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Abstract. The DT{operators are introduced, one for every pair (�; c) consisting
of a compactly supported Borel probability measure � on the complex plane and a
constant c > 0. These are operators on Hilbert space that are de�ned as limits in �{
moments of certain upper triangular random matrices. The DT{operators include
Voiculescu's circular operator and elliptic deformations of it, as well as the circular
free Poisson operators. We show that every DT{operator is strongly decomposable.
We also show that a DT{operator generates a II1{factor, whose isomorphism class
depends only on the number and sizes of atoms of �. Those DT{operators that are
also R{diagonal are identi�ed. For a quasi{nilpotent DT{operator T , we �nd the
distribution of T �T and a recursion formula for general �{moments of T .
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2 DT{operators

1. Introduction

1.1. Local spectral theory and decomposability. Let us begin by describing
some ideas and results in local spectral theory related to decomposability of operators.
Our exposition is drawn from the book [16] by Laursen and Neumann, and depends
on work of Foia�s [8], [9], Apostol [2], [3], Albrecht [1], Jafarian and Vasilescu [14] and
others (see [16] for some history, more detailed citations and proofs). Theorem 1.1
below and the considerations surrounding it apply to bounded operators on Banach
spaces, but in keeping with the subject of this paper we will restrict to discussion of
a bounded operator T on a Hilbert space H.
Such an operator T is said to be decomposable if, for every cover C = U [V of the

complex plane by two open subsets U and V , there are T{invariant closed subspaces
H0 and H00 of H such that the spectra of the restrictions of T satisfy �(T �

H0) � U
and �(T �H00) � V , and such that H = H0 +H00.
Given a bounded operator T on H, a spectral capacity for T is a mapping E from

the set of all closed subsets of C into the set of all closed T{invariant subspaces of
H, such that

(i) E(;) = f0g and E(H) = C,

(ii) H = E(U1) + � � �+ E(Un) = H for every open cover fU1; : : : ; Ung of C,
(iii) E(

T1
n=1 Fn) =

T1
n=1E(Fn) for any closed subsets F1; F2; : : : of C,

(iv) �(T �E(F )) � F for every closed subset F of C, (with the convention that the
operator on the Hilbert space f0g has empty spectrum).

If � 2 H, the local resolvent set, �T (�), of T at � is the union of all open subsets
U of C for which there exist holomorphic vector{valued functions fU : U ! H such
that (T��)fU(�) = � for all � 2 U . The local spectrum of T at � is then de�ned to be
�T (�) = Cn�T (�). For any subset A of C, the corresponding local spectral subspace
of T is

HT (A) = f� 2 H j �T (�) � Ag:
It is clear that HT (A) is T{invariant, and even T{hyperinvariant, namely invariant
under every operator that commutes with T . Hence letting pT (A) deonte the projec-
tion of H onto the closure of HT (A), it follows that pT (A) lies in the von Neumann
algebra vN(T ) that is generated by T . In fact, by using standard techniques like
those in the proofs of Lemmas 2.3 and 2.4 of [6], one can show that the projection
pT (A), as an element of the abstract W�{algebraM that is isomorphic to vN(T ), is
independent of the particular representation ofM on a Hilbert space. (Our conven-
tion is that a von Neumann algebra is the image of a normal representation of an
abstract W�{algebra on a Hilbert space.)

Theorem 1.1. (cf. [16, x1.2]). Let T be a bounded operator on a Hilbert space H.
Then the following are equivalent:

(i) T is decomposable,
(ii) T has a spectral capacity,
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(iii) for every closed subset F of C, HT (F ) is closed and

�((1� pT (F ))T ) � �(T )nF ;

where the spectrum is of (1� pT (F ))T considered as an operator on HT (F )
?.

Moreover, if T is decomposable then the map F 7! HT (F ) is the unique spectral
capacity for T .

An operator T is said to be strongly decomposable if it is decomposable and, mo-
rover, if the restriction T �HT (F )

is decomposible for every closed subset F of C. In
light of the above comments about pT (A) in abstract W�{algebras, it is clear that de-
composability and strong decomposability of operators can be thought of as algebraic
properties of elements of W�{algebras.

1.2. DT{operators. In this paper, we introduce the DT{operators. These are op-
erators on Hilbert space that are de�ned as limits of certain large random matrices
and are intimately related to free probability theory, (see the book [27]). We will
introduce them �rst in the context of �{noncommutative probability spaces. A �{
noncommutative probability space is a pair (A; �), where A is a unital algebra over
C with an involution usually denoted a 7! a�, and where � : A ! C is a linear
functional that is unital (�(1) = 1) and positive (�(a�a) � 0). A �{noncommutative
probability space is said to be tracial if � satis�es the trace property. An important
example is the tracial �{noncommutative probability space of n�n random matrices,
(Mn; �n), whereMn is an algebra of n�n matrices whose entries are random variables
over a classical probability space having moments of all orders and where, viewing
an element a 2Mn as an Mn(C){valued random variable, �n(a) is the expectation of
trn(a), where trn is the normalized trace on Mn(C). Let Tn 2Mn be a strictly upper
triangular random matrix, the real and imaginary parts of whose entries above the
diagonal form a family of n(n�1) i.i.d. gaussian random variables, each having mean
0 and variance 1=2n. Fix a Borel measure � on C having compact support, and let
Dn 2 Mn be a diagonal random matrix having mutually independent �{distributed
diagonal entries and such that, as matrix{valued random variables, Dn and Tn are
independent. In x2, we show that the pair Dn; Tn converges in joint �{moments as
n ! 1. This means that �n of any �xed word in Dn, D

�
n, Tn and T �n converges as

n ! 1; in fact, we have a combinatorial formula involving non{crossing pairings
giving the limiting value. In particular, taking Zn = Dn + cTn for any �xed c > 0, it
follows that Zn converges in �{moments as n!1. This means that for every k 2 N
and all �(1); : : : ; �(k) 2 f�; 1g, the limit

lim
n!1

�n(Z
�(1)
n Z�(2)

n � � �Z�(k)
n ) (1)

exists. We de�ne a DT(�; c){element to be an element Z 2 A of a �{noncommutative
probability space (A; �) whose �{moments �(Z�(1) � � �Z�(k)) are given by the limits (1).
An element is a DT{element if it is a DT(�; c){element for some � and c.
Drawing on results from [6], we have (Theorem 2.13) that the diagonal part Dn

of Zn = Dn + cTn can be modi�ed quite extensively from the situation described
above without changing that Zn converges in �{moments to the DT(�; c){element Z.
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This exibility in the random matrix model for Z is important in our investigation
of DT{elements.
In x3, we will show that the class of DT{elements includes some elements arising

naturally in free probability theory, namely Voiculsecu's circular element, the circular
free Poisson elements, and the so called elliptic elements, which are deformations of
the circular element.
In x4, we construct DT{elements as operators on Hilbert space; more speci�cally,

for every � and c, we give a canonical construction of a DT(�; c){element in the
�{noncommutative probability space (L(F2); �), where L(F2) � B(`2(F2)) is the von
Neumann algebra generated by the left regular representation of the nonabelian free
group on two generators and � is the canonical tracial state. A W�{noncommutative
probability space is a �{noncommutative probability space (M; �), whereM is a von
Neumann algebra and � is a normal state. We say that a DT(�; c){operator is a
DT(�; c){element in W�{noncommutative probability space (M; �), where the state
� is assumed to be faithful. Of course, an element of a von Neumann algebra with a
speci�ed faithful normal state is called a DT{operator if it is a DT(�; c){operator for
some � and c.
Using the exibility in the random matrix model for a DT{element and our con-

struction of DT{operators in L(F2), we prove (Theorem 4.12) that if

A =

0BBB@
a1 b12 � � � b1N

0 a2
. . .

...
...

. . .
. . . bN�1;N

0 � � � 0 aN

1CCCA (2)

is an upper triangular N �N matrix of operators, whose entries are mutually �{free,
where each bij is a circular element and where aj is a DT(�j;

cp
N
){operator, then A is

itself a DT(�; c){operator, where � is the average of �1; : : : ; �N . This result appears
as a basic tool in our proofs of a number of interesting facts about DT{operators.
In x5, we use the upper triangular picture (2) to investigate the local spectral

subspaces of DT{operators. We show that if Z is a DT(�; c){operator in a W�{
noncommutative probability space (M; �), then the spectrum of Z is equal to the
support of �. Moreover, if B is any Borel set in C, then the projection pZ(B)
onto the closure of the spectral subspace of B has trace �(pZ(B)) = �(B). Also, if
0 < �(B) < 1, then ZpZ(B) and (1 � pZ(B))Z are DT{operators corresponding to
the restrictions of � to B and to its complement Bc, respectively. From these facts,
we show that the Brown measure of Z is � and Z is strongly decomposable.
Since the projections pZ(B) belong to the von Neumann algebra generated by Z,

we have proved, so long as the support of � has more than one point, that Z has
nontrivial invariant subspaces aÆliated to the von Neumann algebra it generates. On
the other hand, let T be a DT(Æ0; 1){operator. Then T is a natural candidate for
an operator without any invariant subspaces relative to the von Neumann algebra
it generates. This issue is related to questions about the von Neumann algebra
generated by the canonical copy of T that we construct in L(F2). In x6, we investigate
this von Neumann algebra, and prove it is an irreducible subfactor of L(F2).
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The circular free Poisson operators were introduced in [6]. In that paper, we showed
that circular free Poisson operators have nontrivial invariant subspaces relative to the
von Neumann algebras they generate. As remarked above, every circular free Poisson
operator is a DT{operator, and it is clear that the invariant subspaces constructed
in [6] are the local spectral subspaces for annular subsets of the spectrum. The circular
free Poisson operators are also examples of R{diagonal operators, in the sense of Nica
and Speicher [19]. �Sniady and Speicher [21] have extended the results of [6] in another
direction, showing that every R{diagonal operator has an increasing, one{parameter
family of nontrivial invariant subspaces relative to its von Neumann algebra. In x7, we
show that the only DT{operators that are also R-diagonal operators are the circular
free Poisson operators. Hence, the overlap between the results of [21] and of this
paper lies in their common antecedent [6].
In x8, we �nd the moments of T �T :

�((T �T )n) =
nn

(n + 1)!
:

We show that these are the moments of a probability distribution supported on
[0; e] which is Lebesgue absolutely continuous, and we explicitly describe its density
function. As corollaries, we have kTk = pe and ker T = f0g.
In x9, we prove a recursion formula for general �{moments

�
�
(T �)k1T `1 : : : (T �)knT `n

�
of T . We conclude by conjecturing a pretty formula for the special �{moments

�(((T �)kT k)n);

which has been proved in some cases and checked by computation in others.

2. The DT �{moment distributions

In this section, we show convergence in �{moments of certain sequences of upper
triangular random matrices and we use them to de�ne DT{elements. We also prove
some preliminary results about DT{elements. The random matrix results seem to be
related to those in [20], but go in a rather di�erent direction.
As in the introduction, we will let (Mn; �n) be the �{noncommutative probability

space of n�n random matrices, over a (large enough) classical probability space. We
will use the notations GRM, UTGRM, HURM and SGRM for special sorts of random
matrices in Mn, as described in Notations 3.1 and 4.1 of [6]. In particular, we say
that a random variable a 2 L is complex N(0; �2) if Re a and Im a are independent
real gaussian random variables each having �rst moment 0 and second moment �2=2,
and for T 2 Mn, we have T 2 UTGRM(n; �2) (the acronym is for upper triangular
gaussian random matrix) if the entries tij of T (1 � i; j � n) satisfy that tij = 0
whenever i � j and that (tij)1�i<j�n is an independent family of random variables,
each of which is complex N(0; �2).

Theorem 2.1. Let � be a compactly supported Borel probability measure on C. For
n 2 N, let Dn be a diagonal random matrix whose diagonal entries are i.i.d. �{
distributed random variables and let Tn 2 UTGRM(n; 1

n
) be such that Dn and Tn are



6 DT{operators

independent (as matrix{valued random variables). Then the pair Dn; Tn converges
jointly in �{moments as n!1.

The proof will come later in this section, but we now use the result to de�ne
DT{elements.

De�nition 2.2. Let � be a compactly supported Borel probability measure onC and
let c > 0. Let Dn and Tn be as in Theorem 2.1 above, for this choice of �. An element
z of a �{noncommutative probability space (A; �) is called a DT(�; c){element if its
�{moment distribution is the limit �{moment distribution of Dn + cTn as n ! 1,
i.e. if

�(z�(1)z�(2) � � � z�(k)) = lim
n!1

�n(Z
�(1)
n Z�(2)

n � � �Z�(k)
n )

for every k 2 N and �(1); : : : ; �(k) 2 f1; �g, where Zn = Dn + cTn.
An element of a �{noncommutative probability space is called a DT{element if it

is a DT(�; c){element for some � and c > 0.

We note that the letters \DT" signify diagonal + (gaussian upper) triangular.

Remark 2.3. We could use the Gelfand{Naimark{Segal representation to show, at
the same time we prove Theorem 2.1, that every DT{element can be realized as a
bounded operator; more precisely, for every � and c there is a von Neumann algebra
M equipped with a normal tracial state � such that there is a DT(�; c){element in
the �{noncommutative probability space (M; �). However, we will postpone a proof
of this to x4, where we will give a construction of an arbitrary DT{element in the
free group factor (L(F2); �); see Theorem 4.4 and Remark 4.8.

Our proof of Theorem 2.1 begins with a combinatorial analysis of the limiting
�{moments of Tn.
Recall that a pairing of f1; 2; : : : ; kg, (for k even) is

� = ffi1; jig; fi2; j2g; : : : ; fik=2; jk=2gg
where fi1; : : : ; ik=2; j1; : : : ; jk=2g = f1; : : : ; kg; a pairing � is said to be crossing if
i1 < i2 < j1 < j2 for some fi1; j1g 2 � and fi2; j2g 2 � and is said to be non{crossing
otherwise.

Lemma 2.4. For every n 2 N let Tn 2 UTGRM(n; 1=n), Let k 2 N and �(1); : : : ; �(k) 2
f�; 1g. Then the limit

lim
n!1

�n(T
�(1)
n T �(2)n � � �T �(k)n ) (3)

exists. The value of the limit (3) is zero unless there is a non{crossing pairing � of
f1; 2; : : : ; kg such that whenever fi; jg 2 � we have �(i) 6= �(j); we will call such a
non{crossing pairing � compatible with �(1); : : : ; �(k). The value of the limit (3) is

1

(k
2
+ 1)!

X
�2NCP(k)
compatible

NTO(�; �(1); : : : ; �(k)); (4)

where the sum is over all non{crossing pairings � of f1; 2; : : : ; kg that are compatible
with �(1); : : : ; �(k), and where NTO(�; �(1); : : : ; �(k)) is the positive integer obtained
via the algorithm below.
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Algorithm 2.5. Suppose k 2 N and � = ffi1; jig; fi2; j2g; : : : ; fik=2; jk=2gg is a
pairing of f1; 2; : : : ; kg and let �(1); : : : ; �(k) 2 f�; 1g be such that �(i) 6= �(j) for every
fi; jg 2 �. Then the integer NTO(�; �(1); : : : ; �(k)) is determined by the following
algorithm.

(A). Let G be the k{gon graph with consecutive vertices v1; : : : ; vk and consecutive
edges e1; : : : ; ek, with edge ej having vertices vj and vj+1; (here and throughout the
algorithm we take indices of vertices modulo k). Orient each edge ej negatively
(i.e. with arrow pointing from vj+1 to vj) if �(j) = 1 and positively (i.e. with arrow
pointing from vj to vj+1) if �(j) = �.
(B). Let Q = Q(�; �(1); : : : ; �(k)) be the quotient graph of G obtained by identifying
edges ei and ej whenever fi; jg 2 �, in such a way that the orientations given the
edges in part (A) are matched. Thus vertex vi is identi�ed with vj+1 and vertex
vi+1 is identi�ed with vj. The edges of Q are given the orientations (i.e. arrows)
inherited from the edges of G. Note that taken without orientation of its edges, Q is
the quotient graph considered by Voiculescu in [25].

(C). Set NTO(�; �(1); : : : ; �(k)) = 0 if � is a crossing pairing. If � is a non{crossing
pairing then by Lemma 2.9, Q is a tree and has k

2
+1 vertices; let w1; w2; : : : ; w k

2
+1 be

the vertices of Q. Consider the relation on fw1; w2; : : : ; w k
2
+1g de�ned by wi  wj

if there is an edge in Q with vertices wi and wj and whose orientation is an arrow
pointing to wi from wj. Let NTO(�; �(1); : : : ; �(k)) be the number of di�erent total
orderings < of fw1; w2; : : : ; w k

2
+1g that extend the relation . Because Q is a tree it

is clear that the transitive relation generated by  is a partial ordering and hence
that NTO(�; �(1); : : : ; �(k)) � 1.

Example 2.6. We will use Algorithm 2.5 to �nd NTO(�; �; 1; �; 1; �; 1; 1; �; 1; �) when
� = ff1; 6g; f2; 3g; f4; 5g; f7; 10g; f8; 9gg. Performing parts (A) and (B) yields

r

r

r

r

r

r

r

r

r

r

SS
PP��

��

SSPP��
��

e1e10

and s s s s

s

s

�
�
�

@
@
@

w1 w2 w3 w4

w5

w6

for G and Q, respectively. The relation  can be drawn schematically as

s

s

s

s

s s�
�
�T
T
T
T
T
T�
�
�

�
�
�
�w1

w2

w3

w4

w5 w6

and we count the number of total orderings extending  to be

NTO(�; �; 1; �; 1; �; 1; 1; �; 1; �) = 2 � 4 � 5 + 3 � 4 = 52:
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The term 2 � 4 � 5 is for when w1 is placed above w4 and 3 � 4 is for when w1 is placed
below w4.

Given a pairing � of f1; : : : ; kg, we say that � has paired neighbors if fi; i+1g 2 �
for some i 2 f1; 2; : : : ; k � 1g. In that case, � � fi; i + 1g will denote the pairing of
f1; : : : ; k � 2g obtained from �nffi; i+ 1gg by applying the map

j 7!
(
j if j < i

j � 2 if j > i+ 1:

We say that ��fi; i+1g is the pairing obtained by removing paired neighbors fi; i+1g
from �. For example, if � is as in Example 2.6 then

� � f4; 5g = ff1; 4g; f2; 3g; f5; 8g; f6; 7gg:
The following lemma is well known; however we include a short proof for conve-

nience.

Lemma 2.7. A pairing � of f1; : : : ; kg is non{crossing if and only if it can be reduced
to the empty set by successively removing paired neighbors.

Proof. It is easy to see by induction that every non{crossing pairing has paired neigh-
bors. Indeed, if � is non{crossing and if fi; jg 2 � with i < j then the restriction
of � to fi + 1; i + 2; : : : ; j � 1g is non-crossing. Moreover, if a pairing � has paired
neighbors fi; i+ 1g then � � fi; i+ 1g is crossing if and only if � is crossing.
Now the statement of the lemma is easily proved by induction on k=2. The case

k = 2 is trivial. Let k � 4. If � has no paired neighbors then it cannot be reduced
at all by removing paired neighbors, and � is also crossing. If � has paired neighbors
fi; i + 1g then � is non{crossing if and only if � � fi; i + 1g is non{crossing, and by
the induction hypothesis �� fi; i+ 1g can be reduced to the empty set by removing
paired neighbors if and only if it is non{crossing. �

Remark 2.8. The above proof actually shows that every non{crossing pairing can be
reduced to the empty set by removing paired neighbors and at every stage choosing
arbitrary paired neighbors to be removed.

The following lemma is also well known. Again, for convenience we include a proof.

Lemma 2.9. Let � be a pairing of f1; : : : ; kg and let �(1); : : : ; �(k) 2 f�; 1g be such
that �(i) 6= �(j) whenver fi; jg 2 �, and let Q = Q(�; �(1); : : : ; �(k)) be the quotient
graph obtained in step (B) of Algorithm 2.5. If � is non{crossing then Q is a tree
having k

2
+1 vertices, while if � is crossing then Q is not a tree and has � k

2
vertices.

Proof. If � has no paired neighbors then every edge of the k{gon graph G is identi�ed
with another edge not its neighbor. Hence every vertex of G gets identi�ed with at
least one other vertex and thus Q has k

2
edges and � k

2
vertices, and is therefore not

a tree. If � has paired neighbors fi; i+ 1g then identifying edges ei and ei+1 of G we
get a (k � 2){gon graph with a tail consisting of one edge:



DT{operators 9

s s

s

ss

s

�
�
�
T
T
T

q
q

q

q
q

q

(where we have omitted to indicate the edges' orientations). Then Q is obtained from
the above graph by identifying edges of the inner (k� 2){gon graph according to the
pairing � � fi; i+ 1g. Continuing in this way to identify neighboring edges as many
times as possible, after p steps, 1 � p � k

2
� 2, we will have an inner (k � 2p){gon

with adjoined tails, each consisting of one or more trees, the tails together having p
additional vertices. If � is crossing then by Lemma 2.7 for some p the inner (k�2p){
gon will have no neighboring edges identi�ed, and thus each of its k � 2p vertices
will be paired with at least one other vertex. The graph Q will then have at most k

2

vertices, and Q will not be a tree. If � is non{crossing then continuing until p = k
2
�2

the graph will be

s

s

s

s

@@@��
�
@@

@���T4

T3

T2

T1

where each of T1; T2; T3 and T4 represents one or more trees adjoined for a total of
k
2
� 2 additional vertices. The pairing of the remaining four edges of the inner 4{gon

will be non{crossing, i.e.

s

s

s

s

@
@
@
@�
�
�
�
@
@
@
@�

�
�
� or s

s

s

s

@
@
@
@�
�
�
�
@
@
@
@�

�
�
�

giving rise to the trees

s s sT4

T3

T2

T1

or

s

s

s

T4

T3

T2

T1

respectively, each of which has k
2
+ 1 vertices. �
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Proof of Lemma 2.4. Let t(i; j; �;n) denote the ijth entry of T �n. Thus�
t(i; j; 1;n)

�
1�i<j�n (5)

is a family of i.i.d. complex N(0; 1
n
){random variables, while t(i; j; 1;n) = 0 if i � j

and
t(i; j; � ;n) = t(j; i; 1;n):

We have

�n(T
�(1)
n T �(2)n � � �T �(k)n ) =

= n�1
X

i1;:::;ik2f1;:::;ng
E
�
t(i1; i2; �(1);n)t(i2; i3; �(2);n) � � � t(ik; ik+1; �(k);n)

�
;

where ik+1 means i1. For a given choice of i1; : : : ; ik 2 f1; : : : ; ng the quantity
E
�
t(i1; i2; �(1);n)t(i2; i3; �(2);n) � � � t(ik; ik+1; �(k);n)

�
is zero unless the k random variables t(ij; ij+1; �(j);n), 1 � j � k, can be paired o�
so that each pair consists of mutually conjugate random variables. This happens if
and only if there is a pairing � of f1; : : : ; kg that is compatible with �(1); : : : ; �(k)
and such that

ip = iq+1 and ip+1 = iq whenever fp; qg 2 �: (6)

In this case, let Q = Q(�; �(1); : : : ; �(k)) be the quotient graph of the k{gon graph
G as described in Algorithm 2.5. Label the jth vertex vj of G with the value of ij.
Then condition (6) is equivalent to the condition that vertices of G that are sent by
the quotient mapping to the same vertex in Q are labeled with the same value. Thus
choosing i1; : : : ; ik 2 f1; : : : ; ng so that (6) holds is equivalent to labeling the vertices
of Q with values from f1; : : : ; ng.
For a given choice of values of i1; : : : ; ik there may be more than one pairing � of
f1; : : : ; kg that is compatible with �(1); : : : ; �(k) and so that (6) holds. However, if for
some non{crossing pairing �, the values of i1; : : : ; ik are such that the corresponding
labeling of the vertices of Q is with distinct values from f1; : : : ; ng, then � is the
unique pairing of f1; : : : ; kg such that (6) holds. Indeed, since Q, being a tree, has at
most one edge connecting any two vertices, the di�erent edges of Q are distinguished
by the labels of their vertices; since Q is formed by pairing the edges of G, in the
vertex labeling i1; : : : ; ik of G, each edge of G must have exactly one other edge with
the same set of vertex labels. Thus any choice of i1; : : : ; in yielding a distinct vertex
labeling of the tree Q determines a unique pairing � of the edges of G.
An upper bound for

�n(T
�(1)
n T �(2)n � � �T �(k)n ) (7)

is
n�1

X
�2P(k)

compatible

X
vertex labelings of
Q(�;�(1);:::;�(k))
from f1;:::;ng

E
�
t(i1; i2; �(1);n) � � � t(ik; ik+1; �(k);n)

�
; (8)

where the �rst sum is over all pairings � of f1; : : : ; kg that are compatible with
�(1); : : : ; �(k) and the second sum is over all vertex labelings of the quotient graph
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Q = Q(�; �(1); : : : ; �(k)) with elements of f1; : : : ; ng; then i1; : : : ; ik appearing in (8)
are assigned values based on the vertex labeling of Q by giving ij the value of the
label of the vertex of Q to which the vertex vj in G is mapped under the quotient
mapping. A lower bound for (7) is

n�1
X

�2NCP(k)
compatible

X
distinct vertex
labelings of

Q(�;�(1);:::;�(k))
from f1;:::;ng

E
�
t(i1; i2; �(1);n) � � � t(ik; ik+1; �(k);n)

�
; (9)

where the �rst sum is over all non{crossing pairings � of f1; : : : ; kg that are compati-
ble with �(1); : : : ; �(k) and the second sum is over all labelings of the k

2
+1 vertices of

Q(�; �(1); : : : ; �(k)) with distinct elements from f1; : : : ; ng, the corresponding values
of i1; : : : ; ik in (9) being determined as described above. The di�erence between the
upper bound (8) and the lower bound (9) is

n�1
X

�2NCP(k)
compatible

X
non{distinct

vertex labelings of
Q(�;�(1);:::;�(k))
from f1;:::;ng

E
�
t(i1; i2; �(1);n) � � � t(ik; ik+1; �(k);n)

�

+n�1
X

�2P(k)nNCP(k)
compatible

X
vertex labelings of
Q(�;�(1);:::;�(k))
from f1;:::;ng

E
�
t(i1; i2; �(1);n) � � � t(ik; ik+1; �(k);n)

�
;

(10)

where � 2 P(k)nNCP(k) means that � is a crossing pairing of f1; : : : ; kg. There is a
constant Ck depending only on k such that for all n 2 N and all i1; : : : ; ik 2 f1; : : : ; ng,

0 � E
�
t(i1; i2; �(1);n) � � � t(ik; ik+1; �(k);n)

� � Ckn
�k=2:

For a given � 2 NCP(k), the number of di�erent non{distinct vertex labelings of

Q(�; �(1); : : : ; �(k) is bounded above by
� k
2
+1
2

�
nk=2. Hence

0 �
X

non{distinct
vertex labelings of
Q(�;�(1);:::;�(k))
from f1;:::;ng

E
�
t(i1; i2; �(1);n) � � � t(ik; ik+1; �(k);n)

� � Ck

�
k
2
+ 1

2

�
:

For a given � 2 P(k)nNCP(k), since by Lemma 2.9 Q = Q(�; �(1); : : : ; �(k)) has � k
2

vertices, the number of di�erent vertex labelings of Q is bounded above by nk=2 and
therefore

0 �
X

vertex labelings of
Q(�;�(1);:::;�(k))
from f1;:::;ng

E
�
t(i1; i2; �(1);n) � � � t(ik; ik+1; �(k);n)

� � Ck :

Thus we see that the di�erence (10) tends to zero as n!1, and the limit as n!1
of (7) will equal the limit as n!1 of the lower bound (9), if the latter exists.
We will now show that the lower bound (9) converges as n ! 1 to the desired

value (4). Fix � 2 NCP(k) compatible with �(1); : : : ; �(k), �x a distinct vertex
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labeling of Q = Q(�; �(1); : : : ; �(k)) from f1; : : : ; ng and let i1; : : : ; ik 2 f1; : : : ; ng be
the values determined by this vertex labeling. Then

E
�
t(i1; i2; �(1);n) � � � t(ik; ik+1; �(k);n)

�
(11)

is equal to n�k=2 if ij < ij+1 whenever �(j) = 1 and ij > ij+1 whenever �(j) = �,
and is equal to zero otherwise. In terms of the orientations of the edges of the graph
G as determined by �(1); : : : ; �(k) in part (A) of Algorithm 2.5, the expectation (11)
is n�k=2 if ij < ij+1 whenever the arrow points to vertex vj from vertex vj+1 and
ij > ij+1 whenever the arrow points from vj to vj+1, and the quantity (11) is zero
otherwise. In terms of the orientations of the edges of the graph Q, the quantity (11)
is n�k=2 if the arrows always point from the vertex labeled with the larger value to
the vertex labeled with the smaller value. Thus for a �xed �, the quantity

n�1
X

distinct vertex
labelings of

Q(�;�(1);:::;�(k))
from f1;:::;ng

E
�
t(i1; i2; �(1);n) � � � t(ik; ik+1; �(k);n)

�
(12)

is equal to n�(
k
2
+1) times the number of distinct vertex labelings of Q such that the

label of vertex wi ofQ is less than the label of vertex wj ofQ whenever wi  wj, where
 is the relation de�ned in part (C) of Algorithm 2.5. Because Q has k

2
+1 vertices, as

n!1 the quantity (12) converges to the volume with respect to Lebesgue measure

of the set V of all (k
2
+ 1){tuples (t1; : : : ; t k

2
+1) in the cube [0; 1]

k
2
+1 such that ti < tj

whenever wi  wj. Partitioning this cube into (k
2
+ 1)! wedges of equal measure

corresponding to the di�erent total orderings of the k
2
+ 1 co{ordinates, we see that

V is the union of NTO(�; �(1); : : : ; �(k)) di�erent wedges; hence (12) converges as
n!1 to

1

(k
2
+ 1)!

NTO(�; �(1); : : : ; �(k)):

Summing over all non{crossing pairings yields the expression (4) for the limit �{
moment (3). �

Proof of Theorem 2.1. For any a; b 2 N [ f0g, let

Dn(a; b) = Da
n(D

�
n)
b:

Then we must show that the limit

lim
n!1

�n(Dn(a1; b1)T
�(1)
n � � �Dn(ak; bk)T

�(k)
n ) (13)

exists, for any k 2 N, a1; : : : ; ak; b1; : : : ; bk 2 N [ f0g and �(1); : : : ; �(k) 2 f�; 1g.
Writing t(i; j; �;n) for the (i; j)th element of T �n as in the proof of Lemma 2.4 and
letting d(i; a; b; n) denote the ith diagonal entry of Dn(a; b), using the independence
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of Dn and Tn we have

�n(Dn(a1; b1)T
�(1)
n � � �Dn(ak; bk)T

�(k)
n ) =

= n�1
X

i1;:::;ik2f1;:::;ng
E
�
d(i1; a1; b1; n) � � �d(ik; ak; bk; n)

��
�E�t(i1; i2; �(1);n)t(i2; i3; �(2);n) � � � t(ik; ik+1; �(k);n)

�
:

Since the hypotheses imply that

sup
n2N

sup
i1;:::;ik2f1;:::;ng

jE(d(i1; a1; b1; n) � � �d(ik; ak; bk; n))j <1 ;

the same arguments as in the proof of Lemma 2.4 imply that the limit (13) is equal
to the limit as n!1 of

n�1
X

�2NCP(k)
compatible

X
distinct vertex
labelings of

Q(�;�(1);:::;�(k))
from f1;:::;ng

�
E
�
d(i1; a1; b1; n) � � �d(ik; ak; bk; n)

��
�E�t(i1; i2; �(1);n) � � � t(ik; ik+1; �(k);n)

��
;

(14)

if the latter limit exists, where the �rst sum in (14) is over all non{crossing pairings
� of f1; : : : ; kg that are compatible with �(1); : : : ; �(k) and the second sum is over
all labelings of the k

2
+ 1 vertices of Q = Q(�; �(1); : : : ; �(k)) with distinct elements

of f1; : : : ; ng, with each ij being assigned the value of the label of the vertex of Q
to which the vertex vj of the k{gon graph G is mapped via the quotient mapping
G! Q.
For �xed � 2 NCP(k) compatible with �(1); : : : ; �(k), let w1; : : : ; w k

2
+1 be the

vertices of Q = Q(�; �(1); : : : ; �(k)) and for 1 � p � k
2
+ 1 let E(p) be the set of all

j 2 f1; : : : ; kg such that the vertex vj of G is mapped to wp by the quotient map.
Fix an arbitrary distinct vertex labeling of Q from f1; : : : ; ng and let �̂p be the label
of the vertex wp. Because the entries of Dn are mutually independent, we have

E(d(i1; a1; b1; n) � � �d(ik; ak; bk; n)) =
k
2
+1Y
p=1

E(
Q

j2E(p) d(�̂p; aj; bj; n))

=

k
2
+1Y
p=1

Z
�r(p)�

s(p)
d�(�) ;

(15)

where r(p) =
P

j2E(p) aj and s(p) =
P

j2E(p) bj. The quantity (15) is thus indepen-
dent of the particular distinct vertex labeling, and we will denote it

E(�; a1; b1; : : : ; ak; bk; �(i); : : : �(k)):
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Using the same analysis as in the proof of Lemma 2.4, we see that the quantity (14)
converges as n!1 to the complex number

1

(k
2
+ 1)!

X
�2NCP(k)
compatible

E(�; a1; b1; : : : ; ak; bk; �(i); : : : �(k)) NTO(�; �(1); : : : ; �(k)) : (16)

In particular, the limit (13) exists. �

In the case of �{moments of a DT{element, we easily obtain the following corollary.

Corollary 2.10. For every ` 2 N and �(1); : : : ; �(`) 2 f�; 1g there is a polynomial
P = P�;�(1);:::;�(`) in 1+(`+1)2 variables and having nonnegative real coeÆcients such
that if z is a DT(�; c) element in a �{noncommutative probability space (A; �) then

�(z�(1)z�(2) � � � z�(`)) = P
�
c2; (M�(r; s))

`
r;s=0

�
;

where M�(r; s) =
R
C
�r�

s
d�(�). Furthermore, if we assign deg(M�(r; s)) = r+ s and

deg(c) = 1, then P is homogeneous of degree `.

Corollary 2.11. Let � and �n (n 2 N) be compactly supported Borel probability
measures on C such that �n converges in �{moments as n ! 1 to �. Let cn > 0
(n 2 N) be such that limn!1 cn = c 2 (0;1). Let zn be a DT(�n; cn) element. Then
zn converges in �{moments as n!1 to a DT(�; c) element.

Proposition 2.12. Let z be a DT(�; c) element.

(i) If � 2 Cnf0g then �z is DT(M��; j�jc), whereM�� is the measureM��(B) =
�(��1B).

(ii) z� is DT(�; c) where � is the measure �(B) = �(B).

Proof. Let Zn = Dn+cTn where Dn 2Mn is a diagonal random matrix whose n diag-
onal entries are independent, each having distribution �, where Tn 2 UTGRM(n; 1

n
)

and where Dn and Tn are independent. Then Zn converges in �{moments to z.
For (i), �Zn converges to �z in �{moments, as n ! 1. But each diagonal entry

of �Dn has distribution M�� and �
j�jTn 2 UTGRM(n; 1

n
), so �Zn converges in �{

moments to a DT(M��; j�jc) element.
For (ii), Z�

n converges to z
� in �{moments. Note that if Un is the n�n permutation

matrix e�ecting the permutation

1 7! n; 2 7! n� 1; : : : ; n 7! 1

then UnZ
�
nU

�
n has the same distribution as Dn+cTn, hence Z

�
n converges to a DT(�; c)

element as n!1. �

Applying Theorem 3.6 of [6], we gain some important exibility in choosing the
diagonal part in random matrix approximations of DT{elements.

Theorem 2.13. Let � be a compactly supported Borel probability measure on C. For
every n 2 N let Dn 2 Mn be a diagonal random matrix and denote by �n the joint
distribution of the n diagonal entries of Dn. Let ~�n be the symmetrixation of �n and

for p 2 f1; : : : ; ng let ~�(p)n be the pth marginal distribution of ~�n. Suppose for every

p 2 N the measure ~�
(p)
n converges in �{moments to

p�
1
�.
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For every n 2 N let Tn 2 UTGRM(n; 1
n
) be such that Tn and Dn are independent

matrix{valued random variables. Let c > 0. Then Dn + cTn converges in �{moments
as n!1 to a DT(�; c){element.

Corollary 2.14. Let � be a compactly supported Borel measure on C and let Dn 2
Mn(C) be a sequence of non{random diagonal matrices with supn kDnk <1. Assume
that the �{moments of Dn converge to the the �{moments of � as n ! 1. Let
Tn 2 UTGRM(n; 1

n
) and let c > 0. Then Dn + cTn converges in �{moments to a

DT(�; c){element.

Proof. We have Dn = diag(d(n)1 ; : : : ; d(n)n ) where d(n)j 2 C. Let �(n)j denote the dirac

measure at d
(n)
j . Then with the notation of Theorem 2.13,

�n = �
(n)
1 � � � � � �(n)n ~�n =

1

n!

X
�2Sn

�
(n)
�(1) � � � � � �(n)�(n) :

Hence the �rst marginal distribution is

~�(1)n =
1

n
(�(n)1 + � � �+ �(n)n ) :

By the assumptions, ~�
(1)
n converges in �{moments to � as n!1. Since supp(~�

(1)
n ) �

K and supp(�) � K, where K is the closed disk of radius R = supn kDnk centered at

the origin, by the Stone{Weierstrass theorem, we also have ~�
(1)
n ! � in w�{topology

as n!1.
We next consider the pth marginal distribution �

(p)
n for p � 2. If p = 2 we get

~�(2)n =
1

n(n� 1)

X
i6=j

�
(n)
i � �(n)j �

1

n(n� 1)

nX
i;j=1

�
(n)
i � �(n)j =

n

n� 1
~�(1)n � ~�(1)n :

Hence ~�
(2)
n � ~�

(1)
n � ~�

(1)
n = �� �, where � and � are the positive measures

� =
1

n� 1
~�(1)n � ~�(1)n � =

n

n� 1
~�(1)n � ~�(1)n � ~�(2)n ;

both of which have total mass 1=(n� 1). Thus the total variation k~�(2)n � ~�
(1)
n � ~�

(1)
n k

of ~�
(2)
n � ~�

(1)
n � ~�

(1)
n is at most 2=(n� 1) and

w�- lim
n!1

~�(2)n = w�- lim
n!1

(~�(1)n � ~�(1)n ) = �� � :
Since all the measures involved have support in K � K, convergence in �{moments

of ~�
(2)
n to �� � follows immediately.

The above argument can easily be generalized to p > 2. For n � p we have

~�(p)n =
(n� p)!
n!

X
�(n)i1
� � � � � �(n)ip

;

where the sum is over all p{tuples (i1; : : : ; ip) of distinct integers in f1; : : : ; ng. Hence

~�(p)n �
(n� p)!np

n!

p�
1
~�(1)n :
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Arguing as above, we get

k~�(p)n �
p�
1
~�(1)n k � 2

�(n� p)!np
n!

� 1
�! 0 as n!1;

from which we obtain convergence of ~�
(p)
n to

p�
1
� both in w�{topology and in �{

moments. �

3. Examples of DT{elements

Recall that a circular element, as de�ned by Voiculescu (cf. [24]), is an element of
a �{noncommutative probability space whose �{moment distribution is the same as
x1 + ix2, where x1 and x2 are free, centered semicircular elements having the same
second moment. The circular free Poisson elements, one of which is a circular ele-
ment, were de�ned in [6]. Speci�cally, the circular free Poisson element of parameter
c � 1 is an element of a �{noncommutative probability space having the same �{
moment distribution as uhc where u is a Haar unitary, hc � 0, h2c has the free Poisson
distribution of parameter c and the pair u; hc is �{free.
There it was shown, using a result of F. Dyson for the uppertriangularization of a

nonsymmetric gaussian random matrix, that circular free Poisson elements are limits
in �{moments of certain upper triangular random matrices, and that these random
matrices satisfy properties implying the following theorem.

Theorem 3.1. Circular elements and circular free Poisson elements are DT{ele-
ments. More speci�cally, letting � be the functional in the �{noncommutative proba-
bility space,

(i) a circular element z satisfying �(z�z) = r2, is DT(�r; r) where �r is uniform
measure supported on the disk of radius r centered at 0;

(ii) a circular free Poisson element of parameter c is DT(�pc�1;pc; 1), where �pc�1;pc
is uniform measure supported on the annulus having radii

p
c� 1 and

p
c.

The elliptic elements form another class which includes the circular element. Their
Brown measures were computed by F. Larsen in [15], (see also [4] and [11]) and their
matrix models have been considered in [13]. We will say that an elliptic element is
an element of a �{noncommutative probability space whose �{moment distribution is
the same as ax1+ibx2 for some a; b > 0, where x1 and x2 are free centered semicircular
elements having second moment equal to 1. The remainder of this section is dedicated
to showing that elliptic elements are DT{elements.

Theorem 3.2. An elliptic element ax1 + bx2 as above is a DT(�a;b; ca;b){element,
where �a;b is uniform measure supported on the solid ellipse�

z 2 C
���� (Re z)24a4

+
(Im z)2

4b4
� 1

a2 + b2

�
and where

ca;b =
2abp
a2 + b2

:
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The proof of this theorem will use the following result concerning random matrices,
which is derived from Dyson's result mentioned above.
Before stating this result, let us introduce some notation for subsets of Mn(C):

� Mn(C)s:a:, the self{adjoint matrices;
� Un, the unitary matrices;
� Dn, the diagonal matrices;
� Tn, the strictly upper triangular matrices, f(tij)1�i;j�n 2 Mn(C) j tij =
0 if i � jg.

By Lebesgue measure on Mn(C), Dn and Tn, we will mean the product of Lebesgue
measure on the real and imaginary parts of all their elements that are not a priori
zero. By Lebesgue measure on Mn(C)s:a:, we will mean of course the product of
Lebesgue measure on the real diagonal entries and Lebesgue measure of the real and
imaginary parts of all entries strictly above the diagonal.
An n�n random matrix H is said to belong to the class SGRM(n; �2) if it is self{

adjoint, if its n(n�1)
2

entries strictly above the diagonal are complex N(0; �2) random
variables, if its n diagonal entries are real N(0; �2) random variables and if together

they form a collection of n(n+1)
2

of mutually independent random variables. On the
other hand, an element of HURM(n) is an n � n random unitary matrix that is
distributed according to Haar measure on the group of n� n unitaries.

Theorem 3.3. Let 0 < � < �
2
, let n 2 N and let

Y�(n) = (cos �)H1(n) + i(sin �)H2(n);

where H1(n) and H2(n) are random matrices in the class SGRM(n; 1
n
) which are

independent as matrix{valued random variables. Let

Z�(n) = U�(n)(D�(n) + sin(2�)T (n))U(n) ;

where U(n) 2 HURM(n), T (n) 2 UTGRM(n; 1
n
) and D�(n) 2 Mn is a diagonal

random matrix whose n diagonal entries have the distribution whose density with
respect to Lebesgue measure on Dn is

��(D) = K�

� Y
1�i<j�n

jdi � djj2
�
exp

�
� n

2

X
1�i�n

�(Re di)2
cos2 �

+
(Im di)

2

sin2 �

��
;

(D = diag(d1; : : : ; dn) 2 Dn)
(17)

for the appropriate constant K�. Then Y� and Z� have the same Mn(C){valued
distribution.

We would like to point out that the eigenvalue distribution (17) of Y�(n) was
previously found by Hiai and Petz [13, Lemma 4.1.10] using di�erent techniques.
Consider the action of Un on Mn(C) by conjugation and let Mn(C)=Un denote the

measure space of equivalence classes. Every element of Mn(C)=Un has a representa-
tive belonging to Dn+Tn, (and usually several of them). With respect to the quotient
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maps

Mn(C)

&&MMMMMMMMMM
Dn + Tn

xxppppppppppp

Mn(C)=Un
every measure � on Mn(C) induces a measure on Dn + Tn having the same push{
forward to Mn(C)=Un as does �.

Proof of Theorem 3.3. F. Dyson proved this (see [17, A.35]) when � = �=4. For
general �, the distribution of Y�(n) has density with respect to Lebesgue measure on
Mn(C)

 �(A+ iB) = K 0
� exp

�
� n

2
Tr
� A2

cos2 �
+

B2

sin2 �

��
; (A;B 2Mn(C)s:a:);

while the distribution of D�(n) + sin(2�)T (n) has density with respect to Lebesgue
measure on Dn + Tn

��(D + S) = K 00
� ��(D) exp

�
� n

sin2(2�)
Tr(S�S)

�
(D 2 Dn; S 2 Tn)

for appropriate constants K 0
� andK

00
� . Since  � is invariant under unitary conjugation,

as is the distribution of Z�(n), and since �� agrees on elements of Dn + Tn that have
the same image in Mn(C)=Un, in order to prove the theorem it will suÆce to show

8X 2 Dn + Tn  �(X)

 �
4
(X)

= c�
��(X)

��
4
(X)

;

where c� is a constant depending only on �. Let X = D+ S for D 2 Dn and S 2 Tn.
Then X = A+ iB for A;B 2Mn(C)s:a: given by

A = Re (D) + 1
2
(S + S�)

B = Im (D) + 1
2i
(S � S�) :

Since Re (D), S and S� are orthogonal in Mn(C) with respect to the inner product
determined by the trace, we have

Tr(A2) = Tr(Re (D)2) + 1
2
Tr(S�S)

and similarly

Tr(B2) = Tr(Im (D)2) + 1
2
Tr(S�S) :

Hence

 �(D + S) = K 0
� exp

�
� n

2
Tr
�Re (D)2

cos2 �
+

Im (D)2

sin2 �

��
exp

�
� n

sin2(2�)
Tr(S�S)

�
:

From this one obtains that  �(D+S)
 �
4
(D+S)

and ��(D+S)
��
4
(D+S)

coincide up to multiplication by a

constant depending only on �. �

We will need Hadamard's Determinant Theorem:
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Theorem 3.4 ([12]). Let A = (aij)
n
i;j=1 be a positive, semide�nite n� n matrix, i.e.

A 2Mn(C)+ . Then

det(A) �
nY
i=1

aii :

Lemma 3.5. Let n 2 N, n � 2. Let dm(z) = d(Re z)d(Im z) denote the Lebesgue
measure on C and let g : C! [0;1) be a Borel function such that

0 <

Z
C

g(z)jzjkdm(z) <1

for k = 0; 1; 2; : : :. Put

�(z1; : : : ; zn) = c
Y

1�i<j�n
jzi � zjj2

nY
j=1

g(zj) ;

where the normalization constant c is chosen so that � is a probability density on Cn,
i.e. Z

Cn

�(z1; : : : ; zn)dm(z1) � � �dm(zn) = 1 :

For p 2 f1; : : : ; ng, let �(p) be the marginal density of the �rst p coordinates, i.e.

�(p)(u1; : : : ; up) =

Z
Cn�p

�(u1; : : : ; up; zp+1; : : : ; zn)dm(zp+1) � � � dm(zn)

for p < n and �(n) = �. Then

�(p)(u1; : : : ; up) � (n� p)!
n!

np�(1)(u1) � � ��(1)(up)
for all p 2 f1; : : : ; ng and u1; : : : ; up 2 C.

Proof. The proof follows standard methods in random matrix theory, see [17, x5.2] for
the real variable case and [17, x15.1] for the complex variable case with g(z) = e�jzj

2
.

Let (Pj(z))
1
j=0 be the sequence of orthonormal polynomials obtained from the Gram{

Schmidt orthonomalization process applied to 1; z; z2; : : : in L2(C; g dm), and put

�j(z) =
p
g(z)Pj(z) j = 0; 1; : : : :

Then (�j(z))
1
j=0 is an orthonormal sequence in L2(C; dm). Using the Vandermonde

determinant, one �nds

�(z1; : : : ; zn) =
1

n!

��det �(�i�1(zj))ni;j=1

���2 = 1

n!

���� X
�2Sn

sign(�)
nY
j=1

��(j)�1(zj)

����2 ;
where Sn is the permitation group of f1; : : : ; ng. The normalization constant 1

n!
can

be determined from the fact that � is a probability density. Now put

 (u; v) =
n�1X
j=0

�j(u)�j(v); (u; v 2 C) : (18)
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Then as in [17, pp. 80, 91-92], one �nds

�(p)(u1; : : : ; up) =
(n� p)!
n!

det
�
( (ui; uj))

p
i;j=1

�
:

In particular,

�(1)(u) =
1

n
 (u; u) :

By (18), ( (ui; uj))
p
i;j=1 is a positive semide�nite matrix. Hence by Theorem 3.4,

�(p)(u1; : : : ; up) � (n� p)!
n!

pY
i=1

 (ui; ui) =
(n� p)!
n!

np
pY
i=1

�(1)(ui) :

�

Lemma 3.6. For each n 2 N, let �n denote the probability measure on Cn with

density given by (17) in Theorem 3.3, and for p 2 f1; : : : ; ng let �
(p)
n be the joint

marginal distribution of �n on the �rst p coordinates. Let � be the uniform distribution
on the solid ellipse �

z 2 C
���� (Re z)24 cos4 �

+
(Im z)2

4 sin4 �
� 1

�
:

Then for every p 2 N, �
(p)
n converges to

p�
1
� as n ! 1 both in �{moments and in

the w�{topology on Prob(Cp).

Proof. The case p = 1 is proved in [11]. Consider now the case p � 2. By Lemma 3.5,

�(p)n �
(n� p)!
n!

np�(1)n � � � � � �(1)n ; (n � p) :

Hence, as in the proof of Corollary 2.14, we get

k�(p)n �
p�
1
�(1)n k ! 0 as n!1 ;

so in particular

lim
n!1

�(p)n = lim
n!1

p�
1
�(1)n =

p�
1
�

in the weak�{topology on Prob(Cp). However, �
(p)
n is not compactly supported, so we

must argue further to prove convergence in �{moments. Clearly, it suÆces to consider
convergence on real valued polynomials in z1; : : : ; zp; z1; : : : ; zp. Let h : Cp ! R be
such a polynomial. Choose C > 0 and d 2 N such that

jh(z1; : : : ; zp)j � C(1 + jz1j2 + � � �+ jzpj2)d :
Then

jh(z1; : : : ; zp)j � C

� pX
i=1

(1 + jzij2)
�d
� Cpd�1

pX
i=1

(1 + jzij2)d ;

where the last inequality follows from the convexity of x 7! xd on [0;1). Put

g(z1; : : : ; zp) = Cpd�1
pX
i=1

(1 + jzij2)d :
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Then g+h and g�h are non{negative, continuous functions of Cp. By appoximating
g � h from below with functions in Cc(C

p)+, it follows from the weak�{convergence

of �
(p)
n to

p�
1
�, that Z

Cp

(g � h)d( p�
1
�) � lim inf

n!1

Z
Cp

(g � h)d�(p)n : (19)

Note that g is of the form g(z1; : : : ; zp) =
Pp

i=1 f(zi), where f : C! R is a polyno-

mial in z and z. Moreover, the one{dimensional marginal distributions of �
(p)
n are all

equal to �
(1)
n . Using that �

(1)
n converges to � in �{moments, we therefore getZ

Cp

gd(
p�
1
�) = p

Z
C

fd� = lim
n!1

�
p

Z
C

fd�(1)n

�
= lim

n!1

�Z
C

gd�(p)n

�
:

Hence by (19), we haveZ
Cp

h d(
p�
1
�) � lim inf

n!1

Z
Cp

h d�(p)n � lim sup
n!1

Z
Cp

h d�(p)n �
Z
Cp

h d(
p�
1
�) :

This proves the convergence of �
(p)
n to

p�
1
� in �{moments. �

Proof of Theorem 3.2. In light of Proposition 2.12(i), we may without loss of general-
ity assume a2+ b2 = 1, say a = cos � and b = sin �, some 0 < � < �

2
. By foundational

results of Voiculescu [25], Y�(n) from Theorem 3.3 converges in �{moments as n!1
to the elliptic element (cos �)x1+i(sin �)x2. By Theorem 3.3, alsoD�(n)+sin(2�)T (n)
converges in �{moments as n!1 to this elliptic element. Let �n be the joint distri-
bution of n complex variables having density (17) with respect to Lebesgue measure.

In Lemma 3.6, it is shown that for every p 2 N, the pth marginal distribution �
(p)
n of

�n converges in �{moments as n!1 to the p{fold Cartesian product of the uniform
distribution on the solid ellipse�

z 2 C
���� (Re z)24 cos4 �

+
(Im z)2

4 sin4 �
� 1

�
:

Consequently, the elliptic element ax1 + ibx2 is a DT(�a;b; sin(2�)){element. �

4. DT{operators in finite von Neumann algebras

Our �rst task in this section is to show (Theorem 4.4) how every DT{element
can be constructed in the von Neumann algebra L(F2), (or more precisely, in the �{
noncommutative probability space (L(F2); �), where � is the tracial state on L(F2)),
as D + cT where T is \the upper triangular part" of a semicircular element X and
where D is from a \diagonal" algebra free from X. Then we prove a series of results
culminating in what may be called our main technical theorem (Theorem 4.12), which
shows that every DT{element can be realized as an upper triangular matrix having
mutually free entries that are themselves circular elements or DT{elements. This
theorem, as well as being pretty, is the main technical tool for proving decomposability
of DT-operators in x5.
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LetM be a von Neumann algebra with a normal faithful state � , let � : L1([0; 1])!
M be a normal, unital, injective �{homomorphism and let X 2 M be a centered
semicircular element with �(X2) = �2 > 0 and such that X and the image of � are
free with respect to � . (Thus the subalgebra ofM generated by X and the image of
� is isomorphic to L(F2), to which the restriction of � is a trace.) For 0 � a < b � 1
let p[a; b] = �(1[a;b]) 2 M.

Lemma 4.1. For ` 2 N let

T` =
2`�1X
j=1

p[ j�1
2`
; j
2`
]Xp[ j

2`
; 1] :

Then T` converges in norm as `!1 to an element T 2 M, satisfying T +T � = X.

Proof. For example, T2 and T3 are represented by the shaded regions below.

T2 T3

We have

jT`+1 � T`j2 =
2`X
j=1

p[2j�1
2`+1 ;

2j
2`+1 ]Xp[

2j�2
2`+1 ;

2j�1
2`+1 ]Xp[

2j�1
2`+1 ;

2j
2`+1 ] :

By results of Voiculescu [25],

p[2j�1
2`+1 ;

2j
2`+1 ]Xp[

2j�2
2`+1 ;

2j�1
2`+1 ]Xp[

2j�1
2`+1 ;

2j
2`+1 ]

is the square of a circular element of norm 2(1�`)=2� in p[2j�1
2`+1 ;

2j
2`+1 ]Mp[2j�1

2`+1 ;
2j

2`+1 ] with

respect to the renormalization of � . Thus kT`+1 � T`k = 2(1�`)=2� and T` converges
in norm as `!1.
In a similar manner, since

X � T` � T �` =
2`X
j=1

p[ j�1
2`
; j
2`
]Xp[ j�1

2`
; j
2`
]

and p[ j�1
2`
; j
2`
]Xp[ j�1

2`
; j
2`
] is a semicircular element of norm 2(2�`)=2�, we �nd T +T � =

X. �

De�nition 4.2. The element T constructed in Lemma 4.1 from X and � will be
denoted T = UT(X; �).

Note that for any nonzero real number t, UT(tX; �) = jtjUT(X; �).
For the remainder of this section, we will let X and � be as described above, with

the added convention that the second moment of X will be �2 = 1.



DT{operators 23

Given n 2 N and 0 � a < b � 1, let

Pn[a; b] = diag(

[nb]z }| {
0; : : : ; 0| {z }

[na]

; 1; : : : ; 1; 0; : : : ; 0) 2Mn(C) :

Lemma 4.3. Let T = UT(X; �). Let Ds 2 �(L1[0; 1]) for all s in some set I.

Suppose that D
(k)
s 2 M2k(C) is a diagonal matrix (s 2 I, k 2 N), such that for all

s 2 I, kD(k)
s k remains bounded as k !1 and such that the family�

D(k)
s

�
s2I ;

�
P2k [

i
2`
; j
2`
]
�
`2N; i;j2f0;1;:::;2`g

converges in �{moments as k!1 to the family�
Ds

�
s2I ;

�
p[ i

2`
; j
2`
]
�
`2N; i;j2f0;1;:::;2`g :

Let T (k) 2 UTGRM(2k; 2�k). Then the family

T (k);
�
D(k)
s

�
s2I (20)

converges in �{moments as k!1 to the family

T;
�
Ds

�
s2I : (21)

Proof. We may assume the family (Ds)s2I contains the identity and is closed under
taking adjoints and under multiplication. Let X(k) 2 SGRM(2k; 2�k). By results of
Voiculescu [25], the family

X(k);
�
D(k)
s

�
s2I ;

�
P2k [

i
2`
; j
2`
]
�
`2N; i;j2f0;1;:::;2`g

converges in �{moments as k !1 to the family

X;
�
Ds

�
s2I ;

�
p[ i

2`
; j
2`
]
�
`2N; i;j2f0;1;:::;2`g :

Therefore, letting

T
(k)
` =

2`�1X
j=1

P2k [
j�1
2`
; j
2`
]X(k)P2k [

j
2`
; 1] ;

the family

T
(k)
` ;

�
D(k)
s

�
s2I (22)

converges in �{moments as k !1 to the family

T`;
�
Ds

�
s2I : (23)

Let Æ`T
(k) = T (k) � T (k)

` and for q 2 f1; 2; 3; 4g let

A
(k)
` (q) =

8>>><>>>:
T

(k)
` if q = 1;

(T
(k)
` )� if q = 2;

Æ`T
(k) if q = 3;

(Æ`T
(k))� if q = 4:
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We will show that if m 2 N, if q1; : : : ; qm 2 f1; 2; 3; 4g with qj 2 f3; 4g for at least
one j 2 f1; : : : ; mg and if s1; : : : ; sm 2 I, then there is a constant C > 0, independent
of k and `, such that���2k�A(k)

` (q1)D
(k)
s1 � � �A(k)

` (qm)D
(k)
sm

��� � C2�` (24)

for all k � ` � 1. This estimate will �nish the proof, because it will imply that for
every �(1); : : : ; �(m) 2 f�; 1g, there is a constant C 0, independent of `, such that�� lim
k!1

�2k
�
(T (k))�(1)D(k)

s1
� � � (T (k))�(m)D(k)

sm � (T
(k)
` )�(1)D(k)

s1
� � � (T (k)

` )�(m)D(k)
sm

��� � C 02�` :

Combined with the convergence of (22) to (23) and the norm convergence of T` to
T as ` ! 1, this will imply convergence in �{moments of the family (20) to the
family (21).
To prove the upper bound (24), we will make an analysis using graphs and pairings

as did Voiculescu in [25] and we will use the fact that the proportion of nonzero entries
in Æ`T

(k) is on the order of 2�`. Fixing `, we have

�2k
�
A

(k)
` (q1)D

(k)
s1
� � �A(k)

` (qm)D
(k)
sm

�
= 2�k

X
i1;:::;im2f1;:::;2kg

E(b(k)(q1; i0; i1)d
(k)(s1; i1)b

(k)(q2; i1; i2)d
(k)(s2; i2) � � �

� � �b(k)(qm; im�1; im)d(k)(sm; im)) ;
where we use the convention i0 = im, where d

(k)(s; i) is the ith diagonal entry of

D
(k)
s and where b(q; i; j) is the (i; j)th entry of A

(k)
` (q). Let K =

Qm
j=1 supk�1 kD(k)

sj k.
Then��E(b(k)(q1; i0; i1)d(k)(s1; i1)b(k)(q2; i1; i2)d(k)(s2; i2) � � � b(k)(qm; im�1; im)d(k)(sm; im))�� �

� KjE(b(k)(q1; i0; i1)b(k)(q2; i1; i2) � � � b(k)(qm; im�1; im))j :
By a generalized H�older inequality,

jE(b(k)(q1; i0; i1)b(k)(q2; i1; i2) � � � b(k)(qm; im�1; im))j � 2�km=2 : (25)

Moreover, the LHS of (25) is nonzero only if there is a pairing � of f1; 2; : : : ; mg such
that fr; sg 2 � implies

(i) ir�1 = is and ir = is�1,
(ii) either fqr; qsg = f1; 2g or fqr; qsg = f3; 4g.

Therefore, an upper bound for the LHS of (24) is

K2�k(1+m=2)
X
�

N(�) ; (26)

where the sum is over all pairings � satisfying (ii) for every fr; sg 2 � and where N(�)
is the number of choices of i1; i2; : : : ; im 2 f1; 2; : : : ; 2kg so that (i) holds for every
fr; sg 2 �, (with i0 = im) and so that b(k)(qj; ij�1; ij) 6= 0 for every j 2 f1; : : : ; mg.
Choosing i1; : : : ; im such that (i) holds is equivalent to taking the quotient graph Q of
the m{gon graph G according to � as in Algorithm 2.5 part (B), (where of course k
over there is m here), and assigning values from f1; : : : ; 2kg to the vertices of Q (thus
assigning values to i1; : : : ; im according to the values assigned the images in Q of the
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corresponding vertices v1; : : : ; vm in G). If � is crossing, then from Lemma 2.9, Q has
� m=2 vertices and hence N(�) � 2km=2. If � is non{crossing, then Q has exactly
1 +m=2 vertices; however, examining Lemma 2.7, we �nd that in this case there is
j with qj 2 f3; 4g and with ij�1 and ij mapped to distinct vertices of Q. Since for a
given value of ij there are at most 2k�` values of ij�1 making b(k)(qj; ij�1; ij) nonzero,
we �nd that N(�) � K2k(1+m=2)�`. Hence using (26), when k � ` we get an upper
bound of the form (24). �

Theorem 4.4. Let T = UT(X; �), (where X has second moment 1) and let c > 0.
Take f 2 L1[0; 1] and let D = �(f). Then D + cT is a DT(�; c){element, where �
is the push{forward measure of Lebesgue measure by f .

Proof. One easily �nds diagonal matrices D(k) 2M2k(C) such that the family

D(k);
�
P2k [

i
2`
; j
2`
]
�
`2N; i;j2f0;1;:::;2`g

converges in �{moments as k !1 to the family

D;
�
p[ i

2`
; j
2`
]
�
`2N; i;j2f0;1;:::;2`g :

Let T (k) 2 UTGRM(2k; 2�k). Then by Lemma 4.3, D(k) + cT (k) converges in �{
moments to D + cT . On the other hand, by Corollary 2.14, D(k) + cT (k) converges
in �{moments to a DT(�; c){element. �

De�nition 4.5. ADT(�; c){operator is a DT(�; c){element in aW�{noncommutative
probability space (M; �) where � is faithful. A DT{operator is an element that is a
DT(�; c){operator for some � and c.

Theorem 4.4 shows that for every pair (�; c) there exist DT(�; c){operators.

Lemma 4.6. If T = UT(X; �) and 0 < t < 1 then

Tp[0; t] = p[0; t]Tp[0; t] (27)

p[0; t]Tp[t; 1] = p[0; t]Xp[t; 1] : (28)

Proof. The identity (27) clearly holds when T is replaced by T`. Taking the limit as
`!1 proves (27). Then the identity (28) follows from (27) and X = T + T �. �

Lemma 4.7. Let T = UT(X; �) and let X 0 = iT � � iT . Then X 0 is a semicir-
cular element of second moment 1, and X 0 and the image of � form a free pair.
Furthermore,

�iT = UT(X 0; �) : (29)

Proof. Using Lemma 4.3 and taking, for example, the family (D
(k)
s )s2I to be the

family (P2k [
i
2`
; j
2`
])`2N; i;j2f0;1;:::;2`g itself, converging to the family

(Ds)s2I = (p[ i
2`
; j
2`
])`2N; i;j2f0;1;:::;2`g ;

we �nd that the family

i(T (k))� � iT (k); (P2k [
i
2`
; j
2`
])`2N; i;j2f0;1;:::;2`g

converges in �{moments to

X 0; (p[ i
2`
; j
2`
])`2N; i;j2f0;1;:::;2`g ;



26 DT{operators

where T (k) 2 UTGRM(2k; 2�k). By Voiculescu's matrix model [25], it follows that
X 0 is a semicircular element of second moment 1 and X 0 and the image of � are free.
If 0 < t < 1, from Lemma 4.6 we get

p[0; t]X 0p[t; 1] = p[0; t](�iT )p[t; 1] = �ip[0; t]Xp[t; 1] :
Hence

2`�1X
j=1

p[ j�1
2`
; j
2`
]X 0p[ j

2`
; 1] = �iT` :

Letting `!1 yields (29). �

Remark 4.8. What we have shown implies that if T = UT(X; �) then kTk � 2,
because Re T = X=2 and Im T = X 0=2 both have norm 1. In x8, we will show that
actually kTk = pe.
Lemma 4.9. Let m 2 N, 0 = s0 < s1 < � � � < sm = 1 and

S =
mX
j=1

p[sj�1sj]Xp[sj; 1] :

Then with T = UT(X; �), we have kT � Sk � 2max1�j�m(sj � sj�1)1=2.
Proof. We have

2Re (T � S) = X � (S + S�) =
mX
j=1

p[sj�1; sj]Xp[sj�1; sj] :

By results of Voiculescu [25], kp[sj�1; sj]Xp[sj�1; sj]k = 2(sj � sj�1)1=2. Hence
kRe (T � S)k = max

1�j�m
(sj � sj�1)1=2 :

On the other hand, we have 2 Im (T � S) = X 0 � (iS� � iS), where X 0 = iT � � iT .
Appealing to Lemmas 4.6 and 4.7,

iS = i
mX
j=1

p[sj�1; sj]Tp[sj; 1] =
mX
j=1

p[sj�1; sj]X 0p[sj; 1]

and kX 0 � (iS� � iS)k = 2max1�j�m(sj � sj�1)1=2. �

Lemma 4.10. Let T = UT(X; �). Suppose B � [0; 1] is a Borel set of nonzero
Lebesgue measure. Let � : [0; 1]! [0; 1] be de�ned by

�(t) =
�([0; t) \B)

�(B)
;

where � denotes Lebesgue measure on [0; 1]. Let q = �(1B) and let

~� : L1[0; 1]! q�(L1[0; 1]) �= L1(B)

be
~�(f) = q�(f Æ �) :
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Then ~� is an injective, normal �{homomorphism and

qT q = UT(qXq; ~�) :

Proof. The map � is monotone and continuous, hence measureable; therefore, ~� is a
normal �{homomorphism. For any measureable set A � [0; 1], we have �(��1(A) \
B) = �(A)�(B). Hence if �(A) > 0, then ~�(1A) = �(1��1(A)\B) 6= 0 and ~� is injective.
If 0 � s < t � 1, then up to measure zero, [s; t] \B = ��1([�(s); �(t)]) \B, so

�(1[s;t])q = �(1[�(s);�(t)] Æ �)q = ~�(1[�(s);�(t)]) :

Writing p[s; t] = �(1[s;t]) as usual and letting ~p[a; b] = ~�(1[a;b]), we thus have qp[s; t] =
~p[�(s); �(t)] and

qT`q =
2`�1X
j=1

qp[ j�1
2`
; j
2`
]Xp[ j

2`
; 1]q =

2`�1X
j=1

~p[�( j�1
2`
); �( j

2`
)](qXq)~p[�( j

2`
); 1] :

By Voiculescu's results [25], we have that, with respect to the trace �(q)�1��qMq,
qXq is a semicircular element with second moment �(q) and is free from the image

of ~�. Let eT = UT(qXq; ~�). Since

�(t)� �(s) � t� s
�(B)

; (0 � s < t � 1) ;

Lemma 4.9 gives kqT`q � eTk � 21�(`=2). Letting `!1 yields eT = qT q. �

We will use the following freeness result concerning R{diagonal elements and Haar
unitaries.

Proposition 4.11. Let (B; �) be a tracial W�{noncommutative probability space and
let 1 2 A � B be a unital subalgebra. Let N 2 N, let bij (1 � i < j � N) be R{
diagonal elements and let ui (1 � i � N) be Haar unitaries such that

A; (fbijg)1�i<j�N ; (fuig)1�i�N
is a �{free family. Then the family

(u�iAui)1�i�N ; (fu�i bijujg)1�i<j�N
is �{free.
Proof. We may without loss of generality assume bij = vijjbijj, where each vij is a
Haar unitary and the pair vij, jbijj is �{free. Then

u�i bijuj = (u�i vijuj)(u
�
j jbijjuj) :

Since for a given j, the family

u�jAuj ; (fu�j jbijjujg)1�i<j
is �{free, letting A = W �(A [ fjbijj j 1 � i < j � Ng), it will suÆce to show the
family

(u�iAui)1�i�N ; (fu�i vijujg)1�i<j�N
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is �{free. We have that the family

A; (fuig)1�i�N ; (fvij)1�i<j�N
is �{free.
We will use the notation for any subalgebra C of B,

Co = C \ ker�:
Using freeness, we have

(u�iAui)
o = u�iA

oui:

Given subsets X1; : : : ; Xn of B, we will use the notation

�o(X1; : : : ; Xn) (30)

for the set of all words x1x2 : : : xk with k � 1, xj 2 Xi(j) and i(1) 6= i(2); i(2) 6=
i(3); : : : ; i(k � 1) 6= i(k). When refering to elements of (30), we will frequently and
intentionally shift between formally de�ned words and the corresponding elements of
B obtained by performing the product operation.
Consider �rst � = �o((u�iA

oui)1�i�N). Clearly � � 	, where 	 is the set of all
words belonging to �o(Ao; (fui; u�ig)1�i�N) of length three or greater

� whose �rst letter is u�i , some 1 � i � N ,
� whose second letter is from A

o,
� whose penultimate letter is from Ao,
� whose last letter is uj, some 1 � j � N .

Thus it will suÆce to show

�o
�
	;
�f(u�i vijuj)n j n 2 Znf0gg�1�i<j�N� � ker � : (31)

However, taking a word x belonging to the LHS of (31), we see that some cancellation
of neighboring letters of the form uju

�
j may possibly be performed, however only in

the following situations:

� � � �Aouj)(u
�
jvjk � � � (j < k)

� � � �Aouj)(u
�
jv
�
ij � � � (i < j)

� � � �vijuj)(u�jAo � � � (i < j)

� � � � v�jkuj)(u�jAo � � � (j < k)

� � � �vijuj)(u�jvjk � � � (i < j < k)

� � � �vijuj)(u�jv�pj � � � (i; p < j; i 6= p)

� � � � v�jkuj)(u�jvjq � � � (j < k; q; k 6= q)

� � � � v�jkuj)(u�jv�pj � � � (p < j < k):

Clearly, after making all such possible cancellations of u�juj for all j, no further
cancellations are possible, and we are left with an element of

�o
�
A

o; (fui; u�ig)1�i�N ; (fvij; v�ijg)1�i<j�N
�
:

By freeness, this implies �(x) = 0. �
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Theorem 4.12. Let N 2 N and let �1; : : : ; �N be compactly supported Borel probabil-
ity measures on C. Let c > 0 and suppose that in a W�{noncommutative probability
space (M; �),

(ak)
N
k=1; (bij)1�i<j�N

is a �{free family, where ak is DT(�k;
cp
N
) and each bij is circular with �(jbijj2) = c2

N
.

Let

Z =

0BBB@
a1 b12 � � � b1N

0 a2
. . .

...
...

. . . . . . bN�1;N
0 � � � 0 aN

1CCCA 2MN(M) :

Then with respect to the state � Æ trN on MN (M), Z is a DT(�; c){element, where
� = 1

N
(�1 + � � �+ �N).

Proof. In light of Proposition 2.12, we may without loss of generality �x c = 1.
Let (A; �) be a tracial W�{noncommutative probability space having semicircular
elements xi with �(x2i ) = 1, (1 � i � N), circular elements yij with �(jyijj2) = 1,
(1 � i < j � N), and with a normal, injective �{homomorphism � : L1[0; 1] ! A

such that the family

(fxig)1�i�N ; (fyij; y�ijg)1�i<j�N ; �(L1[0; 1])

is free. By random matrix results of Voiculescu [25], it follows that, with respect to
the obvious tracial state on MN (A), the element

X =
1p
N

0BBB@
x1 y12 � � � y1N

y�12 x2
. . .

...
...

. . . . . . yN�1;N
y�1N � � � y�N�1;N aN

1CCCA 2MN (A)

is semicircular with second moment 1 and is free from the image of �, where � :
L1[0; 1]!MN (A) is given by

�(f) = diag
�
�(f � 1[0;1=N ]); �(f � 1[1=N;2=N ]); : : : ; �(f � 1[(N�1)=N;1])

�
:

Let fi 2 L1[0; 1] be such that the push{forward of Lebesgue measure under fi is
�i, Let di = �(fi) and let D = diag(d1; : : : ; dN) 2 MN(A). Then D = �(f) for
some f 2 L1[0; 1] where the push forward of Lebesgue measure under f is �. Let
T = UT(X; �). By Theorem 4.4, D + T is a DT(�; 1){element. From Lemma 4.6,

D + T =
X

1�i�j�N
eii(D + T )ejj =

0BBB@
a1 b12 � � � b1N

0 a2
. . .

...
...

. . . . . . bN�1;N
0 � � � 0 aN

1CCCA ;

where bij =
1p
N
yij and ai = di + eiiTeii. By Lemma 4.10,

eiiTeii = UT(eiiXeii; �) = UT(
1p
N
xi; �) =

1p
N
UT(xi; �) ;
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so by Theorem 4.4 again, ai is a DT(�i;
1p
N
){element.

Clearly, the family

fai j 1 � i � Ng; (fbijg)1�i<j�N
is �{free, however the various ai are not free among themselves. We may without
loss of generality assume there are Haar unitaries u1; : : : ; uN 2 A so that

(fuig)1�i�N fai j 1 � i � Ng; (fbijg)1�i<j�N (32)

is a �{free family. Let U = diag(u1; : : : ; uN) 2 MN (A). Then U�(D + T )U is a
DT(�; 1){element and

U�(D + T )U =

0BBB@
~a1 ~b12 � � � ~b1N

0 ~a2
. . .

...
...

. . . . . . ~bN�1;N
0 � � � 0 ~aN

1CCCA ;

where ~ai = u�iaiui and ~bij = u�i biju
�
j . By Proposition 4.11, the family

f~ai j 1 � i � Ng; (f~bijg)1�i<j�N
is �{free. We have therefore realized a DT(�; 1){element as a matrix having �{free
entries of the desired form. �

5. Decomposability of DT{operators

In this section, we apply the results of x4 to show that every DT{operator is
strongly decomposable.

Lemma 5.1. If A and B are bounded operators on a Hilbert space and if A is normal
then

�(A+B) � fz 2 C j d(z; �(A)) � kBkg :
Proof. If � 2 C and d(�; �(A)) > kBk then k(A � �)�1k < kBk�1. Therefore
(A� �)�1(A +B � �) = 1� (A� �)�1B is invertible, and � =2 �(A+B). �

Theorem 5.2. Let � be a compactly supported Borel probability measure on C and
let c > 0. If a is a DT(�; c) operator then �(a) = supp(�).

Proof. Let (M; �) be aW�{noncommutative probability space, with � a faithful trace.
The spectrum of an operator a 2 M depends only on its �{moment distribution with
respect to � . Let N 2 N and let (ak)

N
k=1; (bij)1�i;j�N be a �{free family of elements

ofM, where each ak is DT(�;
cp
N
) and each bij is circular with �(jbij j2) = c2

N
. Let

x =

0BBB@
a1 b12 � � � b1N

0 a2
. . .

...
...

. . . . . . bN�1;N
0 � � � 0 aN

1CCCA 2MN(M) :
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Then by Theorem 4.12, x is DT(�; c) with respect to � Æ trN . Since M is a �nite

von Neumann algebra, we have �(x) =
SN
k=1 �(ak) = �(a1). We have shown that the

spectrum of a DT(�; c) operator is the same as that of a DT(�; cp
N
) operator.

Let us use Theorem 4.4, to realize a DT(�; c){operator as D+ cT , for D a normal
operator with spectrum supp(�) and as noted in Remark 4.8, kTk � 2. We have
�(D + cT ) = �(D + cp

N
T ) for all N 2 N. Using Lemma 5.1 we thus get

�(D + cT ) � fz 2 C j d(z; supp(�)) � 2cp
N
g

for all N 2 N. Hence �(D + cT ) � supp(�).
On the other hand, suppose for contradiction that � 2 supp(�)n�(D + cT ). Then

there is � > 0 such that the ball B�(�) of radius � around � is disjoint from �(D+cT ).
Let N 2 N be such that N � �(B�(�))

�1. Using Theorem 4.12, we may take
(M; �) = (MN (N ); �N Æ trN) and

D + cT = x =

0BBB@
a1 b12 � � � b1N

0 a2
. . .

...
...

. . . . . . bN�1;N
0 � � � 0 aN

1CCCA 2MN (N ) ;

where N is a von Neumann algebra with faithful normal tracial state �N and where
a1 is DT(�1;

cp
N
) with supp(�1) � B�(�). But �(D + cT ) =

SN
k=1 �(ak) and �(a1) �

supp(�1). Since �(a1) is nonempty, this implies that B�(�) meets the spectrum of
D + cT , which is a contradiction. �

The next result relates upper triangular decompositions to local spectral subspaces.

Proposition 5.3. Let T be a bounded operator on a separable Hilbert space H =
H1�H2 and suppose H1� 0 is T{invariant, so that T =

�
T11 T12
0 T22

�
where Tij : Hj !

Hi. Let A � C. If �(T11) � A, then H1 � 0 � HT (A). On the other hand, if
�(T22) \ A = ;, then HT (A) � H1 � 0.

Proof. Write elements � of H as � =
�
�1
�2

�
with �i 2 Hi. Suppose �(T11) � A. For

�1 2 H1, taking f(�) =
�
(T11��)�1�1

0

�
we have (T � �)f(�) = � �10 �, (� 2 Cn�(T11)).

Thus �T (
�
�1
0

�
) � �(T11) � A and therefore

�
�1
0

� 2 HT (A).

Now suppose �(T22) \ A = ; and � =
�
�1
�2

� 2 HT (A). Let f(�) =
�
f1(�)
f2(�)

�
be

analytic such that (T � �)f(�) = �, (� 2 Cn�T (�)). However, as �T (�) \ �(T22) = ;
and as T has the single{valued extension property, (sinceH is separable), the analytic

function f2 extends to an entire function ~f2 : C! H2 such that (T22 � �)f2(�) = �2
for all � 2 C. Since f2(�) = (T22 � �)�1�2 ! 0 as j�j ! 1, by Liouville's theorem
f2 is the zero function and �2 = 0; thus

�
�1
�2

� 2 H1 � 0. �

For the rest of this section, Z will be a DT(�; c){operator in a W�{noncommutative
probability space (M; �), withM� B(H), H separable and � faithful.

Theorem 5.4. Let B be a Borel subset of C and let p = pZ(B) be the projection

from H onto HZ(B). Then
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(i) p 2 M, Zp = pZp and �(p) = �(B)

(ii) if �(B) > 0 then Zp is DT(�(B)�1��B; c
p
�(B)) with respect to �(B)�1��pMp

(iii) if �(B) < 1 then (1 � p)Z is DT(�(Bc)�1��Bc; c
p
�(Bc)) with respect to

�(Bc)�1��(1�p)M(1�p) .

Proof. HZ(B) is Z{hyperinvariant (see [16, 1.2.16(a)]) and therefore so is HZ(B);
this implies p 2 M and Zp = pZp. Let n 2 N and let k 2 f0; 1; : : : ; n � 1g, let
Kn � C be compact and let Un � C be open such that Kn � B � Un and

k

n
� �(Kn) � �(B) � �(Un) � k + 1

n
:

Consider the probability measures

�n = �(Kn)
�1��Kn

if �(Kn) > 0 ;

� 0n = �(U c
n)
�1��Uc

n
if �(Un) < 1 ;

� 00n = n��UnnKn
+ (n�(Kn)� k)�n + (k + 1� n�(Un))� 0n :

Then � = 1
n
(k�n+�

00
n+(n�k�1)� 0n) and hence by Theorem 4.12 there is a DT(�; c)

operator

Zn =

0BBB@
a1 b12 � � � b1n

0 a2
. . .

...
...

. . . . . . bn�1;n
0 � � � 0 an

1CCCA
in (Mn(N ); �N Æ trn) where in (N ; �N ), ai is DT(�n; cp

n
) if i � k and is DT(� 0n;

cp
n
)

if i � k + 2, ak+1 is DT(� 00n;
cp
n
), bij is circular with �N (jbijj2) = c2

n
and the family

(ai)
n
i=1; (bij)1�i<j�n is �{free.

Let

qn = diag(1; : : : ; 1| {z }
k

; 0; : : : ; 0| {z }
n�k

)

q0n = diag(1; : : : ; 1| {z }
k+1

; 0; : : : ; 0| {z }
n�k�1

)

inMn(N ). Applying Theorem 4.12 and Theorem 5.2, if k > 0 then Znqn is DT(�n; c
q

k
n
)

in (Mk(N ); �N Æ trk) and �(Znqn) � Kn. Similarly, if k < n � 1 then (1 � q0n)Zn is

DT(� 0n; c
q

n�k�1
n

) in (Mn�k�1(N ); �N Æ trn�k�1) and �((1� q0n)Zn) � U c
n. But Propo-

sition 5.3 then gives qn � pZn(B) � q0n. Letting n!1, this shows that �(p) = �(B).
Thus (i) is proved.
If �(B) > 0 then Znqn converges in �{moments to Zp as n ! 1. Indeed, for

�(1); : : : ; �(`) 2 f�; 1g we have
�(pZ�(1) � � � pZ�(`)p) = �N Æ trN (pZn(B)Z�(1)

n � � � pZn(B)Z�(`)
n pZn(B))

and this quantity di�ers from �N Æ trN(qnZ�(1)
n � � � qnZ�(`)

n qn) by an amount no greater
than kqn � pZn(B)k2Q`(kZnk), where Q` is a polynomial independent of n and with
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positive coeÆcients. Since kqn � pZn(B)k2 � n�1=2 ! 0 as n ! 1, this shows that
Znqn converges to Zp. Clearly, �n converges in �{moments as n!1 to �(B)�1��B.
Now an application of Corollary 2.11 shows that Zp is DT(�(B)�1��B; c

p
�(B)),

and (ii) is proved.
For (iii), one shows similarly that if �(B) < 1 then (1 � q0n)Zn converges in �{

moments to (1 � p)Z as n ! 1, � 0n converges in �{moments to �(Bc)�1��Bc and

thus that (1� p)Z is DT(�(Bc)�1��Bc ; c
p
�(Bc)). �

L.G. Brown [5] discovered a measure supported inside the spectrum of an arbi-
trary element of a �nite von Neumann algebra, which in the �nite dimensional case
reduces to the eigenvalue distribution weighted according to generalized multiplicity
of eigenvalues.

Corollary 5.5. The Brown measure of a DT(�; c) operator is �.

Proof. Let Z be a DT(�; c){operator, and let �Z be the Brown measure of Z. From the
theorem just proved and [5, Theorem 4.3], it follows that �Z(F ) � �(pZ(F )) = �(F )
for every closed subset F of C. Thus �Z = �. �

The next result is a converse to Theorem 5.4, which we will use in x6.
Theorem 5.6. (i) Let F � C be a closed subset and suppose q 2 M is a projec-

tion satisfying Zq = qZq, �(q) = �(F ) and �(Z�qH) � F . Then q = pZ(F ).
(ii) Let B � C be a Borel subset and suppose q 2 M is a projection satisfying

Zq = qZq, �(q) = �(B) and that Zq is a DT(�(B)�1��B; c
0){operator with

respect to �(B)�1��qMq for some c0 > 0. Then q = pZ(B) and c
0 = c

p
�(B).

Proof. In (i), Proposition 5.3 implies q � pZ(F ). But �(q) = �(pZ(F )), so q = pZ(F ).
By the de�nition of spectral subspaces we have

HZ(B) =
[
F

HZ(F ); (33)

where the union is over all closed subsets F of C such that F � B. Regard Zq as an
operator on qH and let F � B be a closed subset of C. Then by Theorem 5.4, the
Zq{invariant projection pZq(F ) satis�es �(pZq(F )) = �(F ) and �(Z�pZq(F )H) = F .

But pZq(F ) is also Z{invariant, and hence part (i) implies pZ(F ) = pZq(F ) � q.
Using (33) we get pZ(B) � q. Now �(pZ(B)) = �(q) implies pZ(B) = q. �

The following result shows that Z has property (C) of Dunford; (see [16, 1.2.18]).

Lemma 5.7. If F is a closed subset of C then HZ(F ) is closed.

Proof. If �(F ) = 0 then by Theorem 5.4, HZ(F ) = HZ(F ) = f0g, so suppose

�(F ) > 0. We must showHZ(F ) = HZ(F ) or, in other words, that if � 2 HZ(F ) then
there is an analytic function f : CnF ! H such that (Z � �)f(�) = �, (� 2 CnF ).
Letting p = pZ(F ) be the projection from H onto HZ(F ), then Zp = pZp and by
Theorem 5.4 and Theorem 5.2, �(Zp) � F , where the spectrum is for Zp as an
element of pMp. Now given � 2 pH let f(�) = (pZp��p)�1� (� 2 CnF ), where the
inverse is taken in pMp. Then f is analytic and (Z � �)f(�) = �. �
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Theorem 5.8. Z is strongly decomposable.

Proof. We will �rst show that Z is decomposable, and we will use the characterization
of decomposability found at [16, 1.2.23(b)], which is essentially due to Jafarian and
Vasilescu [14]. Since we already showed in Lemma 5.7 that Z has property (C),
it remains only to show that for every closed subset F of C, the spectrum of the
operator Z=HZ(F ) induced by Z on the quotient space H=HZ(F ) is contained in

�(Z)nF . Note that �(Z) = supp(�). Consider �rst the trivial cases �(F ) 2 f0; 1g.
From Theorem 5.4 we have HZ(F ) = f0g if and only if �(F ) = 0, and in this

case int(F ) = ; so �(Z)nF = �(Z), while �(Z=HZ(F )) = �(Z). If �(F ) = 1 then
HZ(F ) = H and Z=HZ(F ) is the operator on the Hilbert space f0g, which has empty
spectrum.
Suppose 0 < �(F ) < 1 and let p = pZ(F ) be the projection from H onto HZ(F ).

Then H=HZ(F ) is canonically isomorphic to (1� p)H in such a way that Z=HZ(F )
corresponds to (1� p)Z 2 B((1 � p)H). By Theorems 5.4 and 5.2, the spectrum of

(1� p)Z is supp(��F c) = supp(�)nF = �(Z)nF . Thus Z is decomposable.
In order to show that Z is strongly decomposable we must show that for every

closed subset F of C, the restriction Z�
HZ(F )

of Z to HZ(F ) is decomposable. How-
ever, by Theorem 5.4, either HZ(F ) = f0g or Z�HZ(F )

is itself a DT{operator. In
either case, Z�

HZ(F )
is decomposable. �

6. Von Neumann algebras generated by DT{operators

Theorem 4.4 allows us realize a DT(�; c){operator as an element D + cT in the
II1{factor L(F2), where we have some exibility in choosing D. It is natural to ask:
what sort of II1{factors do these DT{operators generate? It is this question that
is addressed in this section. We �rst consider the von Neumann algebra, which we
will denote Q, generated by T = UT(X; �) inside L(F2) (cf De�nition 4.2). We
show (Theorem 6.1) that Q is an irreducible subfactor of L(F2), but we are presently
unable to decide whether Q is all of L(F2). This question is closely bound up with
the question of whether T has nontrivial hyperinvariant subpaces.
In a tracial W�{noncommutative probability space (M; �), let X be a semicircular

operator and let � : L1[0; 1] !M be a normal, unital, injective �{homomorphism
whose image is free from X. Thus X and the image of � together generate a copy of
L(F2).

Theorem 6.1. Let T = UT(X; �) be the operator as constructed in Lemma 4.1 inside
the von Neumann algebra factor N = (fXg [ �(L1[0; 1]))00 �= L(F2). Then the von
Neumann algebra generated by T is an irreducible subfactor of N , and is in particular
a factor.

Proof. We use the convention, given a state � on a von Neumann algebraM, that
a 7! â denotes the de�ning mapping ofM into L2(M; �).
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The W�{subalgebra of N generated by X is canonically isomorphic to L1[�2; 2].
Since W �(X) and the image of � together freely generate N , the free product con-
struction [23] identi�es L2(N ; ��N ) with the Hilbert space

H = C�
M
n�1

�1;:::;�n2f1;2g
�j 6=�j+1

Ho
�1

 � � � 
Ho

�n ;

where

Ho
1 = L2[0; 1]	C1̂ = (�(L1[0; 1]) \ ker �)b

Ho
2 = L2[�2; 2]	C1̂ = (W �(X) \ ker �)b :

For example, in this identi�cation, an element (a1b1a2b2 � � �anbn)̂ of L2(N ; ��N ),
where ai 2 W �(X) \ ker � and bi 2 �(L1[0; 1]) \ ker � , corresponds to the element

â1 
 b̂1 
 � � � 
 ân 
 b̂n of the direct summand Ho
2 
Ho

1 
 � � � 
Ho
2 
Ho

1 of H. The
map L1[0; 1]�L1[0; 1]!N , where � denotes the algebraic tensor product, de�ned
by f 
 g 7! �(f)X�(g), gives rise to an isometry W : L2[0; 1]
 L2[0; 1]! H at the
L2{level. Speci�cally,

W (v1 
 v2) =hv1; 1̂i bXhv2; 1̂i+ (v1 � hv1; 1̂i1̂)
 bXhv2; 1̂i
+ hv1; 1̂i bX 
 (v2 � hv2; 1̂i1̂) + (v1 � hv1; 1̂i1̂)
 bX 
 (v2 � hv2; 1̂i1̂):

In other words, W (v1
v2) = v1
 bX
v2 if we make the convention that 1̂ is absorbed

by tensor products. Then from the de�nition of T , we have bT = W (h), where
h 2 L2[0; 1]
L2[0; 1] is given, upon identifying this Hilbert space with L2([0; 1]2), by

h(s; t) =

(
1 if s < t

0 if s � t :

Suppose a 2 N \fT; T �g0 and �(a) = 0. Since aX = Xa, it is well{known that we
must have a 2 W �(X), so â 2 Ho

2. Let 1̂ = b0; b1; b2; : : : be an orthonormal basis for
L2[0; 1]. Then

h =
1X

i;j=0

cijbi 
 bj

for some cij 2 C. Clearly cij 6= 0 for some i; j > 0. ThusbT = c00 bX +
X
i>0

ci0bi 
 bX +
X
j>0

c0j bX 
 bj +X
i;j>0

cijbi 
 bX 
 bj
(aT � Ta)b= v +

X
i;j>0

cij(â
 bi 
 bX 
 bj � bi 
 bX 
 bj 
 â) ;
where

v 2 C�Ho
2 � (Ho

1 
Ho
2)� (Ho

2 
Ho
1)� (Ho

2 
Ho
1 
Ho

2) :

Since a commutes with T , we conclude that â = 0, i.e. a = 0. �
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As remarked above, we will let Q denote the von Neumann subalgebra of N gen-
erated by T = UT(X; �). It is an interesting question whether the von Neumann
algebra Q generated by T contains any nontrivial invariant projections for T , i.e.
any projections p neither 0 nor 1 such that Tp = pTp. Clearly, if Q is all of N ,
then many such projections exist. Moreover, if there is one such projection, then by
compressing one can �nd a coninuum of them, that together densely span a di�use
abelian subalgebra of Q. Finally, using this idea we see that if �(1[0;t]) 2 Q for some
0 < t < 1 then Q = N .

Lemma 6.2. Let � be a compactly supported Borel measure on C. Then there is
f 2 L1[0; 1] whose distribution is � and such that, if D = �(f) and if T = UT(X; �)
is as above, then for any c > 0, D itself lies in the W�{algebra generated by D + cT .

Proof. Simply take f 2 L1([0; 1]) whose distribution is � and that satis�es the fol-
lowing:

(i) for every atom a of �, f�1(fag) is a half{open interval [c; d);
(ii) if ai (i 2 I) are the atoms of � then the restriction of f to

[0; 1]nf�1(fai j i 2 Ig)
is a measure preserving isomorphism of measure spaces.

Let Z = D+ cT and let W �(Z) denote the von Neumann subalgebra of N generated
by Z. If t 2 [0; 1] is such that f�1(f([0; t))) = [0; t) then letting B = f([0; t)),
and using Lemma 4.10 and Theorem 5.6, we get pZ(B) = �(1[0;t)) 2 W �(Z). Since
pZ(B) 2 W �(Z), it follows that D 2 W �(Z). �

Using Lemma 6.2 we see that if the von Neumann algebra Q is in fact all of N ,
then every DT{operator can be embedded in N in such a way that it generates all
of N , which is isomorphic to L(F2).

Proposition 6.3. If Z is a DT(�; c){operator, then the von Neumann algebra gen-
erated by Z is a II1{factor whose isomorphism class depends only on �, and in fact,
only on the number and sizes of the atoms of �.

Proof. Using Lemma 6.2 and Theorem 4.4, we see that the isomorphism class of
the von Neumann algebra generated by a DT(�; c){operator depends only on the
isomorphism class of the von Neumann algebra generated by a normal element whose
distribution is �. �

Theorem 6.4. If � has no atoms and c > 0 then a DT(�; c){operator generates a
von Neumann algebra isomorphic to L(F2).

Proof. In the proof of Lemma 6.2, we see that D generates all of �(L1([0; 1])) and
the constructed DT-operator generates all of N �= L(F2). �

7. DT{operators that are also R{diagonal

In [6] we introduced the circular free Poisson elements of parameters c � 1, which
are R{diagonal elements and (see Theorem 3.1) also DT{elements. In this section
we will show that, up to multiplication with scalars, these are the only DT{elements
that are also R{diagonal.
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Let � be a Borel probability measure compactly supported in C. For every n 2 N,
let D(n) 2 Mn be a diagonal random matrix whose entries are independent, each
with distribution �, and let T (n) 2 UTGRM(n; 1

n
) be such that D(n) and T (n)

are independent as matrix{valued random variable. From Theorem 2.1, (see also
Remarks 2.3 and 4.8) it follows that the pair (D(n); T (n)) converges in �{moments
as n!1 to a pair (D; T ) in a tracial W�{noncommutative probability space (M; �).
Of course, by De�nition 2.2, D + cT is a DT(�; c){element.
In the lemmas to follow, orthogonality and the 2{norm, k � k2, will be with respect

to the trace � .

Lemma 7.1. (i) For all p 2 N [ f0g,

k(DT )pDk22 =
kDk2(p+1)

2

(p+ 1)!

(ii) If p; q 2 N [ f0g and p 6= q, then (DT )pD and (DT )qD are orthogonal.

Proof. By the proof of Theorem 2.1, �((DT )pDD�(T �D�)q) is equal to the quan-
tity (16), where

�(1); : : : ; �(p + q) is 1; : : : ; 1| {z }
p

; �; : : : ; �| {z }
q

and where E(�; � � � ) must be properly interpreted.
If p 6= q then there are no noncrossing pairings of f1; : : : ; p + qg compatible with

�(1); : : : ; �(p+ q), so �((DT )pDD�(T �D�)q) = 0 and (ii) is proved.
If p = q, then there exactly only one noncrossing pairing � of f1; : : : ; 2pg compat-

ible with �(1); : : : ; �(2p), namely � = ff1; 2pg; f2; 2p� 1g; : : : ; fp; p+ 1gg. Following
Algorithm 2.5, we �nd that the quotient graph Q is the straight line having 2p edges
all oriented in the same direction and hence NTO(�; �(1); : : : ; �(2p)) = 1. Further-
more, the quantity E(�; � � � ), which is given by equation (15), is equal to�Z

C

jzj2d�(z)
�p+1

:

�

Lemma 7.2. Let M�(k; `) =
R
C
zkz`d�(z). Then for every j�j < (kDk+ kTk)�1, we

have  1X
n=0

�n(D + T )n
2
2

=
1

j�j2
�
exp

� 1X
k;`=0

�k+1(�)`+1M�(k; `)

�
� 1

�

Proof. Because 1� �D is invertible and

k(1� �D)�1�Tk � j�jkTk
1� j�jkDk < 1;
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we have
1X
n=0

�n(D + T )n = (1� �(D + T ))�1 = ((1� �D)� �T )�1

= (1� (1� �D)�1�T )�1(1� �D)�1

=
1X
k=0

((1� �D)�1�T )k(1� �D)�1 :

Now applying Lemma 7.1 to (1� �D)�1 instead of D gives 1X
n=0

�n(D + T )n
2
2

=
1X
k=0

j�j2k
(k + 1)!

k(1� �D)�1k2(k+1)
2

=
exp(j�j2k(1� �D)�1k22)� 1

j�j2 :

This �nishes the proof, since

j�j2k(1� �D)�1k22 = j�j2�((1� �D)�1(1� �D�)�1)

= j�j2
1X

k;`=0

�k(�)`M�(k; `) :

�

Theorem 7.3. Let Z be a DT(�; 1){element. Then Z is R{diagonal if and only if �
is the uniform distribution on the annulus

f� 2 C j pc� 1 � j�j � pcg (34)

for some c � 1, in which case Z is a circular free Poisson element of parameter c.

Proof. If � is the uniform distribution on the annulus (34), then by Theorem 3.1 �
is circular free Poisson and is therefore R{diagonal.
Suppose Z is an R{diagonal element in a W �{noncommutative probability space

(M; �). Again, 2{norms k�k2 will be with respect to � . We may take Z = D+T with
D; T 2 M as de�ned at the beginning of this section. By [10], R{diagonality of Z
implies kZnk22 = kZk2n2 for every n 2 N. Since Z and �Z have the same �{moments
for all � 2 T, we also have �(Zn(Z�)m) = 0 whenever n 6= m. Hence for

j�j < (kDk+ kTk)�1 � kZk�1
we have  1X

n=0

�nZn

2
2

=
1

1� j�j2kZk22
;

so by Lemma 7.2,

1

j�j2
�
exp

� 1X
k;`=0

�k+1(�)`+1M�(k; `)

�
� 1

�
=

1

1� j�j2kZk22
;
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from which we get

1X
k;`=0

�k+1(�)`+1M�(k; `) = log

�
1� j�j2(kZk22 � 1)

1� j�j2kZk22

�
:

Since the RHS has a power series expansion in j�j2, we must have M�(k; `) = 0
whenver k 6= `. Thus � is rotationally invariant. Let c = kZk22. Substituting t = j�j2
gives

1X
k=0

tk+1M�(k; k) = log(1� (c� 1)t)� log(1� ct)

=
1X
j=1

�
(ct)j

j
� ((c� 1)t)j

j

�

=
1X
k=0

ck+1 � (c� 1)k+1

k + 1
tk+1 ;

which implies that

�((DD�)k) =M�(k; k) =
ck+1 � (c� 1)k+1

k + 1
tk+1 =

Z c

c�1
xkdx :

Thus the distribution of DD� is the uniform distribution on the interval [c� 1; c]. In
particular, c � 1 since DD� is a positive operator, and � is uniform measure on the
annulus (34). �

8. The distribution of T �T

Throughout this section, (A; �) will be a �{noncommutative probability space and
T will denote a DT(Æ0; 1){element in (A; �). We will investigate the moments of the
element T �T , �nding its distribution and R{transform.
Let 1 2 B � A be a unital �{subalgebra. The following result is standard.

Proposition 8.1. If u 2 A is a unitary such that �(u) = 0 and B and fug are
�{free, then B and u�Bu are free.

Corollary 8.2. Suppose z 2 A is a circular element such that B and fzg are �{free.
Let D be the �{subalgebra of A generated by fz�bz j b 2 Bg. Then B and D are free.

Proof. By Voiculescu's result [24, Proposition 2.6] about the polar decomposition of
a circular element, enlarging A if necessary we may without loss of generality assume
z = hu where u is a Haar unitary, h � 0 and u and h are �{free. Then D � u�Cu,
where C is the �{subalgebra of A generated by B [fhg. Since C and fug are �{free,
it follows from Proposition 8.1 that D and C are free, and therefore that D and B
are free. �

Lemma 8.3. Suppose N 2 N and (aij)1�i�j�N is a �{free family of circular elements
in (A; �) such that �(a�ijaij) is the same for all i and j. In the �{noncommutative
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probability space (MN (A); � Æ trN), consider the elements

R =

0BBBB@
0 0 0 � � � 0
0 a22 a23 � � � a2N
0 0 a33 � � � a3N
...

...
. . . . . .

...
0 0 � � � 0 aNN

1CCCCA ; Q =

0BB@
a11 a12 � � � a1N
0 0 � � � 0
...

... � � � ...
0 0 � � � 0

1CCA :

Then R and Q�Q are �{free with respect to � Æ trN .
Proof. Expanding A if necessary, let bk`; crs 2 A be such that

(aij)1�i�j�N; (bk`)1�k;`�N; (crs)1�r;s�N

is a �{free family of circular elements in (A; �) such that �(a�ijaij) = �(b�k`bk`) =
�(c�rscrs) for all i, j, k, `, r and s. Let

Y =

0BBBB@
b11 b12 b13 � � � b1N
b21 a22 a23 � � � a2N
b31 b32 a33 � � � a3N
...

...
. . . . . .

...
bN1 bN2 � � � bN�1;N aNN

1CCCCA ; Z =

0BB@
a11 a12 � � � a1N
c21 c22 � � � c2N
...

...
...

...
cN1 cN2 � � � cNN

1CCA :

Moreover, for 1 � j � N let pj 2 MN (A) be the diagonal N � N matrix with 1 in
the jth diagonal entry and zeros elsewhere. Then by results of Voiculescu [24], with
respect to � Æ trN , Y and Z are circular and the family

fY g; fZg; fpj j 1 � j � Ng
of sets of random variables is �{free. Since R belongs to the subalgebra ofA generated
by fY g[fpj j 1 � j � Ng and since Q = p1Z, �{freeness of R and Q�Q follows from
Corollary 8.2. �

Lemma 8.4. In a W�{noncommutative probability space (A; �) let (Yij)1�i�j�N be
a �{free family of circular elements with �(Y �

ijYij) = 1. For N 2 N, consider the
elements

SN =
1p
N

0BBBBB@
0 Y12 Y13 � � � Y1N
0 0 Y23 � � � Y2N

0
. . . . . . . . .

...
...

. . . 0 0 YN�1;N
0 � � � 0 0 0

1CCCCCA

TN =
1p
N

0BBBBB@
Y11 Y12 Y13 � � � Y1N
0 Y22 Y23 � � � Y2N

0
. . . . . . . . .

...
...

. . . 0
. . . YN�1;N

0 � � � 0 0 YN;N

1CCCCCA
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in the W�{noncommutative probability space (A
MN (C); �N), where �N = � 
 trN
with trN the normailzed trace on MN(C). Then

(a) for all p;N 2 N with N � 2,

�N((S
�
NSN)

p =

�
N � 1

N

�p+1

�N�1((T �N�1TN�1)
p);

(b) if �N and �N denote the distributions of T �NTN and S�NSN , respectively, com-
puted with respect to �N , then their R{transforms satisfy

R�N (z) = R�N (z) +
1

N(1� z)
for all z in a neighborhood of 0 in C.

Proof. It is clear that SN has the same �{moments as

S 0N =
1p
N

0BBBBB@
0 Y11 Y12 � � � Y1;N�1
0 0 Y22 � � � Y2;N�1

0
. . . . . . . . .

...
...

. . . 0 0 YN�1;N�1
0 � � � 0 0 0

1CCCCCA :

Moreover,

(S 0N)
�S 0N =

N � 1

N

0BB@
0 0 � � � 0
0
... T �N�1TN�1
0

1CCA :

Thus

�N((S
�
NSN)

p) = �N(((S
0
N)

�S 0N)
p) =

�
N � 1

N

�p+1

�N�1((T �N�1TN�1)
p);

which proves (a).
For (b), write TN = PN +QN , where

PN =
1p
N

0BB@
0 0 � � � 0
0 Y22 � � � Y2N

0
. . .

...
0 � � � 0 YN;N

1CCA ; QN =
1p
N

0BB@
Y11 Y12 � � � Y1N
0 0 � � � 0
...

...
...

...
0 0 � � � 0

1CCA :

Since P �
NQN = 0, we have

T �NTN = P �
NPN +Q�

NQN :
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By Lemma 8.3, P �
NPN and Q�

NQN are free with respect to �N . Moreover, P �
NPN =

(S 00N )
�S 00N , where

S 00N =
1p
N

0BBBBB@
0 Y22 Y23 � � � Y2N
0 0 Y33 � � � Y3N

0
. . . . . . . . .

...
...

. . . 0 0 YNN
0 � � � 0 0 0

1CCCCCA :

Note that S 00N has the same �{moments as SN . Hence P
�
NPN has the same distribution

as S�NSN . By [26, Theorem 1.6], the distribution of Q�
NQN with respect to �N is free

Poisson of parameter 1=N . In particular, (cf. [27, p. 34] or [13, Example 3.3.5]), if �
is the distribution of Q�

NQN computed with respect to �N , then

R�(z) =
1

N(1� z) :

This proves part (b). �

Lemma 8.5. Let N 2 N, let �N (0) = �N (0) = 1 and for p 2 N let

�N(p) =
(p� 1

N
)(p� 2

N
) � � � (p� p

N
)

(p+ 1)!

�N(p) =
(p+ 1

N
)(p+ 2

N
) � � � (p+ p

N
)

(p+ 1)!
:

Then

(a) the function

KN(t) =
t

1�P1
p=0 �N (p)t

p+1

is de�ned, analytic and invertible with respect to composition in a neighborhood
of 0 in C, and its inverse is given by

K
h�1i
N (z) = z(1 + z

N
)�N

in some neighborhood of 0 in C;
(b) the function

LN(t) =
t

1�P1
p=0 �N(p)t

p+1

is de�ned, analytic and invertible with respect to composition in a neighborhood
of 0 in C, and its inverse is given by

L
h�1i
N (z) = z(1� z

N
)N

in some neighborhood of 0 in C.

Proof. For (a), let g(z) = z(1+ z
N
)�N , z 2 Cnf�Ng. Since g(0) = 0 and g0(0) = 1, g

is invertible with respect to composition in a neighborhood of 0. We must show that

gh�1i(t) =
t

1�P1
p=0 �N(p)t

p+1
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in some neighborhood of 0 in C, which is equivalent to showing that

t

gh�1i(t)
= 1�

1X
p=0

�N(p)t
p+1 (35)

in some neighborhood of 0. Since t=gh�1i(t) is analytic in a neighborhood of 0, it is
of the form

t

gh�1i(t)
=

1X
p=0

apt
p; 0 < jtj < r

for some r > 0. Since g(z) = z � z2 +O(jzj3) as z ! 0, one has

gh�1i(t) = t+ t2 +O(jtj3)
t

gh�1i(t)
= 1� t +O(jtj2)

as t! 0. Therefore, a0 = 1 and a1 = �1 = ��N(0).
For p � 2, we use the formula

ap =
1

2�i

Z
C

t

gh�1i(t)tp+1
dt; (36)

where C is the positively oriented path around a circle centered at 0 with radius less
than r. If the radius of C is chosen small enough, then the image, C 0, of C under
gh�1i will be a smooth, simple, closed curve winding once around 0 in the positive
direction. The substitution t = g(z) in the integral (36) yields

ap =
1

2�i

Z
C0

g0(z)
zg(z)p

dz:

Since

d(g(z)1�p) = (1� p) g
0(z)
g(z)p

dz;

integrating by parts yields

(1� p)ap =
1

2�i

Z
C0

1

z
d(g(z)1�p) = � 1

2�i

Z
C0

g(z)1�pd
�
1
z

�
=

1

2�i

Z
C0

g(z)1�p

z2
dz =

1

2�i

Z
C0

(1 + z
N
)N(p�1)

zp+1
dz

= Res

�
(1 + z

N
)N(p�1)

zp+1
; z = 0

�
=

�
N(p� 1)

p

�
1

Np
;

where the last quantity is the coeÆcient of zp in the polynomial expansion of (1 +
z
N
)N(p�1). Thus for p � 1,

ap+1 = �1
p

�
Np

p+ 1

�
1

Np+1
= �(Np� 1)(Np� 2) : : : (Np� p)

(p+ 1)!Np
= ��N (p):

We have shown a0 = 1 and ap+1 = ��N (p) for all p � 0, which proves equation (35)
and �nishes the proof of part (a).
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Part (b) follows by minor modi�cations of the above proof. Put

h(z) = z(1� z
N
)N

and let
t

hh�1i(t)
=

1X
p=0

bpt
p

be the power series expansion, which is valid for 0 < jtj < s for some s > 0. As
before, one �nds b0 = 1, b1 = �1 = ��N (0) and, for p � 2,

(1� p)bp = Res

�
(1� z

N
)�N(p�1)

zp+1
; z = 0

�
=

��N(p� 1)

p

�
(�1)p
Np

;

where the latter quantity is the coeÆcient of zp in the power series expansion of
(1� z

N
)�N(p�1). Thus, for p � 1,

bp+1 =
(�1)p
pNp+1

��Np
p+ 1

�
= �(Np + 1)(Np+ 2) : : : (Np+ p)

(p+ 1)!Np
= ��N (p);

which shows that
t

hh�1i(t)
= 1�

1X
p=0

�N(p)t
p+1

for 0 < jtj < s. This proves part (b). �

Lemma 8.6. Let SN , TN , �N , �N and �N be as in Lemma 8.4, (N 2 N). Then

(i) for all p 2 N,

�N((S
�
NSN)

p) =
(p� 1

N
)(p� 2

N
) � � � (p� p

N
)

(p+ 1)!
;

(ii) for all p 2 N,

�N ((T
�
NTN)

p) =
(p+ 1

N
)(p+ 2

N
) � � � (p+ p

N
)

(p+ 1)!
;

(iii) for all z in a neighborhood of 0 in C,

R�N (z) =
1

N(1� z)((1� z)�1=N � 1)
� 1

z
;

(iv) for all z in a neighborhood of 0 in C,

R�N (z) =
1

N(1� z)(1� (1� z)1=N ) �
1

z
:

Proof. We proceed by induction on N . We have S�1S1 = 0, so (i) and (iii) hold when
N = 1. Moreover, (T �1 T1)

1=2 = (Y �
11Y11)

1=2 is a quarter{circular element, hence

�N ((T
�
1 T1)

p) =
1

�

Z 2

0

x2p
p
4� x2dx =

1

p+ 1

�
2p

p

�
;
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(the pth Catalan number), which proves (ii) when N = 1. But T �1 T1 has the free Pois-
son distribution with parameter 1, which implies that R�N = 1=(1� z), proving (iv)
when N = 1.
Now suppose N � 2. By the induction hypothesis, for every p 2 N we have

�N�1((T �N�1TN�1)
p) =

(p+ 1
N�1)(p+

2
N�1) : : : (p+

p
N�1)

(p+ 1)!
:

Then by part (a) of Lemma 8.4,

�N((S
�
NSN)

p) =

�
N � 1

N

�p+1 (p+ 1
N�1)(p+

2
N�1) : : : (p+

p
N�1)

(p+ 1)!

=

�
N � 1

Np+1

��
(N � 1)p+ 1

��
(N � 1)p+ 2

�
: : :
�
(N � 1)p+ (p� 1)

�
Np

(p+ 1)!

=
(pN � p)(pN � (p� 1)) : : : (pN � 1)

Np(p + 1)!

=
(p� p

N
)(p� p�1

N
) : : : (p� 1

N
)

(p+ 1)!
:

This proves (i) for this particular N .
We now show (i) =) (iii). By (i), the Cauchy transform of �N is given by

G�N (�) =
1X
p=0

�N(p)�
�p�1

for � 2 C with j�j large, where �N(p) is as de�ned in Lemma 8.5. Thus

KN(t) =
t

1�G�N (1=t)

for t in some neighborhood of 0, where KN is as de�ned in Lemma 8.5. Since by
Lemma 8.5,

K
h�1i
N (w) = w(1 +

w

N
)�N

in a neighborhood of 0, we have for jwj small

w = KN (K
h�1i
N (w)) =

w(1 + w
N
)�N

1�G�N

�
1
w
(1 + w

N
)N
� :

Hence for jwj small,

G�N

�
1

w

�
1 +

w

N

�N�
= 1�

�
1 +

w

N

��N
: (37)

Letting z = 1� (1 + w
N
)�N for small values of jwj, we have w = N((1� z)�1=N � 1)

and (1 + w
N
)N = 1=(1� z). Thus for small values of jzj, we have

G�N

�
1

N((1� z)�1=N � 1)(1� z)
�
= z:
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Therefore

R�N (z) = Gh�1i
�N

(z)� 1

z
=

1

N(1� z)((1� z)�1=N � 1)
� 1

z
;

which proves (iii) for this particular N .
Part (iii), together with part (b) of Lemma 8.4, proves (iv) for this particular N .
Finally, we prove (ii) (still for this N). Since there is a one{to{one correspondence

between moment series and R{series, it will suÆce to prove that if (ii) holds, then
the corresoponding R{transform R�N is given by (iv). This in turn follows by minor-
modi�cations of the above proof of (i) =) (iii). Indeed, if (ii) holds then the Cauchy
transform of �N is

G�N (�) =
1X
p=0

�N(p)�
�p�1:

Thus

LN (t) =
t

1�G�N (1=t)

for t in a neighborhood of 0, where LN is the function de�ned in Lemma 8.5. Thus

L
h�1i
N (w) = w

�
1� w

N

�N
for jwj small, and arguing as in the proof of (i) =) (iii) shows

G�N

 
1

w

�
1� w

N

��N!
= 1�

�
1� w

N

�N
for jwj small. Setting z = 1� (1� w

N
)N yields w = N(1� (1� z)1=N ) and

G�N

�
1

N(1� (1� z)1=N )(1� z)
�
= z;

proving (iv), as desired. This concludes the proof of the induction step, and of the
lemma. �

Recall that T is a DT(Æ0; 1){operator in a W�{noncommutative probability space
(A; �).
Theorem 8.7. (a) For every p 2 N,

�((T �T )p) =
pp

(p+ 1)!
:

(b) If � is the distribution of T �T , then its R{transform is given by

R�(z) =
�1

(1� z) log(1� z) �
1

z

for jzj small.
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Proof. Without loss of generality assume (A; �) is a W�{noncommutative probability
space with � faithful. By Theorem 4.12, enlarging (A; �) if necessary, SN di�ers from
a DT (Æ0; 1){operator by a diagonal matrix

A = diag(A1; : : : ; AN) 2 A
MN(C);

where each Aj is DT(Æ0; 1=
p
N). Thus kAk � 2=

p
N . Also, TN di�ers from SN by

a diagonal matrix of norm 2=
p
N , and we conclude that TN converges in �{moments

to T as N ! 1. Taking the limit as N ! 1 of the value of �N((T
�
NTN )

p) given in
part (ii) of Lemma 8.6 yields (a) above.
The convergence in �{moments of TN to T ensures that the coeÆcients of the R{

series of the distribution �N of T �NTN converge to the coeÆcients of the R{series of
the distribution � of T �T . Writing (1 � z)1=N = exp(log(1 � z)=N) and taking the
limit as N !1 of the formula in part (iv) of Lemma 8.6 proves part (b). �

Lemma 8.8. Let (0) = 1 and for p 2 N let

(p) =
pp

(p+ 1)!
:

Then the function

L(t) =
t

1�P1
p=0 (p)t

p+1

is de�ned, analytic and invertible with respect to composition in a neighborhood of 0
in C, and its inverse is given by

Lh�1i(z) = ze�z (38)

for jzj small.

Proof. It is clear that L is de�ned and analytic in a neighborhood of 0. Since L(0) = 0
and L0(0) = 1, L is invertible in a neighborhood of 0. Turning now to Lemma 8.5,
since limN!1 �N(p) = (p) for all p 2 N [ f0g, it follows that the coeÆcients in
the power series expansion for LN (t) around 0 converge as N ! 1 termwise to
the ceoÆecients in the power series expansion of L(t). Hence the coeÆcients in the

power series for L
h�1i
N (z) converge to those in the power series expansion Lh�1i(z).

Since L
h�1i
N (z) = z(1� z

N
)N , we get the formula (38). �

Theorem 8.9. The distribution � of T �T is absolutely continuous with respect to
Lebesgue measure and has support equal to the interval [0; e]. Its density function �
is de�ned on the interval (0; e) by

�

�
sin v

v
exp(v cot v)

�
=

1

�
sin v exp(�v cot v); 0 < v < �: (39)

Proof. By part (a) of Theorem 8.7, the Cauchy transform of � is

G�(�) =
1X
p=0

(p)��p�1:
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Using Lemma 8.8 and the technique used in the proof of equation (37) in Lemma 8.6,
we �nd

G�(w
�1ew) = 1� e�w

for jwj small. De�ne � : (0; �)! R by

�(v) =
sin v

v
exp(v cot v): (40)

Then �(v) > 0 and � is strictly decreasing, because for 0 < v < �,

d

dv
log �(v) = 2 cot v � 1

v
� v

sin2 v

= �
�
(v � sin v)2 + 2v sin v(1� cos v)

v sin2 v

�
< 0:

Moreover,

lim
v!0+

�(v) = e; lim
v!��

�(v) = 0;

so � is an order{reversing bijection from (0; �) onto (0; e). Hence we may de�ne

� : (0; e)! (0;1)

by equation (39). Using substitution and integration by parts, we haveZ e

0

�(x)dx = �
Z �

0

�(�(v))� 0(v)dv

= �
Z �

0

1

�
sin v exp(�v cot v)d

�
sin v

v
exp(v cot v)

�
=
� sin2 v

�v

�����
0

+
1

�

Z �

0

sin v

v
exp(v cot v)d

�
sin v exp(�v cot v)�

=
1

�

Z �

0

�
sin v

v

��
v

sin v

�
dv = 1:

So � is the density of a probability measure on (0; e).
It remains to prove that for all p 2 N,Z e

0

xp�(x)dx = (p) =
pp

(p+ 1)!
:

Let g(w) = we�w. By Lemma 8.8, the inverse of g in a neighborhood of 0 is

gh�1i(t) =
t

1�P1
p=0 (p)t

p+1
:

As in the proof of Lemma 8.5, (p) can be recovered for p � 1 as (p) = �cp+1 where

cp+1 =
1

2�i

Z
C0

g0(w)
wg(w)p+1

dw;
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for some smooth simple closed path C 0 winding once around 0 with positive orienta-
tion. In our case, g(w) = we�w and g0(w) = (1� w)e�w, so

(p) = �cp+1 =
1

2�i

Z
C0

w � 1

wp+2
epwdw: (41)

Since the integrand is analytic in Cnf0g, we may choose C 0 to be any piecewise
smooth closed path winding once around 0 with positive orientation. Let � 2 (�

2
; �)

and put C 0 = C
(�)
1 [ C(�)

2 , where C
(�)
1 and C

(�)
2 are parameterized by

C
(�)
1 : v 7! v cot v + iv; �� �v � �

C
(�)
2 : v 7! � cot�� iv; �� �v � �;

setting v cot v = 1 when v = 0. Since � cot�! �1 as �! ��, it is clear that���� Z
C
(�)
2

w � 1

wp+2
epwdw

����! 0

as �! ��, for all p � 1. Hence

(p) =
1

2�i

Z
C1

w � 1

wp+2
epwdw; (p 2 N);

where C1 is the path parametrized by

v 7! w = v cot v + iv =
v

sin v
eiv; �� < v < �;

with the convention v cot v = 1 = v= sin v when v = 0. We have�
1

w
ew
�p

=

�
sin v

v
exp(v cot v)

�p
w � 1

w2
ewdw = d

�
1

w
ew
�
= d

�
sin v

v
exp(v cot v)

�
e�w = e�v cot v�iv;

which give

(p) =
1

2�i

Z �

��
e�v cot v�iv�(v)p� 0(v)dv;

where � is as de�ned in equation (40). Since � is an even function, � 0 is odd and
using equation (39) we get

(p) =
�1
2�

Z �

��
e�v cot v(sin v)�(v)p� 0(v)dv

=
�1
�

Z �

0

(sin v)e�v cot v�(v)p� 0(v)dv =
Z e

0

�(x)xpdx;

as required. �
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Remark 8.10. From Theorem 8.9 one gets

�(x) � 1

x(log x)2
as x! 0+

�(x) �
p
2

�e3=2
(e� x)1=2 as x! e�:

Note that the asymptotic behevior as x! 0+ impliesZ e

0

�(x) logxdx = �1:
This equality also follows from the fact that the Fuglede{Kadison determinant of any
quasi{nilpotent operator in a II1{factor is equal to 0.

Corollary 8.11. kTk = pe.
Corollary 8.12. ker(T ) = ker(T �T ) = f0g.
Proof. This follows from �(f0g) = 0, where � is the distribution of T �T . �

9. �{moments of the operator T

In this section, T will denote a DT(Æ0; 1){element. Algorithm 2.5 allows com-
putation of an arbitrary �{moment of T , though for large moments this becomes
somewhat arduous. We will prove a recursion formula for general �{moments of T .
The proof will use the construction T = UT(X; �), (see De�nition 4.2), and will
involve asymptotic behavior of certain products of free semicircular variables.
We begin with a few preparatory lemmas.

Lemma 9.1. In a W�{noncommutative probability space (A; �), let B � A be a

unital, commutative W�{subalgebra and let eX and eY be semicircular elements having
the same second moments and such that the family B; f eXg; feY g is free. Let p 2 B
be a projection and let

X = p eXp+ peY (1� p) + (1� p)eY p+ (1� p)eY (1� p):
Then X is semicircular, has the same second moment as eX and eY , and the pair
fXg; B is free.

Proof. We may without loss of generality assume that � is a faithful trace, B �=
L1[0; 1] and �( eX2) = 1 = �(eY 2). Let k 2 N and let Bk � B be the linear span of
a set of k orthogonal projections in B, each having trace 1=k. We will show that if
~p 2 Bk is a projection, 0 < �(~p) < 1, and if

Z = ~p eX ~p+ ~peY (1� ~p) + (1� ~p)eY ~p+ (1� ~p)eY (1� ~p);

then Z is semicircular with �(Z2) = 1 and the pair fZg; B is free. By approximation,
this will suÆce to prove the lemma.
Let (D; �D) be a W�{noncommutative probability space having a �{free fam-

ily (xij)1�j�k; (yij)1�j�k where for all i, xii and yii are semicircular elements with
�D(x

2
ii) = �D(y

2
ii) = 1=k and for all i 6= j, xij and yij are circular elements with

�D(x
�
ijxij) = �D(y

�
ijyij) = 1=k. By results [25] of Voiculescu arising from his matrix
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model, we may take, in the W�{noncommutative probability space (Mk(D); �D Æ trk),eX = (xij)1�i;j�n, eY = (yij)1�i;j�n, Bk the set of diagonal k � k matrices with scalar
entries and ~p = diag(1; : : : ; 1; 0; : : : ; 0) with trk(~p) = `=k. Then

Z =

0BBBBBBB@

x11 � � � x1` y1;`+1 � � � y1k
...

...
...

...
...

...
x`1 � � � x`` y`;`+1 � � � y`k
y`+1;1 � � � y`+1;` y`+1;`+1 � � � y`+1;k
...

...
...

...
...

...
yk1 � � � yk` yk;`+1 � � � ykk

1CCCCCCCA
:

By these same results in [25], Z is semicircular and the pair Bk; fZg is free. �

Lemma 9.2. Let (A; �) be a W�{noncommutative probability space, let B � A be
a unital, commutative W�{subalgebra and let X 2 A be a semicircular element such
that the pair B; fXg is free. Let p 2 B be a projection, 0 < �(p) < 1. Then the
family

pB; fpXpg; pW �(fX(1� p); (1� p)Xg [ (1� p)B)p (42)

is free with respect to �(p)�1��pAp.

Proof. Without loss of generality we may take X = p eXp+ peY (1� p) + (1� p)eY p+
(1� p)eY (1� p) with eX, eY and B as in Lemma 9.1 and with � a faithful trace. Let
D = Cp+C(1�p) and let ED : A ! D be the �{preserving conditional expectation.
Then the family

B; W �(f eXg [D); W �(feY g [D) (43)

is free over D with respect to ED. Let us show that the family

pB; pW �(f eXg [D)p; pW �(feY g [ (1� p)B)p (44)

is free with respect to �(p)�1��pAp. Let

Yo =W �(feY g [D) \ kerED;
Xo =W �(f eXg [D) \ kerED;
Bo = B \ kerED:

Let C = Cp+(1�p)B and Co = C \Bo. By freeness of (43) over D, W �(feY g[ (1�
p)B) \ kerED is the weak closure of the linear span of �o(Yo; Co). (The de�nition
of this notation can be found near equation (30).) From this and the fact that p is

a minimal projection in C and D, we see that pW �(feY g [ (1� p)B)p \ ker � is the
weak closure of the linear span of p�p, where � is the set of all words belonging to
�o(Yo; Co) whose �rst and last letters come from Yo. Therefore, to prove freeness
of (44), it will suÆce to show

�o
�
p�p; pW �(f eXg [D)p \ ker �; pB \ ker �� � ker �:

Since p is a minimal projection in D,

pW �(f eXg [D)p \ ker � � Xo:
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Using this and the freeness of (43) over D, we have

�o
�
p�p; pW �(f eXg [D)p \ ker �; pB \ ker �� �

� p�o
�
�; pW �(f eXg [D)p \ ker �; pB \ ker ��p

� p�o(Yo; Xo; Bo)p � p(kerED)p � ker �;

so the family (44) is free. However,

pXp 2 pW �(f eXg [D)p

(1� p)X; (1� p)X 2 W �(feY g [ (1� p)B)
and the freeness of the family (42) follows from that of the family (44). �

Lemma 9.3. In a noncommutative probability space (Q; �), let X be a semicircular
element satisfying �(X2) = 1 and for n 2 N de�ne the function hn : (0; 1)! [0;1]
by

hn(t) = �((XptX(1� pt))n);
where pt 2 A is an idempotent such that �(pt) = t and the pair X; pt is free. Then
the asymptotic behavior of hn(t) as t! 0 is

hn(t) = t +O(t2): (45)

Proof. We will use Speicher's moment{cummulant formula [22, Theorem 2.17], (see
alternatively equation (3.14) of [18]), which gives

�
�
(XptX(1� pt))n

�
=

X
�2NC(2n)

k�[X;X; : : : ; X]�K(�)[pt; 1� pt; : : : ; pt; 1� pt]: (46)

Here the sum is over all non{crossing partitions � of f1; : : : ; 2ng, k�[X; : : : ; X] is the
corresponding cummulant and K(�) 2 NC(2n) is the Kreweras complement of �.
Since

km[X; : : : ; X] =

(
1 if m = 2

0 otherwise;

the sum (46) becomes

�
�
(XptX(1� pt))n

�
=

X
�2NC2(2n)

�K(�)[pt; 1� pt; : : : ; pt; 1� pt];

where NC2(2n) is the set of non{crossing pairings of f1; : : : ; 2ng. For any � 2
NC2(2n), K(�) will never have a block containing both even and odd numbers, and

�K(�)[pt; 1� pt; : : : ; pt; 1� pt] = ta(1� t)b;
where a is the number of blocks of K(�) containing odd numbers and b is the number
of blocks containing even numbers. Thus, if a � 2, then �K(�)[pt; 1�pt; : : : ; pt; 1�pt] =
O(t2) as t! 0. There is exactly one non{crossing pairing � of f1; : : : ; 2ng such that
K(�) groups all odd numbers into one block, namely this one:
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XptX(1� pt)XptX(1� pt)X � � � ptX(1� pt).
� � �

This yields t in the asymptotic expansion (45) of hn(t). �

Recall we let T be a DT(Æ0; 1){element in a �{noncommutative probability space
(A; �). For n 2 N and k1; : : : ; kn; `1; : : : ; `n 2 N [ f0g, let

M(k1; `1; : : : ; kn; `n) = �((T �)k1T `1 : : : (T �)knT `n): (47)

The following properties of these moments are easily seen from Lemma 2.4 and Al-
gorithm 2.5, and the fact (Proposition 2.12) that also T � is a DT(Æ0; 1){element.

Proposition 9.4. Let n 2 N and k1; : : : ; kn; `1; : : : ; `n 2 N [ f0g.
(i) If k1 + � � �kn 6= `1 + � � �+ `n then M(k1; `1; : : : ; kn; `n) = 0.
(ii) M(k1; `1; : : : ; kn; `n) =M(`1; k2; `2; : : : ; kn; `n; k1).
(iii) M(k1; `1; : : : ; kn; `n) =M(`n; kn; `n�1; kn�1; : : : ; `1; k1).
(iv) If k1 = 0 and n � 2 then

M(k1; `1; : : : ; kn; `n) =M(k2; `2; : : : ; kn�1; `n�1; kn; `n + `1):

We are now ready to state and prove the recursion formula.

Theorem 9.5. Let n 2 N and k1; : : : ; kn; `1; : : : ; `n 2 N, (all nonzero), be such that
m := k1 + � � �+ kn = `1 + � � �+ `n. Then

M(k1;`1; : : : ; kn; `n) =
1

m+ 1

nX
r=1

X
1�j(1)<���<j(r)�n

(48)

�
M(k1; `1; : : : ; kj(1)�1; `j(1)�1; kj(1) � 1; `j(r) � 1; kj(r)+1; `j(r)+1; : : : ; kn; `n)

r�1Y
i=1

M(`j(i) � 1; kj(i)+1; `j(i)+1; : : : ; kj(i+1)�1; `j(i+1)�1; kj(i+1) � 1)

�
:

Proof. We assume (A; �) = (L(F2); �) and let T = UT(X; �) with X and � as in
Lemma 4.1. We will let B denote the image of �. For 0 < t < 1 let pt = �(1[0;t]) 2 B.
Then �(pt) = t. Let St = (1 � pt)T and Qt = ptT . From Lemmas 4.6 and 4.10, we
have that

(a) (1 � t)�1=2St is an element of W �((1 � pt)X(1 � pt) [ (1 � pt)B) and is a
DT(Æ0; 1){operator in ((1� pt)A(1� pt); (1� t)�1��(1�pt)A(1�pt))

(b) t�1=2Qtpt = t�1=2Tpt is an element of W �(ptXpt [ ptB) and is a DT(Æ0; 1){
operator in (ptApt; t�1��ptApt).

Substituting T = St + Qt into (47) and distributing, M(k1; `1; : : : ; kn; `n) is written
as a sum of the 22m terms obtained by substituting St or Qt variously for each T
in (47). One of these terms is

�((S�t )
k1S`1t � � � (S�t )knS`nt ): (49)
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Using the observation (a) about St, we see that the term (49) equals

(1� t)m+1M(k1; `1; : : : ; kn; `n):

Thus �
1� (1� t)m+1

�
M(k1; `1; : : : ; kn; `n)

is equal to the sum of the remaining 22m� 1 terms, in each of which Qt or its adjoint
appears at least once. As t ! 0, we have the asymptotic behavior 1� (1� t)m+1 =
(m + 1)t + O(t2). We will show that the asympototic behavior as t ! 0 of each
of the remaining 22m � 1 terms is ct + O(t3=2) for some constant c. The value of
M(k1; `1; : : : ; kn; `n) will then be the sum of all these constants, divided by m + 1.
Since ptSt = 0 = Stpt, any of these 22m � 1 terms is zero unless it is of the form

�((S�t )
k1�a1(Q�

t )
a1Qb1

t S
`1�b1
t � � � (S�t )kn�an(Q�

t )
anQbn

t S
`n�bn
t ) (50)

for some aj 2 f0; 1; : : : ; kjg and bj 2 f0; 1; : : : ; `jg, and where for all j, aj 6= 0 ()
bj 6= 0. Writing Qt = ptTpt + ptX(1� pt) we see

�(Q�
tQt) = �(ptT

�ptTpt) + �((1� pt)XptX(1� pt)):
From the obervation (b) about ptTpt, we �nd �(ptT

�ptTpt) = t2=2. Moreover, using
freeness of X and pt, we �nd �((1�pt)XptX(1�pt)) = t� t2, so �(Q�

tQt) = t�(t2=2)
and kQtk2 < t1=2. On the other hand,

kQ2
tk2 = kptTptTk2 � kptTptk kQtk2 � 2t1=2kQtk2 < 2t:

Consequently,

kQ�
tQ

2
tk1 � kQ�

t k2kQ2
t k2 < 2t3=2:

Since kStk; kQtk � kTk � 2 for all t, if in (50) aj � 1 and bj � 2 for some j, then

j�((S�t )k1�a1(Q�
t )
a1Qb1

t S
`1�b1
t � � � (S�t )kn�an(Q�

t )
anQbn

t S
`n�bn
t )j �

� k(S�t )k1�a1(Q�
t )
a1Qb1

t S
`1�b1
t � � � (S�t )kn�an(Q�

t )
anQbn

t S
`n�bn
t k1

� 22m�3kQ�
tQ

2
tk1 � 22m�3t3=2;

and similarly if aj � 2 and bj � 1. Therefore

�((S�t )
k1�a1(Q�

t )
a1Qb1

t S
`1�b1
t � � � (S�t )kn�an(Q�

t )
anQbn

t S
`n�bn
t ) = O(t3=2)

as t ! 0, except possibly if for all j either aj = 0 = bj or aj = 1 = bj; these are the
terms we shall examine in more detail. Each of them can be written in the form

�(F1(Q
�
tQt)

d1F2(Q
�
tQt)

d2 � � �Fs(Q�
tQt)

ds) (51)

for some s 2 N and d1; : : : ; ds 2 N, where each Fj is a monomial in St and S�t
with Fj 6= 1, or, when \s = 0," in the form �((Q�

tQt)
n). Note that we always have

Fj = (1 � pt)Fj(1 � pt). Let us show that for all s 2 N and d1; : : : ; ds 2 N, the
asymptotic behavior

�
�
(1� pt)(Q�

tQt)
d1(1� pt)(Q�

tQt)
d2 � � � (1� pt)(Q�

tQt)
ds) = t+O(t2) (52)

holds as t! 0. We have

Q�
tQt = (1� pt)XptX(1� pt) + (1� pt)XptTpt + ptT

�ptX(1� pt) + ptT
�ptTpt;
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so (1 � pt)(Q
�
tQt)

dj (1 � pt) is equal to ((1 � pt)XptX(1 � pt))
dj plus some other

monomials in pt, (1 � pt), X, T � and T , each of which contains at least one of the
submonomials ptT

�ptTpt or ptTptT �pt. Since

kptT �ptTptk1 = kptTptT �ptk1 = �(ptT
�ptTpt) = t2=2;

we obtain the asymptotic behavior

�
�
(1� pt)(Q�

tQt)
d1(1� pt)(Q�

tQt)
d2 � � � (1� pt)(Q�

tQt)
ds)

� ��((1� pt)XptX(1� pt))d1+���+ds
�
= O(t2)

as t ! 0. Now Lemma 9.3 shows that the asymptotic behavior (52) holds. Similar
reasoning shows that for every n 2 N, �((Q�

tQt)
n) = t+O(t2) as t! 0.

Using observation (b) above we have Qt 2 W �(ptX [ ptB). Using observation (a)
and Lemma 9.2, we see that the pair

fStg; f(1� pt)(Q�
tQt)

k(1� pt) j k 2 Ng (53)

is �{free with respect to (1 � t)�1��(1�pt)A(1�pt). Therefore, Speicher's moment{
cummulant formula [22, Theorem 2.17] gives

�(F1(Q
�
tQt)

d1F2(Q
�
tQt)

d2 � � �Fs(Q�
tQt)

ds) =
X

�2NC(s)

k�[F1; : : : ; Fs]�K(�)[(1� pt)(Q�
tQt)

d1(1� pt); : : : ; (1� pt)(Q�
tQt)

ds(1� pt)]:
However, the asymptotic behavior (52) implies

�K(�)[(1� pt)(Q�
tQt)

d1(1� pt); : : : ; (1� pt)(Q�
tQt)

ds(1� pt)] =

=

(
t+O(t2) if K(�) = 1s;

O(t2) otherwise,

where 1s is the (trivial) partition of f1; : : : ; sg into only one block. If K(�) = 1s
then � = 0s, which is the partition of f1; : : : ; sg into s blocks, and k0s[F1; : : : ; Fs] =Qs

j=1 �(Fj). Therefore,

�(F1(Q
�
tQt)

d1F2(Q
�
tQt)

d2 � � �Fs(Q�
tQt)

ds) =

� sY
j=1

�(Fj)

�
t+O(t2)

as t! 0.
Now let us put this together to obtain the formula (48). Of the 22m � 1 terms

in which Qt or its adjoint appears, after dividing by t, all contribute zero as t ! 0
except those of the form

�
�
(S�t )

k1�c1(Q�
tQt)

c1S`1�c1t (S�t )
k2�c2(Q�

tQt)
c2S`2�c2t � � � (S�t )kn�cn(Q�

tQt)
cnS`n�cnt

�
;
(54)
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where c1; : : : ; cn 2 f0; 1g. We perform the summation
Pn

r=1

P
1�j(1)<���<j(r)�n, let

cj(1) = cj(2) = � � � = cj(r) = 1 and let all other ci = 0. Then the term (54) becomes

�
�
(S�t )

k1S`1t � � � (S�t )kj(1)�1S
`j(1)�1

t (S�t )
(kj(1))�1(Q�

tQt)

S
(`j(1))�1
t (S�t )

kj(1)+1S
`j(1)+1

t � � � (S�t )kj(2)�1S
`j(2)�1

t (S�t )
(kj(2))�1(Q�

tQt)

...

S
(`j(r�1))�1
t (S�t )

kj(r�1)+1S
`j(r�1)+1

t � � � (S�t )kj(r)�1S
`j(r)�1

t (S�t )
(kj(r))�1(Q�

tQt)

S
(`j(r))�1
t (S�t )

kj(r)+1S
`j(r)+1

t � � � (S�t )knS`nt
�
=

= �
�
S
(`j(r))�1
t (S�t )

kj(r)+1S
`j(r)+1

t � � � (S�t )knS`nt (S�t )
k1S`1t � � �

� � � (S�t )kj(1)�1S
`j(1)�1

t (S�t )
(kj(1))�1(Q�

tQt)

S
(`j(1))�1
t (S�t )

kj(1)+1S
`j(1)+1

t � � � (S�t )kj(2)�1S
`j(2)�1

t (S�t )
(kj(2))�1(Q�

tQt)

...

S
(`j(r�1))�1
t (S�t )

kj(r�1)+1S
`j(r�1)+1

t � � � (S�t )kj(r)�1S
`j(r)�1

t (S�t )
(kj(r))�1(Q�

tQt)
�
:

Divided by (m + 1)t, this quantity tends in the limit as t! 0 to

1

m + 1
M(`j(r) � 1; kj(r)+1; `j(r)+1; : : : ; kn; `n; k1; `1; : : : ; kj(1)�1; `j(1)�1; kj(1) � 1)�

�
r�1Y
i=1

M(`j(i) � 1; kj(i)+1; `j(i)+1; : : : ; kj(i+1)�1`j(i+1)�1; kj(i+1) � 1)

=
1

m + 1
M(k1; `1; : : : ; kj(1)�1; `j(1)�1; kj(1) � 1; `j(r) � 1; kj(r)+1; `j(r)+1; : : : ; kn; `n)�

�
r�1Y
i=1

M(`j(i) � 1; kj(i)+1; `j(i)+1; : : : ; kj(i+1)�1`j(i+1)�1; kj(i+1) � 1) :

Thus we obtain (48). �

We �nish this section and the paper with a conjecture.

Conjecture 9.6. For all k; n 2 N,

�
�
((T �)kT k)n

�
=

nnk

(nk + 1)!
:

The conjecture was proved in the case k = 1 in Theorem 8.7. It is easy to prove in
the case n = 1, either from the recursion formula (48) or using Lemma 2.4, and either
of these techniques with a little more work can be used to prove it in the case n = 2,
(or see the proof by contour integration of a generating function in [7]). We have,
without making an e�ort to go very far, checked some additional instances of the
conjecture on a computer using the recursion formula (48). The following table lists
the cases of the conjecture that we have either proved or checked by computation:
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n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 all n
all k all k k � 60 k � 25 k � 15 k � 10 k � 5 k = 1.
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