp(H1
�) \ V = ;.

(2) Any E 2 �pp(H1
�)\V belongs to a family of m � m0 analytic functions (in �) of eigenvalues

of H1
�. Expansion to second order of those functions agrees with Proposition 9.4 (2).

(3) There are m0 � m branches of "resonances" (Puiseux series in �) each of which has a
polynomial expansion up to some even order 2p; the coeÆcients of the powers �q with q < 2p
are real while the coeÆcient of the power �2p has negative imaginary part.

Remark. We mention two open problems: 1) Extend the perturbation theory of this section to
the case b0 6= 0 (as in Section 9). The problem here is to control the essential spectrum of H1

�(�).
Such "control" is provided for the two-body problem in [How2]. The general N -body problem with
Coulomb singularities would probably (if feasible at all) require some kind of "exterior scaling", cf.
[Hu2]. 2) Find an analytic perturbation theory for Born-Oppenheimer molecules in the small �eld
regime (like in Proposition A.3). One may suspect that the distortion technique of [Hu2] would
provide an analogue of Proposition A.3, although there is a technical diÆculty in using the same
scheme of proof.



68 J. S.M�LLER AND E. SKIBSTED

References

[A] T. Adachi, Scattering theory for N-body quantum systems in a time-periodic electric �eld, Funkcial. Ekvac.
44 (2001), 335{376.

[AHS] A. Agmon, I. Herbst and E. Skibsted, Perturbation of embedded eigenvalues in the generalized N-body
problem, Commun. Math. Phys. 122 (1989), 411-438.

[ABG1] W. O. Amrein, A. Boutet de Monvel and V. Georgescu, C0-groups, commutator methods and spectral theory
of N-body Hamiltonians, Progress in Math. Series 135, Birkh�auser, Basel, 1996.

[ABG2] W. O. Amrein, A. Boutet de Monvel and V. Georgescu, Notes on the N-body problem; Part 1 (1988), 11{598a
(preprint Univ. de Geneve UGVA DPT).

[BFS] V. Bach, J. Fr�ohlich and I. M. Sigal, Quantum Electrodynamics of con�ned non-relativistic particles, Adv.
in Math. 137 (1998), 299{395.

[BFSS] V. Bach, J. Fr�ohlich, I. M. Sigal and A. So�er, Positive commutators and spectrum of Pauli-Fierz Hamiltonian
of atoms and molecules, Commun. Math. Phys 207 (1999), 557{587.

[BC] E. Balslev and J. M. Combes, Spectral theory of many-body Schr�odinger operators with dilatation-analytic
interactions, Commun. Math. Phys. 22 (1971), 280{294.

[BMP] A. M. Boutet de Monvel-Berthier, D. Manda and R. Purice, The commutator method for form relatively
compact perturbations, Letters in Math. Phys. 22 (1991), 211{223.

[CFKS] H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, Schr�odinger operators, Texts and Monographs in Physics,
Springer Verlag, Berlin Heidelberg, 1987.

[CMR] P. Combe, E. Mourre and J. L. Richard, Photoionisation of atoms and M�ller operators, Commun. Math.
Phys. 43 (1975), 161{170.

[DG] J. Derezi�nski and C. G�erard, Scattering theory of classical and quantum N-particle systems, Texts and
Monographs in Physics, Springer Verlag, Berlin Heidelberg, 1997.

[DJ] J. Derezi�nski and V. Jaksi�c, Spectral theory of Pauli-Fierz operators, J. Funct. Anal. 180 (2001), 243{327.

[FH1] R. Froese and I. Herbst, A new proof of the Mourre estimate, Duke Math. J. 49 (1982), 1075{1085.

[FH2] R. Froese and I. Herbst, Exponential bounds and absence of positive eigenvalues for N-body Schr�odinger
operators, Commun. Math. Phys. 87 (1982), 429{447.

[FS] S. Fournais and E. Skibsted (in preparation).

[GG] V. Georgescu and C. G�erard, On the virial theorem in quantum mechanics, Commun. Math. Phys. 208
(1999), 275-281.

[GGM] V. Georgescu, C. G�erard and J. S. M�ller (in preparation).

[GY] S. GraÆ and K. Yajima, Exterior complex scaling and the AC-Stark e�ect in the Coulomb �eld, Commun.
Math. Phys. 89 (1983), 277{301.

[HMS] I. Herbst, J. S. M�ller and E. Skibsted, Spectral analysis of N-body Stark Hamiltonians, Commun. Math.
Phys. 174 (1995), 261-294.

[Hos] T. Hoshiro, Mourre's method and smoothing properties of dispersive equations, Commun. Math. Phys. 202
(1999), 255{265.

[How1] J. S. Howland, Scattering theory for Hamiltonians periodic in time, Indiana Univ. Math. J. 28 (1979),
471{494.

[How2] J. S. Howland, Complex scaling of ac Stark Hamiltonians, J. Math. Phys. 24 (1983), 1240{1244.

[Hu1] W. Hunziker, Introduction to N-body Schr�odinger operators, Schr�odinger operators, (H. Holden A. Jensen,
eds.), Lecture notes in physics 345, Berlin Heidelberg, Springer Verlag, 1989.

[Hu2] W. Hunziker, Distortion analyticity and molecular resonance curves, Ann. Inst. Henri Poincar�e 45 (1986),
339{358.

[H�o] L. H�ormander, The analysis of linear partial di�erential operators III, Springer Verlag, Berlin Heidelberg,
1985.

[J] A. Jensen (private conversation).



SPECTRAL THEORY OF TIME-PERIODIC MANY-BODY SYSTEMS 69

[JMP] A. Jensen, E. Mourre and P. Perry, Multiple commutator estimates and resolvent smoothness in quantum
scattering theory, Ann. Inst. Henri Poincar�e 41 (1984), 207{225.

[KiY1] H. Kitada and K. Yajima, A scattering theory for time-dependent potentials, Duke Math. J. 49 (1982),
341{376.

[KiY2] H. Kitada and K. Yajima, Bound states and scattering states for time dependent Hamiltonians, Ann. Inst.
Henri Poincar�e 39 (1983), 145{157.

[Ko1] E. L. Korotyaev, Scattering theory for three-particle systems with time-periodic pair interactions, Teoret.
Mat. Fiz. 62 (1985), 242{252.

[Ko2] E. L. Korotyaev, Eigenfunctions of the monodromy operator of the Schr�odinger operator with a potential
that is periodic with respect to time, Mat. Sb. (NS) 124 (166) (1984), 431{446.

[Kr] H. A. Kramers, Nonrelativistic quantum electric dynamics and correspondence principle, Rapp. 8e Cons.
Solvay, 1948, pp. 241{268.

[KuY] Y. Kuwabara and K. Yajima, Time periodic Schr�odinger operators, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math.
34 (1987), 833{851.

[Mo] E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Commun. Math. Phys.
91 (1981), 391{408.

[M�] J. S. M�ller, Two-body short-range systems in a time-periodic electric �eld, Duke Math. J. 105 (2000),
135{166.

[N] S. Nakamura, Asymptotic completeness for three-body Schr�odinger equations with time-dependent potentials,
J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 33 (1986), 379{402.

[PSS] P. Perry, I. M. Sigal and B. Simon, Spectral analysis of N-body Schr�odinger operators, Ann. Math. 114
(1981), 519{567.

[RS] M. Reed and B. Simon, Fourier analysis, self-adjointness. Methods of modern mathematical physics II,
Academic Press, New York, 1975; Scattering theory. Methods of modern mathematical physics III, Academic
Press, New York, 1979.

[Sa] Y. Sait�o, The principle of limiting absorption for the non-selfadjoint Schr�odinger operator in RN (N 6= 2),
Publ. RIMF. Kyoto Univ. 9 (1974), 397{428.

[Si] B. Simon, Resonances in n-body quantum systems with dilatation analytic potentials and the foundations of
time-dependent perturbation theory, Ann. Math. 97 (1973), 247{274.

[Sk] E. Skibsted, Spectral analysis of N-body systems coupled to a bosonic �eld, Reviews in Math. Phys. 10 (1998),
989{1026.

[SSL] M. Sargent III, M. O. Scully and W. E. Lamb Jr, Laser physics, Addison-Wesley, Reading Mass., 1974.

[Ta] H. Tamura, Principle of Limiting Absorbtion for N-body Schr�odinger Operators, Letters in Math. Phys. 17
(1989), 31{36.

[Ti] A. Tip, Atoms in circularly polarized �elds: The dilation-analytic approach, J. Phys. A. 16 (1983), 3237{3259.

[Ya1] K. Yajima, Scattering theory for Schr�odinger equations with potentials periodic in time, J. Math. Soc. Japan
29 (1977), 729{743.

[Ya2] K. Yajima, Existence of solutions for Schr�odinger evolution equations, Commun. Math. Phys. 110 (1987),
415{426.

[Ya3] K. Yajima, Resonances for AC-Stark e�ect, Commun. Math. Phys. 87 (1982), 331{352.

[Yo] K. Yokoyama, Mourre theory for time-periodic systems, Nagoya Math. J. 149 (1998), 193{210.


