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Also it has many powerful tools readily available, whereas a lot of tools in the nonstandard approach

need to be produced from scratch.

The nonstandard approach to generalized functionals is a natural development from the non-

standard model used in studying L2-Wiener functionals, since such spaces support many functions

beyond those representing just L2-Wiener functionals. For instance, for certain pairs of nonstandard

functions, although they have no L2 meaning, they nevertheless have �nite nonstandard inner prod-

uct, and one expects some interpretations in distribution sense. It should be mentioned that even

in the early days, Robinson [17] already used nonstandard methods to study Schwartz distributions

and so this is just a continuation in an in�nite dimensional setting.

This paper is organized as follows: basic classical and nonstandard ingredients needed for this

paper are dealt with in x0.1 and x0.2; in x1 we prove in the nonstandard space that the covariance for
certain composite generalized functionals is �nite; in x2 we prove that the covariance between certain

Donsker's Æ-functions is �nite, this is done for both the classical and nonstandard space; in x3, we
calculate and give meaning to the correlation between Donsker's Æ-functions for Brownian motion

at two di�erent time instants, again this is done in both the classical and nonstandard space; �nally

x4 is an appendix on nonstandard background needed for L2-Wiener functionals, with references

included to motivate the use of the nonstandard space for white noise.

It is hoped that both standard and nonstandard practitioners will �nd something useful in this

paper. We take [8] and [9] as standard reference on classical white noise analysis, and [1] for

background in nonstandard analysis.

0.1. Classical prerequisites. We �rst state the necessary notation and terminology from classical

white noise analysis: Let (
;F ; P ) be a complete probability space and let T denote the interval

[0; t0] or R+. Introduce the Hilbert space H = L2(T;B; �) where B is the Borel �-algebra. We have

used the notation � for the Lebesgue measure on (T;B). Following Nualart [13], fW (h); h 2 Hg is

a centered Gaussian family of random variables with variance jhj2L2(T ). This family is characterized

by the random variables W (A) = W (1A) which takes independent values on disjoint subsets of T .

Note that W (h) =
R
T
hdW is the Wiener integral. In the sequel we shall use the notation L2(
) for

the space L2(
;G; P ) where G is the �-algebra generated by fW (A); A 2 Bg. Elements of L2(
) can

be expanded into a series of multiple Wiener integrals (the so-called chaos expansion of the random

variable);

Theorem 1. Let f 2 L2(
). Then

f =
1X
n=0

In(fn)(1)
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where In is the n-fold Wiener integral and fn 2 L2(Tn) is symmetric. The functions fn are uniquely

de�ned by f . Moreover,

kfk2 =
1X
n=0

n!jfnj2L2(Tn) <1(2)

where k � k denotes the usual norm in L2(
).

For a proof of this result, see e.g. [13].

We introduce the Number operator N : If f 2 L2(
) has the chaos expansion f =
P1
n=0 In(fn),

the application of N on f is de�ned as

Nf =
1X
n=0

nIn(fn)(3)

The domain of this operator, denoted Dom(N ), is easily seen to be the subspace of L2(
) for whichP1
n=0 n!njfnj2 <1.

Pottho� and Timpel [16] study the following spaces of smooth and generalized random variables:

For � � 0, let G� be the space of f 2 L2(
) where

kfk� := ke�Nfk(4)

The space of smooth random variables (G) is the projective limit of G�. The space of generalized

random variables (G)� is the topological dual to this space. Note that (G)� is the projective limit of

G��, where G�� is the dual of G�. In fact, this dual space is a Hilbert space with norm k � k�� =

ke��N � k.

0.2. Nonstandard prerequisites. Next we �x some notation and terminology from nonstandard

analysis. More background material needed for L2-Wiener functionals can be found in the appendix

x4. As in the appendix, we let N 2 �
N n N; �t = 1=N and T = fH�t j H 2 [�N2; N2] \ �

Ng;
the hyper�nite time line. We de�ne �
 = �

R
T; with an internal probability measure �� on �
 given

by T independent copies of Gaussian measures, each with distribution N (0;�t): Elements in �
 are

written as ! = (!t)t2T : So for an internal measurable function f : �
! �
R; we have

E
�
f
�
= (2��t)�

N2+1

2

Z
�


f(!) exp
�
� 1

2�t

X
t2T

!2t

�
d!:(5)

We use S(Rn) to denote the Schwartz space of rapidly decreasing functions on Rn and S0(Rn)
to denote its dual, the space of tempered distributions. (See [18].) It can be proved that for every

� 2 S0(Rn); there is an internal function F� : �
R
n ! �

R (in fact we can even take F� 2 �S(Rn))
such that

�(�) = Æ
Z

�Rn

F�(x)
��(x)dx; for all � 2 S(Rn):(6)
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For convenience, we simply identify such F� with �; and omit the * , then the above is written as

�(�) = Æ
Z

�Rn

�(x)�(x)dx:(7)

For example, in Theorem 2 in the next section, the * is omitted from �i without causing any confusion

since it is clear that we are referring to an internal function with domain �
R:

We refer to [12] for more details on the use of �
 as a model for white noise. (In [12], only

comparison with the Hida space is given, but the general idea is the same.) The only relevant part

here is the following: given any generalized functional �; there is a function Z : �
! �
R representing

� in the sense that for every test functional � and any SL2-lifting � of �; the pairing is given by

�(�) = ÆE[Z �]:

1. Finiteness of the covariance

We �rst consider generalized functionals represented by �(X) where � 2 S0(Rn) and X is a

random variable. Note that Donsker's Æ-function is a special case of these. (See also [8] Example 3.4

for this kind of generalized functionals.) We prove a simple general result showing that the covariance

between �(X) and �(X + Y ) is �nite whenever X;Y are independent with their distributions given

by rapidly decreasing densities.

Theorem 2. Let �; � 2 S0(R): Let X;Y : �
 ! �
R be independent random variables, whose distri-

butions are given by densities �1; �2 such that �1(x)�2(y � x) 2 S(R2): (Note that this is satis�ed

when �1; �2 2 S(R): ) Then both E
�
�(X)�(X + Y )

�
and Cov

�
�(X); �(X + Y )

�
are �nite.

Proof. By independence and densities, we have

E
�
�(X)�(X + Y )

�
=

Z
�R2

�(x)�(x + y)�1(x)�2(y)dxdy

=

Z
�R2

�(x)�(y)�1(x)�2(y � x)dxdy;

which is �nite under the assumptions. Taking � � 1; we get �niteness of E
�
�(X)

�
: Taking � � 1;

we get �niteness of E
�
�(X + Y )

�
: So

Cov
�
�(X); �(X + Y )

�
= E

�
�(X)�(X + Y )

�� E
�
�(X)

�
E
�
�(X + Y )

�
is also �nite.

The following example shows the limitation on further generalization of the above result.

Example 3. Let �(x) = exp
�
x2

2

�
(1+jxj)2: Then for any � 2 S0(R) and X;Y � N (0; 1); E

�
�(X)�(X + Y )

�
is in�nite. To prove this, we simply check that

R
�R
�(x + y) exp

��y2

2

�
dy is in�nite for any x 6� 0:

Of course here � =2 S0(R):
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Note that in general the conclusion in Theorem 2 relies on the particular representation of the

generalized functional. It is possible that � : �
 ! �
R and �(X) both represent the same standard

generalized functional but while E[�(X)�(X + Y )] is �nite, E[� �(X + Y )] is in�nite. This seems to

be related to choice of the regularization procedure in the classical setting.

2. The covariance between Donsker's Æ-functions

2.1. In classical white noise space. Consider Donsker's Æ-function

Æa
�
�
�
:= Æa

�
I1(�)

�
(8)

for a 2 R constant and � 2 L2(R). From [8] we know that the chaos expansion of Æa(�) is given by

Æa(�) =
�1=4p
2�j�j2 e

� a2

4j�j2

1X
n=0

�n
�

ap
2j�j2

�
p
n!j�j2 In

�
�
n

�
(9)

where �n is the Hermite function of order n (see e.g. [8]). In [16] it is shown that Æa(�) 2 G�� for

all � > 0. Note that Æa(Bt) =2 G0 = L2(�). However, by the de�nition of the G�-spaces, we have

exp(��N )Æa(�) 2 L2(�) which is the basic property we shall use to discuss covariance for Donsker's

Æ-function. If we choose � = 1[0;t) we obtain Donsker's Æ-function for Brownian motion, which we

shall denote Æa(Bt).

For our purposes it will be convenient to use an integral representation of Æa(�): From [8] we can

write

Æa(�) =
1

2�

Z
R

ExpI1(�ip�) exp
�
ipa � 1

2
p2j�j2� dp(10)

where ExpI1( ) is the stochastic exponential de�ned as ExpI1( ) =
P1

n=0
1
n!In( 


n). The integral

makes sense as a Bochner integral on R in G�� for every � > 0.

In order to de�ne covariance between Donsker's Æ-functions, we need to regularize the generalized

random variables Æa(�). We shall use the canonical regularization suggested by the de�nition of

G��: For each � > 0, we consider exp(��N )Æa(�) which is known to be in L2(�). Note that such a

regularization is not necessary in a nonstandard framework, as will be seen from the calculations in

the next subsection.

We introduce the �-covariance for Æa(�):

De�nition 4. For � > 0 and �;  2 L2(R), let the �-covariance between Æa(�) and Æb( ) be de�ned

as

Cov�
�
Æa(�); Æb( )

�
= Cov

�
e��NÆa(�); e��NÆb( )

�
(11)

for t; s > 0.

The generalized covariance between Æa(�) and Æb( ) can be de�ned as follows,



6

De�nition 5. For � > 0 and �;  2 L2(R). The generalized covariance between Æa(�) and Æb( ) is

de�ned as

Cov
�
Æa(�); Æb( )

�
:= lim

�#0
Cov�

�
Æa(�); Æb( )

�
(12)

whenever this limit exists.

Remark 6. The �-covariance is the (classical) covariance between the two (L2)-random variables

e��NÆa(�) and e��N Æb( ). Since Æa(�) 2 G�� for every � > 0, this covariance is �nite and thus

shows the well-de�nedness of the �-covariance for Donsker's Æ-function. It is also straightforward to

see that the �-covariance is monotonically decreasing for increasing �. The generalized covariance, on

the other hand, may not exist which is easily seen by putting e. g. � =  : E
�
(exp(��N )Æa(�))

2
�!

1 when � # 0. This singularity is not removed by subtracting the square of the expectation of

exp(��N )Æa(�), since this expectation is �nite for � = 0.

Before we state our main results we introduce the notation

p�2(x) =
1p
2��2

exp

�
� x2

2�2

�
(13)

for the density function for a centered Gaussian random variable with variance �2. We have the

following theorem:

Theorem 7. Let �;  2 L2(R) where (�;  ) = 0; j�j; j j> 0 and a; b 2 R. Then, for arbitrary � > 0

Cov�
�
Æa(�); Æb(�+  )

�
=

1

2�

exp(�1
2f�(a; b))p

j�j2j j2 + (1� e�4�)j�j4 � pj�j2(a)pj�j2+j j2 (b)(14)

where

f�(a; b) =
b2

j�j2 + j j2 +
j�j2 + j j2

j�j2j j2 + (1 � e�4�)j�j4
�
a� be�2�

j�j2
j�j2 + j j2

�2
Moreover, the generalized covariance is

Cov
�
Æa(�); Æb(�+  )

�
= pj�j2(a)

�
pj j2(a � b)� pj�j2+j j2(b)

�
(15)

Proof. Note �rst that (�; �+  ) = j�j2 and j�+  j2 = j�j2 + j j2. Moreover,

exp(��N )Æa(�) =
1

2�

Z
R

exp(��N )ExpI1(�ip�) exp
�
ipa � 1

2
p2j�j2� dp

=
1

2�

Z
R

ExpI1(�ipe���) exp(ipa � 1

2
p2j�j2) dp

We now calculate E
�
exp(��N )Æa(�) exp(��N )Æb(�+  )

�
:

E
�
exp(��N )Æa(�) exp(��N )Æb(�+  )

�
=

1

4�2

Z
R2

E
�
ExpI1(�ipe���)ExpI1(�iqe��(�+  ))

�
exp
�
ipa� 1

2
p2j�j2� exp�iqb� 1

2
q2j�+  j2� dp dq

=
1

4�2

Z
R2

exp(�pqe�2�j�j2) exp(ipa� 1

2
p2j�j2) exp(iqb � 1

2
q2j�+  j2) dp dq

=
1

2�

exp(�1
2f�(a; b))pj�j2j j2 + (1� e�4�)j�j4
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and hence the �rst part of the theorem is proved since

E
�
exp(��N )Æa(�)

�
= pj�j2(a):

By taking the limit when � # 0, we see that the second part follows.

The following corollaries are easily derived,

Corollary 8. Let a 2 R and �;  2 L2(R) where (�;  ) = 0; j�j; j j> 0. Then

Cov
�
Æa(�); Æa(�+  )

�
= pj�j2(a)

� 1p
2�j j2 � pj�j2+j j2(a)

�
(16)

Corollary 9. For 0 < t < s,

Cov
�
Æa(Bt); Æa(Bs)

�
= pt(a)

� 1p
2�(t � s)

� ps(a)
�

(17)

Proof. Choose � = 1[0;t) and  = 1[t;s) in (15).

For Donsker's Æ-function at zero of Brownian motion, we get the following simple expression for the

generalized covariance,

Cov
�
Æ0(Bt); Æ0(Bs)

�
=

1

2�
p
t

� 1p
t� s

� 1p
s

�
(18)

whenever 0 < t < s.

2.2. In the nonstandard space. Let � � 0 be a �xed positive in�nitesimal. We use p� (recall (13)

) as a lifting of the Dirac point measure, that is,

�Æ0(r) =
1p
2��

exp

�
�r

2

2�

�
:(19)

The Dirac point measure at �nite a 2 �
R is given by �Æa(r) = �Æ0(r� a): Note that for any � 2 S(R);

one can verify directly that

�(a) �
Z

�R

�Æa(x)�(x)dx:(20)

(See also [17].)

Lemma 10. Let X and Y be independent centered Gaussian random variables with respective �nite

variance �1 and �2; both bounded away from 0; and let a; b 2 �
R be �nite, then we have:

E
�
�Æa(X)�Æb(X + Y )

� � 1

2�
p
�1�2

exp

�
� (a � b)2�1 + a2�2

2�1�2

�
:(21)

Proof. We apply Theorem 2 with � = �Æa; � = �Æb; �1(x) =
1p
2��1

exp
�� 1

2�1
x2
�

and �2(y) =

1p
2��2

exp
�� 1

2�2
y2
�
: Then

E
�
�Æa(X)�Æb(X + Y )

� � 1

2�
p
�1�2

Z
�R2

�Æa(x)�Æb(y) exp
�� 1

2�1
x2
�
exp
�� 1

2�2
(y � x)2

�
dxdy;

and the result follows by noting that �Æa(x)�Æb(y) represents Dirac point measure at (a; b):
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Remark 11. One can compute more accurately the above as

E[Æa(X)Æb(X + Y )] =
1

2�
p
�2 + 2��1 + ��2 + �1�2

exp
�
� (a � b)2�1 + a2(� + �2) + b2�

2(�2 + 2��1 + ��2 + �1�2)

�
:(22)

Theorem 12. Let X and Y be independent centered Gaussian random variables with respective

�nite variance �1 and �2; both bounded away from 0; and let a; b 2 �
R be �nite, then we have:

Cov
�
�Æa(X); �Æb(X + Y )

�
� 1

2�
p
�1

�
1p
�2

exp

�
� (a � b)2�1 + a2�2

2�1�2

�
� 1p

�1 + �2
exp

�
� a2

2�1
� b2

2(�1 + �2)

��
:

When a � b; we have:

Cov
�
�Æa(X); �Æb(X + Y )

� � 1

2�
p
�1

exp

�
� a2

2�1

��
1p
�2

� 1p
�1 + �2

exp

�
� a2

2(�1 + �2)

��
:(23)

Proof. Apply Theorem 2 with � = �Æa and � � 1; we obtain:

E
�
�Æa(X)

�
=

1p
2��1

Z
�R

Æa(x) exp
�� x2

2�1

�
dx � 1p

2��1
exp
�� a2

2�1

�
:

Similarly, we have

E
�
�Æb(X + Y )

� � 1p
2�(�1 + �2)

exp

�
� b2

2(�1 + �2)

�
:

Since Cov
�
�Æa(X); �Æb(X + Y )

�
= E

�
�Æa(X)�Æb(X + Y )

� � E
�
�Æa(X)

�
E
�
�Æb(X + Y )

�
; the result follows

from Lemma 10.

Now we let �Bt(!) =
P

0�r<t !r be the lifting of Brownian motion as given in the appendix.

Corollary 13. Let s; t 2 T; with 0 < Æt < Æs <1; and a 2 �
R be �nite, then

Cov
�
�Æa(Bt); �Æa(Bs)

� � 1

2�
p
t
exp

�
�a

2

2t

��
1p
s� t

� 1p
s
exp

�
�a

2

2s

��
:(24)

Proof. We apply the previous theorem with �1 = t and �2 = s � t:

Corollary 14. Let X;Y be as in the Theorem. Let K 2 �
N so that ��(�) � 1; where � = f jX+Y j �

K g: Then we can �nd � � 0 small enough in the de�nition of �Æ so that

E�

�
�ÆX (X + Y )

�
= E�

�
�ÆX+Y (X)

� � 1p
2��2

(25)

and

E
n�

�Z
�R

�Ær(X)�Ær(X + Y )dr

�
� 0:(26)

Note that the result is independent of X and depends only on the variance �2 of Y:



9

Proof. Given an f 2 �S(R) and an internal Z : �
 ! �
R which is bounded a.e. by K in absolute

value, we can �nd for the de�nition of �Æ a number � � 0 small enough so that
R
�R
f(r)�Ær (Z)dr � f(Z)

a.e. Now applying this with Z = X +Y and f(r) = �Ær(X +Y ); one obtains the corresponding � and

�:

The �rst equality results from the de�nition of �Æ as follows:

�ÆX+Y (X) =
1p
2��

exp

�
� 1

2�
Y 2

�
= �ÆX (X + Y ):(27)

For the rest, we have:Z
�R

E
�
�Ær(X)�Ær (X + Y )

�
dr = E

�Z
�R

�Ær(X)�Ær (X + Y )dr

�

� E�

�
�ÆX (X + Y )

�
+ E�
n�

�Z
�R

�Ær(X)�Ær(X + Y )dr

�
� 1p

2��2
+ E�
n�

�Z
�R

�Ær(X)�Ær (X + Y )dr

�
:

On the other hand, the Lemma givesZ
�R

E
�
�Ær(X)�Ær (X + Y )

�
dr =

Z
�R

1

2�
p
�1�2

exp

�
� r2

2�1

�
dr =

1p
2��2

:

If one uses the Loeb measure of ��; the above can be stated using �niteness and a Loeb measurable

set instead of the bound K and �:

One may think of E
�
�ÆX (X + Y )

�
roughly as EY=0

�
X=�

�
for some � � 0:

3. A discussion of correlation between Donsker's Æ-functions

3.1. In the classical space. We concentrate in this section only on Æ0(Bt) and introduce the notion

of �-correlation between Æ0(Bt) and Æ0(Bs) as follows:

De�nition 15. Let Æ > 0. The �-correlation between Æ0(Bt) and Æ0(Bs) is de�ned as

��(t; s) =
Cov�

�
Æ0(Bt); Æ0(Bs)

�
��(t)��(s)

(28)

where

�2�(t) = Cov�
�
Æ0(Bt); Æ0(Bt)

�
(29)

Remark 16. Note that since Æ0(Bt) 2 G�� for every � > 0, the �-variance ��(t)
2 of Æ0(Bt) is

�nite. Thus, ��(t; s) is a well-de�ned number. As a matter of fact, it is the (classical) correlation

between the (L2)-processes e��NÆ0(Bt) and e��N Æ0(Bs).

The next theorem states the expression for the �-correlation:

Theorem 17. Let t 6= s and t; s > 0. Then for any � > 0

��(t; s) =

s
1� e�4�

1� a(s; t)e�4�
� 1�

p
1� a(s; t)e�4�

1�p1� e�4�
(30)
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where a(s; t) = (t^s)2
ts .

Proof. Observe that

�2�(t) =
1

2�t

� e�p
e2� � e�2�

� 1
�

By rearranging in the de�nition of �-correlation,

��(t; s) =
e�
p
ts
p
e2� � e�2� �ptse2� � (t ^ s)2e�2�pe2� � e�2�

e�
p
tse2� � (t ^ s)2e�2� �ptse2� � (t ^ s)2e�2�pe2� � e�2�

The theorem then follows by simple factorizations.

We study the �-correlation as a function of �,

Theorem 18. The mapping �! ��(t; s) is a continuous and monotonically increasing function on

(0;1) with

lim
�#0

��(t; s) = 0; lim
�"1

��(t; s) =
(t ^ s)2
ts

(31)

Proof. From the expression of ��(t; s) in Theorem 17 we see that it is monotonically increasing and

continuous as a function of �. Moreover, since ��(t) tends to in�nity when � goes to zero and the

�-covariance converges to the generalized covariance, we get lim�#0 ��(t; s) = 0. The second limit

follows by an application of L'Hôspital's rule.

In analogy with the de�nition of generalized covariance above, we could introduce the generalized

correlation by taking the limit of ��(t; s) as � # 0. But, as the theorem says, this number will be 0.

An alternative could be to de�ne the generalized correlation as

�(t; s) = sup
�>0

��(t; s)(32)

Theorem 18 then immediately gives � = t=s when 0 < t < s. Compare this result with the correlation

between Brownian motion at times 0 < t < s known to be
p
t=s. Note that we could equivalently

have used sup�>0 instead of lim�#0 in the de�nition of the generalized covariance.

3.2. In the nonstandard space. Now we de�ne in the nonstandard space a counterpart to the

correlation introduced in the last subsection and consider its meaning.

Let s; t 2 T; with �Æ0 as in x2.2, then the correlation between �Æ0( �Bt) and �Æ0( �Bs) is given by

R
�
�Æ0( �Bt); �Æ0( �Bs)

�
:=

Cov
�
�Æ0( �Bt); �Æ0( �Bs)

�
q
Cov

�
�Æ0( �Bt); �Æ0( �Bt)

�
Cov

�
�Æ0( �Bs); �Æ0( �Bs)

� :(33)

Using equation (22) and the following for r = s; t

E
�
�Æ20( �Br)

�
=

1

2�
p
�(2r+ �)

; E
�
�Æ0( �Br)

�
=

1p
2�(r + �)

;(34)
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the above correlation can be computed as:

t2
p
�
p
2s + �

p
2t+ �q�

(s � t)t + (s + t)�+ �2
��
s+ ��p

2s�+ �2
��
t + ��p

2t�+ �2
��p

(s + �)(t+ �) +
p
(s + �)(t+ �) � t2

�2
(35)

If 0 < Æt < Æs; the correlation will be in�nitesimal, because of � � 0: (Compare with the �rst

equation in (31).) However when R
�
�Æ0( �Bt); �Æ0( �Bs)

�
is scaled by

p
�; one obtains:

1p
�
R
�
�Æ0( �Bt); �Æ0( �Bs)

� � t
p
2q

(s � t)
p
s t
�
2 s� t+ 2

p
s(s � t)

� ;(36)

and this is one candidate for the de�nition of the correlation between �Æ0( �Bt) and �Æ0( �Bs):

Another possibility is suggested by the second equation in (31). We let � be a positive in�nitesimal

and scale the Dirac point measure as

Æ̂0(x) :=
p
�� �Æ0(

p
��x);(37)

then by replacing � by 1=� in (35) one computes that

R
�
Æ̂0( �Bt); Æ̂0( �Bs)

� � t

s
:(38)

Note that Æ̂ is in fact a "
attened" Dirac point measure, a Gaussian density with in�nite variance

1=�:

4. Appendix

Here is a brief introduction to the relevant results from nonstandard analysis. See [1], [10] and

[17] for more details.

In the practice of nonstandard analysis, all ordinary mathematical objects X; such as sets and

functions, are simultaneously extended to new objects �X; so that X and �X satisfy the same

formal properties which are de�nable in the �rst order language of set-theory. When X is in�nite

the extension �X is proper. We call a subset Y � �X internal if Y is de�ned from �X using

�rst order set-theoretic language. The construction is such that internal sets have the following

important compactness property: For any countable family F of internal subsets of some �xed �X;

if any �nite subfamily of F has nonempty intersection, then in fact \F 6= ;: Internality is seldom

explicitly mentioned, unless for emphasis; it is left to the reader to judge from the context.

The existence of such extensions can be proved by methods from logic, such as the ultraproduct

construction or G�odel's compactness theorem.

The following is a list of key notions and results that we need.

If Y is an internal set with an internal bijection between Y and f1; : : : ;Hg for some H 2 �
N;

then Y is called hyper�nite. Let r; s 2 �
R: If for each n 2 N; jr� sj < 1=n; then we say that r; s are

in�nitely close, and write r � s: When r � 0; we say that r is an in�nitesimal. If for some n 2 N;
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jrj < n; we say that r is �nite and write r < 1: For each �nite r 2 �
R; it follows from separation

that there is a unique s 2 R such that r � s: We denote s = Ær and call s the standard part of r:

Let N 2 �
N nN; i.e. N is in�nite but hyper�nite. Let �t := 1=N: Let

T := f�N; : : : ;��t; 0;�t; : : :; Ng = fn�t jn 2 �
N; jnj � N2g:

Then T is a hyper�nite internal set with internal cardinality jTj = N2+1: T is called the hyper�nite

time line - a discrete analog of the real line (�1;1): Let �
 := �
R
T (so it is �= �

R
N2+1), equipped

with an internal probability measure �� given by N (0;�t)T: (N2 + 1 many independent copies.)

Write elements of �
 as ! = (!t)t2T: So for an internal measurable function f : �
! �
R; we have

E
�
f
�
= (2��t)�

N2+1

2

Z
�

f(!) exp

 
� 1

2�t

X
t2T

!2t

!
d!:

In �
; !t models the Brownian increment of the sample path ! at time t; so one can intuitively

think of !t as dBt: The product Gaussian measure on �
 is not �-additive. But Æ�� is an ordinary

�nitely additive probability measure. (Note that Æ��(A) = r if r 2 R and ��(A) � r:) It follows

from the above-mentioned compactness and Carath�eodory extension that Æ�� extends uniquely to a

�-additive measure denoted by ��L; the Loeb measure of ��; after its inventor. Then ��L de�nes the

Wiener measure on �
 and B Æt(!) := Æ �Bt(!) is the Brownian motion, where �Bt(!) :=
P

0�r<t !r:

This construction of Brownian motion is due to Anderson [2] (the modi�cation here is due to Cutland

[4]), with its motivation from Wiener's classical paper [19].

There is a corresponding integration theory. A function f : �
 ! �
R is called S-integrable (or

SL1) if (i) E
�jf j� < 1; (ii) ��(A) � 0) EA

�jf j� � 0: Furthermore, f is called SLp if fp is SL1:

Each ��L-integrable g : 
 ! R has an SL1-lifting f : 
 ! R in the sense that g = Æf a.e. (��L).

Conversely, when f : 
 ! �
R is SL1; letting g := Æf; then g is ��-integrable. From this, we obtain

embeddings L2(W ) ,! L2(
) � �L2(
):

See [4],[5], [6], [7] and [11] for more background and applications of L2(�
): See Perkins [14] for

an earlier nonstandard approach to local time.

5. Epilogue

We hope that in a small way, this North-South / Nonstandard-Standard collaboration re
ects

and highlights the need for multi-cultural approaches to problems in the world.
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