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Abstract

We use both a classical and a nonstandard space as models for White Noise, and calculate and
give meaning to the covariance of Donsker’s delta functions.

0. INTRODUCTION AND PRELIMINARIES

In this paper we study the covariance between Donsker’s d-functions d,(X) where a is a real
number and X is a Gaussian random variable. By composing X with the Dirac point measure at a,
dq, we get a random variable with infinite variance. In fact, it is not pointwise (w — wise) defined.
Letting X = B, a standard Brownian motion, we can calculate the covariance between different
time instants, thus describing the covariance structure of this generalized stochastic process in time.
This process is known to be connected to the local time of Brownian motion at a. Indeed, the local
time of Brownian motion at a up to time ¢t can be written as the Lebesgue integral of §,(B;) from 0
to t (understood in a generalized sense). In many respects, d,(B;) serves as the canonical example

of a generalized stochastic process (see e.g. [3, 8, 16]).

A few comments on the somewhat unusual format adopted in the current paper: Here a two-track
approach is used to formulate and study the above-mentioned objects. We do everything twice: in
the classical space of white noise and in a space obtained from Robinson’s nonstandard analysis.
This is justified, for there is advantage in using either approach; moreover, the two approaches have
quite different underlying techniques and philosophy, and should have distinct applications. The
nonstandard approach offers a more elementary and intuitive setting in which one easily obtains
good insight into problems and simple explanations of some phenomena. This is mainly due to the
richness of its model; in particular, infinite numbers and objects can be handled easily and rigorously
as if they were finite, thus avoiding many complicated limit processes and arguments. However, very
often 1t lacks uniqueness due to the same richness of the model. For example, nonstandard results in
this paper often rely on the representation of a generalized functional; it is likely that by changing
to another representation which is equivalent in a certain standard setting will also change the
conclusion. In this regard, the classical approach complements such shortcomings. Moreover, the
classical approach is much more developed and its relevance to other areas is already well-established.
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Also it has many powerful tools readily available, whereas a lot of tools in the nonstandard approach
need to be produced from scratch.

The nonstandard approach to generalized functionals is a natural development from the non-
standard model used in studying L2-Wiener functionals, since such spaces support many functions
beyond those representing just L?-Wiener functionals. For instance, for certain pairs of nonstandard
functions, although they have no L? meaning, they nevertheless have finite nonstandard inner prod-
uct, and one expects some interpretations in distribution sense. It should be mentioned that even
in the early days, Robinson [17] already used nonstandard methods to study Schwartz distributions
and so this is just a continuation in an infinite dimensional setting.

This paper is organized as follows: basic classical and nonstandard ingredients needed for this
paper are dealt with in §0.1 and §0.2; in §1 we prove in the nonstandard space that the covariance for
certain composite generalized functionals is finite; in §2 we prove that the covariance between certain
Donsker’s d-functions is finite, this is done for both the classical and nonstandard space; in §3, we
calculate and give meaning to the correlation between Donsker’s d-functions for Brownian motion
at two different time instants, again this is done in both the classical and nonstandard space; finally
§4 is an appendix on nonstandard background needed for L?-Wiener functionals, with references
included to motivate the use of the nonstandard space for white noise.

It is hoped that both standard and nonstandard practitioners will find something useful in this
paper. We take [8] and [9] as standard reference on classical white noise analysis, and [1] for

background in nonstandard analysis.

0.1. Classical prerequisites. We first state the necessary notation and terminology from classical
white noise analysis: Let (€2, F, P) be a complete probability space and let 7' denote the interval
[0,10] or Ry. Introduce the Hilbert space H = L*(T, B, i) where B is the Borel o-algebra. We have
used the notation p for the Lebesgue measure on (7', B). Following Nualart [13], {W(h),h € H} is
a centered Gaussian family of random variables with variance |h|iQ(T). This family is characterized
by the random variables W(A) = W(14) which takes independent values on disjoint subsets of T
Note that W (h) = [, hdW is the Wiener integral. In the sequel we shall use the notation L?(Q) for
the space L*(Q2, G, P) where G is the o-algebra generated by {W(A), A € B}. Elements of L?({2) can
be expanded into a series of multiple Wiener integrals (the so-called chaos expansion of the random

variable);
Theorem 1. Let f € L?(Q). Then
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where I, is the n-fold Wiener integral and f, € L*(T™) is symmetric. The functions f, are uniquely
defined by f. Moreover,

(2) A7 =D nllfalZzgrny < oo
n=0
where || -|| denotes the usual norm in L?(£2).

For a proof of this result, see e.g. [13].

We introduce the Number operator N: If f € L*(Q) has the chaos expansion f = -7 In(fa),
the application of N on f is defined as
(3) Nf= nly(fa)

n=0

The domain of this operator, denoted Dom(N), is easily seen to be the subspace of L?(2) for which
S ntnlfu? < oc.

Potthoff and Timpel [16] study the following spaces of smooth and generalized random variables:
For A > 0, let G be the space of f € L?(Q) where

(4) [1£11x = 1le*™ ]

The space of smooth random variables (G) is the projective limit of Gy. The space of generalized
random variables (G)* is the topological dual to this space. Note that (G)* is the projective limit of

G_», where G_, is the dual of G. In fact, this dual space is a Hilbert space with norm || - ||_x =
[Je™ 1.

0.2. Nonstandard prerequisites. Next we fix some notation and terminology from nonstandard
analysis. More background material needed for L2-Wiener functionals can be found in the appendix
§4. As in the appendix, we let N € *N\N, At = 1/N and T = {HAt | H € [-N?,N?]n *N},
the hyperfinite time line. We define @ = *RT with an internal probability measure i on Q given
by T independent copies of Gaussian measures, each with distribution A (0, At). Elements in Q are

written as w = (w¢)er. So for an internal measurable function f : 00— *IR, we have
_ N4 2
(5) E[f] = (2wAt)” / flw exp( AT Z t)dw.

We use S(R™) to denote the Schwartz space of rapidly decreasing functions on R™ and &'(R")
to denote its dual, the space of tempered distributions. (See [18].) Tt can be proved that for every
¢ € §'(R™), there is an internal function Fy : *R" — *IR (in fact we can even take Fiy € *S(R"))
such that

(6) $¢)="° [ﬁkn Fy(x)*&(x)de, forall &€ S(R").



4

For convenience, we simply identify such F, with ¢, and omit the * | then the above is written as

(7) o6 =° [ o0)é(a)da.

*R™

For example, in Theorem 2 in the next section, the * is omitted from p; without causing any confusion
since 1t 1s clear that we are referring to an internal function with domain *IR.

We refer to [12] for more details on the use of Q as a model for white noise. (In [12], only
comparison with the Hida space is given, but the general idea is the same.) The only relevant part
here is the following: given any generalized functional ¢, there is a function Z : @ — *IR representing

¢ in the sense that for every test functional & and any SL?-lifting = of ¢, the pairing is given by
¢(&) = °E[ZE].

1. FINITENESS OF THE COVARIANCE

We first consider generalized functionals represented by ¢(X) where ¢ € S'(R") and X is a
random variable. Note that Donsker’s d-function is a special case of these. (See also [8] Example 3.4
for this kind of generalized functionals.) We prove a simple general result showing that the covariance
between ¢(X) and 6(X + V) is finite whenever X,V are independent with their distributions given
by rapidly decreasing densities.

Theorem 2. Let ¢,0 € S'(R). Let X,Y : Q — *R be independent random variables, whose distri-
butions are given by densities p1,pa such that p1(x)p2(y — ) € S(R?). (Note that this is satisfied
when p1, pa € S(R). ) Then both E[QS(X)H(X —|—Y)] and Cov[(/)(X),H(X —|—Y)] are finite.

Proof. By independence and densities, we have
E[¢(X)0(X +Y)] = [ 6(«)0(x +y)pi(x)p2(y)dady
*]RQ

= [ @0 )ty — )dzdy,

which is finite under the assumptions. Taking # = 1, we get finiteness of E[(/)(X)] Taking ¢ = 1,
we get finiteness of E[0(X + Y)]. So

Cov[¢(X),0(X +Y)] = E[¢(X)0(X +Y)] — E[¢(X)] E[0(X + V)]

1s also finite. O

The following example shows the limitation on further generalization of the above result.

Example 3. Letf(z) = exp(%)(1—|—|x|)2. Then for any ¢ € 8'(R) and X, Y ~ N(0,1), E[QS(X)H(X + Y)]
1s infinite. To prove this, we simply check that f*]R O(x + y) exp (—%)dy is infinite for any x % 0.
Of course here § ¢ S'(R).
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Note that in general the conclusion in Theorem 2 relies on the particular representation of the
generalized functional. It is possible that ® : Q@ — *R and ¢(X) both represent the same standard
generalized functional but while E[¢(X)0(X +Y)] is finite, E[® (X + V)] is infinite. This seems to

be related to choice of the regularization procedure in the classical setting.

2. THE COVARIANCE BETWEEN DONSKER’S §-FUNCTIONS

2.1. In classical white noise space. Consider Donsker’s d-function

(8) 6q(0) :=da(L1(0))
for a € R constant and ¢ € L?(R). From [8] we know that the chaos expansion of §,(¢) is given by

ot e 2|<z>|2>
¥ 10 = e S

where &, is the Hermite function of order n (see e.g. [8]). In [16] it is shown that d,(¢) € G_ for
all X > 0. Note that d,(B;) ¢ Go = L*(p). However, by the definition of the Gy-spaces, we have

In (6°")

exp(—AN)é,(¢) € L?(u) which is the basic property we shall use to discuss covariance for Donsker’s
d-function. If we choose ¢ = 1o ;) we obtain Donsker’s J-function for Brownian motion, which we
shall denote 64 (B:).

For our purposes it will be convenient to use an integral representation of d,(¢): From [8] we can

write
1 . . Lo
(10) 0a(9) = 5 | Bxphi(—ips)exp(ipa — 5p*|6]") dp
T JR 2
where ExpI; () is the stochastic exponential defined as Exply () = Y .., n, I, (¥®™). The integral

malkes sense as a Bochner integral on R in G_ for every A > 0.

In order to define covariance between Donsker’s d-functions, we need to regularize the generalized
random variables ,(¢). We shall use the canonical regularization suggested by the definition of
G_»: For each A > 0, we consider exp(—AN)d,(#) which is known to be in L?(p). Note that such a
regularization is not necessary in a nonstandard framework, as will be seen from the calculations in
the next subsection.

We introduce the A-covariance for d4(¢):

Definition 4. For A > 0 and ¢, € L*(IR), let the A-covariance between §,(¢) and 8,(1) be defined

as

(11) Covy [5(1 (¢), (56(1/))] = Cov[e‘ANéa (¢), e_ANéb(ﬂ))]

fort s > 0.

The generalized covariance between d,(¢) and dp (1) can be defined as follows,
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Definition 5. For A >0 and ¢,¢ € L*(R). The generalized covariance between §,(¢) and 8,(¥) is
defined as

(12) Cov[6(6),80()] 1= lim Cova [8,(6). (1)

whenever this limit exists.

Remark 6. The A-covariance is the (classical) covariance between the two (L?)-random variables
e M. (@) and e MV, (). Since 64(¢) € G_x for every A > 0, this covariance is finite and thus
shows the well-definedness of the A-covariance for Donsker’s §-function. It is also straightforward to
see that the A-covartance 1s monotonically decreasing for increasing A. The generalized covariance, on
the other hand, may not exist which is easily secen by putting e. g. ¢ = ¢: E[(exp(—/\N)éa(qS))z] —
oo when A | 0. This singularity s not removed by subtracting the square of the expectation of

exp(—AN)dq (@), since this expectation is finite for A = 0.

Before we state our main results we introduce the notation

1 z?
13 ) = exp | ——=
(3) proe) = ozenp (=52
for the density function for a centered Gaussian random variable with variance o?. We have the

following theorem:

Theorem 7. Let ¢, € L*(R) where (¢,¢) = 0,|8], || > 0 and a,b € R. Then, for arbitrary A > 0

_ 1 exp(—%j}\(a,b)) B
(14) Cova[da (@), ds(¢ + ¥)] = - T E T (= map Plolz(@)pigjz-41u2 (b)
where
b? 91> + v SN - R &
b) = —b [ B

fa(a,b) 1612 + [0]2 + 1612[0]2 + (1 — e=*M)[g]3 (a € |¢|2_|_|1/)|2)
Moreover, the generalized covariance 1is
(15) Cov[8a(6), 646 + )] = pope(a) (pros=(a — B) = projepuie(0) )

Proof. Note first that (¢, ¢+ ¥) = |¢|* and |¢ + ¥|* = |¢|? + [¢|*. Moreover,

exp(—AN)d,(¢) = exp(—AN)Expli (—ipg) exp(ipa — %p2|¢>|2) dp

o /.
1 . . 1

=5 Expl (—ipe >‘¢) exp(ipa — —p2|¢>|2) dp
T R’ 2

We now calculate E[exp(—/\N)éa (¢) exp(=AN)dp (o + 1/))] :
E[exp(—=AN)da () exp(=AN)dy (¢ + )]

1 1 1
== / E[Expli(—ipe™*¢)Expli(—ige™* (¢ + )] exp(ipa — §p2|¢|2) exp (igh — §q2|¢> + %) dpdyq
RZ

1 _ ) 1 ) 1
=— / exp(—pge~"*|¢|?) exp(ipa — =p*|6|*) exp(igh — =¢*|6 + ¥|*) dpdq
Ar? Jgo 2 2
1 exp(—%j}\(a, b))

27 \JI6PIEP + (1= e P)[g]*



and hence the first part of the theorem 1s proved since

Efexp(=AN)da(¢)] = pjg2(a).

By taking the limit when A | 0, we see that the second part follows. O

The following corollaries are easily derived,

Corollary 8. Let a € R and ¢,v¢ € L*(IR) where (¢,v¢) = 0, 8], || > 0. Then

(16) Cov[3a(6), 8a(o + )] = P|¢|2(a)(ﬁ ~ Ploiu(a))

Corollary 9. For 0 <t <s,

(17) T30 (B0, 80(8:)] = pu(0) (e = ()

Proof. Choose ¢ = 1[ ) and ¢ = 1p, , in (15). O

For Donsker’s §-function at zero of Brownian motion, we get the following simple expression for the

generalized covariance,

(18) Covlin(Bo). o8] = = (== )

whenever 0 < t < s.

2.2. In the nonstandard space. Let € & 0 be a fixed positive infinitesimal. We use p, (recall (13)

) as a lifting of the Dirac point measure, that is,

(19) So(r) = ! exp (-i).

The Dirac point measure at finite a € *R is given by d4(r) = o(r — a). Note that for any ¢ € S(R),

one can verify directly that

(20) &(a) ~ [ﬁkga(x)g(x)dx.
(See also [17].)

Lemma 10. Let X and Y be independent centered Gaussian random variables with respective finite

variance o1 and o2, both bounded away from 0, and let a,b € *R be finite, then we have:

(a —b)?eo; + azo'z)

20’10’2

(21) E[6a(X)ép(X +VY)] ~ ﬁ exp (-

Proof. We apply Theorem 2 with ¢ = d,, 0 =26,, pi(z)= 7 L exp(—z—xz) and pa(y) =

2mo, o1

—\/;—02 exp (— iyz) . Then

E[5, (X)8 (X + V)] ~ Jexp(—gp-a) exp(— 5~y — )*)dedy,

1 _ _
g o Y

and the result follows by noting that d,(x)ds(y) represents Dirac point measure at (a,b). O
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Remark 11. One can compute more accurately the above as

22 E[§,(X)0p (X +Y)] =
(22) [0a(X)06 (X +Y)] 2/ €2 + 2¢01 + €05 + 0109

1 ( (a—b)20'1+a2(6+0'2)—|—b26)
¢ 2(e? + 2e01 + €coa+ 0102) 7

Theorem 12. Let X and Y be independent centered Gaussian random variables with respective

finite variance o1 and o4, both bounded away from 0, and let a,b € *R be finite, then we have:

Cov[d4(X), (X + V)]

1 ( 1 ( (a —b)?ey —|—a20'2) 1 ( a? b2 ))
~ exp | — — exp| —— — ——— ) ] .
2wy /o1 \ /o2 b 20109 o1+ 09 b 201 2(o1+02)

When a & b, we have:

_ _ 1 a’ 1 1 a’
2 04(X),05(X +Y)| ~ e - T 9oy & 09) ’
(23)  Cov[8a(X), 8 (X +V)] 2F\/ﬁexp< 201) <\/02 Vo1 + 02 eXP( 2(01-1-02)))

Proof. Apply Theorem 2 with ¢ = d, and 6 = 1, we obtain:

L / (5a(x)exp(——)dx ~ P :
Vomoy Jeg 204 V2mo 201

z? 1 2

E[d.(X)] =
Similarly, we have

i 1 b?
Blo (X +Y)] ~ V(o toa) ¥ (‘m) '

Since COV[SG(X),S()(X + Y)] = E[SG(X)&,(X + Y)] — E[SG(X)] E[Sb(X + Y)], the result follows

from Lemma 10. O

Now we let B;(w) = > o<ret@r be the lifting of Brownian motion as given in the appendix.
Corollary 13. Let s,t € T, with 0 < °t < °s < 00, and a € "R be finite, then

(24) Cov[da(Bt),da(Bs)] & Q;—ﬁexp (-%) (% - %exp (-%)) .

Proof. We apply the previous theorem with o1 = ¢ and 03 = s — ¢. O

Corollary 14. Let X, Y be as in the Theorem. Let K € *N so that ji(A) & 1, where A = { | X+Y] <
K Y. Then we can find ¢ =~ 0 small enough in the definition of § so that
1

(25) Ea [SX (X + Y)] =Ex [SX-I-Y (X)] ~ \/ﬁ
and
(26) Ea\a [/ 6 (X))o, (X + Y)dr| ~ 0.

Note that the result is independent of X and depends only on the variance o5 of Y.
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Proof. Given an f € *S(R) and an internal Z : Q — *IR which is bounded a.e. by K in absolute
value, we can find for the definition of § a number € &~ 0 small enough so that Jor f(r)o.(Z2)dr ~ f(Z)
a.e. Now applying this with Z = X +Y and f(r) = 6,(X +Y), one obtains the corresponding ¢ and
Al

The first equality results from the definition of § as follows:

_ 1 _
(27) Sx4v (X) = exp (--Yz) =dx (X +Y).
For the rest, we have:

LRE[ST(X)ST(X +Y)]dr=E [/ 5, (X)5, (X +y)dr]

~ EA[0x (X +Y)] + Eq\s [/R oy ();;Rar (X + Y)dr] ~ \/%—0'2 + Eq\a [/R 6-(X)6, (X +Y)dr|.

On the other hand, the Lemma gives

_ _ 1 r2 1
E{6, (X))o, (X +Y)|dr = e — ——— | dr= .
[]R [ ( ) ( + )] " [ﬁﬂg 21\ /0105 xp ( 20’1) " 2Ty

O

If one uses the Loeb measure of ji, the above can be stated using finiteness and a Loeb measurable
set instead of the bound K and A.
One may think of E[SX (X + Y)] roughly as Ey_g [X/I/] for some v =~ (.

3. A DISCUSSION OF CORRELATION BETWEEN DONSKER’S §-FUNCTIONS

3.1. In the classical space. We concentrate in this section only on dy(B;) and introduce the notion

of A-correlation between &y (B;) and dp(B;) as follows:

Definition 15. Let § > 0. The A-correlation between 6q(By) and 6¢(By) is defined as
_ COV)\ [60(Bt), 60(35)]

(28) pA(t’ 5) O')\(t)O')\(S)
where
(29) o3 (t) = Cova[do(Br), do(Be)]

Remark 16. Note that since do(B:) € G_x for every A > 0, the A-variance ox(t)? of §o(B:) is
finite. Thus, px(t,s) is a well-defined number. As a matter of fact, it is the (classical) correlation

between the (L?)-processes e™ N 8o(By) and e~ §y(By).
The next theorem states the expression for the A-correlation:

Theorem 17. Lett £ s and t,s > 0. Then for any A >0

1 —e—%A 1—+/1—a(s,t)e=**
30 1 = . )
( ) PA( ,8) 1—a(8,t)6_4>\ 1— /1_6_4)\
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where a(s,t) = (trs)”

ts

Proof. Observe that

A
73t) = 57 (S—=m - )
By rearranging in the definition of A-correlation,
eA\/g\/ezx —e—2A _ \/tse”‘ _ (t A 5)26—2>\\/62>\ —e—2A
6>‘\/t862>‘ —(tAs)2e?r — \/t862>‘ — (t A s)Ze=22/e2X — 22

The theorem then follows by simple factorizations. O

pa(t,s) =

We study the A-correlation as a function of A,

Theorem 18. The mapping A — px(t, s) is a continuous and monotonically increasing function on
(0, 00) with

(t A s)?
ts

(31) liilolp)\(t, s) =0, )1\11‘10133 oty s) =

Proof. From the expression of py (¢, s) in Theorem 17 we see that it is monotonically increasing and
continuous as a function of A. Moreover, since ¢ (¢) tends to infinity when A goes to zero and the
A-covariance converges to the generalized covariance, we get limy o pa(t,5) = 0. The second limit

follows by an application of L’Hospital’s rule. O

In analogy with the definition of generalized covariance above, we could introduce the generalized
correlation by taking the limit of py(¢,s) as A | 0. But, as the theorem says, this number will be 0.

An alternative could be to define the generalized correlation as
(32) p(t,s) = sup pr(t, s)
A>0

Theorem 18 then immediately gives p = t/s when 0 < t < s. Compare this result with the correlation
between Brownian motion at times 0 < ¢ < s known to be \/t/s. Note that we could equivalently

have used sup, . instead of limy o in the definition of the generalized covariance.

3.2. In the nonstandard space. Now we define in the nonstandard space a counterpart to the
correlation introduced in the last subsection and consider its meaning.
Let s,t € T, with &y as in §2.2, then the correlation between dy(B;) and do(B;) is given by

(33) R[do(B:),d0(Bs)] = Cov[do(B:),do(Bs)]

V/Cov[60(Be), o (B)] Cov[d(B,), 60(B,)]
Using equation (22) and the following for » = s,¢
o 1 o
(34) EB[65(B,)] = -—===—=1 E[00(B,)] =

B 2my/e(2r + e)’
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the above correlation can be computed as:
(35)

2/ e\/2s + /2t + €

7
\/((s—t)t—l— (8—|—t)€—|—€2)<8—|—€— \/2564—62}(15—1—6— \/2t€—|—€2)(\/(5—|—6)(t—|—6) + \/(5—1—6)(t—|—6) —tz)
If 0 < °t < °s, the correlation will be infinitesimal, because of ¢ ~ 0. (Compare with the first
equation in (31).) However when R[SO(Bt), SO(BS)] is scaled by /€, one obtains:
1 o V2
(36) — R[do(B),d0(Bs)] =~ ,
\/(s—t)\/g(Qs—t—i—Q\/s(s—t)i

NG

and this is one candidate for the definition of the correlation between SO(Bt) and SO(BS).
Another possibility is suggested by the second equation in (31). We let « be a positive infinitesimal

and scale the Dirac point measure as
(37) bo(x) = Veady(Vear),
then by replacing € by 1/« in (35) one computes that

(38) R[do(Bt), d0(Bs)] ~

W | =~

Note that & is in fact a ”flattened” Dirac point measure, a (Gaussian density with infinite variance

1/

4. APPENDIX

Here is a brief introduction to the relevant results from nonstandard analysis. See [1], [10] and
[17] for more details.

In the practice of nonstandard analysis, all ordinary mathematical objects X, such as sets and
functions, are simultaneously extended to new objects *X, so that X and *X satisfy the same
formal properties which are definable in the first order language of set-theory. When X is infinite
the extension *X is proper. We call a subset Y C *X internal if Y is defined from *X using
first order set-theoretic language. The construction is such that internal sets have the following
important compactness property: For any countable family F of internal subsets of some fixed * X,
if any finite subfamily of F has nonempty intersection, then in fact NF # . Internality is seldom
explicitly mentioned, unless for emphasis; it is left to the reader to judge from the context.

The existence of such extensions can be proved by methods from logic, such as the ultraproduct
construction or Godel’s compactness theorem.

The following is a list of key notions and results that we need.

If Y is an internal set with an internal bijection between Y and {1,... H} for some H € *N,
then Y is called hyperfinite. Let r,s € *R. If for each n € N, |r — 5| < 1/n, then we say that r, s are

wnfinitely close, and write r &~ s. When r &~ 0, we say that r is an nfinitesimal. If for some n € N,



12

|r| < n, we say that r is finite and write r < co. For each finite r € *R_ it follows from separation
that there is a unique s € R such that r &~ s. We denote s = °r and call s the standard part of r.

Let N € *N\N, i.e. N is infinite but hyperfinite. Let At := 1/N. Let
T:={-N,...,—AL,0,At,...,N} = {nAt|n € *N,|n| < N?}.

Then T is a hyperfinite internal set with internal cardinality |T| = N2+1. T is called the hyperfinite
time line - a discrete analog of the real line (—o00,00). Let Q := *RT (so it is = *}RN2+1), equipped
with an internal probability measure i given by N(0, At)T. (N? + 1 many independent copies.)
Write elements of  as w = (wi)teT. So for an internal measurable function f : Q — *R, we have

E[f] = (QWAt)_N_Zﬂ/ﬁf(w)exp (—ﬁwa) dw.

teT

In ©Q, w; models the Brownian increment of the sample path w at time ¢, so one can intuitively
think of w; as dB;. The product Gaussian measure on € is not o-additive. But °j is an ordinary
finitely additive probability measure. (Note that °fa(A) = r if r € R and fg(A) ~ r.) It follows
from the above-mentioned compactness and Carathéodory extension that °pu extends uniquely to a
o-additive measure denoted by pr, the Loeb measure of p, after its inventor. Then gy defines the
Wiener measure on  and Bo;(w) := °B;(w) is the Brownian motion, where B;(w) := ZO<r<t Wy
This construction of Brownian motion is due to Anderson [2] (the modification here is due to Cutland
[4]), with its motivation from Wiener’s classical paper [19].

There is a corresponding integration theory. A function f : Q — *R is called S-integrable (or
SLY) if (i) E[|f|] < o0; (i) i(A) = 0 = EA[|f|] ~ 0. Furthermore, f is called SLP if P is SL'.
Each jiz-integrable ¢ : @ — R has an SL!-lifting f : @ — R in the sense that ¢ = °f a.e. (jr).
Conversely, when f: Q — *Ris SL!, letting g := °f, then ¢ is ji-integrable. From this, we obtain
embeddings L? (W) < L?(Q) C *L*(Q).

See [4],[5], [6], [7] and [11] for more background and applications of L?(2). See Perkins [14] for

an earlier nonstandard approach to local time.

5. EPILOGUE

We hope that in a small way, this North-South / Nonstandard-Standard collaboration reflects

and highlights the need for multi-cultural approaches to problems in the world.
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