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Abstract

The problem of estimating the parameters of a discretely observed dif-

fusion is discussed through two one-dimensional examples. Based on sim-

ulations, the parameters are estimated using small ��optimal and other

unbiased estimating functions. Small ��optimality implies that the esti-

mation is nearly eÆcient when the discrete observations are close together

in time, and this e�ect is clearly visible from the simulations. It is also seen

that the small ��optimal estimating functions perform well, even when the

observations are not close together, and that they are quite robust when

the true observations are replaced by rounded ones.
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1. Introduction and background

The concept of small ��optimal estimating functions was introduced by Jacob-
sen [2] and discussed further, Jacobsen [3], for the case of martingale estimating
functions based on conditional expectations, see (1.2) below.

In this paper we study the behaviour of the martingale estimating functions
through a simulation study based on two examples of one-dimensional di�usion
models,

dXt = b� (Xt) dt + �� (Xt) dBt (1.1)

(with B denoting standard one-dimensional Brownian motion) where both the
drift b� and the squared di�usion coeÆcient �2� depend on an unknown parameter
� 2 � � R

p . It is assumed that X moves everywhere on a given open interval
I � R (not depending on �) with b� and �2� > 0 both continuous on I; and it
is also assumed that there is for every � 2 � an invariant density ��; i.e. if X0

is independent of B and has density ��; then the solution X to (1.1) is strictly
stationary. As is well known, �� is then proportional to

��(x) _
1

�2�(x)S
0
�(x)

with S 0� the derivative of a scale function,

S 0�(x) = exp

�
�2
Z x

x0

b�(y)

�2�(y)
dy

�
:

We consider the situation where X is observed at discrete points in time,
equidistant, X0; X�; X2�; : : : ; Xn� and then wish to estimate �: For a given �
the estimation is based on an unbiased estimating function of the form

(�; x; y) 7! g�;� (x; y)

from �� I � I to Rp�1 ; i.e. one �nds the estimator b�n by solving the estimating
equation

nX
m=1

g�;�
�
X(m�1)�; Xm�

�
= 0

for �; where g�;� satis�es the unbiasedness condition

E�
� g�;� (X0; X�) = 0
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for all �; and for identi�cation purposes

E�
� g�;�0 (X0; X�) 6= 0

if � 6= �0: Here E�
� signi�es that X solves (1.1) for the prescribed value of � with

X0 having the invariant density � = ��:
The martingale estimating functions based on conditional expectations were

introduced by Bibby and S�rensen [1] and in general have the form, for the k'th
coordinate of g�;�;

gk�;� (x; y) =
rX

q=1

hqk�;�(x) (f
q
� (y)� ��;�f

q(x)) (1.2)

with
��;�f

q(x) = E�
� (f

q
� (X�) jX0 = x) : (1.3)

In (1.2), r is the order of the martingale estimating function, (f�)1�q�r denotes the

base and
�
hqk�;�

�
1�q�r;1�k�p

the weights determining g�;�: As stressed in Jacobsen

[3], Assumption A, the members of the base must be aÆnely independent, i.e. if

rX
q=1

aq�f
q
� (x) + �� = 0

for all x 2 I and some constants aq� and ��; then a1� = � � � = ar� = �� = 0; and also
the weights must satisfy that the p r�variate functions x 7! �

h1k�;�(x); : : : ; h
rk
�;�(x)

�
forming the columns of the r � p�matrix valued function h�;�; are linearly inde-
pendent on I:

In (1.2) it is tacitly assumed that the base does not depend on �; while
the weights may. There is nothing wrong in allowing f q� to depend on �; but
for practical purposes it does not seem relevant: in practice (1.2) is used for a
given base for which explicit expressions for the conditional expectations (1.3) are
available for all �:

With the base given, the problem arises of how to choose the weights h�;�:

This may be done by minimizing the asymptotic covariance for the estimator b�n:
under fairly mild regularity conditions it holds that

p
n
�b�n � �

�
D�! N (0;��;�)

as n ! 1; � denoting the true parameter value, and here it is actually possible
to minimize the asymptotic covariance ��;� when the weights vary (using the
standard partial ordering on the space of covariance matrices: A � B if B �A is
a covariance matrix) by choosing h�;� as

hopt�;� = (��;�f�)
�1
�
@� (��;�f�)� ��;�

�
_f�

��
; (1.4)
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see Bibby and S�rensen [1] for special cases and Jacobsen [3], Proposition 1, for
the general result. The notation used here is

��;�f� = ��;�
�
f
2�

�� (��;�f�)

2 2 Rr�r ;

@� (��;�f�) = (@�`��;�f
q
� )1�q�r;1�`�p 2 Rr�p ;

��;�

�
_f�

�
= (��;� (@�`f

q
� ))1�q�r;1�`�p 2 Rr�p :

Thus, to �nd the explicit expressions for the optimal weights { that of course
depend on � { one must know the conditional expectations

��;�

�
f q� f

q0

�

�
and ��;� (@�`f

q
� )

for all q; q0; ` and must then invert the r � r�matrix ��;�f� analytically.
For the examples here we shall not use hopt�;�; but instead �nd weights that are

small ��optimal as described in Jacobsen [3]. For this it is suÆcient to look at
weights that do not depend on � and consider for arbitrary t > 0;

gkt;� (x; y) =
rX

q=1

hqk� (x) (f q� (y)� �t;�f
q(x))

which de�nes a 
ow of unbiased martingale estimating functions, with gt;� to
be used for data (Xmt)0�m�n : The small ��optimality property is expressed
exclusively through the limit, for 1 � k � p;

gk0;� (x; y) = lim
t!0

gt;� (x; y) (1.5)

=
rX

q=1

hqk� (x) (f q� (y)� f q(x)) ;

viz. one should choose (for the one-dimensional di�usions considered here) a
minimal value 1 or 2 for the order r and then �nd the weights h� 2 R

r�p as
speci�ed in the following three cases (Jacobsen [3], Theorem 2 and Remark 2):

(i) if �2� = �2 does not depend on �; use r = 1 and

hT� (x) =
_bT� (x)

�2(x)

1

@xf�(x)
:

(ii) if �2� depends on all the parameters �1; : : : ; �p; use r = 2 and

hT� (x) =

 
0p�1

( _�2�(x))
T

�4�(x)

!�
@xf�(x) @2xxf�(x)

��1
: (1.6)
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(iii) if (possibly after a reparametrization) �2� depends on the parameters �1; : : : ; �p0
but not on �p0+1; : : : ; �p (where 1 � p0 < p), use r = 2 and h� = (h1;� h2;�)
with h1;� 2 R2�p0 and h2;� 2 R2�(p�p0 ) given by

hT1;�(x) =

�
0p0�1

( _�21;�(x))
T

�4
�
(x)

��
@xf�(x) @2xxf�(x)

��1
; (1.7)

hT2;�(x) =
�

_bT
2;�

(x)

�2
�
(x)

1
@xf1� (x)

0(p�p0)�1

�
: (1.8)

Notation. _b�(x); _�2�(x) are the p�dimensional row vectors (@�`b�(x)) and
(@�`(�

2
�(x))) for 1 � ` � p: In case (iii), _�21;�(x) is the p

0�dimensional row vector

obtained by di�erentiating �2�(x) after �` for 1 � ` � p0; and similarly _b2;�(x) is
the (p� p0)�dimensional row vector derived by di�erentiating b�(x) with respect
to �p0+1; : : : ; �p: f

1
� is of course just the �rst element of the base { one could as

well have used f 2� and obtained a di�erent small ��optimal estimating function.

Remark 1. It is a main result from Jacobsen [3] that the 
ow of optimal mar-
tingale estimating functions determined by a given base and with weights as in
(1.4) (with � replaced by t) is small ��optimal essentially only if the order of
the base is as in the relevant of the three cases (i), (ii) and (iii). In subsection
2.2 below we shall study the behaviour of an optimal 
ow of order 1, that is not
small ��optimal.

The reader is reminded that (subject to a host of integrability conditions,
blithely ignored in the present paper) what is achieved by small ��optimality

is the following: for any t > 0; the estimator b�n(t) obtained from observations
(X0; Xt; : : : ; Xnt) using the martingale estimating function gt;� satis�es that, as
n!1; p

n
�b�n(t)� �

�
D�! N (0;�t;�)

where the asymptotic covariance matrix is given by

�t;� = ��1t;� (g)E
�
� gt;�g

T
t;� (X0; Xt)

�
��1t;� (g)

�T
where, writing ( _gt;�)k` = @�`g

k
t;�

�t;�(g) = E�
� _gt;� (X0; Xt) ;

cf. Jacobsen [2] or [3]. Furthermore, as t! 0; �t;� admits a series expansion

�t;� = t�1v�1;�(g) + v0;�(g) + o(1) (1.9)

with coeÆcient matrices v�1;�(g) and v0;�(g) that can be expressed in terms of
the limiting estimating function g0;�; see (1.5). If the order of the base and the
weights are chosen according to (i)-(iii), then
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(i) v�1;�(g) is minimised globally;

(ii) v�1;�(g) = 0 and v0;�(g) is minimised globally;

(iii) in block matrix notation

v�1;�(g) =

�
0p0�p0 0p0�(p�p0)

0(p�p0)�p0 v22;�1;�(g)

�
with v22;�1;�(g) minimised globally, and furthermore the upper p0 � p0�left
block of v0;�(g) is minimised globally.

The phrase `minimised globally' used above means that the coeÆcient in ques-
tion is the smallest possible (in the partial ordering of covariance matrices men-
tioned above) when all unbiased estimating functions are considered. Thus, for
small �; the estimator obtained from a small ��optimal estimating function is
(almost) as good as the maximum-likelihood estimator (which comes from the
martingale estimating function 
ow given by gkt;� (x; y) = @�k log pt;�(x; y) with pt;�
the transition density P� (Xt 2 dy jX0 = x) = pt;� (x; y) dy).

The reader is reminded that the possibility of obtaining v�1;�(g) = 0 (or parts
of v�1;�(g) = 0) in cases (ii) or (iii), stems from the singularity between the
distributions of (Xs)0�s�t when observed completely in continuous time, whenever
�2� depends on all or some of the parameters: for � > 0 small we are close to
observation in continuous time and the parameters appearing in �2� can (almost)
be read o� from the observations, e.g. through the quadratic variation for X:
For general unbiased estimating functions, the term v�1;�(g) may well be present
unless one is careful and hence lead to estimators of eÆciency close to 0 if � is
small!

Since small ��optimality refers to small values of � there is of course no
guarantee that a small ��optimal 
ow of estimating functions will behave well
for moderate or large values of � { also there are lots of small ��optimal 
ows,
and they may behave quite di�erently for large values of �: If however, as is the
case with the martingale estimating functions we consider here, the 
ow (gt;�)t>0
depends in a natural fashion on t; we nevertheless claim that if the 
ow is small
��optimal, then the resulting estimators perform rather well at least for moderate
values of �, a claim we shall substantiate by the simulation studies in the next
section.
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2. Simulations

2.1. The generalised Cox-Ingersoll-Ross process

The �rst example we consider is the four parameter model

dXt =
�
aX2
�1

t + bXt

�
dt+ �X


t dBt (2.1)

of one-dimensional, strictly positive di�usions (so I = ]0;1[ with some constraints
on the parameters to ensure positivity) proposed by Jacobsen [3]. The model arises
by considering powers of the ordinary Cox-Ingersoll-Ross (CIR) process,

d eXt =
�ea +eb eXt

�
dt+ e� eX1=2

t dBt; (2.2)

i.e., if X solves (2.1), then eX = X2�2
 solves (2.2) with

eb = (2� 2
) b; e�2 = (2� 2
)2 �2; ea� 1
2
e�2 = (2� 2
)

�
a� 1

2
�2
�
: (2.3)

The parameter set � consists of those � = (a; b; 
; �2) for which X has an invariant
probability, i.e.

� =
��
a; b; 
; �2

�
: �2 > 0 and either 
 < 1; b < 0; 2a � �2

or 
 > 1; b > 0; 2a � �2 g :
Note that 
 = 1 is not included: for 
 = 1; (2.1) describes a geometric Brownian
motion which is never ergodic, and also, (2.1) for 
 = 1 can never be obtained by

considering eXp for some p; where eX is a CIR-process as in (2.2).
In the simulations we either (i) estimate all four parameters, or (ii) estimate


 and �2 only, assuming a; b to be known. ((ii) is used to illustrate the e�ect of
small ��optimality, as well as to see how the estimates are a�ected when using
rounded observations, for the latter see subsection 2.3 below). We use martingale
estimating functions with the base of order 2 given by

f 1� (x) = x2�2
 ; f 2� (x) = x4�4
 ;

i.e. the base corresponding to considering the �rst and second order conditional
moments for the CIR-process eX; which are of course well known. The explicit
values of �t;�f�(x) are, writing �t;�x

q for �t;��(x) when � (y) = yq;

�t;�x
2�2
 = e�1 + e

ebt
�
x2�2
 � e�1� ; (2.4)

�t;�x
4�4
 = e�2 + 2e�2e�1

�
e
ebt � e2

ebt
��

x2�2
 � e�1� + e2
ebt
�
x4�4
 � e�2� (2.5)
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where for m = 1; 2; e�m = E�
�X

(2�2
)m
0 is the m'th moment for the CIR-processeX when started with its invariant distribution, the ��distribution with shape

parameter 2ea=e�2 and scale parameter �e�2=2eb; so that

e�1 = �eaeb ; e�2 = ea (2ea+ e�2)
2eb2 : (2.6)

For estimating all four parameters we use the small ��optimal martingale
estimating function with base (f q� )q=1;2 as described by case (iii) above, see (1.7),

(1.8). We have p = 4; p0 = 2 and writing the parameters in the order (
; �2; a; b)
�nd

_�21;�(x) =
�
2�2x2
 log x x2


�
;

_b2;�(x) =
�
x2
�1 x

�
and �

@xf�(x) @2xxf�(x)
�
= (2� 2
)

�
x1�2
 (1� 2
)x�2


2x3�4
 2 (3� 4
)x2�4


�
:

Listing the parameters in the order 
; �2; a; b and �nding the weights h�(x) from
(1.7) and (1.8) and ignoring unimportant proportionalities, this leads to the small
��optimal 
ow of estimating functions gt;� (x; y) = hT� (x) (f� (y)� �t;�f�(x))
given by

gt;� (x; y) =

0BB@
�2 logx x2
�2 logx
�2 x2
�2

x2
�2 0
1 0

1CCA� y2�2
 � �t;�x
2�2


y4�4
 � �t;�x
4�4


�
(2.7)

with �t;�x
(2�2
)m for m = 1; 2 given by (2.4), (2.5) and where explicit expressions

in terms of � of all the quantities appearing are provided by (2.6) and (2.3).
Because one-dimensional di�usions are reversible, an improved 
ow of unbiased

estimating functions is obtained by considering the symmetrized 
ow

gt;� (x; y) =
1
2
(gt;� (x; y) + gt;� (y; x)) ;

see Jacobsen [3], Proposition 6.1. For the case at hand though, the gain achieved
by symmetrisation appears negligeable.

Remark 2. For the model (2.1), in Jacobsen [3] a di�erent small��optimal 
ow
was proposed as given by Theorem 2 there. The 
ow (2.7) above corresponds to

the 
ow in [3], Remark 2 with the two bases f� and ef� there ( ef� of order 1) given
by the f� used here and ef� = f 1� respectively.
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Remark 3. An improvement on the estimates resulting from the estimating func-
tion (2.7) would of course have been obtained by using the optimal 
ow (1.4) with
base f�: However, �nding h

opt

t;� requires explicit expressions for the conditional mo-

ments �t;�x
(2�2
)m for m = 3; 4 in addition to the formulas for m = 1; 2 already

used, in order to determine the matrix �t;� and, because f� depends on � through

; expressions for �t;�x

(2�2
)m logx for m = 1; 2 are also needed. Especially the
latter may cause problems { �nding the matrix �t;� and its inverse is just a matter
of grinding it out. What is certain is that the analytic expression for the optimal
martingale estimating function will be complicated, yielding estimating equations
that are a great deal more complicated than (2.7).

For the simulation study, the true parameter values were set at

a = 1; b = �1; 
 = 1
2
; �2 = 1; (2.8)

so X itself is a CIR-process. The initial value, X0; was simulated from the invari-
ant distribution, the ��distribution with shape parameter 2 and scale parameter
1
2
: The simulations were done using an Euler scheme to simulate

p
X; which is

more accurate than the Euler scheme for X itself since the di�usion coeÆcient forp
X is a constant.
Simulations were done for di�erent values of �: For each �; the number of

observations was n+1 = 501 and 50 samples were made of each observation series.
The summary statistics for the 50 sets of estimates obtained for each �; using the
symmetrised version of (2.7), are given in Table 1.

� success mean std.dev. small large correlations

0.01 50/50 a 1.77 0.864 0.737 4.51 -0.675ab 0.276
�
2

b -1.88 0.872 -4.84 -0.612 0.298a
 -0.137b



 0.493 0.054 0.396 0.641 0.046a�
2

0.035b�
2

�2 1.00 0.073 0.806 1.174

0.1 50/50 a 1.04 0.207 0.685 1.62 -0.812ab 0.209
�
2

b -1.08 0.262 -2.01 -0.662 0.440a
 -0.208b



 0.494 0.050 0.393 0.571 0.494a�
2

-0.310b�
2

�2 1.00 0.086 0.786 1.18

0.5 45/50 a 1.22 0.335 0.597 1.92 -0.975ab 0.286
�
2

b -1.22 0.308 -1.93 -0.674 0.890a
 -0.818b



 0.545 0.081 0.361 0.68 0.380a�
2

-0.421b�
2

�2 0.995 0.087 0.730 1.24

Table 1. Summary statistics for estimates in the four parameter generalised
Cox-Ingersoll-Ross process.
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According to the theory, the estimates for a and b should deteriorate when
� ! 0; as is certainly con�rmed by Table 1, while the estimates for 
 and �2

should remain stable, as also appears to be the case. For all three values of �;
the estimates for 
 and �2 are much more precise than those for a and b: But for
� = 0:5 there is some numerical instability and that would get worse for larger
values of �: In particular, for � = 0:5 in 5 samples out of 50 no solution to the
estimating equations were found, or to be more speci�c, no solution with 
 6= 1
was found: a general numerical problem when solving the estimating equations is
that a pseudo solution may be found corresponding to 
 = 1; a value of 
 that
creates a singularity in the equations as is clear from (2.7).

To inspect more closely the e�ect of small ��optimality, a second simulation
study was conducted with a; b known and only 
 and �2 assumed unknown. The
small ��optimal estimating function from case (ii), see (1.6), using the base
x2�2
 ; x4�4
 as before, is given by (apart from irrelevant proportionality factors)
the top two rows of (2.7), i.e.

gIt;�(x; y) =

� �2 logx x2
�2 logx
�2 x2
�2

��
y2�2
 � �t;�x

2
�2

y4�4
 � �t;�x
4
�4

�
: (2.9)

The estimates obtained using gIt;� (or its symmetrised version) were compared to
those found by combining a small ��optimal 
ow for estimating 
 alone (the
�rst row of gIt;�) with a 
ow for estimating �2 that is not small ��optimal, viz.
a simple unbiased estimating function egt;� of the type studied by Kessler [4],egt;� (x; y) = A��(x) depending neither on t nor on y: Here A� is the in�nitesimal
generator for X;

A��(x) =
�
ax2
�1 + bx

�
�0(x) + 1

2
�2x2
�00(x):

We chose �(x) = x2 and thus used the 
ow

gIIt;� (x; y) =

� �2 log x (y2�2
 � �t;�x
2
�2) + x2
�2 log x (y4�4
 � �t;�x

4
�4)
(2a+ �2)x2
 + 2bx2

�
or its symmetrised version.

Again, for di�erent values of �; observation series with n + 1 = 501 were
simulated corresponding to the true parameter values �0 given by (2.8), in some
cases with X0 constant and � E�

�0
X0 = 1 (�xed start), in some cases with X0

simulated from the invariant ��distribution (stationary start). The number of
samples were 50 or 100. Summary statistics for the estimates are presented in
Table 2, where e.g. gI signi�es that gI�;� was used precisely as given by (2.9),
while `gI symm' means that the symmetrised version was used. For each value
of �; the same data were used for all estimating functions that were applied for
that value of �: In the table `stat.' means stationary start and `�xed' means �xed
start.
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� g success mean std.dev. small large

0.02 gI 50/50 
 0.495 0.047 0.353 0.585
stat. �2 0.993 0.079 0.826 1.36

gII 34/50 
 0.420 0.104 0.044 0.591
�2 0.841 0.551 0.041 2.08

gI(symm) 50/50 
 0.489 0.050 0.345 0.603
�2 0.999 0.064 0.859 1.12

gII(symm) 32/50 
 0.410 0.109 0.163 0.645
�2 0.975 0.850 0.071 3.81

0.05 gI 100/100 
 0.486 0.058 0.280 0.599
�xed �2 1.01 0.076 0.827 1.21

gII 93/100 
 0.429 0.103 0.068 0.624
�2 0.907 0.679 -0.259 3.10

0.1 gI 100/100 
 0.497 0.048 0.367 0.609
�xed �2 1.01 0.072 0.869 1.22

gII 99/100 
 0.474 0.061 0.267 0.603
�2 0.940 0.456 0.007 2.60

0.2 gI 98/100 
 0.512 0.044 0.385 0.617
�xed �2 1.00 0.071 0.802 1.16

gII 99/100 
 0.496 0.056 0.245 0.599
�2 0.939 0.305 -0.136 1.99

0.5 gI 48/50 
 0.513 0.044 0.425 0.585
�xed �2 0.977 0.118 0.714 1.30

gII 48/50 
 0.505 0.052 0.343 0.579
�2 0.930 0.188 0.447 1.34

1 gI 38/50 
 0.536 0.056 0.434 0.675
�2 1.02 0.138 0.646 1.34

gII 37/50 
 0.530 0.057 0.419 0.675
�2 0.943 0.136 0.750 1.29

Table 2. Summary statistics for the estimates of 
; �2 in the generalised
Cox-Ingersoll-Ross process.

The e�ect of small ��optimality is evident: for small values of �; gI is much
better than gII; especially with regards to estimating �2: The gII-estimates of 

are quite reasonable despite the wild 
uctuations in the estimates of �2: Starting
with � = 0:1 and certainly for � = 0:2; 0:5 and 1; there is not much di�erence
between gI and gII when estimating 
; but for estimating �2 only for � = 0:5 and
1 are the gI and gII estimates comparable in quality { for � = 0:05 and 0:2 it is
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somewhat disturbing to see a (at least one) negative �2-estimate returned for gII:
For � = 1 the success rate for both gI and gII is quite low, suggesting perhaps
that some adjustment to the estimating functions should be made to accomodate
larger values of � { how to do this in practice is however not clear. Only for
� = 0:02 were the symmetrised versions of gI and gII used, but no improvement
was visible.

2.2. The Pedersen Bibby-S�rensen-Kessler example

The following model, originally proposed A.R. Pedersen, was used by Bibby and
S�rensen [1] and by Kessler [4],

dXt = ��Xt dt +
p
� +X2

t dBt (2.10)

which is well de�ned for � > 0: We have I = R and the di�usion is ergodic for all
� > 0 with invariant density

��(x) =
��+

1

2�(� + 1)

�
�
1
2

�
�
�
� + 1

2

� 1

(� + x2)�+1
(2.11)

This distribution has heavy tails with only the absolute moments of order < 2�+1
being �nite. Note that large values of � signi�es less heavy tails.

It is easy to �nd conditional moments for the model (2.10) (provided they
exist). Thus

�t;�x = e��tx (� > 0) ; �t;�x
2 =

�

2� � 1

�
1� e(1�2�)t

�
+ e(1�2�)tx2

�
� > 1

2

�
:

(2.12)
Both Bibby and S�rensen [1] and Kessler [4] did simulations for � = 10: In [1] the
optimal martingale estimating function of order 1 with base f 1(x) = x was used,
i.e. (cf. (1.4))

gBSt;� (x; y) =
x

�t;�x2 � (�t;�x)
2 (y � �t;�x) ; (2.13)

while Kessler [4] used the simple estimating function A�x
2 with A� the generator

A��(x) = ��x�0 + 1
2
(� + x2)�00(x); i.e.

gKES
t;� (x; y) = �

�
1� 2x2

�
+ x2: (2.14)

The simulations in [1] and [4] were done for � = 0:05; 0:1; 0:2 ([1] only), 0:3; 0:5
([4]) only. The results for Kessler's simple estimating function are quite awful
{ Kessler used this example to illustrate that the simple estimating functions
proposed by him, that works �ne for many models, can prove useless in some
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cases. By contrast, the estimating function used by Bibby and S�rensen performs
well.

Here, apart from gBS and gKES; we shall also consider the small ��optimal
martingale estimating function of order 2 derived from the base f 1(x) = x; f 2(x) =
x2 derived from case (ii), (1.6), i.e.

gMJ
t;� (x; y) = � 2x

(� + x2)2
(y � �t;�x) +

1

(� + x2)2
�
y2 � �t;�x

2
�
: (2.15)

For the simulations presented in Table 3 below, for each data set three esti-
mates �MJ; �BS and �KES were found corresponding to the symmetrised versions of
(2.15), (2.13) and (2.14) respectively (�KES only because it is so easy to compute).
Throughout � = 10 is the true parameter value and each sample has n+ 1 = 501
observations with the initial value X0 �xed at 0:

It should be noted that with � = 10 the process is racing towards equilib-
rium, cf. (2.12), which means that for even moderate values of � (= 1 say), the
observations form almost an iid sample from the invariant distribution ��. By
elementary but tedious computations, the Fisher information about � in �� given
by (2.11) can be found explicitly and evaluating the result for � = 10; the value
3:47 � 10�5 is obtained. Thus there is hardly any information about � in �� which
explains why the estimates presented below should deteriorate for � large enough
{ � � 0:3 or thereabouts judging by Table 3.

The e�ect of small ��optimality is once again clealy visible: for the smaller
values of �; �MJ is better than �BS : For � = 0:1 they behave very much the
same, for � = 0:3 the quality of both starts to deteriorate and there is evidence
of some bias. For � = 0:5 both �MJ and �BS are unreliable with �MJ in particular
being too small (when it is found at all). In fact, for � = 0:5; in 9 out of the 28
successful cases, the equation producing �MJ had 2 solutions and the smallest one
was then used { in the 22 cases where no solution to the estimating equation was
found, �MJ = 1 appeared as the best value (bring the value of the estimating
function as close to 0 as possible). As should be the case, �KES is hopeless for all
values of �; cf. the values for the asymptotic variance given by Kessler [4], p. 80.
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� success � mean std.dev. small large

0.002 50/50 �MJ 9.876 0.639 8.710 11.59
50/50 �BS 10.96 4.38 3.059 24.84
50/50 �KES -2.611 9.46 -48.18 14.33

0.01 50/50 �MJ 10.02 0.586 8.731 11.32
50/50 �BS 11.20 2.41 5.571 16.56
50/50 �KES 2.457 24.2 -51.13 119.3

0.05 50/50 �MJ 9.877 0.671 8.023 10.95
50/50 �BS 10.07 1.18 7.012 13.26
50/50 �KES 4.076 23.3 -63.19 98.49

0.1 50/50 �MJ 10.07 1.13 8.247 12.33
50/50 �BS 10.05 1.08 7.999 12.67
50/50 �KES 52.33 242 -101.2 1454

0.3 39/50 �MJ 10.30 3.70 5.578 21.21
41/50 �BS 10.76 3.42 7.155 22.26
50/50 �KES 1.616 43.8 -264.5 102.0

0.5 28/50 �MJ 5.223 1.64 2.726 8.205
29/50 �BS 7.257 2.57 3.801 14.12
50/50 �KES 2.021 43.4 -217.8 93.35

Table 3. Summary statistics for estimates of the parameter in the
Pedersen-Bibby-S�rensen-Kessler model.

2.3. Rounding

It is a consequence of small ��optimality that for small values of �; parame-
ters appearing in the (squared) di�usion coeÆcient can be estimated much more
precisely than those appearing only in the drift. As discussed above this is
related to the singularity between the distributions of X when the process is
observed completely on a �nite time interval, which means that in theory the
parameters entering in the di�usion coeÆcient can be read o� from e.g. the
quadratic variation of the process. In practice however, computing anything like

lim
N!1

P2N

k=1

�
Xk2�N �X(k�1)2�N

�2
is impossible: not all the X values are available

and even if they were, since the observations are recorded with �nite accuracy the
sum of squared di�erences becomes numerically unstable for N large.

In order to see better if small ��optimal estimating functions are reliable in
practice, we shall therefore investigate the e�ect on the estimates arising from
using rounded observations. In the tables below a rounding factor � appears,
meaning that an exact observation z is replaced by the value

1

�

�
�z +

1

2

�
;
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[a] denoting the largest integer � a: No rounding corresponds to � = 1; while
e.g. � = 10 means that z is recorded to the �rst digit after the decimal point.

2.3.1. The generalised Cox-Ingersoll-Ross process

Simulations from the model (2.1) were done for � = 0:02 and 0:05 when estimat-
ing 
; �2 only, using the symmetrised version of the small ��optimal estimating
function gI from (2.9), assuming a and b to be known. As before the true param-
eter values were a = 1; b = �1; 
 = 1

2
and �2 = 1. Also as before n + 1 = 501

observations were used while 25 samples were made. Of course, for a given �; the
same data were used for all factors.

� factor success mean std.dev. small large

0.02 1 25/25 
 0.493 0.050 0.391 0.605
�2 0.999 0.086 0.816 1.173

1000 25/25 
 0.493 0.050 0.392 0.605
�2 0.999 0.086 0.817 1.174

100 25/25 
 0.492 0.051 0.385 0.598
�2 0.991 0.086 0.820 1.176

20 19/25 
 0.464 0.054 0.370 0.545
�2 1.022 0.092 0.808 1.213

10 16/25 
 0.437 0.055 0.337 0.545
�2 1.081 0.090 0.914 1.243

0.05 1 25/25 
 0.479 0.047 0.386 0.563
�2 0.996 0.093 0.834 1.181

1000 25/25 
 0.479 0.047 0.386 0.563
�2 0.996 0.093 0.834 1.181

100 25/25 
 0.478 0.047 0.384 0.560
�2 0.996 0.093 0.837 1.181

20 16/25 
 0.467 0.041 0.387 0.537
�2 1.014 0.085 0.899 1.198

Table 4. The e�ect of rounding when estimating 
 and �2 in the generalise
Cox-Ingersoll-Ross model.

The e�ect of the rounding is not visible for � = 1000 and barely for � = 100:
For � = 20 the estimates still behave quite well, but a special problem due to the
structure of the model appears: X is of course strictly positive but with a coarse
rounding mechanism it may still happen that a rounded observation value of 0 is
returned in which case the estimating function gI from (2.9) breaks down { both
logx and x2
�2 (for 
 = 1

2
) are in�nite. The problem persists of course for � = 10
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and proved too severe for � = 0:05: For � = 0:02 there are perhaps some signs
of bias, but the estimates are still useable.

That rounded values of 0 arise for � = 10 or 20 is clear when one considers the
length of the observation series together with the form of the invariant distribu-
tion, which here is the ��distribution with shape parameter 2 and scale parameter
1
2
: If F is the distribution function, the F -values corresponding to the observation

values rounded down to 0 for � = 10; 20; 100 respectively are F (0:05) = 0:0047;
F (0:025) = 0:0012 and F (0:005) = 0:0005: Thus, by the ergodic theorem, one
would expect approximately one observation in 200 to be rounded down to 0 if
the rounding is to the �rst digit after the decimal point.

Arguably, the rounding mechanism is somewhat unfair for the particular model
considered here but in conclusion it appears, that apart from the problem with
rounded values of 0, the estimates perform quite well, even when the rounding is
to the �rst decimal. For a process moving typically in the range ]0; 5] this is, in
the view of the author, surprisingly good.

2.3.2. The Pedersen-Bibby-S�rensen-Kessler model

For this model the problem with invalid or useless rounded observation values
does not arise, so here we investigate the e�ect of rounding more thoroughly. As
before di�erent values of � are used with observation series of length n+1 = 501:
For each � the same data sets are used corresponding to di�erent values of the
rounding factor �: Throughout the true model corresponds to � = 10; exactly
as in subsection 2.2, and for estimating � the symmetrised version of the small
��optimal 
ow (2.15) was used. The results of the simulations are as shown in
Table 5.

The complete range for the 50 � 501 = 25050 observations simulated for each
value of � were as follows: for � = 0:002 from -2.969 to 2.292; for � = 0:01 from
-3.794 to 3.889; for � = 0:1 from -3.358 to 3.551. Keeping this in mind, it is of
course a joke to consider rounding factors 1 and 2.

For � = 0:002; the estimate is �ne until the factor 20. With factor 10 bias
begins to show and for the smaller factors this bias renders the estimates useless.
For � = 0:01 and � = 0:1 the same tendency is seen, except of course that with
larger �; a coarser rounding can be allowed before the estimates collapse: for
� = 0:01 the critical factor is 10, bias appearing if the factor is 5 or smaller, while
for � = 0:1; even for factor 5 the estimate behaves sensibly.

In conclusion it would seem that the small ��optimal estimating 
ow is quite
robust against rounding { and certainly much more resilient than the author
thought in advance. But the data also suggests that any kind of rounding may
well introduce a systematic bias, that is negligeable if the rounding factor is large
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enough, but increases when the factor decreases.

� factor success mean std.dev. small large

0.002 1 50/50 9.903 0.694 8.320 11.22
100 9.912 0.692 8.327 11.22
50 9.933 0.696 8.358 11.28
20 10.107 0.673 8.507 11.27
10 10.686 0.787 8.853 12.16
5 13.415 0.928 11.33 15.51
2 29.416 2.42 22.84 33.74
1 61.149 12.46 34.14 86.42

0.01 1 50/50 9.938 0.711 8.490 11.92
100 9.941 0.713 8.485 11.94
50 9.946 0.712 8.495 11.95
20 9.988 0.724 8.507 12.01
10 10.124 0.719 8.728 12.16
5 10.680 0.747 9.125 12.82
2 14.606 1.124 12.62 17.74
1 27.859 2.898 21.95 35.42

0.1 1 50/50 10.171 1.144 8.153 12.65
100 10.171 1.144 8.152 12.63
50 10.171 1.147 8.163 12.66
20 10.187 1.151 8.160 12.73
10 10.190 1.156 8.091 12.70
5 10.335 1.190 8.112 13.02
2 11.218 1.332 8.826 14.03
1 14.612 1.980 9.888 19.00

Table 5. The e�ect of rounding when estimating � in the
Pedersen-Bibby-S�rensen-Kessler model.
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