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Abstract. We construct highest weight unitary irreducible representations of a Lie
algebra for open quantum matrix chains akin to quotients of Verma modules for sim-
ple finite-dimensional Lie algebras. Those representations resembling typical unitary
irreducible representations of gl(n) turn out to be tensor products of the defining rep-
resentation. They can be physically identified as multiple meson states or multiple
open string states. Other representations are intimately related to the Cuntz algebra.
They may be related to novel bound states.

INTRODUCTION

Strong interaction and quantum gravity are two fundamental branches of physics.
Quantum chromodynamics (QCD) is an experimentally well-established theory for
the former, whereas M(atrix)-theory is the latest candidate for an ultimate the-
ory of everything incorporating the latter. The main tool for doing calculations in
both theories is perturbative analysis, which does lead to a wealth of decent knowl-
edge explaining, say, scattering phenomena both of high-energy partons induced by
strong interaction, and of M-theory objects induced by classical supergravity. (Ref.
[1], for instance, gives a detailed account of perturbative QCD. Listed in Ref. [2]
are two very recent reviews on M-theory and its perturbative analysis. The reader
can find lists of further literature from them.) Perturbation theory, however, can-
not be used as an all-purpose tool to account for everything. In particular, it is
invalid when we want to study low-energy phenomena of strong interaction like
the hadron spectrum or color confinement, or when we want to understand large
quantum effects in supergravity. (Again the reader can find relevant discussions
of this point in Refs. [1] and [2], and the citations therein.) Other techniques are
needed to study these important and interesting phenomena.

The study of symmetry is one such non-perturbative approach. This basically
involves identifying a symmetry of a physical system and a set of generators gener-
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ating this symmetry transformation, constructing an algebra from these generators
and a representation theory for the algebra, and finally applying the representa-
tion theory to compute interesting physical quantities like the mass spectrum or
correlation functions. Sometimes, the symmetry of a system puts such a powerful
constraint on its behavior that it completely determines its physics. As an elemen-
tary but non-trivial example, the so(4) symmetry of the hydrogenic atom dictates
completely its energy spectrum [3].

Other examples abound. The Virasoro algebra is a famous one. This is the Lie
algebra describing conformal symmetry [4]. Through its representation theory, we
have learnt a lot about conformal field theory. For instance, consider a conformal
field theory on a torus. Let τ be the ratio of the complex periods along two
independent orientations of the torus. As the Hamiltonian and momentum can
be written in terms of the Virasoro generators L0 and L̃0 of the holomorphic and
anti-holomorphic parts of a conformal field theory, its partition function is

Tr qL0−c/24q̄L̃0−c̃/24,

where q = exp(2πiτ), q̄ is the complex conjugate of q, c is the conformal charge of
the holomorphic part, and c̃ is the conformal charge of the anti-holomorphic part
of the theory. The task of calculating this partition function then boils down to
computing the Virasoro characters from a knowledge of its representation theory.
Indeed, the result is

qh+(1−c)/24q̄h̃+(1−c̃)/24

η(τ)η(τ̄)
.

In this formula, h and h̃ are positive real numbers called the highest weights, the
values of which depend on the model we are studying, and

η(τ) ≡ q1/24
∞∏
n=1

(1− qn)

is the Dedekind function. As another example, reducible representations of the
Virasoro algebra provide us with a set of null vectors, which, in the language
of conformal field theory, can be translated into a set of differential constraints
on the correlation functions, which can then be explicitly computed. Therefore,
studying the representation theory of the Virasoro algebra goes a long way towards
understanding conformal field theory. Can we adopt a similar approach to QCD
and M-theory?

A remarkable common feature between QCD and M-theory is that both are ma-
trix models. In the case of QCD, this originates from the fact that the gluon fields
are in the adjoint representation of the gauge group SU(N), which is effectively the
same as U(N) in the large–N limit [5,6]; in the case of M-theory, this stems from
a conjecture that in a light-front coordinate system, M-theory can be described by
a supersymmetric matrix quantum mechanics in the large–N limit [7]. Abstractly
speaking, we can paraphrase a corollary to M-theory called matrix string theory
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[8] and large–N QCD in terms of quantum matrix oscillators [9,10], which, as an
additional bonus, can be used to formulate quantum spin chains, too [11]. Physical
states built out of these oscillators can be classified into two broad families — open
matrix chains and closed matrix chains. The former can be interpreted as mesons,
discretized open strings or open spin chains, and the latter as glueballs, discretized
closed strings or closed spin chains.

Thus, what we need to do is to identify symmetry algebras for open and closed
matrix chains, and develop representation theories for them.

Rajeev and the second author of this article have reported on the existence of
two Lie (super)-algebras for open and closed matrix chains. (See Ref. [10] and the
citations therein.) They are called the open string (super)-algebra and the closed
string (super)-algebra, respectively. Since the former looks simpler, our study of
the representation theories starts with the open string algebra first. Owing to the
lack of space, we will only briefly recapitulate the operators that span the open
string algebra. The reader is referred to Refs. [12], [9] and [13] for more complete
discussions. Also, the reader can find an account of some basic notions of the
representation theory of Lie algebras to be used below in Ref. [14].

BASIC FORMALISM

An open matrix chain is a matrix product of an N-dimensional row vector, a
(possibly empty) series of N × N square matrices and an N-dimensional column
vector. It can be abstractly written as

φ̄ρ1 ⊗ sK̇ ⊗ φρ2 ,

where ρ1 is a positive integer, K̇ a finite integer sequence and ρ2 another positive
integer (Fig.1(a)). They label the quantum states (other than the color quantum
number) of the row vector, the series of square matrices and the column vector,
respectively.

In the large–N limit, there are four families of operators acting on open matrix
chains. They can be abstractly written as finite linear combinations of

1. Ξ̄λ1
λ2
⊗ f İ

J̇
⊗ Ξλ3

λ4
,

2. Ξ̄λ1
λ2
⊗ lİ

J̇
⊗ 1,

3. 1⊗ rİ
J̇
⊗ Ξλ1

λ2
and

4. 1⊗ σIJ ⊗ 1.

(See Figs.1(b) to (e) for illustrations.) Roughly speaking, the first family of oper-
ators replaces a whole open matrix chain with another one (Fig.1(f)); the second
family replaces the row vector and perhaps a few square matrices adjacent to the
row vector with another row vector and perhaps other square matrices (Fig.1(g));
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FIGURE 1. Figure (a) shows the part sK̇ of an open matrix chain. We ignore φ̄ρ1 and φρ2 in
this diagram. Figures (b), (c), (d) and (e) show the parts f İ

J̇
, lİ
J̇
, rİ

J̇
and σIJ of operators of the

first, second, third and fourth kind, respectively. Figures (f), (g), (h) and (i) show the actions
of these operators on an open matrix chain. (If a capital letter carries an asterisk, then the
corresponding integer sequence is put in reverse.)
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the third family works pretty much like the second family except that it acts on the
column-vector end (Fig.1(h)); the last family replaces a product of square matrices
in the middle of the open matrix chain with another product (Fig.1(i)). Ref. [9]
contains diagrams illustrating these action. A typical physical observable like the
momentum or the Hamiltonian can be written as a linear combination of these
operators.

Note that these operators are not linearly independent; some finite linear com-
binations act identically on any open matrix chain. This results in a number of
relations among the operators. Important examples are

ΛF∑
λ=1

Ξ̄λ
λ ⊗ lIJ = σIJ −

Λ∑
i=1

σiIiJ ,

ΛF∑
λ=1

rIJ ⊗ Ξλ
λ = σIJ −

Λ∑
j=1

σIjJj,

ΛF∑
λ1,λ2=1

Ξ̄λ1
λ1
⊗ f IJ ⊗ Ξλ2

λ2
= σIJ −

Λ∑
i=1

σiIiJ −
Λ∑
j=1

σIjJj +
Λ∑

i,j=1

σiIjiJj ,

ΛF∑
λ3=1

Ξ̄λ1
λ2
⊗ f İ

J̇
⊗ Ξλ3

λ3
= Ξ̄λ1

λ2
⊗ lİ

J̇
−

Λ∑
j=1

Ξ̄λ1
λ2
⊗ lİj

J̇j
and

ΛF∑
λ1=1

Ξ̄λ1
λ1
⊗ f İJ̇ ⊗ Ξλ2

λ3
= rİJ̇ ⊗ Ξλ2

λ3
−

Λ∑
i=1

riİiJ̇ ⊗ Ξλ2
λ3
. (1)

A notable feature from the symmetry viewpoint is that these operators form a Lie
algebra, the open string algebra, with the space spanned by open matrix chains as
the defining representation. The reader can find all the Lie brackets in Ref. [13].

VERMA-LIKE MODULES

In the case of the classical Lie algebras and the Virasoro algebra, the Weyl
decomposition is a valuable tool for constructing highest weight unitary irreducible
representations as quotients of Verma modules. We would like to adopt the same
approach here. However, because the Cartan subalgebra together with all the root
vectors do not span the open string algebra [13], we cannot construct a Verma
module in the traditional sense. Nevertheless, there is still a useful decomposition
out of which we can construct Verma-like modules. Let us describe them now.

Let G00 be the subalgebra of the open string algebra ĜΛ,ΛF spanned by all oper-
ators of the form

1. Ξ̄λ1
λ1
⊗ f İ

İ
⊗ Ξλ2

λ2
,

2. Ξ̄λ
λ ⊗ lİİ ⊗ 1,

3. 1⊗ rİ
İ
⊗ Ξλ

λ and
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4. 1⊗ σII ⊗ 1.

G00 turns out to be a Cartan subalgebra [13]. Let G+ be the subalgebra of the
open string algebra spanned by

1. Ξ̄λ1
λ2
⊗ f İ

J̇
⊗Ξλ3

λ4
such that İλ1λ3 > J̇λ2λ4 (see Ref. [9] or [13] for the definition

of a lexicographical ordering of integer sequences);

2. Ξ̄λ1
λ2
⊗ lİ

J̇
⊗ 1 such that İλ1 > J̇λ2;

3. 1⊗ rİ
J̇
⊗ Ξλ1

λ2
such that İλ1 > J̇λ2; and

4. 1⊗ σIJ ⊗ 1 such that I > J .

Finally, let G− be the subalgebra defined similar to G+ except that each > in the
above definition is changed to <. Then

ĜΛ,ΛF = G− ⊕G00 ⊕G+.

Moreover,

[G00, G00] = 0 and

[G00, G±] ⊂ G±.

Thus here G00 ⊕G+ plays a role analogous to what the Borel subalgebra does for
a simple Lie algebra.

Let v be a basis vector of a one-dimensional representation CI h of G00 ⊕ G+

satisfying

G+(v) = 0,

Ξ̄λ1
λ1
⊗ f İİ ⊗ Ξλ2

λ2
(v) = hI(λ1; İ;λ2)v,

Ξ̄λ
λ ⊗ lİİ ⊗ 1(v) = hII(λ; İ)v,

1⊗ rİ
İ
⊗ Ξλ

λ(v) = hIII(İ;λ)v and

1⊗ σII ⊗ 1(v) = hIV (I)v,

where hI , hII , hIII and hIV are functionals on integer sequences. We will call them
weight functions. Since the four kinds of operators are not linearly independent, the
weight functions are not independent either. The preceding equations show that
CI h is a left G00 ⊕ G+ module. Let U(ĜΛ,ΛF ) and U(G00 ⊕ G+) be the universal
enveloping algebras of the open string algebra and G00⊕G+, respectively. Note that
U(ĜΛ,ΛF ) is a right G00 ⊕ G+ module. We call the highest weight representation
defined by the quotient of

U(ĜΛ,ΛF )⊗ CI h

by the subspace of this direct product generated by all

m1b⊗m2 −m1 ⊗ bm2,

where m1 ∈ U(ĜΛ,ΛF ), m2 ∈ CI h and b ∈ U(G00 ⊕G+), a Verma-like module.
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REPRESENTATION THEORY

In general, a Verma-like module is neither irreducible nor unitary. We need to
quotient out the maximal proper subrepresentation, and choose the weight func-
tions judiciously to obtain a unitary irreducible highest weight representation.

The defining representation can be obtained from a Verma-like module as stated
in

Theorem 1 The quotient of the Verma-like module with

hI(λ1; İ;λ2) = δλ1
1 δ

İ
∅δ
λ2
1 ,

hII(λ; İ) = δλ1 δ
İ
∅ ,

hIII(İ;λ) = δİ∅δ
λ
1 and

hIV (I) = 0

by the kernel of the Hermitian form of the module is the defining representation of
the open string algebra.

A proof can be found in Ref. [13].
We can get many representations from the defining representation by taking its

tensor products. The following theorem describes interesting properties of these
representations. To state this theorem, we need the notion of an approximately
finite Verma-like module. This is a Verma-like module in which

1. hI(λ1; İ;λ2)−hI(λ3; J̇;λ4) should be a non-negative integer whenever J̇λ3λ4 >
İλ1λ2;

2. hII(λ; İ) =
∑
İ1,λ1

hI(λ; İ İ1;λ1);

3. hIII(İ;λ) =
∑
λ1,İ1

hI(λ1; İ1İ;λ); and

4. hIV (I) =
∑
λ1,İ1,İ2,λ2

hI(λ1; İ1Iİ2;λ2).

(Only a finite number of summands should be non-zero in the last three equations.)

Theorem 2 The following statements pertaining to a unitary irreducible represen-
tation are equivalent:

1. The representation is a tensor product of the defining representation.

2. The representation is the quotient of an approximately finite Verma-like mod-
ule by its maximal subrepresentation.

3. The representation is the quotient of a Verma-like module in which hI , hII ,
hIII and hIV are all non-zero only on a finite number of arguments by its
maximal subrepresentation.
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4. The representation is the quotient of a Verma-like module in which hIV is non-
zero only on a finite number of arguments by its maximal subrepresentation.

That 1. implies 2., 2. implies 3. and 3. implies 4. should be obvious. Let us
briefly explain how 4. leads to 1.. As we have underscored previously, the weight
functions are not linearly independent. Indeed, it follows from Eqs.(1) that

ΛF∑
λ=1

hII(λ; I) = hIV (I)−
Λ∑
i=1

hIV (iI),

ΛF∑
λ=1

hIII(I;λ) = hIV (I)−
Λ∑
j=1

hIV (Ij),

ΛF∑
λ1,λ2=1

hI(λ1; I;λ2) = hIV (I)−
Λ∑
i=1

hIV (iI)−
Λ∑
j=1

hIV (Ij) +
Λ∑

i,j=1

hIV (iIj),

ΛF∑
λ2=1

hI(λ1; ∅;λ2) = hII(λ1; ∅)−
Λ∑
i=1

hII(λ1; i) and

ΛF∑
λ1=1

hI(λ1; ∅;λ2) = hIII(∅;λ2)−
Λ∑
i=1

hIII(i;λ2). (2)

Then 4. and Eqs.(2) together imply 3.. 3. and Eqs.(2) together, in turn, imply that
all of hII , hIII and hIV can be completely determined from hI by bootstrapping.
hI is the weight functions of the Cartan subalgebra of a proper ideal isomorphic
to gl(∞). The claim now follows from the fact that all unitary irreducible highest
weight representations of gl(n) are tensor products of its defining representation.
See Ref. [13] for a more detailed rigorous proof.

Theorem 3 Any unitary irreducible highest weight representation of the open
string algebra is a tensor product of a tensor product of the defining representa-
tion, and a representation of the quotient of the open string algebra by gl(∞).

This basically results from the decompositions

Ξ̄λ1
λ2
⊗ lİJ̇ ≡ Ξ̄λ1

λ2
⊗ l̃İJ̇ +

ΛF∑
λ3=1

∑
K̇

Ξ̄λ1
λ2
⊗ f İK̇J̇K̇ ⊗ Ξλ3

λ3
,

rİ
J̇
⊗ Ξλ1

λ2
≡ r̃İ

J̇
⊗ Ξλ1

λ2
+

ΛF∑
λ3=1

∑
K̇

Ξ̄λ3
λ3
⊗ f K̇İ

K̇J̇
⊗ Ξλ1

λ2
and

σIJ ≡ σ̃IJ +
ΛF∑

λ1,λ2=1

∑
K̇,L̇

Ξ̄λ1
λ1
⊗ f K̇IL̇K̇JL̇ ⊗ Ξλ2

λ2
. (3)

These decompositions are well-defined because the infinite sums on the right hand
sides of Eqs.(3) are well-defined operators when acting on a highest weight module.
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Ξ̄λ1
λ2
⊗ l̃İ

J̇
, r̃İ

J̇
⊗Ξλ1

λ2
and σ̃IJ all commute with any f İ

J̇
. They span the quotient of the

open string algebra by gl(∞). The infinite sums in the above three equations to-

gether with all f İ
J̇

are represented by a tensor product of the defining representation.
Again see Ref. [13] for a fuller proof.

PHYSICAL INTERPRETATIONS AND OUTLOOK

What are the physical interpretations of these results? It is obvious that the
tensor products of the defining representation in Theorem 2 describe multiple dis-
cretized open string states, or multiple meson states. As irreducible representations,
they reflect once again the long-established fact that in the large–N limit, we can-
not break an open string into many, or join several open strings into one [15]. The
quotient representations of Theorem 3, if they exist, yield novel bound states. Since
we know that the quotient is closely related to the Cuntz algebra [16,12], perhaps
the representation theory of the Cuntz algebra will lead to novel physics.
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