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1 Introduction

Noncommutative gauge theory �rst appeared in string theory within the framework of

toroidal compacti�cations of Matrix theory [1]. It was argued that compacti�cation on

a noncommutative torus corresponds in 11-dimensional supergravity to null tori with a non-

vanishing light-like component of the background three-form tensor �eld. Subsequently it

was realized that the deformation to a noncommutative space can be described in Type II

string theory as the e�ect of turning on a constant Neveu-Schwarz two-form tensor �eld B��

in the worldvolumes of D-branes [2, 3]. The parameter � which deforms the space of func-

tions on the worldvolume to a noncommutative algebra is related to the B-�eld background

by � � B�1. The low-energy e�ective �eld theory for the gauge �elds living on the D-brane

worldvolume can be described by a noncommutative gauge theory.

A non-trivial issue concerns the renormalizability of such gauge theories, given their

unusual non-polynomial interactions. The perturbative renormalization properties of non-

commutative Yang-Mills theory have been studied in [4]. In this paper we will present

a constructive de�nition of noncommutative Yang-Mills theory which is the analog of the

usual Wilson lattice gauge theory [5] in the commutative case. Such a model has the po-

tential of clarifying issues of renormalization as well as shedding light on non-perturbative

aspects of the gauge theory. A concrete de�nition of noncommutative gauge theory has been

proposed recently in [6], and further studied in [7, 8], based on a large N reduced model

[9]{[11]. In this case an ultraviolet regularization is naturally introduced at �nite N and is

removed in the large N limit with an appropriate �ne-tuning of the gauge coupling constant.

One expects the resulting theory in the continuum limit to have three scale parameters, the

extent L of the space-time, the scale � of noncommutativity, and the usual gauge theoretic

scale parameter �. However, it is found that L
�
scales as

p
N , which means that one is

inevitably led either to a �nite L with � = 0 (commutative �nite space) or to a �nite � with

L =1 (noncommutative in�nite space) [7]. In the following we will show that there exists

a more general constructive de�nition of noncommutative gauge theory which possesses a

continuum limit whereby noncommutativity is compatible with a �nite volume space.

The noncommutative gauge theory that naturally arises from toroidal compacti�cation of

Matrix Theory [1] comes from the matrix model which is obtained by dimensionally reducing

ordinary Yang-Mills theory to a point [11]. The action is

S = � 1

g2

X
�6=�

tr [X�; X�]
2 (1.1)

where X�, � = 1; : : : ; d, are N �N hermitian matrices and d is the dimension of spacetime.

To describe the compacti�cation of this model on, say, a two-torus of radii R1 and R2, one
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needs to restrict the action (1.1) to those matrices X� that remain in the same gauge orbit

after a shift by 2�R� 1N in the direction �. This is tantamount to �nding con�gurations

for which there exists unitary matrices 
�, � = 1; 2, which generate the quotient conditions

[1, 12, 13]

X� + 2�R�Æ�� 1N = 
�X�

y
� : (1.2)

Taking the trace of both sides of this condition shows that these equations cannot be solved

by �nite-dimensional matrices. It is, however, straightforward to solve them by self-adjoint

operators on an in�nite-dimensional Hilbert space. The basic observation [1] is that consis-

tency of the conditions (1.2) when represented on this Hilbert space requires that


1
2 = e2�i� 
2
1 (1.3)

for some real number �. This means that the operators 
� generate the noncommutative

two-torus with noncommutativity parameter �.

The operators 
� may be represented on a Hilbert space Hp;q of functions fk(s) where

s 2 R and k 2 Zq [1]. By introducing a �xed, �ducial derivation r� on this Hilbert space

which satis�es

[r�;
� ] = 2�i Æ�� 
� ; (1.4)

a generic solution of (1.2) may be taken to be the sum of r� and a uctuating part,

X� = iR�Æ��r� + A�(Z) (1.5)

where Z� generate the algebra of operators which commute with the 
�'s. There is a standard

construction of these operators on the Hilbert space Hp;q [1]. In noncommutative geometry

this simply corresponds to the algebraic construction of vector bundles over the noncommu-

tative torus and the solutions (1.5) are just connections on these bundles [14]. The bundle

Hp;q is characterized by its \commutative" rank p = dimHp;qj�=0 and its magnetic ux q

which is taken to be the constant curvature of the �xed connection r�, 2�q = Tr i [r�;r�].

The gauge �elds A�(Z) are then functions on a dual noncommutative torus and the substitu-

tion of (1.5) back into the action (1.1) gives Yang-Mills theory on this dual noncommutative

torus.

This construction has been reinterpreted recently in terms of open string quantization in

the presence of a constant background B-�eld [3]. The modules Hp;q are constructed from

the boundary worldsheet theory appropriate to one end of an open string terminating on a

D2-brane and the other end on a con�guration of p coincident D2-branes carrying q units

of D0-brane charge. In this paper we will present a construction which is a straightforward

discretization of the above formalism in terms of an N �N unitary matrix model. We shall
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recover all the parameters labeling the continuum theory in the large N limit. In particular,

in this formulation �nite � is compatible with �nite L. The proposal in [6] can be regarded

as a special case, from which it becomes transparent why �nite � is not compatible with

�nite L in that instance. Thus the ensuing matrix model naturally interpolates between

the model in [6] and the continuum formalism in [1] for the matrix model of M-theory

[12]. We will show that our model can be interpreted as a manifestly star-gauge invariant

lattice formulation of noncommutative gauge theory, which reduces to Wilson's lattice gauge

theory [5] for particular choices of the parameters even at �nite N . We shall also describe

how various aspects of noncommutative gauge theory can be systematically studied within

the matrix model formalism.

2 The Unitary Matrix Model

We will describe the construction in the simplest two-dimensional case, but the generalization

to arbitrary even dimension is straightforward. The model we consider is just a twisted

Eguchi-Kawai model [9, 10], but with a certain constraint imposed on the matrices. The

action is

S = ��
X
�6=�

Z�� tr
�
U�U�U

y
�U

y
�

�
(2.1)

where U� (� = 1; 2) are N �N unitary matrices and Z�� = Z�
�� is a phase factor called the

\twist". The constraint we impose on the matrices U� is


�U�

y
� = e2�iÆ��r�=N U� (2.2)

where r� (� = 1; 2) are integers which we will specify below. The constraint (2.2) is the

exponentiation of Eq. (1.2). Now, however, the only condition required is that the U�'s are

traceless unitary matrices. It therefore represents a �nite dimensional version of the quotient

conditions for Matrix theory.

To solve the consistency conditions (1.3), we take the unitary matrices


1 = (�2)
m 
 (~�1)

yp ; 
2 = (�1)
m 
 (~�2)

y ; (2.3)

where �� and ~�� are unitary matrices of dimension M and q, respectively, which satisfy the

Weyl-'t Hooft commutation relations

�1�2 = e2�i=M �2�1 ; ~�1
~�2 = e2�i=q ~�2

~�1 : (2.4)

These algebras can be represented by the shift and clock matrices (�1)jk = Æj+1;k, (�2)jk =

(e2�i=M )j�1 Æjk, and similarly for the ~��. The integers M and q satisfy N =Mq and we take
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M = mnq. The deformation parameter � of Eq. (1.3) is given by

� =
p

q
� m

nq
: (2.5)

The incorporation of two independent integers m and n in the above will enable us to take a

large-N limit whereby the appropriate continuum limit is reproduced. They play a certain

dual role to one another as we shall see. We will also see later on that the meaning of the

integers p and q will be the same as in the description of the modules Hp;q above.

Our �rst task is to solve the constraint (2.2). We take the simplest particular solution

U� = D� associated with1 r1 = r2 = mq:

D1 = (�1)
y 
 1q ; D2 = �2 
 1q : (2.6)

These operators will become �xed covariant derivatives in the continuum limit. We then

decompose U� using D� as

U� = ~U�D� ; (2.7)

where ~U� are unitary matrices which satisfy the constraint


�
~U�


y
� = ~U� : (2.8)

These constrained matrices will become the gauge �elds of the model in the continuum limit

and they can be constructed as follows. Assuming that p and q are co-prime, we choose

integers a and b such that

ap+ bq = 1 : (2.9)

We then introduce unitary matrices

Z1 = (�2)
n 
 (~�1)

y ; Z2 = (�1)
yn 
 (~�2)

a ; (2.10)

which commute with 
�. The commutation relation of the Z� is

Z1Z2 = e2�i�
0

Z2Z1 ; (2.11)

where �0 is given by

�0 =
n

mq
� a

q
(2.12)

and it is related to � through the discrete M�obius transformation

�0 =
a� + b

p� q�
: (2.13)

1 One can consider a more general particular solution U� = (D�)
l� where l� are integers. If l� is a divisor

of mq, then this solution will reproduce in the continuum limit the noncommutative gauge theory associated
with a torus of modulus R1=R2 = l1=l2.
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In the continuum, the transformation law (2.13) would be just that between Morita equiv-

alent noncommutative tori [14]. In fact, by identifying � with a constant Neveu-Schwarz

two-form �eld, it is just the T-duality transformation rule for the B-�eld [3, 15]. The rela-

tionship between Morita equivalence and duality [15] means that certain noncommutative

gauge theories are physically equivalent to one another. We will return to this point later

on.

Using Z�, we can de�ne a basis for the solution space of (2.8) as

Jm1;m2
= (Z2)

m1(Z1)
m2 e�i�

0m1m2 (2.14)

where the phase factor is included so that

J�m1;�m2
= (Jm1;m2

)y : (2.15)

Since (Z�)
mq = 1N , Jm1;m2

is periodic with respect to m1 and m2 with period mq. We can

therefore restrict the integers m1 and m2 to run from 0 to mq�1. It will prove convenient to
introduce a lattice with (mq)2 sites on the torus and to instead work with the basis de�ned

by

�(x) =
X
m1;m2

Jm1;m2
e�2�i���m�x�=L ; (2.16)

where x� = 0; �; : : : ; �(mq � 1) belongs to the lattice of the spacing � and the extent of the

lattice is

L = �mq: (2.17)

We have de�ned �(x) in such a way that the identities

1

(mq)2

X
x

�(x) = 1N ; (2.18)

D��(x)Dy
� = �(x� ��̂) (2.19)

hold. Here ��̂ denotes a shift by � of x� only. The relation (2.19) expresses the identi�cation

of the matrices D� as discrete covariant derivatives. Note also that �(x) is hermitian, due to

(2.15), and is periodic with respect to x1 and x2 with period L. The proof of completeness

the generators (2.16) is given in Appendix A. Given this complete set of solutions, we can

write a general solution to (2.8) as

~U� =
1

(mq)2

X
x

U�(x)�(x) : (2.20)

Using orthogonality we can invert (2.20) to give (see Appendix A)

U�(x) = 1

N
tr
�
~U��(x)

�
: (2.21)
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In order that the right-hand side of Eq. (2.20) is a unitary matrix, the coeÆcients U�(x)
should satisfy a certain condition which will be given below.

Having solved the constraint, our next task is to rewrite our model entirely in terms of

U�(x), which are the gauge �elds of the theory. For this, we use the identity (2.21) to regard

�(x) as a map from the space of N � N matrices which commute with 
� to the space of

�elds on a periodic L � L lattice. We use the natural de�nition of a product of two lattice

�elds f1(x) and f2(x):

f1(x) ? f2(x)
def
=

1

N
tr
�
f1f2�(x)

�
; (2.22)

where fi are the N � N matrices de�ned by fi = (mq)�2
P

x fi(x)�(x). This product is

associative but not commutative. One can write it explicitly in terms of fi(x) as

f1(x) ? f2(x) =
1

(mq)2

X
y;z

f1(y)f2(z) e
2iB���(x��y�)(x��z�) (2.23)

where

B =
2�

�0L2
: (2.24)

These formulas are similar to Ref. [8]. (See also [16] for earlier works in this regard.) The

product (2.23) can be considered as the lattice version of the star product in noncommutative

geometry. To see this, we note that in the continuum the star product of two functions f1(x)

and f2(x) may be de�ned as

f1(x) ? f2(x)
def
= f1(x) exp

�
i
1

2

 �
@� ���

�!
@�

�
f2(x) : (2.25)

Using a Fourier transformation, this de�nition can be turned into an integral form

f1(x) ? f2(x) =

ZZ
dy dz K(x� y; x� z) f1(y)f2(z) (2.26)

where the integration kernel K is given by

K(x� y; x� z) =
1

�dj det ��� je
�2i(��1)�� (x��y�)(x��z�) : (2.27)

The expression (2.23) can be obtained from (2.26) just by restricting the variables x, y, z

to run over lattice points. In this sense, the product (2.23) is a natural lattice counterpart

of the star product in the continuum. We shall therefore call (2.23) a star product in what

follows.

Using the star product, we can write down the condition on U�(x) which is required for
~U� to be unitary as

U�(x)� ? U�(x) = 1 : (2.28)
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In other words, the lattice �elds U�(x) must be star-unitary. We may now rewrite the action

(2.1) as

S = �� 1

(mq)2

X
x

X
� 6=�

Z�� tr
�
U�U�U

y
�U

y
��(x)

�

= �� 1

(mq)2

X
x

X
� 6=�

Z�� tr
h
~U�D�

~U�D�D
y
�
~U y
�D

y
�
~U y
��(x)

i

= �� 1

(mq)2

X
x

X
� 6=�

~Z�� tr
h
~U�(D�

~U�D
y
�)(D�

~U y
�D

y
�) ~U

y
��(x)

i

= �� n
m

X
x

X
�6=�

~Z�� U�(x) ? U�(x + ��̂) ? U�
�(x+ ��̂) ? U�

� (x) ; (2.29)

where ~Z�� = Z�� e
�2�i���=M can be considered as a background rank-two tensor �eld. One

can make ~Z�� = 1 by choosing Z�� = e2�i���=M . Then the vacuum con�guration is given by
~U� = 1N , which corresponds to U�(x) = 1, up to the symmetry of the model which we now

proceed to discuss.

The action (2.1) and the Haar integration measure for the matrices U� are invariant

under the SU(N) transformations

U� ! g U� g
y : (2.30)

The constraint (2.2) in general breaks this symmetry down to a subgroup of SU(N). However,

the constrained model is still invariant under (2.30) for any g that commutes with 
�. We

can represent such a g in terms of a function g(x) on the lattice as

g =
1

(mq)2

X
x

g(x)�(x) ; (2.31)

where g(x) should satisfy g(x)� ? g(x) = 1, but is otherwise arbitrary. The transformation

(2.30) can now be interpreted in terms of U�(x) as

U�(x)! g(x) ? U�(x) ? g�(x+ ��̂) : (2.32)

Therefore, the resulting theory of the lattice �eld U�(x) is manifestly invariant under this

star-gauge symmetry.

We can show that the theory (2.29) reduces to Wilson's lattice gauge theory [5] for

particular choices of the parameters. Note that we can always make �0 = 0 by taking n = ma.

In this case, the star product becomes the ordinary product of functions. Therefore, U�(x)
becomes an ordinary U(1) �eld on the lattice and the action (2.29) becomes the ordinary

Wilson plaquette action. We can also show that the integration measure for U�(x) is actually
the Haar measure for integration over the group U(1)2(mq)2 . Note that the Haar measure

8



for the N � N matrices U� and the constraint (2.2) are invariant under U� ! gU� for any

g which commutes with 
�. This can be translated into the invariance of the integration

measure for U�(x) under U�(x) ! g(x)U�(x). The uniqueness of a measure with such an

invariance proves our statement. Thus, our lattice formulation of noncommutative gauge

theory includes Wilson's lattice gauge theory on a periodic lattice of �nite extent as the

�0 = 0 case, even at �nite N . We remark that in this case, although the Z� matrices can be

taken to be diagonal, the (mq)2 degrees of freedom of the lattice gauge theory are contained

in the N = mnq2 = a(mq)2 diagonal elements of ~U�.

Going back to the general case of arbitrary �0, let us now consider the continuum limit

of the model (2.29) when the lattice spacing � ! 0. We introduce the continuum �eld ~A�

and operator d� through
~U� = ei�

~A� ; D� = ei�d� : (2.33)

The large N limit dictated by the continuum theory [1] is m � n � pN and � � 1=
p
N

with �xed a, b, p and q. Both L given by (2.17) and B given by (2.24) are �nite in such

a large N limit. The resulting gauge theory is constructed from connections of a rank

p bundle of magnetic ux q. We will see this explicitly in the next section. Note that

the �eld theory (2.29) is actually of rank 1. This is one of the characteristic features of

Morita equivalence or alternatively of T-duality transformations between di�erent brane

worldvolume �eld theories. The original SU(p) Yang-Mills theory on the noncommutative

torus with deformation parameter � is physically equivalent to a U(1) Yang-Mills theory on a

dual torus with noncommutativity parameter (2.13) that implicitly contains the information

about the rank p of the underlying vector bundle. The case q = 0, representing a trivial

gauge bundle, can also be constructed and will be presented elsewhere.

However, as far as the continuum limit of the lattice theory is concerned, we need only

send m to in�nity, but not necessarily n. If n is �nite as m ! 1, this does not lead

to the solutions constructed in the continuum [1] for hermitian operators and is instead

associated with unitary operators acting on periodic functions of 0 � s < nq. The particular

case of q = n = 1, for which the condition (2.2) is trivial and our model reduces to the

ordinary, unconstrained twisted Eguchi-Kawai model, is of this type. It corresponds to the

interpretation of the twisted large N reduced model in terms of noncommutative gauge

theory which was proposed in [6]. Since �0 = 1=N in that case, in order to make B �nite

one needs � � 1=
p
N , which inevitably makes the physical extent of the torus scale as

L � pN , reproducing the observation made in [7]. Note that the issue of whether or not

a continuum limit really exists is a dynamical question that can be addressed, for example,

by Monte Carlo simulation. A numerical simulation of the two-dimensional Eguchi-Kawai

model has been done in [17], where a non-trivial large N scaling behavior was found with
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the parameter N�2 �xed, which is exactly the large N limit required to make the physical

scale of noncommutativity �nite. This in itself means that noncommutative gauge theory

with a background tensor �eld can be constructively de�ned.

3 Observables of Noncommutative Gauge Theory

We will now describe how the properties of noncommutative gauge theory can be completely

reformulated in the language of the unitary matrix model above. Let us de�ne a lattice

path which consists of s links by C = f�̂1; : : : ; �̂sg and C�1 = f�̂s; : : : ; �̂1g for an opposite

orientation. The path C connects lattice sites separated by the vector `� = ��s while

��i = �
iX

j=1

�̂j (3.1)

belongs to C. We introduce the following products of matrices along the path:

D(C) =

sY
j=1

D�j ; D(C�1) = D(C)y ;

U(C) =
sY

j=1

�
~U�jD�j

�
: (3.2)

Given the property (2.19) we then have

�(x+ `) = D(C)�(x)D(C�1) ; (3.3)

where the right-hand side is path-independent because of the properties of the D�. This

results in the formula

1

N
tr
�
A�(x)

�
?
1

N
tr
�
B�(x + `)

�
=

1

N
tr
�
AD(C)BD(C�1)�(x)

�
; (3.4)

provided that A and B belong to the commutant of the algebra generated by 
�. Using

(3.4), we can construct the matrix analog of the noncommutative phase factor along the

lattice path which de�nes parallel transport for the gauge bundle in the continuum limit,

U(x;C) def
= ?

sY
j=1

U�j (x+ �j�1) =
1

N
tr
�
U(C)D(C�1)�(x)

�
(3.5)

where the product in the middle is the star product. Under the SU(N) gauge transformation

(2.30) where U(C)! gU(C)gy, the right-hand side of Eq. (3.5) transforms as

U(x;C)! 1

N
tr
�
gU(C)gyD(C�1)�(x)

�
= g(x) ? U(x;C) ? g�(x+ `) (3.6)
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as it should for the phase factor. This formula extends (2.32) to an arbitrary open path.

The continuum limit of the above construction is given by the large-N limit of the matrix

model. We introduce d�� = ��̂, so that Eq. (3.1) takes the form

�� =

Z
d�� ; (3.7)

and write down the continuum analogs of Eqs. (3.2) and (3.5) using (2.33) as

D(C) = P exp
�
i

Z `

0

d�� d�

�
;

U(C) = P exp
�
i

Z `

0

d�� ( ~A� + d�)
�

(3.8)

and

U(x;C) = ?
Y
�

�
1 + i d��A�(x + �)

�
: (3.9)

Here we have de�ned the �eld A(x) by

U�(x) = ? ei�A�(x) (3.10)

where the exponential is understood as a power series expansion with the star-product.

Notice that the d� in Eq. (3.8) cannot be absorbed by a shift of ~A� since d� does not

commute with the 
's. This is the di�erence between the present model and the continuum

limit of the twisted Eguchi-Kawai model where this translation is usually done.

The phase factors (3.9) can be used to de�ne a new class of observables in the matrix

model, associated with noncommutative gauge theory. The standard closed Wilson loops

W (C) of twisted reduced models [10] which are invariant under (2.30) can be expressed via

U(x;C) as

W (C) � 1

N
trD(C�1)

1

N
trU(C)

=
1

(mq)2

X
x

1

N
tr
�
U(C)D(C�1)�(x)

�
=

1

(mq)2

X
x

U(x;C) ; (3.11)

sinceD(C�1) is a c-number. Therefore, the analog ofW (C) in noncommutative gauge theory

is a sum over lattice points of U(x;C), which is understood as the sum over translations of the

closed path that preserve its shape. This object is star-gauge invariant due to this additional

summation. For the simplest closed loop, i.e. the plaquette, it is used in constructing the

action (2.1). What is rather surprising in noncommutative gauge theory is that one can

actually construct a star-gauge invariant observable associated with an open path, as has

been found in [7]. We will now describe how such observables appear in our model and point

out an interesting consequence of the �niteness of the spacetime extent.
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Star-gauge invariant quantities can be constructed out of (3.5) with the aid of a lattice

function S`(x) which has the property

S`(x) ? g(x) ? S`(x)
�1 = g(x+ `) (3.12)

for arbitrary star-unitary functions g(x). Here again `� is the relative separation vector

between the two ends of the open loop. Star-gauge invariant quantities can then be de�ned

by (mq)�2
P

x S`(x) ? U(x;C). The property (3.12) in the matrix model becomes

S`�(x)S�1
` = �(x� `) (3.13)

where

S` =
1

(mq)2

X
x

S`(x)�(x) (3.14)

belongs to the commutant of the algebra generated by 
�. Using the de�nition (2.16) and

with a little algebra, we obtain that S`(x) should satisfy

S`(x+ �0L�̂) = e�2�i���`�=LS`(x) (3.15)

where L is given by (2.17). Assuming that �0mq = n �ma and mq are co-prime, the only

solution to (3.15) is

S`(x) = e2�ik�x=L (3.16)

where k� = 0; 1; � � � ; (mq � 1) and

`� = �0L���k� + n�L (3.17)

with an integer vector n�. As is seen from (3.16), the ratio 2�k�=L plays the role of the

momentum variable and it is related to the distance vector `� by Eq. (3.17). The longer the

open loop is, the larger the momentum 2�k�=L should be. The discretization of momentum

due to the �nite extent of the torus leads us to an interesting consequence that `� should

also be discrete. In the commutative case when �0 = 0, we obtain `� = n�L reproducing the

known fact that the only such gauge invariant quantities are the Polyakov loops (holonomies

of noncontractable loops on the torus). It is remarkable that in noncommutative gauge

theory on a �nite volume there exist other objects of this kind with discretized values of

the distance `�. It remains discrete in the continuum limit since L is �nite. This is the

di�erence from the analogous quantities constructed in [7] for the IIB model, where `� can

be an arbitrary vector in the largeN limit. The matrix description of the star-gauge invariant

open loop is given by

1

(mq)2

X
x

S`(x) ? U(x;C) =
1

(mq)2

X
x

1

N
tr
�
U(C)D(C�1)S`�(x)

�

=
1

N
tr
�
U(C)D(C�1)S`

�
(3.18)
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where S` = Jk2;�k1 is given by (2.14) for the solution (3.16). Its star-gauge invariance can

be directly checked by noting that D(C�1)S` in (3.18) belongs for ` given by Eq. (3.17) to

the commutant of the algebra generated by Z�, i.e. commutes with g.

The matrix model determines the dynamics of noncommutative gauge theory. Let us

demonstrate how the classical equation of motion emerges in the matrix language. For

simplicity we take the continuum limit using the relation (2.33). The continuum action

reads

S[ ~A] = tr
��

~F�� � f��

�2 �
+ tr

�
���

h
~A�;
�

i �
(3.19)

where
~F�� = id� ~A� � id� ~A� + i

h
~A�; ~A�

i
: (3.20)

Here f�� is the constant curvature of the gauge bundle given by

�i [d�; d�] = f�� 1N (3.21)

where in the two dimensional case

f�� =
2�q

p� q�
R1R2 ��� : (3.22)

In the construction of section 2, R1 = R2 = 1=�nq are the radii of the two-torus (see

footnote 1). Eq. (3.22) is the standard formula for the curvature of the module Hp;q [1].

It should be understood, however, as being multiplied by the identity operator 1p;q with

Tr 1p;q = p � q�, so that the integral curvature of the bundle is Tr f��=(2�R1R2) = q.

In the present case this trace operation corresponds to multiplying the curvature (3.22)

by the dimensionless area factor
p
(R1R2)(L1L2) = m=n giving the volume of a unit cell

in the \phase space" of the d�'s. This is analogous to the derivation of the dimension

of the Hilbert space Hp;q presented in [1]. The (in�nite) hermitian matrices in (3.19) are

unconstrained while the constraints are taken into account by the Lagrange multipliers ��� .

The action (3.19) is of the type considered in [18], but now with the additional constraints

imposed on ~A.

The variational derivative

Æ

ÆA�(x)
A�(y) = Æ�� Æ(x� y) (3.23)

can be represented in the matrix language as follows. Given (2.20), (2.33) and (3.10), we

have
~A� =

Z
dx A(x)�(x) (3.24)

which implies
Æ

ÆA�(x)
= tr

� @

@ ~A�

�(x)
�
: (3.25)
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Equation (3.23) is now reproduced as

tr

 
@

@ ~A�

�(x)

!
1

N
tr
�
~A� �(y)

�
= Æ��

1

N
tr
�
�(x)�(y)

�
= Æ�� Æ(x� y) (3.26)

as it should. We can treat the matrix elements of ~A� as independent because of the com-

pleteness of the generators of the commutant. Notice that there is an ordinary product of

the traces in (3.26) rather than the star product. Acting by (3.25) on the action (3.19), we

get

Æ

ÆA�(x)
S = tr

� h
d� + ~A�; ~F�� � f��

i
�(x)

�
+ tr

�
��� [�(x);
�]

�
= tr

� h
d� + ~A�; ~F��

i
�(x)

�
: (3.27)

Eq. (3.27) reproduces the noncommutative Maxwell equation.

The matrix representation (3.25) of the variational derivative is actually most useful for

deriving the Schwinger-Dyson equations of the quantum noncommutative theory and, in

particular, the loop equations. To illustrate the technique, let us �rst calculate how the

variation Æ=ÆA�(z) acts on the noncommutative phase factor U(x;C), which determines the

contact term in the loop equation [19]. Using (3.25), we get

Æ

ÆA�(z)
U(x;C) = tr

�
@

@ ~A�

�(z)

�
1

N
tr
�
U(C)D(C�1)�(x)

�

= i

Z `

0

d��
1

N
tr
�
U(C1)�(z)U(C2)D(C�1)�(x)

�

= i

Z `

0

d�� U(x;C1) ? Æ(x+ � � z) ? U(x + �;C2) (3.28)

where C1 and C2 are the parts of the contour C, C = C1C2, separated by �. We can similarly

calculate how the area operator @�Æ=Æ�
��(z) (z 2 C) acts on U(x;C). This calculation is

purely geometrical and gives

@�
Æ

Æ���(z)
U(x;C) = 1

N
tr
�
U(C1)

h
d� + ~A�; ~F��

i
U(C2)D(C�1)�(x)

�
= �i U(x;C1) ?

�
@�F�� + iA� ? F�� � iF�� ?A�

�
(z) ? U(z;C2) (3.29)

where

F�� = @�A� � @�A� + iA� ?A� � iA� ?A�: (3.30)

That is, the operator @�Æ=Æ�
��(z) inserts the Maxwell equation in the noncommutative phase

factor at the point z, as anticipated.
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The standard loop equation of large-N Yang-Mills theory for the Wilson loop average

hW (C)i emerges from Eqs. (3.28) and (3.29) in the q = n = 1 case by putting z = x,

summing over all x and using the formula

1

N2

X
x

�ij(x)�kl(x) = N ÆilÆkj (q = n = 1 case) : (3.31)

This equation is quadratic in hW (C)i due to large-N factorization of correlators. To better

understand the consequences of Eqs. (3.28) and (3.29) for q; n 6= 1, let us consider the case

of �0 = 0, whereby the continuum limit is rank one commutative gauge theory, previously

known as Maxwell's theory. The phase factor (3.9) for a closed loop is now gauge invariant

since the star-product becomes the ordinary product, so that U(x;C) becomes the usual

phase factor of electrodynamics which is independent of x while the g's cancel on the right-

hand side of Eq. (3.6). The loop equation for the average of the phase factor can be obtained

by combining the averages of Eqs. (3.28) and (3.29) which results in the standard linear loop

equation

@�
Æ

Æ���(z)

D
U(C)

E
=

1

��4

Z
d�� Æ(� � z)

D
U(C)

E
: (3.32)

We have just illustrated by this simple example how the phase factors (3.9) can indeed

correspond to observables in noncommutative gauge theories associated with the unitary

matrix model. This is precisely the novel feature of the present matrix model that was

pointed out in section 2, namely that in the large N limit it is possible to arrive at a U(1)

continuum gauge theory.
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Appendix A Proof of Completeness

We will demonstrate that the �(x) de�ned by Eq. (2.16) form a complete set for the space

of solutions to the constraints (2.8), i.e. that any N �N complex matrix A that commutes

with 
� (� = 1; 2) can be written uniquely as

A =
1

(mq)2

X
x

A(x)�(x) : (A.1)
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We �rst note that

E def
=
n
A 2 gl(N; C )

��� A
� = 
�A ; � = 1; 2
o

(A.2)

de�nes a linear subspace of gl(N ,C ) which has an inner product de�ned by tr (AyB) for

A;B 2 gl(N; C ). The �(x) 2 E form an orthogonal set,

1

N
tr
�
�(x)�(y)

�
= (mq)2Æx;y : (A.3)

We now consider the linear subspace E 0 of E spanned by �(x). We wish to show that E 0 = E .
For this, we introduce a convenient orthogonal basis of gl(N ,C ). De�ne ~�(~x) by

~�(~x) =
X
m1;m2

(
1)
m1(
2)

m2 e��i�m1m2 e2�i����m�~x� ; (A.4)

where ~x runs from 0 to nq � 1 and we put � = 1 for simplicity. These matrices commute

with Z�, they are mutually orthogonal, and they satisfy 
�
~�(~x)
y

� = ~�(~x � �̂). We take

�(x) ~�(~x) as an orthogonal basis of gl(N ,C ). We now consider a generic element which

belongs to the orthogonal complement of E 0 in gl(N; C ) given byX
x;~x6=0

f(x; ~x)�(x) ~�(~x) : (A.5)

Requiring that it commutes with both 
1 and 
2 implies immediately that f(x; ~x) � 0,

which completes the proof. Using the orthogonality (A.3) of the basis �(x), we can write

the A(x) in (A.1) as

A(x) =
1

N
tr
�
A�(x)

�
: (A.6)
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