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Abstract. This paper deals with various suÆcient (as well as necessary and

suÆcient) conditions for the uniform integrability of the exponential martingales

of the form

Zt = exp
n
Bt^� �

1

2
t ^ �

o
; t � 0;

where B is a Brownian motion and � is a stopping time. We give an overview of

the known results and present some new criteria (Theorems 3.2, 4.1).

As an auxiliary lemma, we prove the following statement that is interesting

in itself: for any function ' : R+ ! R, the upper limit lim supt"1(Bt � '(t))

either equals +1 a.s. or equals �1 a.s. This provides a simple criterion for

distinguishing lower and upper functions of a Brownian motion.

Key words and phrases. Exponential martingales, Novikov's condition,

Kazamaki's condition, consistent probability measures, upper and lower functions
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1 Introduction and Known Results

1. Let B = (Bt)t�0 be a Brownian motion on some �ltered probability space�

;F ; (Ft)t�0;P

�
and � = �(!) be a (Ft)-stopping time taking values in [0;1].

Set Mt = Bt^� . The process M = (Mt)t�0 is a continuous square-integrable martin-
gale with the (predictable) quadratic variation hMi = (hMit)t�0 given by hMit = t^ � .
The process Z = (Zt)t�0 de�ned as

Zt = exp
n
Mt � 1

2
hMit

o
is called the Dol�eans exponential (or the stochastic exponential) of M . These processes
arise naturally in many aspects of the stochastic analysis as well as in its applications
(stochastic optimal control, nonlinear �ltering, stochastic mathematical �nance, etc.).
The important problem is to �nd out whether the process Z is uniformly integrable.
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The uniform integrability of Z is equivalent to the condition EZ1 = 1, or in other
words,

E exp
n
B� � 1

2
�
o
= 1: (1.1)

Here, the expression expfB� � �=2g is taken to be equal to zero on the set f! : �(!) =
1g. This convention is natural in view of the limit relation

lim
t!1

exp
n
Bt � 1

2
t
o
= lim

t!1
exp

n
t
�Bt

t
� 1

2

�o
= 0 a.s.

which follows from the strong law of large numbers for a Brownian motion: limt!1Bt=t =
0 a.s.

2. There are many papers dealing with the suÆcient conditions that should be
imposed on � in order to guarantee (1.1).

For a uniformly bounded � (i.e. �(!) � c), property (1.1) is a consequence of
Doob's optional stopping theorem (see, for example, [13; Ch. II, (3.2)]). I.I. Gikhman
and A.V. Skorokhod [3] proved that the condition

9" > 0 : E expf(1 + ")�g <1
guarantees (1.1). R.S. Liptser and A.N. Shiryaev [10] showed that a weaker assumption

9" > 0 : E exp
n�1

2
+ "

�
�
o
<1

is suÆcient for (1.1). A.A. Novikov [11] proved that one can set " = 0 in the above
condition, i.e. that the assumption

E exp
n1
2
�
o
<1 (1.2)

implies (1.1) while no condition of the form

E exp
n�1

2
� "

�
�
o
<1 (1.3)

with " > 0 is suÆcient for (1.1).
Let us now consider the following example:

� = infft � 0 : Bt = 1g: (1.4)

We have E
p
� = 1, and consequently, E expf�=2g = 1. On the other hand, it is well

known (see, for example, [16; p. 248]) that (1.1) holds for this stopping time � . Thus,
condition (1.2) is not necessary for (1.1).

It is of interest to mention in this connection Kazamaki's condition (see [7]):

sup
t�0

E exp
n1
2
Bt^�

o
<1: (1.5)

This condition is suÆcient for (1.1) and is weaker than (1.2) in view of the inequality

E exp
n1
2
Bt^�

o
= E exp

n1
2
Bt^� � 1

4
t ^ �

o
exp

n1
4
t ^ �

o
�
�
E exp

n
Bt^� � 1

2
t ^ �

o�1=2�
E exp

n1
2
t ^ �

o�1=2

=
�
E exp

n1
2
t ^ �

o�1=2

�
�
E exp

n1
2
�
o�1=2

:
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Note that (1.5) holds for the stopping time given by (1.4) while (1.2) is violated for
this stopping time. In other words, Kazamaki's condition (1.5) is strictly weaker than
Novikov's condition (1.2).

As already pointed out, condition (1.3) is insuÆcient for (1.1). It is interesting to
note, however, that any of the conditions

lim
"#0

�
E exp

n1� "

2
�
o�"

= 1;

lim
"#0

�
sup
t�0

E exp
n1� "

2
Bt^�

o�"
= 1

implies (1.1) (see [9; p. 160], [18; Th�eor�eme 1]).
Condition (1.2) can also be weakened by another way. If there exists a lower function

' of a Brownian motion (the de�nition of a lower function is given in Section 2) such
that

E exp
n1
2
� � '(�)

o
<1 (1.6)

(here, � is supposed to be a.s. �nite), then (1.1) is satis�ed. This was proved in [12]
and [9; p. 159] with some additional monotonicity assumptions made on the lower
function '.

Let us also mention the paper [8] that deals with the conditions similar to (1.6) as
well as with the weakening of Kazamaki's condition.

3. One of the aims of this paper is to give some new suÆcient conditions for (1.1)
involving the lower functions (see Section 4).

In Section 2 we prove a lemma related to the lower functions. This lemma is used
in the subsequent proofs. Besides, it is in itself noteworthy.

In Section 3 we present a simple proof of a necessary and suÆcient condition
for (1.1). This condition has a particularly simple formulation for the stopping times
of the form � = infft � 0 : Bt � f(t)g, where f : R+ ! R is a continuous function.

Section 5 contains several (counter-)examples.
In Section 6 we show that, for any continuous local martingale M , the problem of

the uniform integrability of its stochastic exponential can be reduced to (1.1).

2 Upper and Lower Functions of Brownian Motion

Let (Bt)t�0 be a standard linear Brownian motion started at zero and let ' : R+ ! R

be a continuous function. The set

A =
�
! : 9t = t(!) > 0 : 8s � t; Bs(!) < '(s)

	
belongs to the tail �-�eld X =

T
t>0 �(Bs; s � t). The �-�eld X is trivial (this follows

from Blumenthal's zero-one law combined with the time-inversion property of a Brow-
nian motion). Hence, P(A) equals 0 or 1. We will now cite the classical de�nition of
the lower and upper functions (see, for example, [5; x1.8]).

De�nition 2.1. If P(A) = 0, then ' is called a lower function of a Brownian motion.
If P(A) = 1, then ' is called an upper function of a Brownian motion.
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Remark. It can be proved that, for any function ' : R+ ! R, the set A is measurable
and belongs to the �-�eld X . Thus, any function ' : R+ ! R is either a lower function
or an upper function of a Brownian motion. 2

Lemma 2.2. For any (continuous) function ' : R+ ! R, one has

lim sup
t!1

(Bt � '(t))
a.s.
=

(
+1 if ' is a lower function;

�1 if ' is an upper function:

Proof. The random variable lim supt!1(Bt � '(t)) is measurable with respect to
the tail �-�eld X . As X is trivial, there exists a constant � 2 [�1;1] such that

lim sup
t!1

(Bt � '(t)) = � a.s.

Suppose that � 2 (�1;1). Set

Q = Law(Bt; t � 0); eQ = Law(Bt + t ^ 1; t � 0):

Let X denote the coordinate process on C(R+ ;R) (i.e. Xt : C(R+ ;R) 3 x 7! x(t)).
Then

lim sup
t!1

(Xt � '(t)) = � Q-a.s.

lim sup
t!1

(Xt � '(t)) = � + 1 eQ-a.s.
On the other hand, the general theory of the change of measure (see [6; Ch. IV, (4.23)])

guarantees that eQ � Q. Consequently, � = � + 1. The obtained contradiction shows
that � equals either +1 or �1. Obviously, in the former case ' is a lower function
while in the latter case ' is an upper function. 2

Remark. Sometimes one de�nes \lower" and \upper" (strictly positive) functions of
a Brownian motion using the expression

lim sup
t!1

Bt

'(t)

(note that this random variable is a.s. equal to a constant � 2 [0;1]). However, this
approach does not allow the lower functions and the upper functions to be distinguished
completely for the following reason. If � > 1, then ' is a lower function (in the sense of
De�nition 2.1); if � < 1, then ' is an upper function. But there exist lower functions
as well as upper functions ' for which � = 1.

In order to prove the last assertion, take '(t) =
p
2t ln ln t. The Kolmogorov-

Petrovsky criterion (see [5; x1.8]) shows that '(t) is a lower function. For any " > 0,
the function (1+ ")'(t) is an upper function. Thus, there exists an increasing sequence
(tn)

1
n=1 of real numbers such that, for any n 2 N ,

P

n
8s � tn; Bs <

�
1 +

1

n

�
'(s)

o
� 1� 1

2n
:

Thanks to the Borel-Cantelli lemma, the function

 (t) =
�
1 +

1

n

�
'(t) if t 2 [tn; tn+1)

is an upper function. Furthermore, by the law of the iterated logarithm, we have

lim sup
t!1

Bt

'(t)
= lim sup

t!1

Bt

 (t)
= 1 a.s.

Obviously, one can construct a continuous upper function  with the same property. 2
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3 Criteria for the Uniform Integrability

of Exponential Martingales

When considering the suÆcient conditions for (1.1), it is useful to introduce the following
classes of stopping times:

(A) MA is the class of all (Ft)-stopping times;
(B) MB is the class of (FB

t )-stopping times, where FB
t =

T
">0 �(Bs; s � t+ ");

(C) MC is the class of the stopping times that have the form � = infft � 0 : Bt �
f(t)g for some continuous function f : R+ ! R with f(0) > 0.

1. Let (Bt)t�0 be a Brownian motion on
�

;F ; (Ft)t�0;P

�
and � be a (Ft)-stopping

time, i.e. � 2 MA. Let us consider the space C(R+ ;R
2) of continuous functions x =

(x1(t); x2(t))t�0. This space is endowed with the Borel �-�eld C(2). LetX = (X1
t ; X

2
t )t�0

denote the coordinate process on C(R+ ;R
2) (i.e. X1

t (x) = x1(t), X2
t (x) = x2(t)) and

C(2)
t =

T
">0 �(Xs; s � t + ") denote the canonical �ltration. Set

Q = Law
�
Bt; (t� �)+; t � 0

�
(3.1)

(thus, Q is a measure on C(2)). Obviously, (1.1) is equivalent to:

EQ exp
n
X1

T �
1

2
T
o
= 1; (3.2)

where
T = infft � 0 : X2

t > 0g: (3.3)

Set Qt = QjC(2)
t and consider the measures (eQt)t�0 de�ned by

deQt

dQt
= exp

n
X1

t �
1

2
t
o
: (3.4)

Then the measures (eQt) are consistent in the sense that eQtjC(2)
s = eQs for s � t.

Proposition 3.1. Let d 2 N and (Pt)t�0 be a family of consistent probability mea-

sures on
�C(d)

t

�
, where

�C(d)
t

�
is the canonical �ltration on the space C(R+ ;R

d). Then

there exists a unique measure P on the Borel �-�eld C(d) such that PjC(d)
t = Pt for any

t � 0.

For the proof, see [17; (1.3.5)].

Remark. Suppose that 
 is an arbitrary probability space endowed with a �ltration
(Gt)t�0 and (Pt)t�0 is a family of consistent probability measures on (Gt). Then it may
happen that the family (Pt) can not be extended to a measure P on

W
t�0 Gt (see [2],

[14; Ch. II, x3] for the corresponding examples). 2

The following theorem provides a necessary and suÆcient condition for (3.2) (and
hence, for (1.1)).

Theorem 3.2. Suppose that � 2MA. Let eQ be the measure such that eQjC(2)
t = eQt,

where eQt is given by (3.4). Then (3.2) is satis�ed if and only if eQfT <1g = 1.
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Proof. Set QT = QjC(2)
T , eQT = eQjC(2)

T . By [6; Ch. III, (3.4)], we have

deQT

dQT
= exp

n
X1

T �
1

2
T
o

on the set fT <1g. Therefore,

eQfT <1g = EQ

h
I(T <1) exp

n
X1

T �
1

2
T
oi

= EQ exp
n
X1

T �
1

2
T
o

(3.5)

(we used the fact that expfX1
T�T=2g is taken to be equal to zero on the set fT =1g).2

2. Let us now consider the case where � is a (FB
t )-stopping time, i.e. � 2 MB.

Here, FB
t =

T
">0 �(Bs; s � t + "). Then there exists a map T : C(R+ ;R) ! R such

that � = T (B) and T is a (Ct)-stopping time (here, (Ct) denotes the canonical �ltration
on C(R+ ;R)).

Theorem 3.3. Suppose that � 2 MB. Let eQ be the distribution of a Brownian

motion with the unit drift, i.e. eQ = Law(Bt + t; t � 0). Then (1.1) is satis�ed if and

only if eQfT <1g = 1.

Proof. Condition (1.1) is equivalent to the property

EQ exp
n
XT � 1

2
T
o
= 1;

where X is the coordinate process on C(R+ ;R) and Q is the Wiener measure. By
Girsanov's theorem combined with [6; Ch. III, (3.4)], we have

deQT

dQT

= exp
n
XT � 1

2
T
o

on the set fT <1g. The equality similar to (3.5) completes the proof. 2

3. Let us now suppose that � = infft � 0 : Bt � f(t)g, where f : R+ ! R is a
continuous function with f(0) > 0, i.e. � 2 MC. The following result was obtained
in [15]. We give here another proof.

Theorem 3.4. Suppose that � 2MC. Then condition (1.1) is satis�ed if and only

if the function f(t)� t is a lower function of a Brownian motion.

Proof. Let Q and eQ be the same as in Theorem 3.3. Set

T = infft � 0 : Xt � f(t)g;
where X is the coordinate process on C(R+ ;R). By Theorem 3.3, condition (1.1) is

equivalent to the equality eQfT < 1g = 1. This equality is, in turn, equivalent to

QfeT <1g = 1, where eT = infft � 0 : Xt � f(t)� tg:
If f(t)� t is a lower function, then, obviously, QfeT <1g = 1.
Suppose now that f(t)� t is an upper function. Then there exists t0 � 0 such that

Qf8s � t0; Xs < f(s)� sg > 0:
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Consequently, there exists a 2 R such that

Qf8s � t0; a+Xs �Xt0 < f(s)� sg > 0: (3.6)

Obviously, we have

Q
�f8s � t0; Xs < f(s)� sg \ fXt0 < ag� > 0: (3.7)

Combining (3.6) and (3.7), we get

Qf8s � 0; Xs < f(s)� sg > 0:

This means that QfeT <1g < 1. 2

Remark. Take � = infft � 0 : Bt � 1 + tg. By Theorem 3.4, (1.1) is then satis�ed.
On the other hand, � is in�nite with positive P-probability. Thus, the integral conditions
like (1.2) are far from being necessary for (1.1). 2

Let us now consider the following example related to Theorem 3.4.

Example 3.5. Let a 2 (0;1), b 2 (�1;1) and

�a;b = infft � 0 : Bt � a+ btg:

It is well known (see [1; (4.32)] or [16; p. 759]) that

Pf�a;b � tg = 1� �
�a+ btp

t

�
+ e�2ab�

�bt� ap
t

�
:

Hence, the density

pa;b(t) =
@Pf�a;b � tg

@t

is given by

pa;b(t) =
ap
2�t3

exp
n
�(a+ bt)2

2t

o
: (3.8)

Therefore,

E exp
n
B�a;b �

1

2
�a;b

o
= E exp

n
a + b�a;b � 1

2
�a;b

o
I(�a;b <1)

=
aea(1�b)p

2�

Z 1

0

1

t3=2
exp

n
bt� 1

2
t� a2

2t
� b2t

2

o
dt

= exp
�
a(1� b)� ajb� 1j	 =

(
1 if b � 1;

e�2a(b�1) if b > 1:

In order to calculate the integral, we used the change of variables u = t�1=2 and the
equality Z 1

0

exp
n
��u2 � �

u2

o
du =

1

2

r
�

�
e�2

p
��; � > 0; � � 0

(see [4; (3.325)]). Thus,

E exp
n
B�a;b �

1

2
�a;b

o
= 1 if b � 1
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and

E exp
n
B�a;b �

1

2
�a;b
o
< 1 if b > 1:

Moreover,

Pf�a;b <1g =
Z 1

0

pa;b(t) dt =

(
1 if b � 0;

e�2ab if b > 0:

It is reasonable to ask the question: for which functions  is (1.1) satis�ed with the
following stopping time

� = inf
�
t � 0 : Bt � a+ t +  (t)

	
:

Theorem 3.4 shows that (1.1) is satis�ed with such � if and only if  is a lower function
of a Brownian motion. 2

4 Some New Conditions for the Uniform

Integrability

The following new criteria improve the results of [8] as well as some conditions of [9]
and [12]. In particular, our results improve Novikov's criterion (1.2) and Kazamaki's
criterion (1.5).

Theorem 4.1. Let ' be a lower function of a Brownian motion. Then any of the

conditions

lim sup
t!1

E exp
n1
2
t ^ � � '(t ^ �)

o
<1; (4.1)

lim sup
t!1

E exp
n1
2
Bt^� � 1

2
'(t ^ �)

o
<1 (4.2)

is suÆcient for (1.1).

Proof. We will give the proof only for condition (4.2) as (4.1) is treated similarly

(see also [8]). Let Q, eQ and T be the same as in (3.1), (3.3), (3.4). For any t � 0, we
have

EQ exp
n1
2
X1

t^T �
1

2
'(t ^ T )

o
= E

eQ
exp

n1
2
X1

t^T �
1

2
'(t ^ T )

o
exp

n
�X1

t^T +
1

2
t ^ T

o
= E

eQ
exp

n
�1

2

�
X1

t^T � t ^ T �� 1

2
'(t ^ T )

o
� E

eQ
exp

n1
2
(�X1

t + t)� 1

2
'(t)

o
I(T =1):

Note that, by Girsanov's theorem, the process �Xt+t is a eQ-Brownian motion. Suppose
that (4.2) holds. Then, according to Lemma 4.2 below, eQfT = 1g = 0. Applying
Theorem 3.2, we get the desired result. 2

Lemma 4.2. Let B be a Brownian motion on some probability space (
;F ;P).
Suppose that ' is a lower function of a Brownian motion. Let A 2 F be a set with

P(A) > 0. Then

lim sup
t!1

E exp
n1
2
Bt � 1

2
'(t)

o
I(A) =1: (4.3)
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Proof. Step 1. Let us �rst prove that there exists a sequence (tn)
1
n=1 such that

n � tn < n+ 1 and
lim sup
n!1

�
Btn � '(tn)

�
=1 a.s. (4.4)

To this end, we choose for each n 2 N a number tn 2 [n; n+ 1) such that

'(tn) � inf
t2[n;n+1)

'(t) + 1

(we may assume that this in�mum is �nite for all suÆciently large n, or else the state-
ment of Step 1 is trivial). Let us prove that (4.4) is satis�ed for these numbers tn.

Set
Sn = sup

t2[0;1]
jBn+t � Bnj:

Then ES4
n <1, and, by Chebyshev's inequality,

1X
n=1

PfSn > n1=3g <1:

According to the Borel-Cantelli lemma,

P
�9N : 8n � N; Sn � n1=3

	
= 1: (4.5)

For any t 2 [n; n + 1), we can write

Bt � '(t) � Btn � '(tn) + 2Sn + 1:

Combining this with (4.5) and keeping inequality tn � n in mind, we get

lim sup
t!1

(Bt � '(t)) � lim sup
n!1

�
Btn � '(tn) + 3t1=3n

�
a.s.

Applying Lemma 2.2, we arrive at

lim sup
n!1

�
Btn � '(tn) + 3t1=3n

�
=1 a.s. (4.6)

On the other hand, there exists an absolutely continuous function h : R+ ! R+

such that h(0) = 0, h(t) = 3t1=3 for t > 1 andZ 1

0

(h0(t))2dt <1:

For this function h, we have

Law(Bt; t � 0) � Law
�
Bt + h(t); t � 0

�
(see [6; Ch. IV, (4.23)]). This, together with (4.6), yields (4.4).

Step 2. Suppose that condition (4.3) is violated. Then there exists  > 0 such that,
for any suÆciently large n,

E exp
n1
2
Btn �

1

2
'(tn)

o
� ;

9



where the numbers tn satisfy (4.4). Hence,

P
��
Btn � '(tn) > 3t1=3n

	 \ A� �  exp
n
�3

2
t1=3n

o
� 

n2
:

By the Borel-Cantelli lemma,

lim sup
n!1

�
Btn(!)� '(tn)� 3t1=3n

� � 0

for P-almost every ! 2 A. Recall that P(A) > 0.
Let h be the function described in Step 1. Then

Law(Bt; t � 0) � Law
�
Bt � h(t); t � 0

�
;

and condition (4.4) shows that

lim sup
n!1

�
Btn � '(tn)� 3t1=3n

�
=1 a.s.

The obtained contradiction completes the proof. 2

Theorem 4.1 implies the following statement (it was proved in [9; p. 159]).

Corollary 4.3. Suppose that ' is a lower function such that the function t=2�'(t)
is increasing. Then the condition

E exp
n1
2
� � '(�)

o
<1 (4.7)

is suÆcient for (1.1).

5 Some Examples

1. The �rst example shows that condition (1.6) is strictly weaker than Novikov's
condition (1.2).

Example 5.1. Let 
 be the space C(R+ ;R) equipped with the Wiener measure Q.
Set

� = inf
�
t � 0 : Xt � 1 +

p
t� t

	
;

where X is the canonical process on C(R+ ;R). Let eQ = Law(Bt + t; t � 0) and

e� = inf
�
t � 0 : Xt � 1 +

p
t
	
; � = infft � 0 : Xt � 1g:

Then

EQ exp
n1
2
�
o
= E

eQ
exp

n1
2
e�o = E

eQ
exp

n1
2
e�oI(e� <1)

= EQ exp
n1
2
e�o expnX

e� � 1

2
e�oI(e� <1) = EQ expfXe�g

= EQ exp
�
1 +

pe�	 � EQ exp
�
1 +

p
�
	
=1

(we used (3.8) in the last equality). Thus, condition (1.2) is violated.
On the other hand, the computations similar to those given above show that

EQ exp
n1
2
� �p

�
o
= EQ exp

�
X

e� �
pe�	 = e <1: 2
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2. The second example shows that condition (4.2) is strictly weaker than Kazamaki's
condition (1.5).

Example 5.2. Set
� = inf

�
t � 0 : Bt � 1 +

p
t
	
:

Consider also the stopping time

� = infft � 0 : Bt � 1g:
We have

E exp
n1
2
Bt^�

o
� E exp

n1
2
(1 +

p
� )
o
I(� � t) � E exp

n1
2
(1 +

p
�)
o
I(� � t):

Since � is �nite a.s., the last term converges (as t!1) to

E exp
n1
2
(1 +

p
�)
o
=1:

Thus, condition (1.6) is violated.
On the other hand,

E exp
n1
2
Bt^� � 1

2

p
t ^ �

o
� e1=2 <1: 2

3. The third example shows that the possible weakening of conditions (1.5), (4.2)
to the condition

E exp
n1
2
B�

o
<1 (5.1)

(together with the assumption � <1 a.s.) does not guarantee (1.1).

Example 5.3. Set
� = infft � 1 : Bt = 1g:

Here, (5.1) is trivially satis�ed. On the other hand, (1.1) is violated. Indeed, let us
consider the stopping time

� = infft � 0 : Bt = 1g:
Applying Kazamaki's criterion, we deduce that (1.1) holds for �. Furthermore, B� =
B� = 1 while � � � and Pf� > �g > 0. Therefore,

E exp
n
B� � 1

2
�
o
< E exp

n
B� � 1

2
�
o
= 1: 2

4. The fourth example shows that the monotonicity assumption in Corollary 4.3 is
essential.

Example 5.4. Consider the stopping time

�0 = infft � 0 : Bt = �1g:
Let � = n+1 on the set fn � �0 < n+1g and let � =1 on the set f�0 =1g. In view
of Theorem 3.3, condition (1.1) is violated.

On the other hand, condition (4.7) is satis�ed with the (discontinuous) lower func-
tion

'(t) =

(
0 if t =2 N ;

t=2 if t 2 N :

Obviously, one can also construct a continuous lower function ' for which (4.7) is true. 2
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6 Stochastic Exponentials of Continuous Local Mar-

tingales

Let M = (Mt)t�0 be a continuous local martingale on
�

;F ; (Ft)t�0;P

�
with the

quadratic variation hMi = (hMit)t�0. Let us formulate a version of the Dambis-Dubins-
Schwarz theorem (see [13; Ch. V,(1.6), (1.7)]).

Proposition 6.1. There exist an enlargement (e
; eF ; eP) of (
;F ;P), a �ltration

( eFt)t�0 on this space and a ( eFt)-Brownian motion B = (Bt)t�0 such that Mt = BhMit.
Moreover, for each s � 0, the random variable hMis is a ( eFt)-stopping time.

Let us consider the stochastic exponential of M :

Zt = exp
n
Mt � 1

2
hMit

o
:

By Itô's formula, Z is a (Ft)-local martingale. Being positive, it is a supermartingale
(this is a consequence of Fatou's lemma). By Doob's convergence theorem, there exists
(a.s.) the limit Z1 = limt!1 Zt.

Let hMi1 = limt!1hMit. On the set fhMi1 < 1g, there exists (a.s.) the limit
M1 = limt!1Mt (this is a consequence of Proposition 6.1). Obviously, on this set we
have

Z1 = exp
n
M1 � 1

2
hMi1

o
a.s.

Proposition 6.1, combined with the property limt!1 expfBt� t=2g = 0 a.s., shows that
Z1 = 0 on the set fhMi1 =1g.

Let now B be the Brownian motion given by Proposition 6.1. Set � = hMi1. Note
that �(= limn!1hMin) is a ( eFt)-stopping time. In view of the convention expfB� �
�=2g = 0 on the set f� =1g, we have

Z1 = exp
n
B� � 1

2
�
o

a.s. (6.1)

As Z is a positive supermartingale, the uniform integrability of Z is equivalent to
the condition EZ1 = 1. Thanks to (6.1), this is, in turn, equivalent to (1.1).
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