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1. Introduction

In medical imaging, in vivo video films of dynamic behavior such as blood oxygenation
in the brain under stimuli, beating hearts, and pulsating artery walls, object detection in
both space and time is required, see e.g. Aizenman (2000). In this paper we develop an
automatic method for contour detection in a sequence of high-frequency intra coronary
ultrasound (ICUS) images, using a fully Bayesian approach. To the best of our knowledge,
the paper provides the first published attempt of a fully Bayesian analysis of a space-time
process based on deformable template models and Markov chain Monte Carlo simulations.

The ICUS images show the dynamic behavior of the coronary artery; the data set is
further described in Section 2. Extracting information from the ICUS images is important
e.g. in assessing the extent of arteriosclerosis and flow response to various stimuli, and one
feature of interest is the dynamic behavior of the cross sectional area of the artery at a given
place. Analyzing the images for anomalies by manually following the contour of the artery in
a digitized version of each video sequence is both time consuming and observer dependent.
A quick and accurate method for automatic contour detection and feature extraction would
be an appreciated aid.

Many papers are dealing with automatic detection of the contour of an object in a
single image. In the engineering literature the active contour approach has been popular
(Kass et al., 1987), where the outline is normally modeled by a connected and sufficiently
smooth curve. The best fit is found as the curve that minimizes a functional which balance
the degree of misfit, some smoothness criterion, and a quantity describing the closeness
to some important image features. Yet other methods have been developed for medical
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image analysis, see Aizenman (2000) and the references therein. Many of the methods
produce a good “point estimate” of the contour, but say nothing about the uncertainty of
the estimate, a crucial requirement when it comes to diagnosis. This has led to a number
of more statistical formulations of the contour detection problem, usually using a Bayesian
setting.

Possibly the most popular class of prior models for contours are provided by the de-
formable polygonal template approach of Grenander and others, see, for example, Grenan-
der et al. (1991), Grenander and Miller (1994), and Kent et al. (1996). Another approach
is based on marked point processes for object detection (Baddeley and van Lieshout, 1993;
Pievatolo and Green, 1998). The two approaches of deformable templates and marked point
processes are combined in Rue and Syversveen (1998), Rue and Husby (1998), and Hurn
et al. (1999). Likelihood based methods for template matching have recently been studied
in Hobolth and Jensen (1999) and Hobolth and Pedersen (1999).

There is an extensive engineering literature dealing with space-time images, including
Bayesian approaches based on deformable templates, see Kervrann (1998, 1999) and the
references therein. Aizenman (2000) extends ideas from deterministic spatial feature detec-
tion to the temporal domain, and applies this to boundary detection in echocardiography.
Kervrann (1999), in particular, combines a spatial segmentation procedure based on de-
formed templates with a fixed number of vertices, with edge-based temporal tracking. The
tracking procedure over long image sequences was supplemented with Kalman filtering.

We also use a deformable template as prior distribution, but do not find it necessary to
include global deformations. In order to account for uncertainty of the parameters, we im-
pose prior distributions on the parameters of the deformation model in contrast to Kervrann
(1999) who estimates them by maximum marginal likelihood. Opposite to Kervrann’s ap-
proach based on maximum a posteriori estimates, we use the posterior means as estimates
of the contour and to predict the templates. Furthermore, we supply the posterior mean
calculations of the cross sectional area of the artery and other parameters with calculations
of credibility intervals.

The paper is organized as follows. Section 2 considers the data and the observation
model corresponding to the likelihood term of our posterior. Deformable template priors
related to our application are studied in Section 3. Section 4 is concerned with Bayesian
inference and Markov chain Monte Carlo algorithms. The empirical results are discussed in
Section 5.

2. Data and observation model

The data originates from a study of patients with angina pectoris (pain in the chest) without
angiographic evidence of arteriosclerosis. The study was conducted by the Department of
Cardiology, Aarhus University Hospitals, Skejby, with the purpose to diagnose whether or
not chest pain is caused by inappropriate responses of the coronary artery to various stimuli.
Notice that the present paper does not deal with the diagnosis of the patients but merely
presents a way of doing the tracing and feature extraction automatically.

The data we consider arises from a 2 seconds long video film recorded by ultrasound
scanning at a prespecified place in a coronary artery, approximately perpendicular to the
blood flow. The frame rate is 25 images per second, yielding 49 ultrasound images which
have been digitized into grey-level pictures. Figure 1 shows two of these grey-level images.
Additional figures, which show the development over time, are given in Figures 5-8.
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Consider the right image in Figure 1. The intracoronary scanning is performed by
inserting into the artery (the black part in the middle of the image) a catheter (indicated
by 3) with a rotating ultrasound transducer at the top. The brightest grey-levels represents
the greatest reflection of the ultrasound. The drop outs at 1 and 2 (compare with the left
image in Figure 1) may be true image artifacts or offsprings of vessels.

Fig. 1. Two examples of digitized ICUS images of a coronary artery. Right image: 1 and 2: drop
outs; 3: the ultrasound transducer.

Each grey-level image is made up of N? = 1282 square pixels, which we identify with
unit squares. We denote the union of these pixels by W = [0, N] x [0, N]. The grey-
levels of a given ultrasound image is denoted by y = (ys)ses, where S = {0.5,1.5,...,N —
0.5} x{0.5,1.5,..., N — 0.5} is the set of centers of pixels. Although the range of grey-level
is {0,1,...,255} (where 0 is black and 255 is white), ys is conceptually viewed as being
real-valued.

For each ultrasound image, we use a simple observation model (likelihood) given the true
coronary artery V C W: the y, are assumed to be independent and normally distributed
with mean us(V) and variance o2(V'), where (us(V),02(V)) = (ui,0?) if s € S;, where
S1 =S NYV (the inside of the coronary artery) and Sy = S\ V (the outside of the coronary
artery). So the likelihood for the data y given @ = (u1, u2,0%,03) and V is specified by

Ly|V,6) = (o) ™/?(03) ™/* exp (—SS1/(207) — SS2/(207))

x exp (=i (f1 — p)?/(207) — n2(G2 — p2)?/(203)) 1)
where
ni=#(SiNV), =Y ys/ni, SSi=) (ys—w)’, i=12 (2)
SES; sES;

As the grey-levels inside the coronary artery in general are supposed to be smaller than
those outside, the domain of variation for the parameter 8 is assumed to be

0< 1 <po <255, o2>0, o2>0. (3)

Note that owing to the discretization into pixels, there is for each fixed value of (y,6) an
upper bound and a strictly positive lower bound on the likelihood,

0 <ei(y,0) < Ly|V.0) < ea(y,0) < oo (4)
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In the sequel, we assume that V is a polygon specified by n vertices vy,...,v,. Its
boundary

oV = U [vj-1,v;]
j=1

is a closed self-avoiding planar contour, where vg = v, and [Uj,l,fuj] is the closed line
segment with endpoints v;_; and v; (“self-avoiding” means that for all 1 < j < k <
n, [vj—1,v;] N [vk_1, vE] equals {vg} for k = j + 1 and @ otherwise). In some applications of
object restoration it is relevant to let n be random (see, for example, Pievatolo and Green
(1998) and Rue and Hurn (1999)). In our case, where 0V is expected to be close to a
circular n-gon, we found it sufficient and much simpler to fix n = 16.

3. Deformable template priors

For each single ultrasound image, we assume that the contour OV and the parameters o?,

03, and (pu1, o) are mutually independent, where o follows a flat IG(a;, 8;)-distribution,
J = 1,2 (the inverse gamma distribution with shape parameter a; and scale parameter ;),
while (p1, p2) is uniformly distributed on the set where 0 < p; < p2 < 255, cf. (3). The
hyper parameters a; and ; are specified in Subsection 5.1. In Subsections 3.1 and 3.2 we
specify two kinds of deformable template priors for V. As discussed in Section 4, this can
be combined with the likelihood (1) to obtain a joint distribution for the entire sequence
of ultrasound images. Note that by (4) and the independence between 8V and 6, posterior
propriety is equivalent to prior propriety for oV'.

3.1. A simple deformable template prior
The contour in the ith image is modeled as a deformation of a template

n
0 __ 0 0
ovo = (1o 0
=1

which in our case is expected to be close to a circular n-gon. If ¢ = 1, the vertices of
the template are found by manual tracing of the artery wall. This is done by means of a
computer screen and mouse where the operator clicks in the vertices on the displayed image
such that the produced n-gon in a best way capture what is believed to be the artery wall, cf.
the figures in Subsection 5.3. For ¢ > 1, the template is given by the (estimated) posterior
mean of the vertices of the deformed template in the (i — 1)th image, cf. Subsection 4.2.

Prior models for deformable templates are usually obtained by specifying a conditional
cyclic auto-regression (CAR) model on the vertices or edges before conditioning on closeness
of the contour. Grenander et al. (1991), Grenander (1993), and Grenander and Miller (1994)
propose a multiplicative model for the edges, while additive models for vertices and edges
are considered in Kent et al. (1996). The CAR model we suggest is for the edges, and it
is obtained as a certain limit of proper first-order cyclic CAR models so that closeness is
automatically satisfied. The advantage of using this template model compared to those
considered in the abovementioned references is explained below.

Specifically, let

e*l = (ell, .. .,enl)T, egl = (e(l]l, P ,e%l)T, l= ].,2,
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be the vectors of first (I = 1) and second (I = 2) coordinates of the edges in 9V and 9V°
as defined by
0

— . . o_,0_,0 -
€ =vj —vj_1, € =v;—vj_q, Jj=1,...,n

By closeness of the contours,

n n
den=> ey =0, 1=1,2. (5)
j=1 Jj=1

Before conditioning on that 9V is closed and self-avoiding, we let e.; and e.o be inde-
pendent and normally distributed with means €?; and €?,, and a common precision matrix
Kk 1R(7), where k > 0 is the variance. Setting r1,0 = 71, and 7 n41 = 1, the non-zero
entries of R(v) are

Tij = 1, Tjj+1 =Tjj-1 = —’7/2, ] = 1, ey M

As R(v) is circulant (see Davis (1979)),

R() = - Fasagldi (1), .. du(M)F, ©)

where dj(y) = 1 —ycos(2(j — 1)n/n), j = 1,2,...,n, are the eigenvalues of R(vy), F =
{exp(2mi(j —1)(k—1)/n)};k=1,...,n is the discrete Fourier transform matrix, and ‘"’ denotes
complex conjugate. Hence R(7) is positive definite if |y| < 1, but only positive semi-definite
if v = 1. Below we argue why we set v = 1 in this model and we specify the corresponding
covariance matrix.

Consider for the moment the case where |y| < 1. Then the full conditional distribution
of ej given the rest is normal with mean e}, + v(ej 14 —€]_;; +ejr10 — €}, ,)/2 and
variance 1/k. However, when we condition on the linear constraint (5), the CAR model
loses its simple dependence on nearest neighbors. In fact the conditional distribution of ey
becomes normal with mean €2, and covariance matrix X(s,v) = k(I — E)R(y)"Y(I — E),
where I is the identity matrix and E has entries equal to 1/n. By (6), X(k,v) — «R(1)~ as
v — 1, where R(1)~ is the generalized inverse of R(1) of rank n — 1, which we decompose
as

R(1)™ = (n'/?FAY?)(n'/?FA'/?)* (7)

where A'/2 = diag(0,1/dy(1)"/2,...,1/d,(1)'/?)) and “*’ denotes conjugate transpose.
For our application, simulations from the posterior distribution (using a uniform prior
on | — 1,1] for v and remaining priors as specified below) showed v to be concentrated on
values very close to 1. For these simulations one needs to find a square root of the precision
matrix for each new value of v, which is found in a way similar to (8) below.
In the sequel we assume that v = 1, or more precisely that e,; has covariance matrix
kR(1)~. Then (5) is “automatically” satisfied. By (7), we can set

(e — ) = (nk)/2F AL/ [2] , 8)

where e = e, +ie.a, €@ = €, +iel,, and 2z = 2, + 2.2 with 2z, and 2z, independent
(n — 1)-dimensional standard normally distributed. For the calculation of the right hand
side in (8), we use a radix-2 FFT-algorithm (van Loan, 1992). Incidentally, we remark that
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in many Bayesian applications (including many others than deformable template modeling)
an improper prior density is used instead, provided the posterior becomes proper, see, for
example, Besag and Kooperberg (1995), Besag and Higdon (1999), and Kent et al. (1996).
The improper prior density for (e.1,ex2) is proportional to

exp —ZZ et = €% = (ejo1 — €0_1))" /(4r)

(when & is fixed). As noticed, in our case, this causes impropriety of the posterior; see also
the discussion in Besag and Kooperberg (1995).

Finally, we condition on self-avoidingness of V. Clearly this is only a condition on x
and not on any other parameters like v; and 6. Note that OV is determined by (z,v1,€°)
where © = \/kz. we assume that z,v1,k,0 are mutually independent, v; is uniformly
distributed on W, and « follows a flat IG(d,€) distribution. Note that we do not require
any knowledge of the location v{ of the template. The hyper parameters J, €, w are specified
in Subsection 5.1.

3.2. A-refined deformable template prior

As mentioned in Section 2, in some of the images parts of the contour of the artery wall is
missing. It turns out that if the simple prior of Subsection 3.1 is used, deformations of the
template with sharp interior angles are likely because of artifacts, in particular lost parts
of contours such as the drop outs shown in Figure 1. In order better to incorporate the
prior knowledge that the coronary artery is close to a circular n-gon, we consider (before
conditioning on OV being self-avoiding) a refined prior density for z defined as follows.

Given (k,w), where w is a hyper parameter, the density of the refined prior is

n

m(@|r,w) ocexp | —(|lzall® + [[owll*)/(2K) —wz 9r/n)* |, (9)

where ¢; is the interior angle of V' at the vertex v; (measured in radians) and (n —2)7/n is
the interior angle in a regular n-gon. Setting w = 0 we obtain the prior in Subsection 3.1,
but in accordance with our prior belief we shall assume that w > 0.

We compare in Subsection 5.3 the results of the Bayesian analysis using either the simple
or refined prior.

Pievatolo and Green (1998) consider a somewhat similar model, but without incorpo-
rating a deformable template and the circular structure. Another approach was suggested
by Grenander (1993, Remark 16.2.3). There the lost part of the boundary is modeled by a
stochastic destructive deformation field acting on the template. Rue and Husby (1998) show
that such a field is well suited to model partly destroyed objects. However, this approach
complicates the statistical modeling and is heavily computer intensive. We therefore prefer
the more simple approach described above.

4. Bayesian inference and simulation

4.1. Analyzing a single ultrasound image
For each image we have a hierarchical model given the edges €® of the template and the
hyper parameters ay,as, 81, 52,9,€,w. At the first level, the conditional distribution of y
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given (z,v1, K, 0) depends only on (9V,6) as described in Section 2. At the next level the
conditional distribution of (x,v1,6) given « is specified and at the third level the distribution
of k is specified, where x/+/k, vy, (U1, 2), 0%, 05, k are mutually independent with marginal
distributions as described in Section 3. Thereby, using either the simple or refined prior,
we obtain the posterior distribution of r = (z,v1, k, ) given (y, ). Its density is

n(rly. ) (10
o 1[0V is self-avoiding] 7 (z|k, w)(k|0, €)m(v1 )7 (11, po )7 (0% |y, B1) (03 |wa, B2) L(y|V, 6)
= 1[9V is self-avoiding] k0" (07) T TM/271(g2)ma2mn2/2-1

x exp (—(|za|[® + ||zs2][*)/(26) — €/ — B1/0f — B2/05 — SS1/(207) — SS2/(203))

n

x exp(=ma (g — 1)/ (20) = maGe — p2)*/(203) = (9 = (n = D /m)”)

with z € C* 1, v € W, 6> 0,0 < pg < pip <255, 05 >0, j =1,2. Here it is only V and
the sufficient statistics in (2) which depend on €°. The posterior (10) is clearly analytical
intractable, but Markov chain Monte Carlo (MCMC) methods provide a feasible way for
performing Bayesian inference (see for example Gilks et al. (1996) for background material
on MCMC).

We use a Metropolis-Hastings algorithm with proposals corresponding to updates of
either

1 the means (u1, u2),

2 the variances (02, 02),

3 the position v; of the deformed template,

4 the x associated to the edges of the deformed template, or

5 the hyper parameter k.

Each of these five types of updates are chosen with equal probability 1/5. For types 1, 3,
and 4, we use Metropolis random walk algorithms with the following kind of proposals: in 1,
a uniform distribution defined on a square of side length a > 0 centered around the current
value of (1, u2); similarly in 3, where b > 0 denotes the side length of the square centered
at the current value of v;; and in 4, a multivariate Gaussian distribution with mean equal
to the current x value, independent coordinates (for the real and imaginary parts), and a
common variance ¢ > 0. The proposals are then accepted or rejected in accordance with
the usual Metropolis-Hastings criterion. The user-specified parameters a, b, ¢ are adjusted
in order to obtain reasonable acceptance probabilities, see Subsection 5.2. Finally, for
types 2 and 5, we simply use Gibbs sampling updates corresponding to the following full
conditionals obtained from (10): in 2, o?|--- ~ IG(a + n;/2, 8 + n;i(7; — pi)?/2 + SSi/2)
for i = 1,2, and independent; in 5, k|- ~ IG(0 +n — 1, (||za1||? + ||742]|?)/2).

The proposals are accepted or rejected in accordance to the usual Metropolis-Hastings
criterion based on the Metropolis-Hastings ratio, and the algorithm can be shown to be
ergodic with equilibrium distribution r|(y,€°). Note that many of the terms in (10) cancel
when the Metropolis-Hastings ratio is calculated. The updates in 1 and 2 are particularly
simple as L(y|V,6")/L(y|V,6) depends on V only through the sufficient statistics in (2)
which are all known from the previous update. The updates in 5 are likewise rather simple.
The most time consuming steps are 3 and 4 because of the need for calculating a new
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likelihood term, although this calculation can be restricted to pixels where the suggested
update yields a change in the grey-level.

Preliminary runs of the algorithm showed that our ‘parameterization’ leads to better
mixing properties than if we use the more immediate parameterization where z is replaced
by z. In the latter case, we are modifying type 4 updates in the algorithm by updating z
instead of z, using a proposal 2’ ~ N(z,cI). Our experiments showed that the proposal
2" is likely to be rejected for modest and large values of &, since ' = \/k2' ~ N (z,ckl) is
frequently not sufficiently small.

4.2. Analyzing the time series of ultrasound images

It is convenient to analyze the images of the sequence of ultrasound images y(i), ¢ =
1,...,49, in turn using the Metropolis-Hastings algorithm in Subsection 4.1 with equilib-
rium distribution r(i)|(y (i), €®(i)) given by (10), where r(i) = (x(i),v1 (i), k(i),0(i)) are the
‘parameters’ and €°(i) is the template of edges associated to the ith image. Under the
model assumptions imposed below, we show in (11) that this is equivalent to analyzing the
posterior distribution based on all images.

Assume that the sequence u(i) = (y(i),7(i),€°(i)), i = 1,...,49, forms a Markov chain,
which can be viewed as a directed graphical model (Lauritzen, 1996) with a conditional
dependence structure as shown in Figure 2. Note that for each i > 1, (y(i), (7)) is condi-
tionally independent of (u(1),...,u(i — 1)) given €°(i). Further, assume that €°(1) is given
and define recursively

(i) = Ele(i — 1)|y(i — 1),e°(i = 1)], i=2,...,49,

i.e. the edges of the template for each image ¢ > 1 are given by the posterior mean
of deformed edges from the previous image. Since (€°(2),...,€%(49)) is determined by
(y(1),...,9(49),€°(1)), it follows from Figure 2 that r(1),...,7(49) are conditionally inde-
pendent given (y(1),...,y(49),e°(1)). Finally, assume that for each i > 1, y(i)|(r (i), €°(i))
is distributed as y(i)|(V'(¢), 8(7)) (see Section 2) and r(¢) follows the same distribution as r =
(z,v1,k,0) (see Section 3). Then the posterior distribution given the data (y(1),...,4(49))
and the first template of edges €°(1) has density

49
(r(1),. .., r(49)ly(1),- .., y(49),e°(1)) o [T w(r(@)ly (@), (), (11)

i=1
that is the product of posterior densities (10) associated to each image i = 1,...,49. Be-

low we consider estimates of posterior means like E [g(r(¢))|y(), €°(i)] based on simulated
samples from r(1)|(y(1),€%(1)),. .., r(49)|(y(49), e°(49)), respectively, using in each case the
Metropolis-Hastings algorithm in Subsection 4.1. Ignoring the fact that in practice we need
succesively to estimate the templates as explained below, this is equivalent to simulate
samples from the posterior distribution (11) for all images.

One may ask for an extension of the model for (u(1),...,u(49)) so that posterior infor-
mation from the (i — 1)th image is taken more into account when modeling the ith image.
For example, in Figure 2 the hyper parameters a1, as, f1, 82,9, €,w are left unchanged for
all images, but as reported in Subsection 5.1 the effect of incorporating posterior informa-
tion about e.g. (81, 82) was minor in our application. In fact, as explained below we do
incorporate posterior information when starting our MCMC runs.
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y(1) y(2) y(49)

SN

Fig. 2. Graphical representation of a joint model for all images and associated parameters.

e%(49)

We describe now in more detail how simulations from the posterior (11) are performed.

For the first image the template is initially determined manually using a computer mouse
as described in the beginning of Subsection 3.1. As this estimate of the template is observer
dependent, we generate first a chain r§°)(1), e ,r(JO)(l) of length J > 0 by the Metropolis-
Hastings algorithm with equilibrium distribution r|(y(1),€°(1)) and initial values specified
as follows: @ is the moment estimate 6y = (fi01, K02, 041, Tas) Obtained from the likelihood
(1) with (y,V) = (y(1),V°(1)); = 0 and vy is the first vertex ‘clicked in’; & is set equal
to its prior mean. Then we update the template by the Monte Carlo estimate based on
7'20)(1), ... ,r(JO)(l) using an appropriate burn-in L < J. This estimate is used throughout
when generating further chains for the first image.

Next we are running through the images ¢ = 1,...,49, generating a chain of length
K > L for each image i. Let r1(i),...,7x (i) denote the chain for the ith image with
equilibrium distribution r|(y(i),e%(7)). As the initial value of z we use again x = 0 for
all images. If ¢ = 1, as the initial value of v; we use the Monte Carlo estimate based on
réo)(l), ‘e ,r(JO)(l), while the initial values of § and k are specified as before. If 4 > 1 then
we estimate €°(i) and use as the initial values of 6, v, k the estimated Monte Carlo posterior
means obtained from rp(i —1),...,rx(i — 1).

In order to obtain more accurate results we simulate M independent realizations

(@), ), (0 @9), P @9)) u =1, M,

in the same way as we generate (ri(1),...,7x(1),---,7r1(49),...,7x(49)). Then, for any
statistic g(r(i)) associated to the ith image, we obtain a Monte Carlo estimate of its posterior
mean,

M K

SN g @) /(MK — L+1)). (12)

u=1t=L

E [g(r(i))ly(i), " ()]

Q

The values of J, K, L, M are specified in Section 5.2, and (12) is used in Figures 5-8 when
estimating posterior means and percentiles.
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5. Empirical results

In this section we discuss some empirical results based on the Bayesian analysis described
in Section 4. Unless otherwise stated the refined prior of Subsection 3.2 has been used.

5.1. Specification of hyper parameters

For our application we found it appropriate to use the same value of the hyper parameters
a1, B, s, B2, €, 0,w for all images. For the IG(J, €) prior of k, preliminary runs showed that
the posterior (10) is robust against different choices of § < 2 and € > 0 corresponding to a
flat prior. Note that § < 2 is equivalent to assume an infinite variance of k ~ IG(d,€). We
have chosen § = 2 and € = 10. Similarly, for 012. ~ IG(e;, B;), we set a; = 2, j = 1,2. Then
B; is the prior mean of o7, so we set 3; = 0g;, j = 1,2, where o3; is the moment estimate
based on the first image as described in Subsection 4.2. Finally, we found w = 1000 to be
an appropriate value for the refined prior. The results presented in the following seemed
rather robust for choices of 500 < w < 3000.

We also investigated the effect of changing the values of the hyper parameters for each
image i = 1,...,49. For example, if i > 1, each o3;(i) may be estimated by the MCMC
estimate of the posterior mean E[agj (i — 1)|y(i — 1)] from the (¢ — 1)th image. However,
the results were not seriously effected by such a change.

5.2. Output analysis of MCMC runs
The parameters a, b, ¢ in the random walk Metropolis algorithms are chosen to obtain rea-
sonable acceptance rates. This is exemplified in Figure 3 for the special case of ¢ when the

chain r§0)(1), . ,rg)(l) with K = 50000 is generated.

0 20 40 60 80 100
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Fig. 3. Acceptance rates of updates of template deformations for images 1, 7, . .., 49. The horizontal
axis refers to each one hundred of type 4 updates in the Metropolis-Hastings algorithm when the
total number of type 1-5 updates is 50000.
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The performance of the Metropolis-Hastings algorithm was monitored with respect to
various statistics for the different images. Time series plots (not shown here) indicate
fast convergence with respect to 8 and x. For these parameters except the mean (ui, p2),
estimated autocorrelations (not shown here) are effectively 0, while for the mean they are
nearly 0 at lags larger than 20. Times series for the area of the deformed template (not
shown here) are heavily correlated and show a much slower convergence, but reliably results
are obtained by repeated runs (i.e. when M > 1). Since the template scales and moves
from image to image, a value of K > 1 is needed. In conclusion we found it appropriate
to use J = 50000, K = 10000, L = 1000, and M = 20 (these values and (12) are used
in Figures 5-8 when estimating posterior means and percentiles). For example, Figure 4
shows time series for the area of the deformed template when L = 1000 and M = 20, but
the chain length is either K = 5000, 10000, 15000, or 20000. The posterior means and 95%
credibility intervals shown in Figure 4 are rather stable for all the time series with values
of K > 10000, while the result for K = 5000 is clearly different from the other cases.

15000
- 4600
- 4400
_ 4200
- 4000
- 3800
: E
= 5000 ‘ 10000
4600 R -
4400 -
4200 4 7/ -
4000 — ./ -
3800 - -
3600 \ = -
3400 \ T \ \ \

10 20 30 40 50
image

Fig. 4. Posterior means and 2.5% and 97.5% percentiles for the area of the deformed template
for each image when different chain lengths are used. From bottom left to top right: K = 5000,
K =10000, K = 15000, K = 20000.

5.3.  Comparison of results for the simple and refined priors

We have compared runs using the simple prior (w = 0) with those for the refined prior
(w = 1000). For the simple prior, Figure 5 shows every sixth image with the initial template
(lines with circles) and posterior means of the deformed templates (lines with crosses)
superimposed. The deformed templates show clearly a departure from a circular n-gon,
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and especially where the contour is broken, the deformed templates seem to include areas
outside the missing contour. Using the refined prior, much better results are obtained, see
Figure 6. Now the deformed templates resembles circular n-gons and they do not tend to
include areas outside the missing contour.

image 37 image 43 image 49

Fig. 5. Images 1,7,...,49 with superimposed template (lines with circles) and posterior means of
deformed templates (lines with crosses). The simple prior model was used.

5.4. Conclusions
We have outlined how a fully Bayesian analysis can be performed for the time sequence
of ultrasound images. Owing to the results reported in Subsection 5.3 we shall base our
inference on the refined prior.

The dynamic behavior of the artery wall may be summarized by plots of the area of
V and k over time, while plots of # may show the dynamics of the equipment dependent
circumstances under which the images were taken. Figure 7 shows time series of the posterior
means and 95% credibility intervals for the area of V' and the parameters p, u2,0?, 02, k.
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image 37 image 43 image 49

Fig. 6. Images 1,7,...,49 with superimposed template (lines with circles) and posterior means of
deformed templates (lines with crosses). The refined prior model was used.

The size of the credibility interval is rather stable in each of the six plots. The posterior
distribution of & is effectively the same for all images. The curves for p, jz, 07,05 show
a somewhat parallel behavior, where o2 is at least twice as large as o, and ps is clearly
larger than p; also. There is no clear relationship between the plot of the area and the

other plots.

The area of the coronary artery on images 6—9 seems to be overestimated in Figure 7.
Figure 8 shows a plausible reason for this: owing to the drop outs, the estimated posterior
means of OV for images 6-9 are less circular than those for images 5 and 10, and the
estimated posterior means of 0V for images 6-9 seem to include area belonging to the
region outside the contour of the artery. Using a larger value of w would partly correct for
this, but would also necessitate larger runs, when the random walk scale parameter ¢ has to
be adjusted to a smaller value in order to obtain acceptance probabilities of the same value
as before. A more realistic model that takes into account broken contours may be needed
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Fig. 7. Posterior means and 2.5% and 97.5% percentiles for each image and different statistics. From
top left to bottom right: the area of V' and the parameters o2, p1, k, pi2, o2.

to fully remedy the problem.
In conclusion plots like in Figures 6-8 provide useful posterior information about the
dynamic behavior of the artery and the quality of the results.
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