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1 Introduction

This chapter is concerned with statistical inference for a large class of point
process models, which were studied in a seminal paper by Cox (1955) under
the name doubly stochastic Poisson processes, but are today usually called
Cox processes. Much of the literature on Cox processes is concerned with
point processes de�ned on the real line R, but we pay attention to the gen-
eral d-dimensional Euclidean case of Rd , and in particular to the planar case
d = 2 (which covers most cases of spatial applications). However, the theory
does not make much use of the special properties of Rd , and extensions to
other state spaces are rather obvious. We discuss in some detail how various
Cox process models can be constructed and simulated, study nonparamet-
ric as well as parametric analysis (with a particular emphasis on minimum
contrast estimation), and relate the methods to simulated and real datasets
of aggregated spatial point patterns. Further material on Cox processes can
be found in the references mentioned in the sequel and in Grandell (1976),
Diggle (1983), Daley & Vere-Jones (1988), Stoyan, Kendall & Mecke (1995),
and the references therein.

To explain shortly what is meant by a Cox process, consider the spatial
point patterns in Figure 1. As demonstrated in Section 3, each point pattern
in Figure 1 is more aggregated than can be expected under a homogeneous
Poisson process (the reference model in statistics for spatial point patterns).
The aggregation is in fact caused by a realization z = fz(x) : x 2 R

2g of
an underlying nonnegative spatial process Z, which is shown in gray scale in

�To appear as a chapter in Spatial Cluster Modelling, eds. Andrew B. Lawson and

David Denison, Chapman and Hall.
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Figure 1. If the conditional distribution of a point process X given Z = z
is an inhomogeneous Poisson process with intensity function z, we call X
a Cox process with random intensity surface Z (for details, see Section 3).
Note that points of X are most likely to occur in areas where Z is large,
cf. Figure 1. In many applications we can think of Z as an underlying
\environmental" process. Aggregation in a spatial point process X may
indeed be due to other sources, including (i) clustering of the points in X
around the points of another point process C, and (ii) interaction between
the points in X. For certain models, (i) is equivalent to a Cox process model
(see Section 5.1). This is in fact the case for the upper left point pattern in
Figure 1, where the cluster centers C = fc1; : : : ; cmg are also shown. The
case (ii) is not considered in this contribution, but we refer the interested
reader to the literature on Markov point processes, see e.g. M�ller (1999)
and van Lieshout (2000).

General de�nitions and descriptions of Poisson and Cox processes are
given in Sections 2{3, while Section 4 provides some background on non-
parametric analysis. Section 5 concerns certain parametric models for Cox
processes. Speci�cally, Section 5.1 considers the case where Neyman-Scott
processes (Neyman & Scott 1958) are Cox processes, Section 5.2 deals with
log Gaussian Cox processes (Coles & Jones 1991, M�ller, Syversveen &
Waagepetersen 1998), and Section 5.3 with shot noise G Cox processes
(Brix 1999). The latter class of models include the Poisson/gamma processes
(Wolpert & Ickstadt 1998). As explained in more detail later, the point pat-
terns in Figure 1 are realizations of a certain Neyman-Scott process, a log
Gaussian Cox process (LGCP), a shot-noise G Cox process (SNGCP), and a
certain \logistic process", respectively.

In most applications with an aggregated point pattern modeled by a Cox
process X, the underlying environmental process Z is unobserved. Further,
only X \W is observed, where W is a bounded region contained in the area
where the points in X occur. In Section 6 we discuss various approaches to
estimation in parametric models for Cox processes and focus in particular on
minimum contrast estimation. In Section 7 we discuss how Z and X nW can
be predicted under the various models from Section 5. Section 8 contains
some concluding remarks.

The discussion in Sections 5{7 will be related to the dataset in Figure 2,
which shows the positions of 378 weed plants (Veronica spp./ speedwell).
This point pattern is a subset of a much larger dataset analyzed in Brix &
M�ller (2001) and Brix & Chadoeuf (2000) where several weed species at
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Figure 1: From left to right, top to bottom: realizations of Thomas, LGCP,
SNGCP, and \logistic" processes, and associated random intensity surfaces
(in gray scale). The crosses in the upper left plot show the cluster centers for
the Thomas process. For more details, see Example 4 (Thomas), Example 5
(LGCP), Example 6 (SNGCP), and Example 2 and Example 5 (\logistic").
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di�erent sampling dates were considered. Note that we have rotated the
design 90Æ in Figure 2. The 45 frames are of size 30 � 20 cm2, and they
are organized in 9 groups each containing 5 frames, where the vertical and
horizontal distances between two neighbouring groups are 1 m and 1:5 m,
respectively. The size of the experimental area is 7:5�5 m2. The observation
window W is given by the union of the 45 frames.

2 Poisson processes

This section surveys some fundamental concepts of point processes and Pois-
son processes, without going too much into measure theoretical details; for
further details, we refer to Daley & Vere-Jones (1988) and Kingman (1993).

By a point process X in Rd we understand a random subset X � Rd

which is locally �nite, i.e. X \A is �nite for any bounded region A � Rd . By
a region we mean a Borel subset of Rd , and measurability of X is equivalent
to that

N(A) � card(X \ A)

is a random variable for each bounded region A.
Henceforth X denotes a point process in Rd . Its distribution is deter-

mined by the joint distribution of N(A1); : : : ; N(An) for any disjoint regions
A1; : : : ; An and any integer n � 1.

Now, let � denote an arbitrary locally �nite and di�use measure de�ned
on the regions in Rd , i.e. �(A) <1 for bounded regions A, and �(fxg) = 0
for all singleton sets fxg � R

d . We say that X is a Poisson process with
intensity measure � if the following two properties are satis�ed:

(a) independent scattering: N(A1); : : : ; N(An) are independent for disjoint
bounded regions A1; : : : ; An and integers n � 2;

(b) N(A) is Poisson distributed with mean �(A) for bounded regions A.

The properties (a){(b) are easily seen to be equivalent to (b){(c), where

(c) for any bounded region A with �(A) > 0 and any integer n � 1, condi-
tionally on N(A) = n, the n points x1; : : : ;xn inX\A are independent
and each point has distribution �(A \ �)=�(A).

The conditional distribution in (c) is called a binomial process. Using (a){(c)
it is not hard to verify that the Poisson process exists.
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Figure 2: Positions of weed plants when the design is rotated 90Æ.
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A point process is said to be stationary if its distribution is invariant
under translations in Rd , and isotropic if its distribution is invariant under
rotations around the origin in R

d . A Poisson process which is stationary is
also isotropic, so it is called a homogeneous Poisson point process; otherwise
it is said to be an inhomogeneous Poisson process.

Often � has a density � : Rd ! [0;1) so that �(A) =
R
A
�(x)dx for all

regions A. Then � is called the intensity function. A homogeneous Poisson
process has a constant intensity function, and this constant is simply called
the intensity.

By (b){(c) it is very easy to simulate a homogeneous Poisson process X
on e.g. a rectangular or spherical region B. Denote �hom the intensity of
X, and imagine we have simulated X on B. Suppose we want to simulate
another Poisson process Xth on a bounded region A � B, where Xth has
an intensity function �th which is bounded on A by �hom. Then we obtain
a simulation of Xth \ A by including/excluding the points from X \ A in
Xth \ A independently of each other, so that a point x 2 X \ A is included
in Xth \ A with probability �(x) = �th(x)=�hom. This procedure is called
independent thinning; it is extended in Example 2, Sections 3{4.

Finally, all moments of the counts N(�) for a Poisson process are easily
obtained from (a){(b). For instance,

EN(A) = �(A) and C ov(N(A); N(B)) = �(A \ B) (1)

for bounded regions A and B.

3 Cox processes

A natural extension of a Poisson process is to let � be a realization of a
random measure M so that the conditional distribution of X given M =
� follows a Poisson process with intensity measure �. Then X is said to
be a Cox process driven by M . This de�nition can be extended to both
multivariate point processes and to space-time processes, see Diggle (1983),
M�ller, Syversveen & Waagepetersen (1998), Brix & M�ller (2001), and Brix
& Diggle (2001).

Example 1 A simple example of a Cox process is amixed Poisson process with
M(A) =

R
A
Zdx where Z is a positive random variable, i.e. XjZ follows a

homogeneous Poisson process with intensity Z. For example, if Z is gamma

6



distributed, N(A) follows a negative binomial distribution for bounded re-
gions A. Note that N(A) and N(B) are correlated for disjoint bounded re-
gions A and B (except in the trivial case where Z is almost surely constant,
i.e. when we have a homogeneous Poisson process).

Example 2 Suppose that X is a Cox process driven by M , and � = f�(x) :
x 2 Rdg � [0; 1] is a random process which is independent of (X;M). Let
Xth denote the point process obtained by random independent thinning of
the points in X with retention probabilities �. More precisely, conditionally
on � = �, Xth is obtained by independent thinning of X where a point in
X is retained with probability �(x). Then Xth is a Cox process driven by
Mth(A) =

R
A
�(x)M(dx). A simple example is shown in the lower right plot

in Figure 1, where X is a homogenous Poisson process (i.e.M is proportional
to Lebesgue measure), and � follows a \logistic" process, i.e. log(�=(1��))
is a Gaussian process (see Example 5 in Section 5.2).

Cox processes are like inhomogeneous Poisson processes models for aggre-
gated point patterns. Usually in applications M is unobserved, and so we
cannot distinguish a Cox process X from its corresponding Poisson process
XjM when only one realization of X \W is available (where W denotes the
observation window). Which of the two models might be most appropriate,
i.e. whether M should be random or \systematic"/deterministic, depends on

� prior knowledge and the scienti�c questions to be investigated: if e.g.
one wants to investigate the dependence of certain covariates associated
to M , these may be treated as systematic terms, while unobserved
e�ects may be treated as random terms (for an example, see Benes,
Bodlak, M�ller & Waagepetersen 2001);

� the particular application: if it seems diÆcult to model an aggregated
point pattern with a parametric class of inhomogeneous Poisson pro-
cesses (e.g. a class of polynomial intensity functions), Cox process mod-
els such as those in Section 5 may allow more exibility and/or a more
parsimonious parametrization;

� another application is nonparametric Bayesian modelling: nonparamet-
ric Bayesian smoothing for the intensity surface of an inhomogeneous
Poisson process is treated in Heikkinen & Arjas (1998); see also Re-
mark 4 in Section 8.
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Distributional properties of a Cox process X driven by M follow imme-
diately by conditioning on M and exploiting the properties of the Poisson
process XjM . For instance, by (1),

EN(A) = EM(A)

and
C ov(N(A); N(B)) = C ov(M(A);M(B)) + EM(A \B)

for bounded regions A and B. Hence, Var(N(A)) = Var(M(A))+EM(A) �
EN(A) with equality only when M(A) is almost surely constant as in the
Poisson case. In other words, a Cox process exhibits over dispersion when
compared to a Poisson process.

In many speci�c models for Cox processes, including those considered
in Examples 1{2 and in Section 5, M is speci�ed by a nonnegative spatial
process Z = fZ(x) : x 2 Rdg so that

M(A) =

Z
A

Z(x)dx: (2)

Then we say that X is driven by the random intensity surface Z. In the
sequel we restrict attention to Cox processes driven by a random intensity
surface.

Simulation of X is in principle easy: if we have a simulation zA = fz(x) :
x 2 Ag of Z restricted to a bounded region A, where zA is bounded by a
constant, then the simulation method at the end of Section 2 can be used
to obtain a realization of X \ AjZA = zA. Note that by the independent
scattering property (a) in Section 2, the conditional distribution X \ AjZ
depends only on ZA.

4 Summary statistics

The �rst and second order moments of the counts N(�) for a Cox process can
be expressed in terms of two functions:

�(x) = EZ(x) and g(x1;x2) = E [Z(x1)Z(x2)]=[�(x1)�(x2)]

which are called the intensity function and the pair correlation function,
respectively (\pair correlation function" is standard terminology, though it

8



is somewhat misleading). The intensity and pair correlation functions can
be de�ned for general point process models and not just Cox processes, see
e.g. Stoyan et al. (1995). Intuitively, E [Z(x1)Z(x2)]dx1dx2 is the probability
for having a point from X in each of the in�nitesimally small volumes dx1

and dx2. It is, however, more informative to work with the pair correlation
function which is normalized with the \marginal probabilities" �(x1)dx1 and
�(x2)dx2 for observing a point in dx1 and dx2, respectively. Another good
reason is that g is invariant under random independent thinning of a point
process; this is exempli�ed in Example 3 below for the particular case of a
Cox process. Finally, g = 1 in the Poisson case.

Example 3 Consider again Example 2 with M given by (2), and let � and
g denote the intensity and pair correlation functions of X. Then Xth is a
Cox process with random intensity surface Zth(x) = �(x)Z(x), intensity
function �th(x) = E�(x)�(x), and pair correlation function gth = g.

The intensity and pair correlation functions can be estimated by nonpara-
metric methods under rather general conditions, see Diggle (1985), Stoyan
& Stoyan (1994, 2000), Baddeley, M�ller & Waagepetersen (2000), Ohser &
M�ucklich (2000), and M�ller &Waagepetersen (2001). When the pair correla-
tion function exists (as it does for the Cox processes we consider), all we need
to assume is that g is invariant under translations, i.e. g(x1;x2) = g0(x1�x2).
Then also a so-called K-function can be de�ned by

K(r) =

Z
kxk�r

g0(x)dx; r � 0; (3)

and it is easier to estimate K than g by nonparametric methods (Baddeley
et al. 2000). For a stationary point process X, Ripley's K-function (Ripley
1976) agrees with K in (3), and �K(r) can be interpreted as the expected
number of further points within distance r from a typical point in X. Note
that K and g0 are in one-to-one correspondence if g0(x) depends only on the
distance kxk. Moreover, one often makes the transformation

L(r) = [K(r)=(�d=2=�(1 + d=2))]1=d

as L(r) = r is the identity in the Poisson case.
Nonparametric estimators of �, g, K, and L are summary statistics of the

�rst and second order properties of a spatial point process. These may be
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supplied with other summary statistics, including nonparametric estimators
of the so-called F , G, and J functions which are based on interpoint distances
for a stationary point process X. Briey, for any r > 0, 1 � F (r) is the
probability that X has no points within distance r from an arbitrary �xed
point in R

d , 1 � G(r) is the conditional probability that X has no further
points within distance r from a typical point inX, and J(r) = (1�G(r))=(1�
F (r)) (de�ned for F (r) < 1; see van Lieshout & Baddeley 1996). For a
stationary Cox process,

1� F (r) = E exp

�
�

Z
kxk�r

Z(x)dx

�
;

and

1�G(r) = E

�
exp

�
�

Z
kxk�r

Z(x)dx

�
Z(0)

��
�:

In the special case of a homogeneous Poisson process,

1� F (r) = 1�G(r) = exp
�
� �rd�d=2=�(1 + d=2)

�
:

Further results are given in Section 5.1.
A plot of a summary statistic is often supplied with envelopes obtained

by simulation of a point process under some speci�ed model: Consider e.g.
the L-function. Let L̂0 be a non-parametric estimator of L obtained from
X observed within some window W , and let L̂1; : : : ; L̂n be estimators ob-
tained in the same way as L̂0 but from i.i.d. simulations X1; : : : ; Xn under
the speci�ed model for X. Then, for each distance r, we have that

min
1�i�n

L̂i(r) � L̂0 � max
1�i�n

L̂i(r) (4)

with probability (n � 1)=(n + 1) if X follows the speci�ed model. We refer
to the bounds in (4) as lower and upper envelopes. In our examples we
choose n = 39 so that (4) speci�es a 2:5% lower envelope and a 97:5% upper
envelope.

The estimated L; g; and F functions for the weed data in Figure 2 are
shown in Figure 3. The �gure shows also the averages of these summary
statistics and envelopes obtained from 39 simulations under a homogeneous
Poisson process with expected number of points in W equal to the observed
number of points. The plots for L and g clearly indicate aggregation, so
the homogeneous Poisson process provides a poor �t. We do not consider
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G due to problems with handling of edge e�ects in the special experimental
design for the weed plants (see the discussion in Brix & M�ller, 2001). The
averages are close to the theoretical curves except for g where ĝ(r) is biased
upwards for small r < 2:5 cm (see the discussion p. 286 in Stoyan & Stoyan,
1994). The envelopes for g are rather wide for 25 cm < r < 55 cm where few
interpoint distances are observed. Similarly, the envelopes for L are wide for
r > 25 cm.
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Figure 3: Summary statistics for positions of weed plants. Left: estimated
L(r) � r (solid line), envelopes, and average calculated from 39 simulations
under the �tted homogeneous Poisson process (- - -), and theoretical value of
L(r)� r ({ { {). Middle and right: as left but for g and F , respectively.

5 Parametric models of Cox processes

5.1 Neyman-Scott processes as Cox processes

A Neyman-Scott process (Neyman & Scott 1958) is a particular case of a
Poisson cluster process. In this section we consider the case when Neyman-
Scott processes become Cox processes.

Let C be a homogeneous Poisson process of cluster centers with intensity
� > 0. Assume that conditionally on C = fc1; c2; : : :g, the clustersX1; X2; : : :
are independent Poisson processes, where the intensity measure of Xi; i � 1;
is given by

�i(A) =

Z
A

�f(x� ci)dx (5)

where � > 0 is a parameter and f is a density function for a continuous
random variable in R

d . Then X = [iXi is a Neyman-Scott process. It is

11



also a Cox process with random intensity surface

Z(x) =
X
c2C

�f(x� c): (6)

The process (6) is stationary. It is also isotropic if f(x) only depends on
kxk. The intensity and the pair correlation function are given by

� = ��; g0(x) = 1 + h(x)=�; (7)

where

h(x) =

Z
f(x0)f(x+ x0)dx0

is the density for the di�erence between two independent points which each
have density f . Furthermore,

J(r) =

Z
f(x1) exp

�
� �

Z
kx2k�r

f(x1 + x2)dx2

�
dx1;

see Bartlett (1975) and Lieshout, M. N. M. van & Baddeley (1996). Hence,
F � G and J is nonincreasing with range [exp(��); 1].

Example 4 Closed form expressions for g0 are known for a few Neyman-Scott
models. A Thomas process (Thomas 1949) has

f(x) =
�
2�!2

��d=2
exp

�
� kxk2=

�
2!2

��
; (9)

the density for Nd(0; !
2Id), i.e. for d independent normally distributed vari-

ables with mean 0 and variance !2 > 0. This process is isotropic with

g0(x) = 1 +
�
4�!2

��d=2
exp

�
� kxk2=

�
4!2

��
=�: (10)

The K-function can be expressed in terms of the cumulative distribution
function for a �2-distribution with d degrees of freedom, and for d = 2 we
simply obtain

K(r) = �r2 + [1� exp(�r2=(4!2))]=�: (11)

The upper left plot in Figure 1 shows a simulation of a Thomas process with
� = 10, � = 10, and !2 = 0:1.

Another mathematically tractable model is aMat�ern cluster process (Mat�ern
1960, Mat�ern 1986), where f is the uniform density on a d-dimensional ball
with center at the origin; see Santal�o (1976) and Stoyan et al. (1995).
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We can obviously modify the de�nition of a Neyman-Scott process and
the results above in many ways, e.g. by replacing � and f(x� ci) in (5) by
�(ci) and fci

(x) (using an obvious notation), or by replacing C in (6) by an
arbitrary Poisson process | we consider such extensions in Section 5.3. In
either case we obtain a Cox process.

Simulation of a Neyman-Scott process follows in principle straightfor-
wardly from either (6) and its de�nition as a Cox process or from its con-
struction as a Poisson cluster process. However, boundary e�ects play a role:
if we wish to simulate X within a bounded region W , we �rst simulate C
within an extended region Bext � W so that points in X associated to cluster
centers in C nBext fall in W with a negligible probability.

5.2 Log Gaussian Cox processes

If Y = logZ is a Gaussian process, i.e. if any �nite linear combinationP
aiY (xi) follows a normal distribution, then X is said to be a log Gaussian

Cox process (LGCP). Such models have independently been introduced in
astronomy by Coles & Jones (1991) and in statistics by M�ller et al. (1998).
The de�nition of an LGCP can easily be extended in a natural way to mul-
tivariate LGCPs (M�ller et al. 1998) and to multivariate spatio-temporal
LGCPs (Brix & M�ller 2001, Brix & Diggle 2001).

It is necessary to impose weak conditions on the mean and covariance
functions

m(x) = EY (x) and c(x1;x2) = C ov(Y (x1); Y (x2))

in order to get a well-de�ned and �nite integral
R
B
Z(x)dx for bounded

regions B. For example, we may require that x ! Y (x) is almost surely
continuous. Weak conditions ensuring this, and which are satis�ed for the
models of m and c used in practice, are given in Theorem 3.4.1 in Adler
(1981) (or see M�ller et al. 1998).

Example 5 The covariance function belongs to the power exponential family
if

c(x1;x2) = �2 exp
�
� k(x1 � x2)=�k

Æ
�
; 0 � Æ � 2; (12)

where � > 0 is a scale parameter for the correlation and �2 > 0 is the
variance. The special case Æ = 1 is an exponential covariance function, and
Æ = 2 a Gaussian covariance function. If m is continuous, then x! Y (x) is

13



almost surely continuous. For the LGCP in the upper right plot in Figure 1,
(Æ; �) = (1; 0:14). The lower right plot in Figure 1 is for the logistic process
in Example 2 with (Æ; �) = (2; 0:10). In both plots the Gaussian process has
mean zero and variance one.

Due to the richness of possible mean and covariance functions, LGCPs
are exible models for aggregation as demonstrated in M�ller et al. (1998),
where examples of covariance functions together with simulated realizations
of LGCPs and their underlying Gaussian processes are shown. In the speci�c
examples of applications considered in this paper, we let m be constant and
c an exponential covariance function. Brix & M�ller (2001) and M�ller &
Waagepetersen (2001) consider situations where m is a linear or polynomial
function, and Benes, Bodlak, M�ller & Waagepetersen (2001) consider a case
where m depends on covariates.

The intensity and pair correlation functions of an LGCP are given by

�(x) = exp(m(x) + c(x;x)=2) and g(x1;x2) = exp(c(x1;x2)): (13)

Hence there is a one-to-one correspondence between (m; c) and (�; g), and
the distribution is determined by (�; g). This makes parametric models easy
to interpret. Moreover, stationarity respective isotropy of an LGCP is equiv-
alent to stationarity respective isotropy of (m; c) or equivalently of (�; g).

The simple relationship (13) indicates that LGCPs are more tractable
for mathematical analysis than Neyman-Scott processes; further results are
given in M�ller et al. (1998).

We now turn to simulation of an LGCP. In contrast to the case of Neyman-
Scott processes, we do not have problems with boundary e�ects since the
distribution of an LGCP restricted to a bounded region B depends only on
the distribution of YB = fY (x) : x 2 Bg. As YB does not in general have
a �nite representation in a computer, we approximate YB by a random step
function with constant value Y (ci) within disjoint cells Ci. Here B = [i2ICi

is a subdivision with �nite index set I, and ci 2 Ci is a \center" point of
Ci. So we actually consider how to simulate the Gaussian vector ~Y = (~Yi)i2I
where ~Yi = Y (ci).

As discussed in M�ller et al. (1998), there is an eÆcient way of simulat-
ing ~Y when c(�; �) = c(� � �) is invariant under translations, d = 2, and B
is rectangular: Let I � B denote a rectangular grid which is embedded in
a rectangular grid Iext, which is wrapped on a torus. Then a block circu-
lant matrix K = fKijgi;j2Iext can be constructed so that fKijg(i;j)2I is the
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covariance matrix of ~Y . Since K is block circulant, it can easily be diag-
onalized by means of the two-dimensional discrete Fourier transform with
associated matrix F2 (see Wood & Chan 1994 and Section 6.1 in M�ller
et al. 1998). Suppose that K has non-negative eigenvalues. Then we can
extend ~Y = (~Y(i;j))(i;j)2I to a larger Gaussian �eld ~Yext = (~Y(i;j))(i;j)2Iext with
covariance matrix K: set

~Yext = �Q+ �ext (14)

where � follows a standard multivariate normal distribution, Q = �F2�
1=2F2,

� is the diagonal matrix of eigenvalues for K, and the restriction of �ext to I
agrees with the mean of ~Y . Using the two-dimensional fast Fourier transform
a fast simulation algorithm for ~Yext and hence ~Y is obtained. We use this
method for the simulations in Figure 1 and in connection with the MCMC
algorithm considered in Section 7.2.

Another possibility is to use the Choleski decomposition of the covariance
matrix of ~Y , provided this covariance matrix is positive de�nite. This may
be advantageous if the covariance function is not translation invariant or B is
far from being rectangular. On the other hand, the Choleski decomposition
is only practically applicable if the dimension of ~Y is moderate.

5.3 Shot noise G Cox processes

Brix (1999) introduces shot noise G Cox processes (SNGCP) by smoothing a
so-called G measure which is driving a so-called G Cox process, see Remark 2
in Section 8. We instead de�ne directly a SNGCP as a Cox process X with

Z(x) =
X
j

jk(x; cj) (15)

where the notation means the following. For each c 2 Rp , k(�; c) is a density
function for a continuous random variable. Further, f(cj; j)g is a Poisson
process de�ned on R

p � [0;1) by the intensity measure

�(A�B) = (�(A)=�(1��))�

Z
B

���1 exp(��)d; A � R
p ; B � [0;1):

(16)
Here � < 1 and � � 0 are parameters with � > 0 if � � 0, and � is a locally
�nite measure.
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This de�nition can obviously be modi�ed in many ways. For instance, if
� = 0 and we rede�ne � by

�(A� B) = (1=�(1� �))

Z
A

Z
B

���1 exp(��(c))�(dc)d;

where � is now a positive measurable function, we obtain a Poisson/gamma
process as studied in Wolpert & Ickstadt (1998). Extensions to multivariate
SNGCPs are also obvious (Brix 1999). In the sequel X denotes a SNGCP
with Z and � given by (15) and (16).

Assume that �(�) = �0j�j is proportional to Lebesgue measure. Then fcjg
is stationary. Assume also that the kernels k(x; c) = k0(x � c); x; c 2 Rp ;
are given by a common kernel k0. Then X is stationary, and the intensity
and pair correlation functions exist for � 6= 0 and are given by

� = �0�
��1; g0(x) = 1 +

1� �

�0��

Z
k0(x0)k0(x+ x0)dx0: (17)

These are of the same form as for a Neyman-Scott process, cf. (7), so we
cannot distinguish between the two types of models by considering a non-
parametric estimate of (�; g0) only. If furthermore k0(x) depends only on the
distance kxk, then X is isotropic.

Example 6 If k0 is given by the normal density f in (9) with variance !2,
X is isotropic, and g and K are of the same form as for a Thomas process
(replacing � in (10) and (11) by ���0=(1 � �)). In the lower left plot in
Figure 1, � = 0, �0 = 50, � = 0:5 and !2 = 0:001.

The marginal distributions of the independent processes fcjg and fjg
depend much on � as described below.

The case � < 0: Then fcjg is a Poisson process with intensity measure
(��=j�j)�, and the j are mutually independent and follow a common Gamma
distribution �(j�j; �). Hence, X is a kind of modi�ed Neyman-Scott process.
Particularly, X can be simulated within a bounded region in much the same
way as we would simulate a Neyman-Scott process, cf. Section 5.1.

The case 0 � � < 1: The situation is now less simple as fcjg is not
locally �nite. For � = 0, we have a Poisson/gamma model (Daley & Vere-
Jones 1988, Wolpert & Ickstadt 1998). For simplicity, suppose that � is
concentrated on a region D with 0 < �(D) < 1, and write f(cj; j)g =
f(c1; 1); (c2; 2); : : :g so that 1 > 2 > : : : > 0. De�ne q(t) = �(D � [t;1))
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for t > 0. Then q is a strictly decreasing function which maps (0;1) onto
(0;1), and q(1) < q(2) < : : : are the points of a homogeneous Poisson
process of intensity 1 and restricted to (0;1). Furthermore, c1; c2; : : : are
independent, and each cj follows the probability measure �(�)=�(D). For
simulation and inference, one approximates Z by

Z(x) � ZJ(x) =
JX
j=1

jk(x; cj) (18)

where J < 1 is a \cut o�". Brix (1999) and Wolpert & Ickstadt (1998)
discuss how q�1 and the tail sum

P
j>J j can be evaluated.

6 Estimation for parametric models of Cox

processes

For speci�city we discuss �rst estimation in the context of a Thomas process
X with unknown parameters � > 0, � > 0, and � > 0. We next turn to
LGCPs and SNGCPs in Examples 8 and 9.

In most applications the process of cluster centers C is treated as missing
data, and we have only observed X \ W = fx1; : : : ;xng, where W is a
bounded observation window. Let Bext � W be speci�ed as in the end of
Section 5.1, and rede�ne the random intensity surface (6) so that the sum
over cluster centers C is replaced by a sum over C \ Bext.

The likelihood function for � = (�; �; !) is

L(�) = E�

�
exp

�
�

Z
W

Z(x;C \Bext; �; !)dx

� nY
j=1

Z(xj;C \ Bext; �; !)

�

(19)
where the mean is with respect to the Poisson process C \ Bext, and

Z(x;C \ Bext; �; !) = (�=!2)
X

c2C\Bext

'((x� c)=!)

where ' denotes the density for the d-dimensional standard normal distri-
bution. If W is rectangular (or a disjoint union of rectangular sets as in
Figure 2), the integral in (19) can be expressed in terms of the cumulative
distribution function for N(0; 1). The likelihood (19) can further be esti-
mated by Markov chain Monte Carlo (MCMC) methods: For a given value
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�0 = (�0; �0; !0) of �, suppose C
1 = fc11; : : : ; c

1
m1
g; : : : ; Ck = fck1; : : : ; c

k
mk
g is

a Markov chain sample from the conditional distribution C \BextjX \W =
fx1; : : : ;xng (Section 7.1 describes how such a sample can be generated).
The Monte Carlo approximation of L(�)=L(�0) is

1

k

kX
i=1

�mi exp
�
�
R
W
(�+ Z(x;Ci; �; !))dx

�Qn
j=1Z(xj;C

i; �; !)

�mi

0 exp
�
�
R
W
(�0 + Z(x;Ci; �0; !0))dx

�Qn
j=1Z(xj;Ci; �0; !0)

:

Note that the approximation is based on importance sampling, so it only
works for � suÆciently close to �0. The generation and storing of C1; : : : ; Ck

is further computationally rather demanding; see also Remark 1 in Section 8.
A computationally easier alternative for parameter estimation is mini-

mum contrast estimation (Diggle 1983, M�ller et al. 1998): The closed form
expressions (10) and (11) may be compared with the nonparametric sum-
mary statistics ĝ and K̂ obtained assuming only stationarity and isotropy of
X (Section 4). If for example d = 2 and the K-function is used, a minimum
contrast estimate (�̂; !̂) is chosen to minimize

Z a2

a1

��
K̂(r)� �r2

�
�
��
1� exp(�r2=(4!2))]=�

�	2
dr (20)

where 0 � a1 < a2 are user speci�ed parameters (see Example 7 below).
Setting

A
�
!2
�
=

Z a2

a1

�
1� exp(�r2=(4!2))]2dr

and

B
�
!2
�
=

Z a2

a1

�
(K̂(r)� �r2)(1� exp(�r2=(4!2)))

�
dr;

then
!̂2 = arg max

�
B
�
!2
�2
=A
�
!2
��
; �̂ =

�
A
�
!̂2
�
=B
�
!̂2
��
:

Inserting this into the equation � = �� and using the natural estimate �̂ =
n=jW j where jW j denotes the area of W , we obtain �nally the estimate

�̂ = �̂=�̂:

Diggle (1983) suggests the alternative contrast
Z a2

a1

��
K̂(r)

�b
�
�
�r2 +

�
1� exp(�r2=(4!2))]=�

�b	2
dr
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where b > 0 is a third user-speci�ed parameter recommended to be between
0:25 and 0:5. This approach requires numerical minimization with respect
to � and ! jointly. Brix (1999) reports that minimum contrast estimation
for SNGCPs is numerically more stable if g is used instead of K. Minimum
contrast estimation for LGCPs and space-time LGCPs is considered in M�ller
et al. (1998), Brix & M�ller (2001), and Brix & Diggle (2001); see also
Example 8 below.

Example 7 (Thomas) For the weed data and certain choices of a1 and a2, the
contrast (20) did not have a well-de�ned minimum. Numerically more stable
results were obtained by using the g-function given by (10), i.e. by considering
the contrast obtained by replacing K̂(r) � �r2 and

�
1� exp(�r2=(4!2))]=�

in (20) by ĝ(r) � 1 and exp(�r2=(4!2)=(4�!2�), respectively. The middle
plot in Figure 3 suggests to use a1 = 2:5 cm and a2 = 25 cm due to the bias
of ĝ(r) for r < 2:5 cm and the large variability of ĝ(r) for r > 25 cm. With
these values of a1 and a2 the estimates �̂=0:005, !̂

2 = 51:0, and �̂ = 3:05 are
obtained.

Example 8 (LGCP) Turning next to a stationary LGCP, the mean function
m is equal to a real constant �, say. Let c = c�;� be the exponential covariance
function with positive parameters (�; �) as in (12) with Æ = 1. For similar
reasons as for the Thomas process, likelihood estimation of � = (�; �; �2) is
computationally demanding, and minimum contrast estimation is a simpler
method. Because of the simple relationship (13), the minimum contrast
estimate (�̂; �̂2) is chosen to minimize

Z a2

a1

�
ĝ(r)b �

�
�2 exp(�r=�)

�b	2
dr

where b > 0. As for the Thomas process we can easily �nd (�̂; �̂2) and com-
bine this with (13) and the estimate for the intensity to obtain the equation
n=jW j = exp(�̂ + �̂2=2) for the estimate of �. Using the same values of a1
and a2 as in Example 5 and letting b = 1, we obtain the minimum contrast
estimates �̂ = �4:5, �̂2 = 0:45, and �̂ = 9:5.

Example 9 (SNGCP) Consider the SNGCP from Example 6. Using mini-
mum contrast estimation as for the Thomas process we obtain �̂0=0:005,
!̂2 = 51:0, and �̂ = 0:33.
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Figure 4: Upper left: ĝ(r) for the weed data (solid line), envelopes and
average calculated from 39 simulations under the �tted Thomas process (- - -
), and theoretical value of g(r) for �tted Thomas process (������). Upper
right: estimated F (r) (solid line), and envelopes and average calculated from
39 simulations under the �tted Thomas process (- - -). Middle plots: as
upper plots but for LGCP (Example 8). Lower plots: as upper plots but for
SNGCP (Example 9). 20



A comparison of the non-parametric estimates ĝ and F̂ with the envelopes
calculated under the various �tted models in Examples 7{9 (see Figure 4)
does not reveal obvious inconsistencies between the data and any of the
�tted models, except perhaps for the SNGCP where F̂ (r) coincide with the
upper envelope for a range of distances r. The bias of ĝ near zero makes it
diÆcult to make inference about the behaviour of the pair correlation near
zero. For a LGCP it is for example diÆcult to infer whether an exponential
or a \Gaussian" covariance function should be used for the Gaussian �eld Y .
See also Remark 1, Section 8.

7 Prediction

As in Section 6 suppose that a realization x = fx1; : : : ;xng of X \ W is
observed, where W is a bounded observation window. Given a bounded
regionB, one may be interested in predicting ZB = fZ(x)gx2B orX\(BnW )
or, more generally, in computing the conditional distributions of ZB and
X\(BnW ) givenX\W = x. In the sequel we mainly focus on the conditional
distribution of ZB, since X \ (B nW ) is conditionally independent of X \B
given ZB, and X \ (B n W ) is simply an inhomogeneous Poisson process
given ZB. The conditional distribution of ZB is in general not analytically
tractable, so MCMC methods become useful for computing characteristics of
the conditional distribution. In the following we discuss MCMC algorithms
for the model classes considered in Section 5. For background knowledge on
MCMC algorithms (particularly Metropolis-Hastings algorithms), see e.g.
Gilks, Richardson & Spiegelhalter (1996) and Robert & Casella (1999).

7.1 Conditional simulation for Neyman-Scott processes

For a Neyman-Scott process (Section 5.1), ZB is determined by the process of
cluster centers. We approximate this by the process of cluster centers falling
in a suÆciently large region Bext which contains B, and ignore cluster centers
outside Bext. The conditional distribution of the cluster centers on Bext then
has a density with respect to the homogeneous Poisson process of intensity
1 and restricted to Bext. The density is given by

p(cjx) / �card(c) exp

�
�

Z
W

Z(x)dx

�Y
c2c

Z(c)
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for �nite point con�gurations c � Bext, where Z(x) is given by (6) but with
C replaced by c. The conditional distribution can be simulated using the
MCMC algorithm studied in Geyer & M�ller (1994). Prediction and fully
Bayesian inference for Neyman-Scott processes viewed as cluster processes
has been considered by e.g. Lawson (1993), Baddeley & van Lieshout (1993),
and Van Lieshout & Baddeley (1995).

7.2 Conditional simulation for LGCPs

Consider now an LGCP with YB = logZB where we use a notation as in
Section 5.2. Approximate simulations of YBjXW = x can be obtained from
simulations of ~Y jXW = x, which in turn can be obtained from simulations
of �jXW = x using the transformation (14). Omitting an additive constant
depending on x only, the log conditional density of � given x is

�kk2=2 +
X
i2I

(~yini � Ai exp(~yi)) (21)

where, in accordance with (14), (~yi)i2Iext = Q+�ext, ni = card(x\Ci), and
Ai = jCij if Ci � W and Ai = 0 otherwise. The gradient of (21) becomes

r() = � +
�
ni � Ai exp(~yi)

�
i2Iext

QT;

and di�erentiating once more, the conditional density of � given x is seen to
be strictly log-concave.

For simulation from �jXW = x, M�ller et al. (1998) use a Langevin-
Hastings algorithm or Metropolis-adjusted Langevin algorithm as introduced
in the statistical community by Besag (1994) (see also Roberts and Tweedie
1996) and earlier in the physics literature by Rossky, Doll & Friedman (1978).
This is a Metropolis-Hastings algorithm with proposal distribution Nd( +
(h=2)r(); hId) where h > 0 is a user-speci�ed proposal variance. The use of
the gradient in the proposal distribution may lead to much better convergence
properties when compared to the standard alternative of a random walk
Metropolis algorithm, see Christensen, M�ller & Waagepetersen (2000) and
Christensen & Waagepetersen (2001).

A truncated version of the Langevin-Hastings algorithm is obtained by
replacing the gradient r() in the proposal distribution by

rtrun() = � +
�
ni �minfH;Ai exp(~yi)g

�
i2Iext

QT (22)
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where H > 0 is a user-speci�ed parameter which can e.g. be taken to be
twice the maximal ni, i 2 I. As shown in M�ller et al. (1998) the truncated
Langevin-Hastings algorithm is geometrically ergodic.

Benes et al. (2001) consider a fully Bayesian approach for a LGCP where
the truncated Langevin-Hastings algorithm is extended with updates of the
model parameters. Benes et al. (2001) also discuss convergence of the poste-
rior for the discretized LGCP when the cell sizes tends to zero.

Example 10 Let W be the union of the �ve frames in the lower right corner
in Figure 2, let B be the smallest rectangle containing these �ve frames,
and de�ne the discretized Gaussian �eld ~Y on a 60 � 40 rectangular grid I
on B. The left plot in Figure 5 shows a prediction of ~Z = exp( ~Y ) given
by the conditional mean E ( ~Z jx) of ~Z using the parameter estimates from
Example 8. The minimum and maximal values of E ( ~Z jx) are 0.01 and 0.03,
respectively.
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Figure 5: Left: conditional mean of ~Z under an LGCP model. Right: con-
ditional mean of ZJ

B under a SNGCP model. The same gray scales are used
in the two plots.

7.3 Conditional simulation for shot-noise G Cox pro-

cesses

Conditional simulation for a SNGCP with � < 0 follows much the same
way as in Section 7.1, so we let 0 � � < 1 in the sequel. In applications
involving MCMC we consider the approximation (18) where D is typically
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equal to an extended region Bext � B as in Section 7.1. Let  j = q(j),
j = 1; : : : ; J . By (18), conditional simulation of ZJ is given by conditional
simulation of the vector (c1;  1; : : : ; cJ ;  J). Assuming that the measure
� has a density k� with respect to Lebesgue measure, (c1;  1; : : : ; cJ ;  J)
has density proportional to exp(� J)

QJ
i=1 k�(ci) for (c1; : : : ; cJ) 2 DJ and

0 <  1 < : : : <  J . Note that the conditional density

p(xjc1;  1; : : : ; cJ ;  J) / exp

�
�

Z
W

ZJ(x)dx

� nY
j=1

ZJ(xj)

does not depend on the order of (cj;  j), j = 1; : : : ; J . So we can forget
the constraint 0 <  1 < : : : <  J , and simply consider the posterior ob-
tained with the prior density proportional to exp(� max)

QJ
i=1 k�(ci) where

 max = maxf 1; : : : ;  Jg. The density of (c1;  1; : : : ; cJ ;  J) given x is then
proportional to

�
exp

�
�

Z
W

ZJ(x)dx

� nY
j=1

ZJ(xj)

��
exp(� max)

JY
i=1

k�(ci)

�
:

For the special case of shot-noise Poisson-gamma models, Wolpert & Ick-
stadt (1998) use a certain data augmentation scheme and a Gibbs sampler,
but we consider a more simple approach where we just apply a standard
random scan single-site Metropolis algorithm. A proposal for our Metropolis
algorithm is obtained by picking a j in f1; : : : ; Jg uniformly at random, and
then replacing (cj;  j) by (c0j;  

0
j) generated from the uniform distribution

on Bext�]cj � sc; cj + sc[ , where sc > 0 is a user-speci�ed parameter. In
the implementation of the algorithm it is helpful to introduce an auxiliary
variable U which takes the value j if  max =  j, j = 1; : : : ; J , and thus keeps
track of the maximal  j. The variable U can further be used to monitor
convergence for the Markov chain, since U follows the uniform distribution
on f1; : : : ; Jg when the chain is in equilibrium.

The algorithm can straightforwardly be extended to accomodate a fully
Bayesian analysis with priors also on the model parameters. Fully Bayesian
analysis of Poisson-gamma shot-noise processes is considered in e.g. Wolpert
& Ickstadt (1998) and Best, Ickstadt & Wolpert (2000).

Example 11 LetW and B = [0; 150]�[0; 100] be as in Example 10, let Bext =
[�40; 190]� [�40; 140], and consider the �tted SNGCP from Example 9. The
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right plot in Figure 5 shows the posterior mean of (ZJ(x))x2B obtained with
J = 2000, using a sample obtained by subsampling each 104 state of a Markov
chain of length 107 generated by the Metropolis algorithm. The minimal and
maximal values of E (ZJ (x)jx), x 2 B, are the same as in Example 10, but
the predicted intensity surface is more smooth under the SNGCP.

8 Discussion

Remark 1 (Likelihood-based inference) Concerning parameter estimation we
have focused on minimum contrast estimation which is advantageous for
computational reasons. This is somewhat out of line with modern spatial
statistics where likelihood-based methods (either in a Bayesian or frequen-
tist framework) attracts increasing attention. In general one must expect
minimum contrast estimation to be less eÆcient than likelihood-based esti-
mation. The minimum contrast estimates can also be very sensitive to the
choice of user-speci�ed parameters.

If we consider LGCPs and SNGCPs with 0 � � < 1, then two prob-
lems appear in connection with likelihood-based inference. First, in order
to apply MCMC methods, we need to approximate the processes either by
discretizing the Gaussian �eld for a LGCP or by using the truncated sum
(18). Second, in order to get a good approximation, we need to use either a
�ne grid I or a large truncation value J . Conditional simulation for the ap-
proximate processes thereby becomes computationally very demanding. Also
the storage of samples for Monte Carlo estimation of the likelihood may be
problematic. For Neyman-Scott processes and SNGCPs with � < 0 and a
moderate value of �, the conditional distribution will in contrast typically be
of moderate dimension, and there is no need to introduce an approximation
(apart from possible edge e�ects when the kernel density f does not have
bounded support).

Remark 2 (De�nition of a SNGCP) In Section 5.3 we gave a direct de�ni-
tion of a SNGCP. Below we briey discuss how such processes have been
introduced in Brix (1999).

Brix (1999) de�nes �rst a G measureM . This is a randommeasure so that
M(A1); : : : ;M(An) are independent for disjoint bounded regions A1; : : : ; An,
and each M(Ai) follows a so-called G distribution which is parameterized in
a certain way by (�; �(Ai); �). It turns out that a G measure is a locally
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�nite measure of the form M(A) =
P

j j1fcj 2 Ag where f(cj; j)g is
de�ned as in Section 5.3. Secondly, since M is purely atomic, Brix views
a G Cox process as a random measure �: conditionally on M , we have
that � is a random measure so that �(A1); : : : ;�(An) are independent for
disjoint regions A1; : : : ; An, and each �(Ai) is Poisson distributed with mean
M(Ai). Finally, in order to obtain some smoothing, Brix de�nes a SNGCP by
extending the de�nition ofM toM(A) =

P
j jK(A; cj) where each K(�; cj)

is an arbitrary probability measure. When K(�; cj) is given by a density
function k(�; cj) as in Section 5.3, we obtain that � is now a nonatomic
measure, which can be identi�ed with our SNGCP X given by (15).

G Cox processes have nice properties under aggregation due to the simple
form of the distribution of aggregated counts �(A1); : : : ;�(An). For example
under a Poisson-gamma model (Wolpert & Ickstadt 1998), the counts are
negative binomial distributed. However, one should note that these simple
properties are not valid for SNGCPs, due to the smoothing by the kernel
k(�; �). See also the discussion in Richardson (2001) and M�ller (2001).

Remark 3 (Extension of SNGCPs) One may note that both SNGCPs and
Neyman-Scott processes are special cases of Cox processes driven by a ran-
dom intensity surface of the form

Z(x) =
X
j

�jk(x; cj) (23)

where f(cj; �j)g is a Poisson process with an intensity measure of the form
�(d(c; �)) = �(dc)�(d�) (i.e. a product measure). Here � is assumed to be
locally �nite, but the marginal process fcjg may not be locally �nite, since
it is possible that �([0;1)) =1, cf. the case of a SNGCP with 0 � � � 1.

Many properties for Neyman-Scott processes and SNGCPs follow from
general results for the extended model. For example, if k(x; c) = k0(x � c)
and �(�) = �0j � j where �0 > 0 is a parameter, the process is stationary with
intensity � = �0

R
��(d�). Assuming

R
�2�(d�) < 1, the pair correlation

exists and is given by

g0(x) = 1 + (�0=�)
2

Z
�2�(d�)

Z
k0(x0)k0(x+ x0)dx0:

Equations (7) and (17) are special cases of this result.
As in M�ller (2001) we suggest that more attention should be drawn to

\modi�ed" Neyman-Scott models of the type (23) with fcjg a locally �nite
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Poisson process. One can thereby utilize the additional exibility o�ered
by the random coeÆcients �j and still work with a locally �nite conditional
distribution in connection with Bayesian inference or maximum likelihood
estimation.

Remark 4 (Comparison of models) The focus in this paper has been on in-
ferential and computational aspects of various parametric models for Cox
processes. The advantages and disadvantages of LGCPs, SNGCPs, and the
Heikkinen & Arjas (1998) model for inhomogeneous Poisson processes are
also discussed in Richardson (2001) and M�ller (2001). Which model is most
appropriate depends of course on prior knowledge and the purpose of the
statistical analysis. LGCPs provide easily interpretable Cox process models
with some exibility in modelling aggregated point patterns when the aggre-
gation is due to an environmental heterogeneity. Even more exibility may be
obtained by using SNGCPs and their extensions (Remark 3), and such mod-
els seem natural when the aggregation is due to clustering around a process
of cluster centers. They seem also appropriate for nonparametric Bayesian
modelling (Wolpert & Ickstadt 1998, Richardson 2001, M�ller 2001).
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