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Probability densities and Lévy densities

Ole E. Barndorff-Nielsen
MaPhySto∗

Abstract

For positive Lévy processes (i.e. subordinators) formulae are derived that express the
probability density or the distribution function in terms of power series in time t. The
applicability of the results to finance and to turbulence is briefly indicated.
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1. Introduction

For the infinitely divisible laws there are a number of intriguing and useful relations and
points of similarity between the probability measures and probability densities of the laws on
the hand and their associated Lévy measures and Lévy densities on the other.

The recent comprehensive monograph by Sato (1999) contains many instances of this.
Some examples are the relation between unimodality properties of the two types of densities,
Sato (1999; Section 52), and the behaviour under exponential tilting (or Esscher transforma-
tion). Another instance is the result that if U is the Lévy measure of an infinitely divisible
law on Rd with associated Lévy process Xt and if P t denotes the law of Xt then

lim
t↓0

t−1

∫
Rd

f(x)P t(dx) =
∫

Rd

f(x)U(dx) (1.1)

for any function f in the space C# of bounded countinuous functions on Rd vanishing in a
neighbourhood of 0, Sato (1999; Corollary 8.9). See also Léandre (1987), Ishikawa (1994) and
Picard (1997) who, partly in the wider setting of pure jump processes, study cases where the
transition density exists and behaves as a power of t for t ↓ 0.

The present paper considers extensions of the result (1.1), but for simplicity the discussion
is largely restricted to one-dimensional (i.e. d = 1) distributions on the positive halfline. In
∗MaPhySto — Centre for Mathematical Physics and Stochastics, funded by a grant from the Danish
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particular, a formula is proposed that expresses the probability density of such a distribution
in terms of the corresponding Lévy density.

Formulae of that kind are of interest, in particular, in connection with recent work on
stochastic modelling of asset returns in finance and velocity differences in turbulence. The
approach taken there is to seek to capture the observed distributional behaviour by specifi-
cation of Lévy densities rather than probability densities. For some case studies see Novikov
(1994), Koponen (1995), Cont, Potters and Bouchaud (1997), Mantegna and Stanley (1999)
and Barndorff-Nielsen and Shephard (1999, 2000). Boyarchenko and Levendorskĭı (2000)
develops this approach considerably, including applications to option pricing.

Section 2 provides some preliminaries, and then in Section 3 it is proved that for sub-
ordinators Xt the complementary distribution function F+(x; t) = 1 − F (x; t) of Xt is the
limit as ε ↓ 0 of a power series in t whose coefficients depend on ε and are determined from
convolutions of approximations to the Lévy density u. This indicates the existence of general
power series expressions for F+(x; t) and its probability density f(x; t) and in the rest of the
paper (Sections 4-6) the nature and applicability of these power series is discussed and illus-
trated. The determination of the coefficients in the series involves an intricate phenomenon
of cancellation of singular terms.

2. Preliminaries

For any function f defined on R+ = (0,∞) we write f̄ for the function defined by f̄(x) =
xf(x).

The n-fold convolution of a probability density q is denoted by q∗n and similarly for
distribution functions and other measures.

In the sequel we shall use the following notation for the cumulant transform of a positive
random variate y

K̄{θ ‡ y} = log E{e−θy}

We shall say that a random variable y, or its distribution, is of class P+ if y is positive
and infinitely divisible and the infimum of the support of y is 0. In this case

K̄{θ ‡ y} = −
∫

R+

(1− e−θx)U(dx) (2.1)

where the Lévy measure U satisfies∫
R+

min{1, x}U(dx) <∞

A stochastic process {z(t)}t≥0 is said to be a Lévy process if it has independent increments
and cadlag sample paths and is continuous in probability. If the increments are stationary
{z(t)} is said to be homogeneous. In the following, as is customary, we take the term Lévy
process to mean a homogeneous Lévy process {z(t)} such that z(t)

p→ 0 as t ↓ 0. We say that
{z(t)} is of class P+ if the law of z(t) is of class P+ for all t > 0.

Unless otherwise stated, {z(t)} is taken to be of class P+. Furthermore, we shall mainly
consider the case where for each t > 0 the law of the random variable z(t) has a probability
density, which we will denote by f(x; t). We shall need the following
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Lemma 2.1 For m = 1, 2, ... we have

m∑
ν=0

(−1)m−ν
(
m

ν

)
(ν + 1)q =

0 for q < m

q! for q = m
(2.2)

�

Proof We have
m∑
ν=0

(−1)m−ν
(
m

ν

)
(ν + 1)q =

q∑
τ=0

(q
τ

) m∑
ν=0

(−1)m−ν
(m
ν

)
ντ

=
q∑

τ=1

(q
τ

) m∑
ν=1

(−1)m−ν
(m
ν

)
ντ

and therefore (2.2) follows from the fact that

m∑
ν=1

(−1)m−ν
(m
ν

)
ντ =

0 for τ < m

τ ! for τ = m
(2.3)

To verify the latter let
q(θ) = (eθ − 1)m − (−1)m

and note that

q(θ) =
m∑
ν=1

(−1)m−ν
(m
ν

)
eνθ

Thus on the one hand, for τ = 1, 2, ...,

dq(θ)
dθτ

∣∣∣∣
θ=0

=
m∑
ν=1

(−1)m−ν
(
m
ν

)
ντ

while on the other
dq(θ)
dθτ

∣∣∣∣
θ=0

=
0 for τ < m

m! for τ = m

and this implies (2.3). �

3. Probability densities and Lévy densities on R+

Let z be a Lévy process of class P+ and suppose that the Lévy measure U of z(1) has density
u with ∫ ∞

0
u(x)dx =∞ (3.1)

Furthermore, for every ε > 0, let Uε be a Lévy measure on R+ and suppose that Uε has a
density uε such that for every x ∈ R+∫ ∞

0
uε(x)dx <∞

3



lim
ε↓0

uε(x) = u(x)

and such that for all x ∈ R+

lim
ε↓0

∫ ∞
x

uε(ξ)dξ =
∫ ∞
x

u(ξ)dξ (3.2)

For instance, we may take uε(x) = 1(ε,∞)u(x). Define

c(ε) =
∫ ∞

0
uε(x)dx (3.3)

and
aε(x) = c(ε)−1uε(x)

so that aε is the density function of a probability measure on R+ with distribution function

Aε(x) =
∫ x

0
aε(ξ)dξ

Finally, let

U+
nε(x) = c(ε)n

n∑
ν=1

(−1)n−ν
(
n

ν

)
(A∗νε )+(x) (3.4)

where (A∗νε )+(x) = 1−A∗νε (x).

Theorem 3.1 Let F (x; t) be the distribution function of z(t) where {z(t)}t≥0 is a Lévy
process of class P+, and let F+(x; t) = 1− F (x; t) Assume that the Lévy measure U of z(1)
has a density u satisfying

∫∞
0 u(x)dx =∞. Then, for every x, t ∈ R+,

F+(x; t) = lim
ε↓0

∞∑
n=1

tn

n!
U+
nε(x) (3.5)

�

To establish this theorem we first show

Lemma 3.1 The relation (3.4) is reexpressible as

(A∗nε )+(x) =
n∑
ν=1

(
n

ν

)
Ũ+
νε(x) (3.6)

where
Ũ+
νε(x) = c(ε)−νU+

νε(x) (3.7)

�
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Proof Inserting (3.6) in the right hand side of (3.4) we find

n∑
ν=1

(−1)n−ν
(
n

ν

)
(A∗νε )+(x) =

n∑
ν=1

(−1)n−ν
(
n

ν

) ν∑
m=1

(
ν

m

)
Ũ+
νε(x)

=
n∑

m=1

(
n

m

)
Ũ+
mε(x)

n∑
ν=m

(−1)n−ν
(n−m)!

(n− ν)!(ν −m)!

=
n∑

m=1

(
n

m

)
Ũ+
mε(x)

n−m∑
ν=0

(−1)n−m−ν
(
n−m
ν

)
= Ũ+

nε(x)

�

Proof of Theorem 3.1 Let

Fε(x; t) =
e−c(ε)t

1− e−c(ε)t
∞∑
n=1

(c(ε)t)n

n!
A∗nε (x) (3.8)

Clearly, for every t > 0, Fε(x; t) is the distribution function of a truncated compound Poisson
law and, letting

λε(θ) =
∫ ∞

0
e−θxuε(x)dx

we find, by (3.3) and for θ ≥ 0,∫ ∞
0

e−θxdFε(x; t) =
e−c(ε)t

1− e−c(ε)t
∞∑
n=1

(λε(θ)t)n

n!

=
e−c(ε)t

1− e−c(ε)t
(
eλε(θ)t − 1

)
=

1
1− e−c(ε)t

exp
{
−t
∫ ∞

0
(1− e−θx)uε(x)dx

}
− e−c(ε)t

1− e−c(ε)t

It follows, in view of (3.2) and the fact that c(ε)→∞ for ε ↓ 0, that∫ ∞
0

e−θxdFε(x; t) → exp
{
−t
∫ ∞

0
(1− e−θx)u(x)dx

}
=

∫ ∞
0

e−θxdF (x; t)

Moreover, by Theorem 27.4 in Sato (1999) F (x; t) is continuous in x and hence

lim
ε↓0

Fε(x; t)→ F (x; t) (3.9)

for all x > 0.
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On the other hand, substituting (3.6) in (3.8) we find

F+
ε (x; t) =

e−c(ε)t

1− e−c(ε)t
∞∑
n=1

(c(ε)t)n

n!

n∑
ν=1

(
n

ν

)
Ũ+
νε(x)

=
e−c(ε)t

1− e−c(ε)t
∞∑
ν=1

tν

ν!
c(ε)νŨ+

νε(x)
∞∑
n=ν

(c(ε)t)n−ν

(n− ν)!

=
1

1− e−c(ε)t
∞∑
ν=1

tν

ν!
U+
νε(x) (3.10)

The interchange of summation is justified by absolute summability; in fact we have, by (3.7)
and (3.4) and since Aε(x) is a distribution function,

∞∑
n=1

(c(ε)t)n

n!

n∑
ν=1

(
n

ν

)
|Ũ+
νε(x)| ≤

∞∑
n=1

(c(ε)t)n

n!

n∑
ν=1

(
n

ν

) ν∑
s=1

(
ν

s

)
|(A∗νε )+(x)|

≤
∞∑
n=1

(c(ε)t)n

n!

n∑
ν=1

(
n

ν

) ν∑
s=1

(
ν

s

)

≤
∞∑
n=1

(c(ε)t)n

n!

n∑
ν=1

(
n

ν

)
2ν

≤
∞∑
n=1

(3c(ε)t)n

n!
<∞

The formulae (3.9) and (3.10) together imply the validity of (3.5). �

In view of the conclusion in Theorem 3.1, it is plausible conjecture that for each n = 1, 2, ...
and for all x ∈ R+ the function U+

nε(x) has a limit Un(x) for ε tending to 0 and that

F+(x; t) =
∞∑
n=1

tn

n!
U+
n (x) (3.11)

We have not been able to establish this in general, but see Section 4. Note also that letting
t be a function of ε that converges sufficiently fast to 0 as ε ↓ 0 we have

t−n{F+
ε (x; t)−

n∑
ν=1

tν

ν!
U+
νε(x)} → 0

In fact, by (3.4) and since A∗νε is a distribution function,

|F+
ε (x; t)−

n∑
ν=1

tν

ν!
U+
νε(x)| ≤

∞∑
ν=n+1

(c(ε)t)ν

ν!

ν∑
s=1

(
ν

s

)

≤
∞∑

ν=n+1

(2c(ε)t)ν

ν!
= tn

∞∑
ν=n+1

(2c(ε))νtν−n

ν!

and it suffices, for instance, to take t = t(ε) = c(ε)−(n+2).
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The density version of (3.11) is1

f(x; t) =
∞∑
n=1

tn

n!
un(x) (3.12)

where un(x) = limε↓0 unε(x) and

unε(x) = c(ε)n
n∑
ν=1

(−1)n−ν
(
n

ν

)
a∗νε (x)

=
n∑
ν=1

(−1)n−ν
(
n

ν

)
c(ε)n−νu∗νε (x) (3.13)

The first four of these functions are

u1ε(x) = uε(x)

u2ε(x) = u∗2ε (x)− 2c(ε)uε(x)

u3ε(x) = u∗3ε (x)− 3c(ε)u∗2ε (x) + 3c(ε)2uε(x)

u4ε(x) = u∗4ε − 4c(ε)u∗3ε + 6c(ε)2u∗2ε (x)− 4c(ε)3uε(x)

Further, (3.13) may be reexpressed as

u∗nε (x) =
n∑
ν=1

(
n

ν

)
c(ε)n−νuνε(x) (3.14)

Another useful variant of (3.13) and (3.14) is

unε(x) = u∗nε (x)−
n−1∑
s=1

(
n

s

)
c(ε)n−susε(x) (3.15)

In particular, we have

u3ε(x) = u∗3ε (x)− 3c(ε)u2ε(x)− 3c(ε)2uε(x) (3.16)

u4ε(x) = u∗4ε − 4c(ε)u3ε − 6c(ε)2u2ε(x)− 4c(ε)3uε(x) (3.17)

We have not been able to establish a general verification of (3.11) and (3.12), but in the
following we discuss and illustrate these formulae from various points of view.

Note 3.1 If for any given Lévy density u(x), satisfying the conditions for validity of
Theorem 3.1, one establishes that for every n = 2, 3, ... and every x ∈ R+ we have that
un(x) = limε↓0 unε(x) and U+

n (x) = limε↓0 U+
nε(x) exist then (3.11) and (3.12) hold. �

Remark 3.1 Relation to the case of compound Poisson distributions. It was assumed
for Theorem 3.1 that the Lévy density u integrates to∞ over R+. In case u is integrable the

1The existence of the probability density f(x; t) for z(t) is a consequence of the assumed existence of the
Lévy density u(x) and condition (3.1), cf. Sato (1999; Theorem 27.7).
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process z(t) is a compund Poisson process. We now comment on the relation to the formulae
(3.5) and (3.11).

Suppose without loss of generality that u is a probability density function, let U denote
the corresponding distribution function, and define un(x) by

un(x) =
n∑
ν=1

(−1)n−ν
(
n

ν

)
u∗ν(x) (3.18)

Inspection of the proof of Theorem 3.1, but now with uε(x) = u(x), c(ε) = 1 and Uν(x) =∫ x
0 uν(ξ)dξ) (so that U+

νε(x) = U+
ν (x) and F+

ε (x; t) = F+(x; t)), shows that

F (x; t) =
1

1− e−t
∞∑
ν=1

tν

ν!
Uν(x) (3.19)

is a distribution function, in fact the distribution function for the conditional law of z(t) given
z(t) > 0 where now z(t) denotes the compound Poisson process with distribution function

P{z(t) ≤ x} = e−t
∞∑
ν=0

tν

ν!
U∗ν(x) (3.20)

In other words,

e−t
∞∑
ν=0

tν

ν!
U∗ν+(x) =

∞∑
ν=1

tν

ν!
U+
ν (x) (3.21)

However, this relation is not valid when
∫∞

0 u(x)dx = ∞ (in this case the convolutions U∗ν

are not defined). �

Formula (3.12) implies in particular that

lim
t↓0

t−1f(x; t) = u(x) (3.22)

in consistency with formula (1.1).
The following examples illustrate (3.22).

Example 3.1 Gamma distribution Suppose z is the gamma Lévy process with z(1)
having law Γ(λ, α), so that the probability density of z(t) is

f(x; t) =
αtλ

Γ(tλ)
xtλ−1e−αx (3.23)

with corresponding Lévy density for z(1)

u(x) = λx−1e−αx (3.24)

In view of (3.23), this formula for u may be seen as an immediate consequence of (3.22) and
the fact that tΓ(t)→ 1 for t ↓ 0. �

8



Example 3.2 Inverse Gaussian distribution For the inverse Gaussian distribution IG(δ, γ)
with probability density function

f(x; t) = (2π)−1/2tδetδγx−3/2e−(t2δ2x−1+γ2x)/2 (3.25)

the cumulant transform and the Lévy density are

K̄{θ} = −tδγ[1− {1 + 2θ/γ2}1/2] (3.26)

u(x) = t(2π)−1/2δx−3/2e−γ
2x/2 (3.27)

and (3.27) follows directly from (3.22) and (3.25). �

Example 3.3 Bessel distribution For the Bessel distribution with probability density
function

f(x; t) = tx−1e−xIt(x) (3.28)

the cumulant transform and the Lévy density are

K̄{θ} = −t log[θ + 1− {(θ + 1)2 − 1}1/2] (3.29)

u(x) = tx−1e−xI0(x) (3.30)

cf. Feller (1971; p. 437, 451 and 502). Again, the formula for u may be seen as an immediate
consequence of (3.22). �

Example 3.4 M ittag-Leffler Lévy process Let τ(t) and z(t) both be subordinators, with
τ(t) the gamma Lévy motion for which L{τ(1)} = Γ(α,α) and z(t) the positive stable process
with K̄{θ; τ(1)} = θα, α ∈]0, 1[, and let x = z ◦ τ be the subordination of z by τ . Direct
calculation shows that

K̄{θ;x(t)} = t log(1 + θα) (3.31)

and this equals the cumulant transform of a probability law on R+ with distribution function

F (x ‡ x(t)) =
∞∑
k=0

(−1)k
Γ(t+ k)xα(t+k)

Γ(t)k!Γ(1 + α(t+ k))
(3.32)

and probability density

f(x; t) = αx−1
∞∑
k=0

(−1)k
Γ(1 + t+ k)xα(t+k)

Γ(t)k!Γ(1 + α(t+ k))
(3.33)

For t = 1 we have
F (x ‡ x(1)) = 1−Eα(−xα)

where

Eα(z) =
∞∑
k=0

zk

Γ(1 + αk)
, (3.34)
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defined for complex z and all α > 0, is the Mittag-Leffler function2. Accordingly, (3.33) is
known as the M ittag-Leffler Lévy distribution3 and the process x is termed the M ittag-Leffler
Lévy process.

The Lévy measure of the process x is absolutely continuous with density

u(x) = αx−1
∞∑
k=0

(−1)k
xk

Γ(1 + αk)
(3.35)

in agreement with (3.22) and (3.33). �

Above, formula (3.22) was considered for Lévy processes of class P+ but it applies more
generally. An illustration of this is provided by the following example.

Example 3.5 Normal inverse Gaussian distribution The normal inverse Gaussian dis-
tribution with parameters α, β, µ and δ is denoted NIG(α, β, µ, δ) and is the distribution on
R having density function

g(x;α, β, µ, δ) = a(α, β, µ, δ)q(
x− µ
δ

)−1K1{δαq(
x− µ
δ

)}eβx (3.36)

where q(x) =
√

(1 + x2) and

a(α, β, µ, δ) = π−1αeδ
√

(α2−β2)−βµ (3.37)

and where K1 is the modified Bessel function of the third kind and index 1. The domain of
variation of the parameters is given by µ ∈ R, δ ∈ R+, and 0 ≤ β < α.

If z is the Lévy process with z(1) distributed as NIG(α, β, 0, δ) then the cumulant trans-
form of z(t) is given by

K{θ ‡ z(t)} = tδ[{α2 − β2}1/2 − {α2 − (β + θ)2}1/2] + tµθ (3.38)

from which it immediately follows that z(t) has density function

f(x; t) = a(α, β, tµ, tδ)q(
x− tµ
tδ

)−1K1{tδαq(
x− tµ
tδ

)}eβx (3.39)

It was shown in Barndorff-Nielsen (1998) that z(1) has Lévy density

u(x) = π−1δα|x|−1K1(α|x|)eβx (3.40)

Using the fact that
K1(x) ∼ x−1 for x ↓ 0

one sees that (3.40) occurs from (3.39) by formal application of (3.22). �

2For a discussion of the properties of the Mittag-Leffler function Eα(z), see Erdélyi, Magnus, Oberhettinger
and Tricomi (1955; Vol. 3, Section 18.1).

3cf. Pillai (1990)
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4. Nature of limit relations

We proceed to discuss the nature of the limit relations

unε(x)→ un(x)

The next section exemplifies the convergence of unε(x) to a function un(x). Note that such
convergence implies a subtle cancellation of singularities, cf. formula (3.13) (see the first few
instances of that formula, listed after (3.13) and recall that c(ε)→∞ as ε ↓ 0.

To gain an understanding of how this cancellation occurs, note first that for n = 0, 1, 2, ...
we have

u∗(n+1)
ε (x) = (n+ 1)x−1

∫ x

0
u∗nε (x− y)ūε(y)dy (4.1)

This may be shown by induction. In fact, for n = 0 the statement is trivial and assuming
validity up till n− 1 we find

xu∗(n+1)
ε (x) = (x− y + y)

∫ x

0
u∗nε (x− y)uε(y)dy

=
∫ x

0
(x− y)u∗nε (x− y)uε(y)dy +

∫ x

0
u∗nε (x− y)yuε(y)dy

=
∫ x

0
yu∗nε (y)uε(x− y)dy +

∫ x

0
u∗nε (x− y)ūε(y)dy

= n

∫ x

0
uε(x− y)

∫ y

0
u∗(n−1)
ε (y − z)ūε(z)dzdy +

∫ x

0
u∗nε (x− y)ūε(y)dy

= n

∫ x

0
ūε(z)

∫ x

z
uε(x− y)u∗(n−1)

ε (y − z)dydz +
∫ x

0
u∗nε (x− y)ūε(y)dy

= xu∗(n+1)
ε (x) = (n+ 1)

∫ x

0
u∗nε (x− y)ūε(y)dy

Furthermore,

un+1ε(x) = (n+ 1)x−1

∫ x

0
unε(x− ξ)ūε(ξ)dξ + (−1)nc(ε)nuε(x) (4.2)

as follows by the calculation∫ x

0
unε(x− ξ)ūε(ξ)dξ = c(ε)n

n∑
ν=1

(−1)n−ν
(
n

ν

)∫ x

0
a∗νε (x− ξ)ūε(ξ)dξ

= c(ε)n+1x
n∑
ν=1

(−1)n−ν
(
n

ν

)
(ν + 1)−1a∗(ν+1)

ε (x)

=
1

n+ 1
xc(ε)n+1

n∑
ν=1

(−1)n+1−(ν+1)

(
n+ 1
ν + 1

)
a∗(ν+1)
ε (x)

=
1

n+ 1
ūn+1ε(x)− (−1)nc(ε)nūε(x)

Next we discuss the limiting behaviour of unε(x) as ε ↓ 0. Consider first the case n = 2,
and let

U+
ε (x) =

∫ ∞
x

uε(ξ)dξ
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and
U+(x) =

∫ ∞
x

u(ξ)dξ

Using (4.2) and noting that

U+
ε (0) = c(ε) =

∫ x

0
uε(ξ)dξ + U+

ε (x) (4.3)

we may rewrite u2ε(x) as

u2ε(x) = 2x−1

{∫ x

0
uε(ξ)ūε(x− ξ)dξ − c(ε)ūε(x)

}
= 2x−1

{∫ x

0
uε(ξ){ūε(x− ξ)− ūε(x)}dξ − ūε(x)U+

ε (x)
}

Hence we have

Proposition 4.1 Suppose the Lévy density u is differentiable and satisfies (3.1). Then

u2(x) = 2x−1

{∫ x

0
u(ξ){ū(x− ξ)− ū(x)}dξ − ū(x)U+(x)

}
(4.4)

with the integral existing and being finite. �

We note that (4.4) may be reexpressed as

1
2
ū2(x) =

∫ x

0
u(ξ){ū(x− ξ)− ū(x)}dξ − ū(x)U+(x) (4.5)

A similar approach does not seem to work for n > 2, but see the examples in the next
section.

Now, let

U+
2 (x) =

∫ ∞
x

u2(ξ)dξ

with u2(x) as given by (4.4). We may expect that, under the conditions in Theorem 3.1 and
Proposition 4.1, we have

t−2{F+(x; t)− tU+(x)− t2

2
U+

2 (x)(x)} = O(t) (4.6)

for t ↓ 0. However, again a general proof is lacking, but see Note 3.1 above.

5. Examples

In the following examples the Lévy density u is not integrable at 0 and hence we are outside
the field of compound Poisson distributions.

Example 5.1 Gamma law Consider again the gamma Lévy process z(t) of Example 3.1
and suppose for simplicity of notation that α = λ = 1. Then the probability density of z(t) is

1
Γ(t)

xt−1e−x (5.1)

12



and z(1) has Lévy density
u(x) = x−1e−x (5.2)

We illustrate formula (3.12) by showing how (5.1) is derivable from (5.2) by formal appli-
cation of (3.12).

Defining uε(x) by
uε(x) = xεu(x) = xε−1ū(x)

we have
c(ε) = Γ(ε)

and
u∗νε (x) = c(ε)νc(νε)−1xνε−1e−x

and, using (3.13), we find

unε(x) = x−1e−xc(ε)n
n∑
ν=1

(−1)n−ν
(
n

ν

)
c(νε)−1xνε (5.3)

The reciprocal of the function Γ̄(x) = xΓ(x) possesses a power series expansion around 0
of the form

Γ̄(x)−1 = 1 +
∞∑
i=1

cix
i (5.4)

(cf., for instance, Abramowitz and Stegun, 1972; p. 256).
Using (5.4) in (5.3) we obtain

unε(x) = εc(ε)nxε−1e−x
n∑
ν=1

(−1)n−ν
(
n

ν

)
νΓ̄(νε)−1x(ν−1)ε

= nεc(ε)nxε−1e−xSn(x, ε) (5.5)

where

Sn(x, ε) =
n∑
ν=1

(−1)n−1−(ν−1)

(
n− 1
ν − 1

)

·{1 +
∞∑
r=1

crν
rεr}{1 +

∞∑
s=1

1
s!

(ν − 1)s(log x)sεr}

=
n∑
ν=1

(−1)n−1−(ν−1)
(
n−1
ν−1

) ∞∑
q=0

dq
νq

q!
εq

=
n−1∑
ν=0

(−1)n−1−ν(n−1
ν

) ∞∑
q=0

dq
(ν + 1)q

q!
εq

with

dq =
q∑
r=0

crr!
(
q
r

)
(log x)q−r (5.6)
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and c0 = 1. Hence

Sn(x, ε) =
∞∑
q=0

dq
εq

q!

n−1∑
ν=0

(−1)n−1−ν(n−1
v

)
νq

=
n−1∑
q=0

dq
εq

q!

n−1∑
ν=0

(−1)n−1−ν(n−1
v

)
(ν + 1)q +O(εn)

or, equivalently,
Sn(x, ε) = dn−1ε

n−1 +O(εn) (5.7)

where for the last step we have used Lemma 2.1.
Now, combining (5.5), (5.6) and (5.7) and letting ε ↓ 0 we obtain

un(x) = x−1e−xn!
n−1∑
s=0

cs
logn−1−s x

(n− 1− s)!

and inserting this in (3.12) gives

f(x; t) = x−1e−x
∞∑
n=1

tn
n−1∑
s=0

cs
logn−1−s x

(n− 1− s)!

= tx−1e−x
∞∑
s=0

cst
n−s

∞∑
n=s

(t log x)n−s

(n− s)!

=
1

Γ(t)
xt−1e−x

as was to be demonstrated. �

Example 5.2 Positive α − stable laws Up to a location-scale change a stable law with
index α < 1 and skewness parameter γ has density

p(x;α, γ) =
1
π
x−1

∞∑
k=1

(−1)k
Γ(kα+ 1)

k!
x−kα sin

kπ

2
(γ − α) (5.8)

cf., for instance, Feller (1971; Section XVII.6) or Sato (1999; p. 88). The densities p(x;α) of
the positive stable laws correspond to the case γ = −α, i.e.

p(x;α) =
1
π
x−1

∞∑
k=1

(−1)k−1 Γ(kα+ 1)
k!

x−kα sin kπα (5.9)

The corresponding Laplace transform and Lévy density are, respectively,

e−θ
α

(5.10)

and
u(x) =

α

Γ(1− α)
x−1−α (5.11)
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If z(t) is the Lévy process for which z(1) has density (5.9) then z(t) has density

pt(x;α) =
1
π
x−1

∞∑
k=1

(−1)k−1tk
Γ(kα+ 1)

k!
x−kα sin kπα (5.12)

as follows simply from (5.9), (5.10) and (5.11).
Using the identity

Γ(α)Γ(1− α) =
π

sinπα
(5.13)

which holds for 0 < α < 1, we find that if α < 1
2 the first two terms of (5.12) are

p(x;α) = tαΓ(1− α)−1x−1−α − t2

2!
2αΓ(1− 2α)−1x−1−2α + ... (5.14)

In agreement with (5.14) and the definition (3.12) we have

u1(x) = αΓ(1− α)−1x−1−α = u(x) (5.15)

Next, by the formulae (4.4) and (5.15), we find

u2(x) = 2α2Γ(1− α)−2x−1

{∫ x

0
ξ−1−α{(x− ξ)−α − x−α}dξ − α−1x−2α

}
= 2αΓ(1− α)−2x−1−2α

{
α

∫ 1

0
s−1−α{(1 − s)−α − 1}ds− 1

}
= −2αΓ(1− 2α)−1x−1−2α (5.16)

in consistency (3.12) with (5.14). The last step in (5.16) follows from the formula∫ 1

0
s−1−α{(1 − s)−α − 1}ds = α−1 − α−1 Γ(1− α)2

Γ(1− 2α)
(5.17)

To verify (5.17) we first note that, for 0 < δ < 1 and by partial integration,∫ 1

δ
s−α(1− s)−αds = (1− α)−1δ−α(1− δ)1−α − α(1− α)−1

∫ 1

δ
s−1−α(1− s)1−αds

i.e. ∫ 1

δ
s−1−α(1 − s)1−αds = α−1δ−α(1− δ)1−α − α−1(1− α)

∫ 1

δ
s−α(1− s)−αds (5.18)

Moreover, we have∫ 1

δ
s−1−α(1− s)−αds =

∫ 1

δ
(s+ 1− s)s−1−α(1− s)−αds

=
∫ 1

δ
s−α(1− s)−αds+

∫ 1

δ
s−1−α(1− s)1−αds (5.19)

and combining (5.18) and (5.19) we find∫ 1

δ
s−1−α(1− s)−αds = α−1δ−α(1− δ)1−α − α−1(1− 2α)

∫ 1

δ
s−α(1− s)−αds
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Hence, for δ ↓ 0,∫ 1

δ
s−1−α{(1 − s)−α − 1}ds = α−1

{
δ−α(1− δ)1−α − δ−α + 1

}
−α−1(1− 2α)

∫ 1

δ
s−α(1− s)−αds

→ α−1 − α−1(1− 2α)
∫ 1

0
s−α(1− s)−αds

= α−1 − α−1(1− 2α)
Γ(1− α)2

Γ(2− 2α)

= α−1 − α−1 Γ(1− α)2

Γ(1− 2α)

implying (5.17).
In the case α = 1

2 the formulae (5.11) and (5.12) reduce to

u(x) =
1

2
√
π
x−3/2 (5.20)

and

pt(x;α) =
1√
π
x−3/2

∞∑
m=0

(−1)m
t2m+1

(2m+ 1)!
Γ(m+

3
2

)x−m (5.21)

and a derivation of (5.21) from (5.20) via (3.12) may be accomplished by choosing

uε(x) = u(x)e−
ε2

4
x−1

=
1

2
√
π
x−3/2e−

ε2

4
x−1

(5.22)

With this choice
c(ε) = ε−1

and, since c(ε)−1uε(x) equals the probability density of a 1
2 -stable law, we furthermore have

u∗nε (x) = ε−n
n

2
√
π
x−3/2e−n

2 ε2

4
x−1

Hence, for instance, for n = 3 we find

u3ε(x) = u∗3ε (x)− 3c(ε)u∗2ε (x) + 3c(ε)2uε(x)

= ε−2 1
2
√
π
x−3/2

{
3e−9 ε

2

4
x−1 − 6e−4 ε

2

4
x−1

+ 3e−
ε2

4
x−1

}
= − 3

4
√
π
x−5/2 + o(ε)

i.e.
u3(x) = − 3

4
√
π
x−5/2

in consistency with (5.21). �
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6. Applicability to OU processes

Let {x(s)}s≥0 be an OU process4 (i.e. a process of Ornstein-Uhlenbeck type) and, for the
present context, assume that x(s) is positive. In other words, x(s) is representable as

x(s) = e−λsx(0) +
∫ s

0
e−λ(s−σ)dz(λσ) (6.1)

where z is a subordinator (i.e. a positive Lévy process on R+) with E{log(1 + z(1))} <∞.
Suppose we know the Lévy density q, say, of x(s) and are interested in determining the

law of the innovation term
y =

∫ s

0
e−λ(s−σ)dz(λσ) (6.2)

in (6.1). Writing κ = eλs/2 and assuming that q is positive and differentiable on R+ we have
that y is of type P+ and has a Lévy density u given by

ū(x) = q̄(x)− q̄(κ2x) (6.3)

(where ū(x) = xu(x) and q̄(x) = xq(x)). Moreover, provided u(x) satisfies
∫∞

0 u(x)dx = ∞
we have that u(x) fulfills the conditions required in Theorem 3.1 and Proposition 4.1, and
complete or approximate formulae for the law of y may be obtained via those two results. In
particular, letting

r(x) = κ2q(κ2x)

the second order term (4.5) takes, in obvious notation, the form
1
2
ū2(x) =

1
2
q̄2(x) +

1
2
r̄2(x)−D(x)

where

D(x) =
∫ x

0
q(ξ){r̄(x− ξ)− r̄(x)}dξ +

∫ x

0
r(ξ){q̄(x− ξ)− q̄(x)}dξ

−q̄(x)R+(x)− r̄(x)Q+(x)

Example 6.1 The inverse Gaussian OU process has played a substantial role in recent
work relating to mathematical finance, see Barndorff-Nielsen (1998), Barndorff-Nielsen and
Shephard (1999, 2000), and references given there. In that case, x(s) has the inverse Gaussian
law IG(δ, γ) with probability density

(2π)−1/2δeδγx−3/2e−(δ2x−1+γ2x)/2

and Lévy density
q(x) = (2π)−1/2δx−3/2e−γ

2x/2

Thus,
u(x) = (2π)−1/2δx−3/2e−γ

2x/2(1− κ−1e−(κ2−1)γ2x/2)

and
∫∞

0 u(x)dx =∞. �
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