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Mixed Moments of Voiculescu’s Gaussian
Random Matrices

S. Thorbjørnsen
∗†

Abstract

It is showed that the convergence of mixed moments of independent, selfadjoint, Gaus-
sian random matrices, proved by Voiculescu, holds almost surely, and not only in the mean.
This is used to obtain asymptotic lower (respectively upper) bounds on the maximum (re-
spectively minimum) of the spectrum of S∗S, for Gaussian random matrices S with operator
entries; in particular those studied in [HT2]. Finally a new proof is presented of the result
by S. Wassermann, that free group factors can be embedded into ultra products of matrix
algebras.

Introduction

One of the main features of Voiculescu’s free probability theory, is the fact (proved in
[Vo1]), that the joint distribution of a semi-circular system (cf. Definition 1.2 below),
can be approximated by the joint distributions of corresponding systems of independent
large selfadjoint Gaussian random matrices. More precisely, let SGRM(n, 1

n
) denote the

class of selfadjoint Gaussian random n × n matrices studied by Voiculescu in [Vo1] (cf.
Definition 2.1 below), let E denote expectation, and let trn denote the normalized trace
on Mn(C ). Then for independent random matrices X1, X2, . . . , Xr from SGRM(n, 1

n
),

Voiculescu proved, that for any p in N and any i1, i2, . . . , ip in {1, 2, . . . , r},

E ◦ trn
[
Xi1Xi2 · · ·Xip

]
→ τ(xi1xi2 · · ·xip), as n→∞, (0.1)

where {x1, x2, . . . , xr} is a semi-circular family in a C∗-probability space (B, τ) (cf. Sec-
tion 1).

The result corresponding to (0.1) for a single selfadjoint Gaussian random matrix and
a single semi-circular element, was proved already in the 1950’s by Wigner (cf. [Wi1]-
[Wi3]). Since then, several people have strengthened Wigner’s result in various ways;
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cf. [OU] for a survey of this development. Most notably, it follows from work of Arnold
(cf. [Ar]), that the trace of the powers of a selfadjoint, Gaussian random matrix, converge
almost surely (and not only in the mean!), to the corresponding moments of a semi-circular
element (see also [HT1, Proposition 3.6]). In this paper we show (in Section 3) that this
result generalizes to families of independent selfadjoint Gaussian random matrices and
corresponding semi-circular systems. In other words, it is shown that the convergence
(0.1) proved by Voiculescu holds almost surely, and not only in the mean. The method
leading to this result is based on the derivation of the following explicit combinatorial
formula for the mixed moments of independent random matrices from SGRM(n, 1

n
):

E ◦ trn
[
Xi1Xi2 · · ·Xip

]
=

∑
γ∈Γ(i1,i2,... ,ip)

n−2σ(γ). (0.2)

Here Γ(i1, i2, . . . , ip) is the set of permutations γ in the symmetric group Sp, which satisfy
the conditions: γ(j) 6= j, γ(γ(j)) = j and ij = iγ(j), for all j in {1, 2, . . . , p}. Moreover,
σ(γ) = 1

2
(p + 1− d(γ)), where d(γ) is the quantity introduced by Voiculescu in [Vo1] (cf.

Definition 2.12 below). Combining (0.1) and (0.2) with the fact that σ(γ) ∈ N0 , for all γ
(cf. Proposition 2.15 below), it follows that

E ◦ trn
[
Xi1Xi2 · · ·Xip

]
= τ(xi1xi2 · · ·xip) + O

(
1
n2

)
, (0.3)

which means that the convergence in (0.1) is as fast as O( 1
n2 ). This fact (together with a

few further considerations) implies the almost sure convergence version of (0.1).

We remark that recently the almost sure convergence version of (0.1) has been proved
independently by F. Hiai and D. Petz, using different methods (cf. [HiP]). Their argument
is based on the study of random unitary matrices. We mention also, that Voiculescu
proved in [Vo1, Theorem 3.9], that the mixed moments of independent random unitary
matrices converge, in probability, to the corresponding mixed moments of a family of free
Haar unitaries.

The formula (0.2) is derived by virtue of the combinatorial techniques and results intro-
duced in [HT1] and [HT2]. We spend Section 2 adapting these techniques to the situation
considered in this paper. In particular we prove the following version of (0.2), for only
one Gaussian random n× n matrix:

E ◦ trn
[
X2p] =

∑
γ∈Γp

n−2σ(γ). (0.4)

Here Γp is the set of permutations in the symmetric group S2p, which are of order two,
and do not have any fixed points (cf. Definition 2.6). Formula (0.4) should (after re-
normalization) be considered as the “selfadjoint version” of the formula obtained in [HT2,
Corollary 1.12].

In Section 4, we generalize the almost sure convergence result obtained in Section 3 to
operator valued random matrices of the form:

Sn =
r∑
i=1

ai ⊗Qi(X1, . . . , Xt), (0.5)
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where Q1, . . . , Qr are polynomials in t non-commuting variables, X1, . . . , Xt are indepen-
dent elements of SGRM(n, 1

n
) and a1, . . . , ar are bounded operators between two Hilbert

spaces H and K. This is subsequently used to obtain lower (respectively upper) asymp-
totic bounds on the maximum (respectively minimum) of the spectrum sp(S∗nSn) of S∗nSn.
Specificly we get the following bounds:

lim inf
n→∞

(
max

{
sp(S∗nSn)

})
≥ max

{
sp(s∗s)

}
, almost surely,

and

lim sup
n→∞

(
min

{
sp(S∗nSn)

})
≤ min

{
sp(s∗s)

}
, almost surely,

where s is the “limit object” obtained by replacing in (0.5) the random matrices X1, . . . , Xt

by a semi-circular system x1, . . . , xt.

In [HT2], we studied operator valued random matrices Sn of the form:

Sn =
r∑
j=1

aj ⊗
(

1√
2
(X ′j + iX ′′j )

)
,

where X ′1, X
′′
1 , . . . , X ′r, X

′′
r are 2r independent elements of SGRM(n, 1

n
), and the operators

a1, . . . , ar satisfy the conditions:
r∑
j=1

a∗jaj = c111B(H) and
r∑
j=1

aja
∗
j ≤ 111B(K), (0.6)

for some constant c in ]1,∞[. Under the assumption that the C∗-algebra generated by
{a∗jak | 1 ≤ j, k ≤ r} is exact, we found in [HT2, Theorem 0.1] upper (respectively
lower) bounds on the maximum (respectively minimum) of sp(S∗nSn). In the case where
the inequality in (0.6) is replaced by an equality, we apply, in Section 5, the results of
Section 4 to show that the bounds found in [HT2] are also lower (respectively upper)
bounds for the maximum (respectively minimum) of sp(S∗nSn), proving altogether, that
in this situation we actually have convergence of the maximum and minimum of sp(S∗nSn).
Specificly we find that

lim
n→∞

max{sp(S∗nSn)} = (
√

c + 1)2, almost surely,

and

lim
n→∞

min{sp(S∗nSn)} = (
√

c− 1)2, almost surely.

Finally, in Section 6, we use the almost sure convergence result obtained in Section 3 to
give a new proof of the fact, proved by S. Wassermann, that for any m in {2, 3, 4, . . .} ∪
{∞}, the free group factor L(Fm) can be embedded into the ultra product of matrix
algebras.

In Section 1 we recapture a few fundamental definitions from free probability theory, that
are used throughout the paper.

Acknowledgment. It is a pleasure to express my deep gratitude to Professor U. Haagerup,
for suggesting to me the problems that are treated in this paper, and for many enlightening
discussions.
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1 Preliminaries on Free Probability

During the 1980’s, D.V. Voiculescu founded and developed the so called free probability
theory. Voiculescu’s basic idea was to translate fundamental concepts from “classical”
probability theory, (such as random variable, distribution, independence etc.) into corre-
sponding notions in an operator algebraic framework.

The basic object in free probability theory is a non-commutative probability space, which
is a pair (A, φ), where A is a unital complex algebra, and φ is a linear, complex valued
functional on A, taking the value 1 at the unit of A. In this paper, we shall consider
exclusively the so called C∗-probability spaces, which are non-commutative probability
spaces (A, φ), such that A is a unital C∗-algebra and φ is a state on A. If A is a W ∗-
algebra and φ is a normal state on A, we say that (A, φ) is a W ∗-probability space.
Given a non-commutative probability space (A, φ), the elements of A are called random
variables. The distribution of a random variable a in (A, φ) is the sequence of moments
φ(ap), p ∈ N , of a w.r.t. φ. The joint distribution of a family (aj)j∈J of random variables,
is the set {φ(aj1aj2 · · ·ajp) | p ∈ N , j1, j2, . . . , jp ∈ J} of all mixed moments w.r.t. φ
of the elements aj , j ∈ J . In free probability theory, the concept of independence from
“classical” probability theory is replaced by the notion of freeness:

1.1 Definition. Let (A, φ) be a non-commutative probability space, and let (Aj)j∈J be
a family of unital subalgebras of A. Then the algebras Aj, j ∈ J , are called free (w.r.t.
φ), if φ(a1a2 · · ·an) = 0, whenever n ∈ N , and we have random variables a1, a2, . . . , an,
satisfying that φ(a1) = φ(a2) = · · · = φ(an) = 0, and that a1 ∈ Aj1, a2 ∈ Aj2, . . . , an ∈
Ajn, where j1, j2, . . . , jr ∈ J , such that j1 6= j2, j2 6= j3, . . . , jn−1 6= jn. �

The elements of a family (aj)j∈J of random variables are called free, if the unital subalge-
bras they generate (one by one) are free. Random variables of particular interest are the
so called semi-circular and circular elements:

1.2 Definition. Let (A, φ) be a C∗-probability space.

(a) A random variable x in (A, φ) is called a semi-circular element, if x is selfadjoint, and
the moments of x w.r.t. φ, equal those of the (standard) semi-circle distribution, i.e., the
probability measure on R with density x 7→ 1

2π

√
4− x2 ·1[−2,2](x) w.r.t. Lebesgue measure.

(b) A semi-circular system in (A, φ), is a family (xj)j∈J of free random variables, such
that each xj is a semi-circular element.

(c) A circular system in (A, φ) is a family (yj)j∈J of random variables, satisfying that
the family {2−1/2(yj + y∗j ) | j ∈ J} ∪ {−i2−1/2(yj − y∗j ) | j ∈ J} is a semi-circular system
in (A, φ). �

The distribution of the semi-circular elements introduced in Definition 1.2(a) has mean
0 and variance 1. More generally, one may define semi-circular elements to be selfadjoint
random variables, whose distributions are semi-circle distributions with arbitrary mean
and variance. However, throughout this paper, the term semi-circular element refers to
the mean 0 – variance 1 case.
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For a thorough introduction to free probability theory, we refer to [VDN].

2 Combinatorics for the Moments of Selfadjoint, Gaus-

sian Random Matrices

In [Vo1], Voiculescu studied selfadjoint Gaussian random matrices. In the following defi-
nition, we recall the precise description of these matrices. Recall first, that for ξ in R and
σ2 in ]0,∞[, N(ξ, σ2) denotes the Gaussian distribution with mean ξ and variance σ2.

2.1 Definition. Let (Ω,F , P ) be a (classical) probability space, let n be a positive integer
and let A : Ω → Mn(C ) be a complex random n × n matrix defined on Ω. For k, l in
{1, 2, . . . , n}, let a(k, l) denote the entry at position (k, l) of A. We say that A is a
(standard) selfadjoint Gaussian random n × n matrix with entries of variance σ2, if the
following conditions are satisfied:

(i) The entries a(k, l), 1 ≤ k ≤ l ≤ n, form a set of 1
2
n(n + 1) independent, complex

valued random variables.

(ii) For each k in {1, 2, . . . , n}, a(k, k) is a real valued random variable with distribution
N(0, σ2).

(iii) When k < l, the real and imaginary parts Re(a(k, l)) and Im(a(k, l)) of a(k, l) are
independent identically distributed random variables with distribution N(0, 1

2
σ2).

(iv) When k > l, a(k, l) = a(l, k).

We denote by SGRM(n, σ2) the set of all such random matrices (defined on Ω). �

2.2 Remark. As was noted in [VDN, Lemma 4.1.3], if f and g are independent, iden-
tically distributed, real valued random variables with distribution N(0, σ2), then for any
m, n in N0 , we have that

E
(
(f + ig)m(f − ig)n

)
= 0, unless m = n, (2.1)

where E denotes expectation. This can be seen by noting, that the distribution on C of
f + ig is invariant under multiplication by any complex number of norm 1. From (2.1) it
follows, in particular, that we have the following fundamental relation between the entries
a(j, k), 1 ≤ j, k ≤ n, of an element A of SGRM(n, σ2):

E
(
a(j1, k1)a(j2, k2)

)
= σ2 · δj1,k2 · δk1,j2, (1 ≤ j1, k1, j2, k2 ≤ n), (2.2)

with the standard Kronecker delta notation. Note, in particular, that σ2 denotes the
second absolute moment of the entries of an element from SGRM(n, σ2). �
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2.3 Remark. In [HT2], we studied another kind of Gaussian, random matrices defined
on a probability space (Ω,F , P ): A (standard) Gaussian, random n × n matrix with
entries of variance σ2, is a random matrix B = (b(j, k))1≤j,k≤n, defined on Ω, such that
the real valued random variables Re(b(j, k)), Im(b(j, k)), 1 ≤ j, k ≤ n, form a family of
2n2 independent identically distributed random variables, with distribution N(0, σ

2

2
). We

let GRM(n, σ2) denote the set of such random matrices.

There is a close connection between the two sets SGRM(n, σ2) and GRM(n, σ2). Indeed,
if A1 and A2 are two independent elements of SGRM(n, σ2) (i.e., the entries of A1 are
jointly independent of those of A2), then 2−1/2(A1 + iA2) is an element of GRM(n, σ2).
Conversely, if B is an element of GRM(n, σ2), then 2−1/2(B+B∗) and −i2−1/2(B−B∗) are
two independent elements of SGRM(n, σ2). These relations follow by standard arguments,
using the convolution properties of the Gaussian distribution. �

In the following, we omit mentioning the underlying probability space (Ω,F , P ), and it
will be understood, that all considered random matrices/variables are defined on this
probability space. For any positive integer n, we denote by 111n the unit of Mn(C ). By trn
we denote the trace on Mn(C ) satisfying that trn(111n) = 1, and we put Trn = n · trn. The
main task of this section is to find a combinatorial expression for the moments E ◦trn[X2p],
p ∈ N , of an element X of SGRM(n, 1

n
). The argument leading to this result is similar to

the argument in [HT2] resulting in [HT2, Corollary 1.12].

Throughout the paper, we will be considering families of independent random matrices.
By independence between random matrices, we mean classical independence between
the entries of the random matrices. More precisely, let (Fi)i∈I be a family of random
matrices, and for each i, let f (i)(j, k), 1 ≤ j, k ≤ n(i), denote the entries of Fi. Then we
say that the random matrices Fi, i ∈ I, are independent, if the sets of random variables
{f (i)(j, k) | 1 ≤ j, k ≤ n(i)}, i ∈ I, are independent in the classical sense. So for example,
two random matrices F1 and F2 are independent, if the entries of F1 are jointly independent
of the entries of F2.

2.4 Remark. Let r, n be positive integers, and let A1, . . . , Ar be arbitrary elements of
SGRM(n, σ2). It shall be useful for us to note that the quantity E ◦ Trn(A1A2 · · ·Ar) is
bounded numerically by some constant K(n, r, σ2) depending only on n, r and σ2, and
not on the distributional relations between (the entries of) A1, A2, . . . , Ar. This result
is analogous to the result stated in [HT2, Remark 1.4], and it can be proved similarly.
The only difference is, that when working with elements of SGRM(n, σ2), rather than
elements of GRM(n, σ2), one has to take into account the fact, that diagonal and off-
diagonal elements of the matrices do not have the same distribution. We refer the reader
to [HT2, Remark 1.4] for further details. �

2.5 Lemma. Let r, n, q be positive integers, let A1, . . . , Ar be independent elements of
SGRM(n, σ2), and let i1, . . . , iq be elements of {1, 2, . . . , r}. Then E (Ai1 Ai2 · · ·Aiq) = 0,
unless there exists a permutation γ in Sq, such that for all j in {1, 2, . . . , q}, γ(j) 6= j,
γ2(j) = γ(γ(j)) = j and ij = iγ(j). In particular E (Ai1 Ai2 · · ·Aiq) = 0 for any choice of
i1, . . . , iq, if q is odd.
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Proof. The existence of a permutation γ in Sq with the properties described in the lemma
is equivalent to the condition, that the random matrices Ai1 , Ai2 , . . . , Aiq can be divided
into q

2
pairs of equal matrices. This, in turn, is equivalent to the condition:

∀i ∈ {1, 2, . . . , r} : card
({

j ∈ {1, 2, . . . , q}
∣∣ Aij = Ai

})
is even. (2.3)

Thus, we have to show that E (Ai1 Ai2 · · ·Aiq) = 0, unless the condition (2.3) is satisfied.
So assume that card({j ∈ {1, 2, . . . , q} | Aij = Ai}) is odd for some i in {1, 2, . . . , r}.
Since −Ai is again an element SGRM(n, σ2), it follows then that

E (Ai1 Ai2 · · ·Aiq) = −E (Ai1 Ai2 · · ·Aiq),

and therefore E (Ai1 Ai2 · · ·Aiq) = 0 as desired. �

2.6 Definition. Let p be a positive integer. Then by Γp, we denote the set of permuta-
tions γ in the symmetric group S2p, satisfying that

γ(j) 6= j and γ2(j) = γ(γ(j)) = j for all j in {1, 2, . . . , 2p}. �

2.7 Definition. Let p be a positive integer, and let γ be an element of Γp. We associate
to γ a sequence ∆(γ, n), n ∈ N , of complex numbers as follows:

Let A1, A2, . . . , A2p be elements of SGRM(n, 1), with the property that for all j, j′ in
{1, 2, . . . , 2p}, Aj and Aj′ are independent unless j = j′ or γ(j) = j′ in which cases
Aj = Aj′. We then define:

∆(γ, n) = E ◦ Trn[A1A2 · · ·A2p]. �

2.8 Proposition. Let A be an element of SGRM(n, 1). Then for any positive integer p,
we have that

(i) E ◦ Trn
[
A2p−1

]
= 0.

(ii) E ◦ Trn
[
A2p
]

=
∑

γ∈Γp
∆(γ, n).

Proof. (i) This follows from the last statement of Lemma 2.5.

(ii) Let A1, A2, A3, . . . , be a sequence of independent random matrices from SGRM(n, 1),
and note then, that for any s in N , the random matrix 1√

s
(A1 + A2 + · · ·+ As) is again

an element of SGRM(n, 1). Hence, for any s in N , we have that

E ◦ Trn[A
2p] = s−p

∑
1≤i1,i2,... ,i2p≤s

E ◦ Trn[Ai1Ai2Ai3 · · ·Ai2p ].

It follows here from Lemma 2.5, that for any 2p-tuple (i1, i2, . . . , i2p) in {1, 2, . . . , s}2p,
E ◦Trn[Ai1Ai2 · · ·Ai2p ] = 0, unless there exists a permutation γ in Γp, such that ij = iγ(j)

for all j in {1, 2, . . . , 2p}. Define then for each γ in Γp,

M(γ, s) =
{
(i1, i2, . . . , i2p) ∈ {1, 2, . . . , s}2p

∣∣ ij = iγ(j), j = 1, 2, . . . , 2p
}
.

7



It follows then that

E ◦ Trn[A
2p] = s−p

∑
(i1,i2,... ,i2p)∈

S
γ∈Γp

M(γ,s)

E ◦ Trn[Ai1Ai2 · · ·Ai2p ].

Note though, that the sets M(γ, s), γ ∈ Γp, are not disjoint. However, if we consider, for
each γ, the subset

D(γ, s)

=
{
(i1, . . . , i2p) ∈ {1, . . . , s}2p

∣∣ ∀j, j′ ∈ {1, . . . , 2p} : ij = ij′ ⇔ j = j′ or j = γ(j′)
}
,

then the sets D(γ, s), γ ∈ Γp, are disjoint, and even more so: For any distinct γ1, γ2 in
Γp, D(γ1, s) ∩M(γ2, s) = ∅. It follows thus, that

E ◦ Trn[A
2p] = s−p

∑
γ∈Γp

∑
(i1,... ,i2p)∈D(γ,s)

E ◦ Trn[Ai1Ai2 · · ·Ai2p ]

+ s−p
∑

(i1,... ,i2p)∈
S
γ∈Γp

M(γ,s)\D(γ,p)

E ◦ Trn[Ai1Ai2 · · ·Ai2p ].
(2.4)

Regarding the first term on the right hand side of (2.4), note that if γ is a permutation
in Γp and (i1, i2, . . . , i2p) ∈ D(γ, s), then by the definition of ∆(γ, n), we have that

E ◦ Trn[Ai1Ai2 · · ·Ai2p] = ∆(γ, n).

Therefore, the first term on the right hand side of (2.4) equals∑
γ∈Γp

s−p · card(D(γ, s)) ·∆(γ, n).

Note here, that for any γ in Γp, card(D(γ, s)) = s(s − 1)(s − 2) · · · (s − p + 1), so that
s−p · card(D(γ, p)) → 1 as s → ∞. Hence, the first term on the right hand side of (2.4)
tends to ∑

γ∈Γp

∆(γ, n),

as s→∞. Since the left hand side of (2.4) does not depend on s, it remains now to show,
that the second term on the right hand side of (2.4) tends to 0 as s→∞. For this, recall
from Remark 2.4, that there exists a constant K(n, 2p, 1), depending only on n, p (not on
s), such that ∣∣E ◦ Trn[Ai1Ai2 · · ·Ai2p ]

∣∣ ≤ K(n, 2p, 1),

for any i1, i2, . . . , i2p in N . Thus, the second term on the right hand side of (2.4) is
bounded numerically by the quantity

s−p · card
(⋃

γ∈Γp
M(γ, s) \ D(γ, s)

)
·K(n, 2p, 1).

Note here, that for any γ in Γp, card(M(γ, s)) = sp, and hence

card(M(γ, s) \ D(γ, s)) = sp − s(s− 1)(s− 2) · · · (s− p + 1).

8



Therefore,

s−p · card
(⋃

γ∈Γp
M(γ, s) \ D(γ, s)

)
≤ s−p

∑
γ∈Γp

card(M(γ, s) \ D(γ, s))

= s−p
∑
γ∈Γp

(
sp − s(s− 1) · · · (s− p + 1)

)
→ 0, as s→∞.

This implies that the second term on the right hand side of (2.4) tends to 0 as s → ∞,
as desired. �

It follows from Proposition 2.8, that in order to obtain a combinatorial expression for
E ◦ Trn[A

2p], we should concentrate on deriving a combinatorial expression for ∆(γ, n),
for all γ in Γp and n in N . As in [HT2, Theorem 1.11], we shall express ∆(γ, n) in terms of
the number of equivalence classes for a certain equivalence relation ∼γ on {1, 2, . . . , 2p}.

2.9 Definition. Let p be a positive integer, and let γ be an element of Γp. Then we
denote by ∼γ the equivalence relation on {1, 2, . . . , 2p}, generated by the expression

j ∼γ γ(j) + 1, (j ∈ {1, 2, . . . , 2p}),

where addition is formed mod. 2p. Moreover, for any j in {1, 2, . . . , 2p}, we denote by
[j]γ the ∼γ-equivalence class containing j. �

2.10 Remark. The equivalence relation ∼γ was introduced by Voiculescu in [Vo1, Proof
of Theorem 2.2]. In [HT2], we studied this equivalence relation in the special case where
γ possesses the additional property

γ(j) = j + 1 mod. 2, (j ∈ {1, 2, . . . , 2p}). (2.5)

For γ in Γp, (2.5) is equivalent to the existence of a permutation π in Sp, such that
γ(2i−1) = 2π−1(i) for all i in {1, 2, . . . , p}, and π is uniquely determined by the equation:
π(i) = 1

2
(γ(2i) + 1), i ∈ {1, 2, . . . , p}. In this case, we denote γ by π̂ (as in [HT2]). It

follows then, that the mapping π 7→ π̂ is a bijection of Sp onto the set of permutations γ
in Γp for which (2.5) holds (cf. [HT2, Remark 1.7(a)]). �

2.11 Remark. Under the additional assumption (2.5), we determined in [HT2, Re-
mark 1.9], the appearance of [j]γ for an arbitrary j in {1, 2, . . . , 2p}. However, the ar-
gument given in [HT2, Remark 1.9] did not make use of the extra assumption (2.5), and
hence we have also in the presently considered more general situation, that

[j]γ = {j0, j1, . . . , jm−1},

where m = card([j]γ), and

j0 = j, j1 = γ(j0) + 1, j2 = γ(j1) + 1, . . . , jm−1 = γ(jm−2) + 1, j0 = γ(jm−1) + 1,

(addition formed mod. 2p). �
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2.12 Definition. Let p be a positive integer, and let γ be a permutation in Γp. We then
define:

d(γ) = card
({

[j]γ
∣∣ j ∈ {1, 2, . . . , 2p}

})
σ(γ) = 1

2
(p + 1− d(γ)). �

The quantity d(·) was introduced by Voiculescu in [Vo1, Proof of Theorem 2.2], where
it was proved, furthermore, that d(γ) is always less than or equal to p + 1. Thus, the
quantity σ(·) is always non-negative. In [HT2, Theorem 1.13], it was shown, under the
additional assumption (2.5), that p + 1− d(γ) is always an even number, so that σ(γ) is
a non-negative integer. As we shall see in Proposition 2.15, the same conclusion holds in
the more general situation considered presently.

2.13 Proposition. For any positive integer p and any permutation γ in Γp, we have that

∆(γ, n) = nd(γ), (n ∈ N). (2.6)

Proof. Let A1, A2, . . . , A2p be elements of SGRM(n, 1), satisfying that for any k, k′ in
{1, 2, . . . , 2p}, Ak and Ak′ are independent, unless k = k′ or k = γ(k′), in which cases
Ak = Ak′. Let e(i, j), 1 ≤ i, j ≤ n, denote the usual n × n matrix units, and for each k
in {1, 2, . . . , 2p}, let a(i, j, k), 1 ≤ i, j ≤ n, denote the entries of Ak. It follows then by a
standard matrix calculation, that

∆(γ, n)

= E ◦ Trn[A1A2 · · ·A2p]

=
∑

1≤i1,i2,... ,i2p≤n
1≤j1,j2,... ,j2p≤n

E
[
a(i1, j1, 1)a(i2, j2, 2) · · ·a(i2p, j2p, 2p)

]
Trn
[
e(i1, j1)e(i2, j2) · · · e(i2p, j2p)

]
=

∑
1≤i1,i2,... ,i2p≤n

E
[
a(i1, i2, 1)a(i2, i3, 2) · · ·a(i2p, i1, 2p)

]
.

(2.7)

It follows here from (2.2) and the assumptions on A1, A2, . . . , A2p, that for any i1, i2, . . . , i2p

in {1, 2, . . . , n}, E
[
a(i1, i2, 1)a(i2, i3, 2) · · ·a(i2p, i1, 2p)

]
= 0, unless we have that

a(ik, ik+1, k) = a(iγ(k), iγ(k)+1, γ(k)), (1 ≤ k ≤ 2p),

i.e., unless

iγ(k) = ik+1 and iγ(k)+1 = ik, (1 ≤ k ≤ 2p), (2.8)

(where k + 1, γ(k) + 1 are calculated mod. 2p). Note also that if (2.8) is satisfied, then
E
[
a(i1, i2, 1)a(i2, i3, 2) · · ·a(i2p, i1, 2p)

]
= 1. By replacing k by γ(k), we see that the two

conditions in (2.8) are actually equivalent, and thus it follows that

E
[
a(i1, i2, 1)a(i2, i3, 2) · · ·a(i2p, i1, 2p)

]
=

2p∏
k=1

δik ,iγ(k)+1
.
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Inserting this in (2.7), we conclude that

∆(γ, n) = card
({

(i1, i2, . . . , i2p) ∈ {1, 2, . . . , n}2p
∣∣ ik = iγ(k)+1, k = 1, 2, . . . , 2p

})
,

where γ(k) + 1 is calculated mod. 2p. Finally, by application of Remark 2.11, it is
straightforward that this cardinality equals nd(γ). �

2.14 Corollary. Let n be a positive integer, and let A be a random matrix in SGRM(n, 1).
Then for any p in N , we have that

E ◦ Trn[A
2p] =

∑
γ∈Γp

nd(γ).

Proof. This follows immediately by combining Propositions 2.8 and 2.13. �

By combining the combinatorial formula obtained in Corollary 2.14 with [HT1, Theo-
rem 4.1], we can now give an easy proof of the fact that σ(γ) is always a non-negative
integer.

2.15 Proposition. Let p be a positive integer, and let γ be a permutation in Γp. Then

σ(γ) = 1
2

(
p + 1− d(γ)

)
∈ N0 .

Proof. For all p, n in N , put C(p, n) = E ◦Trn[A
2p
n ], where An is an element of SGRM(n, 1).

Recall then from [HT1, Theorem 4.1], that C(0, n) = n, C(1, n) = n2, and that, for fixed
n, the numbers C(p, n), p ∈ N , satisfy the recursion formula

C(p + 1, n) = n · 4p+2
p+2
· C(p, n) + p(4p2−1)

p+2
· C(p− 1, n), (p ≥ 1).

It follows from these facts, and induction on p, that for any p in N , C(p, n) is of the form:

C(p, n) =

[ p
2

]∑
q=0

α(p, q)np+1−2q,

for suitable positive real numbers α(p, q), q = 0, 1, . . . ,
[
p
2

]
, (not depending on n). On the

other hand, we know from Corollary 2.14, that

C(p, n) = E ◦ Trn[A
2p
n ] =

∑
γ∈Γp

nd(γ), (n, p ∈ N).

Since two polynomials in C [x], that coincide on N , are equal, it follows, that for each p in
N and each γ in Γp, we must have

d(γ) = p + 1− 2q, for some q in
{
0, 1, . . . ,

[
p
2

]}
,

and hence that

σ(γ) = 1
2

(
p + 1− d(γ)

)
= q, for some q in

{
0, 1, . . . ,

[
p
2

]}
.

11



This completes the proof. �

Finally we shall need a generalization of [HT2, Corollary 1.24]. Before stating this result,
we recall, that if γ ∈ Γp and a, b, c, d ∈ {1, 2, . . . , 2p}, then we say that (a, b, c, d) is a
crossing for γ, if a < b < c < d, and γ(a) = c, γ(b) = d. If γ does not have any crossings,
we say that γ is a non-crossing permutation.

2.16 Proposition. Let p be a positive integer, and let γ be a permutation in Γp. Then
γ is non-crossing if and only if σ(γ) = 0.

Proof. The proposition was first proved by D. Shlyakhtenko (cf. [Sh, Lemma 2.3]). His
argument is based on diagrammatics (graphs). In [HT2, Corollary 1.24], the proposition
was proved in the case where γ from Γp satisfies the additional property (2.5). The proof
given in [HT2] was based on the process of cancelling pairs of neighbors in a permutation.
This argument can with no further difficulty be generalized to all permutations in Γp,
thus supplying an alternative proof of Proposition 2.16. For further details we refer to
[HT2, Section 1]. �

3 Almost Sure Convergence of Mixed Moments

Let n, r, p be positive integers, let A1, A2, . . . , Ar be independent random matrices in
SGRM(n, 1), and let i1, i2, . . . , ip be indices from {1, 2, . . . , r}. For each i in {1, 2, . . . , r},
put Xi = 1√

n
Ai. The main aim of this section is to show that the mixed moments

trn[Xi1Xi2 · · ·Xip] converge, almost surely, as n→∞, to the corresponding mixed moment
τ
(
xi1xi2 · · ·xip

)
, of a semi-circular family {x1, x2, . . . , xr} in a C∗-probability space (B, τ).

The key step in the argument leading to this result is Theorem 3.1 below, in which we
determine a combinatorial expression for the mixed moment E ◦ Trn[Ai1Ai2 · · ·Aik ].

3.1 Theorem. Let n, r, p be positive integers, let A1, A2, . . . , Ar be independent ele-
ments of SGRM(n, 1), and let i1, i2, . . . , ip be indices from {1, 2, . . . , r}. For each i in
{1, 2, . . . , r}, put

K(i) =
{
j ∈ {1, 2, . . . , p}

∣∣ ij = i
}
, and pi = card(K(i)), (3.1)

and then define

Γ(i1, i2, . . . , ip) =

{
∅, if pi is odd for some i,

{γ ∈ Γp/2 | γ(K(i)) = K(i), for all i}, if pi is even for all i.

We then have

E ◦ Trn
[
Ai1Ai2 · · ·Aip

]
=

∑
γ∈Γ(i1,i2,... ,ip)

nd(γ), (3.2)

where the right hand side is to be thought of as 0, if pi is odd for some i.
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Note before the proof, that in the situation of Theorem 3.1, p = p1 + p2 + · · · + pr. In
particular p is even if all pi are, and hence, in this case, Γp/2 is well-defined.

Proof of Theorem 3.1. The proof proceeds along the same lines as the proof of Proposi-
tion 2.8.

Note first, that it follows from Lemma 2.5, that E ◦ Trn
[
Ai1Ai2 · · ·Aip

]
= 0, unless the

random matrices Ai1 , Ai2, . . . , Aip can be divided into p
2

pairs of equal matrices. By
definition of pi, this is only possible if pi is even for all i, and hence the validity of (3.2)
follows immediately in the case where pi is odd for some i.

Thus, we may assume in the following, that pi is even for all i. For each i in {1, 2, . . . , r},
let (A(i, s))s∈N be a sequence of random matrices from SGRM(n, 1), such that the random
matrices in the set {A(i, s) | i ∈ {1, 2, . . . , r}, s ∈ N} are jointly independent. It
follows then from the convolution properties of the Gaussian distribution, that for any i
in {1, 2, . . . , r} and any s in N , the random matrix

s−
1
2 (A(i, 1) + A(i, 2) + · · ·+ A(i, s)),

is again an element of SGRM(n, 1). Due to the independence assumptions, we have even
that the joint distribution of the entries in Ai1 , Ai2, . . . , Aik equals that of the entries in

s−
1
2

(
A(i1, 1)+· · ·+A(i1, s)

)
, s−

1
2

(
A(i2, 1)+· · ·+A(i2, s)

)
, . . . , s−

1
2

(
A(ip, 1)+· · ·+A(ip, s)

)
,

for any s in N . This observation implies, in particular, that for any s in N ,

E ◦ Trn[Ai1Ai2 · · ·Aip]

= s−
p
2 · E ◦ Trn

[(
A(i1, 1) + · · ·+ A(i1, s)

)
· · ·

(
A(ip, 1) + · · ·+ A(ip, s)

)]
= s−

p
2

∑
1≤l1,l2,... ,lp≤s

E ◦ Trn
[
A(i1, l1)A(i2, l2) · · ·A(ip, lp)

]
.

Note here, that it follows from Lemma 2.5, that for any l1, l2, . . . , lp in {1, 2, . . . , s}, we
have E ◦ Trn

[
A(i1, l1)A(i2, l2) · · ·A(ip, lp)

]
= 0, unless there exists a permutation γ in

Γ(i1, i2, . . . , ip), such that lj = lγ(j) for all j in {1, 2, . . . , p}. Hence, if we define for γ in
Γ(i1, i2, . . . , ip),

M(γ, s) =
{
(l1, . . . , lp) ∈ {1, . . . , s}p

∣∣ lj = lγ(j), j = 1, . . . , p
}
,

then we have that

E ◦ Trn
[
Ai1Ai2 · · ·Aip

]
= s−

p
2

∑
(l1,... ,lp)∈

S
γ∈Γ(i1,... ,ip)M(γ,s)

E ◦ Trn
[
A(i1, l1)A(i2, l2) · · ·A(ip, lp)

]
.

Note though, that the sets M(γ, s), γ ∈ Γ(i1, i2, . . . , ip), are not disjoint. However, if we
consider, for each γ in Γ(i1, i2, . . . , ip), the subset

D(γ, s) =
{
(l1, . . . , lp) ∈ {1, . . . , s}p

∣∣ ∀j, j′ ∈ {1, . . . , p} : lj = lj′ ⇔ j′ = j or j′ = γ(j)
}
,
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then the sets D(γ, s), γ ∈ Γ(i1, i2, . . . , ip), are disjoint, and even more so: For any distinct
γ1, γ2 in Γ(i1, i2, . . . , ip), M(γ1, s) ∩ D(γ2, s) = ∅. It follows thus, that

E ◦ Trn
[
Ai1Ai2 · · ·Aip

]
= T1(s) + T2(s), (3.3)

where

T1(s) = s−
p
2

∑
γ∈Γ(i1,... ,ip)

∑
(l1,... ,lp)∈D(γ,s)

E ◦ Trn
[
A(i1, l1)A(i2, l2) · · ·A(ip, lp)

]
,

and

T2(s) = s−
p
2

∑
(l1,... ,lp)∈

S
γ∈Γ(i1,... ,ip)M(γ,s)\D(γ,s)

E ◦ Trn
[
A(i1, l1)A(i2, l2) · · ·A(ip, lp)

]
.

Regarding T1(s), note that for any γ in Γ(i1, i2, . . . , ip) and any (l1, l2, . . . , lp) in D(γ, s),
we have by definition of ∆(γ, n) (cf. Definition 2.7), that

E ◦ Trn
[
A(i1, l1)A(i2, l2) · · ·A(ip, lp)

]
= ∆(γ, n).

Therefore,

T1(s) = s−
p
2

∑
γ∈Γ(i1,... ,ip)

card(D(γ, s)) ·∆(γ, n).

Here, card(D(γ, s)) = s(s − 1)(s − 2) · · · (s − p
2

+ 1), so that s−
p
2 card(D(γ, s)) → 1, as

s→∞. It follows thus, that

T1(s)→
∑

γ∈Γ(i1,... ,ip)

∆(γ, n), as s→∞. (3.4)

Regarding T2(s), consider the constant K(n, p, 1) introduced in Remark 2.4, and note
then that

|T2(s)| ≤ s−
p
2 · card

(⋃
γ∈Γ(i1,... ,ip)M(γ, s) \ D(γ, s)

)
·K(n, p, 1)

≤ s−
p
2 ·K(n, p, 1) ·

∑
γ∈Γ(i1,... ,ip)

card(M(γ, s) \ D(γ, s)).

For any γ in Γ(i1, i2, . . . , ip),

s−
p
2 · card(M(γ, s) \ D(γ, s)) = s−

p
2

(
card(M(γ, s))− card(D(γ, s))

)
= 1− s−

p
2 card(D(γ, s))

→ 1− 1 = 0,

as s→∞. It follows thus, that

T2(s)→ 0, as s→∞. (3.5)
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Combining (3.3) with (3.4) and (3.5), we obtain that

E ◦ Trn
[
Ai1Ai2 · · ·Aip

]
= T1(s) + T2(s)→

∑
γ∈Γ(i1,... ,ip)

∆(γ, n), as s→∞. (3.6)

Since the right hand side of (3.6) does not depend on s, we conclude that

E ◦ Trn
[
Ai1Ai2 · · ·Aip

]
=

∑
γ∈Γ(i1,... ,ip)

∆(γ, n) =
∑

γ∈Γ(i1,... ,ip)

nd(γ),

where the last equality follows from Theorem 2.13. �

3.2 Corollary. Let n, r, p, i1, i2, . . . , ip, and Γ(i1, i2, . . . , ip) be as in Theorem 3.1, but
consider now a family {X1, X2, . . . , Xr} of independent random matrices from SGRM(n, 1

n
).

We then have:

E ◦ trn
[
Xi1Xi2 · · ·Xip

]
=

∑
γ∈Γ(i1,... ,ip)

n−2σ(γ)

= card({γ ∈ Γ(i1, . . . , ip) | γ is non-crossing }) + O
(

1
n2

)
.

(3.7)

Proof. For each i in {1, 2, . . . , r}, put Ai =
√

nXi, and note then that A1, A1, . . . , Ar are
independent elements of SGRM(n, 1). By Theorem 3.1, it follows thus that

E ◦ trn
[
Xi1Xi2 · · ·Xip

]
= n−

p
2
−1 · E ◦ Trn

[
Ai1Ai2 · · ·Aip

]
= n−

p
2
−1

∑
γ∈Γ(i1,... ,ip)

nd(γ)

=
∑

γ∈Γ(i1,... ,ip)

n−(p
2

+1−d(γ)) =
∑

γ∈Γ(i1,... ,ip)

n−2σ(γ),

which proves the first equality in (3.7). Regarding the second equality in (3.7), let pi
be as defined in (3.1). Then if pi is odd for some i in {1, 2, . . . , r}, Γ(i1, i2, . . . , ip) = ∅,
and the equality follows trivially. Otherwise, we get the second equality by application of
Propositions 2.15 and 2.16. �

3.3 Corollary. Let n, r, p, i1, i2, . . . , ip, Γ(i1, i2, . . . , ip) be as in Theorem 3.1, and let
{X1, X2, . . . , Xr} be a family of independent random matrices from SGRM(n, 1

n
). Con-

sider further a semi-circular family {x1, x2, . . . , xr} in some C∗-probability space (B, τ).
We then have

(i) card({γ ∈ Γ(i1, i2, . . . , ip) | γ is non-crossing }) = τ(xi1xi2 · · ·xip).

(ii) E ◦ trn
[
Xi1Xi2 · · ·Xip

]
= τ(xi1xi2 · · ·xip) + O

(
1
n2

)
.

Proof. It follows from [Vo1, Theorem 2.2], that

E ◦ trn
[
Xi1Xi2 · · ·Xip

]
→ τ(xi1xi2 · · ·xip), as n→∞, (3.8)

and combining this with Corollary 3.2, it follows immediately that (i) holds. Plugging
then (i) back into (3.7), we get (ii). �
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3.4 Remark. The equation (i) in Corollary 3.3 can also be derived from the “Moment-
cumulant formula” of A. Nica and R. Speicher (cf. [NS, 3.5]), recalling that the multi-
dimensional R-transform of (the joint distribution of) a semi-circular system {x1, . . . , xr}
is given by:

R(z1, . . . , zr) = z2
1 + · · ·+ z2

r ,

(cf. [NS, Theorem 3.6]). The proof given above of the formula proceeds by combining
Voiculescu’s celebrated result (3.8) with the combinatorial expression obtained in Corol-
lary 3.2. On the other hand, since neither the Moment-cumulant formula nor the above
proof of (3.7), depend upon (3.8), one can obtain a new proof of (3.8), by combining (3.7)
and (i). �

Before we can conclude this section by proving almost sure convergence of mixed moments
of independent elements of SGRM(n, 1

n
), we need the following observation

3.5 Lemma. Let A be an element of SGRM(n, 1), and let F, G be random n×n matrices,
whose entries have moments of all orders and are independent of those of A. Then

E ◦ Trn[AFAG] = E
[
Trn(F ) · Trn(G)

]
.

Proof. Let a(i, j), f(i, j), g(i, j), 1 ≤ i, j ≤ n, denote the entries of A, F, G respectively,
and let e(i, j), 1 ≤ i, j ≤ n, denote the usual n × n matrix units. By a standard matrix
calculation, the independence assumptions and (2.2), it follows then that

E ◦ Trn[AFAG]

=
∑

1≤i1,... ,i4≤n
1≤j1,... ,j4≤n

E
[
a(i1, j1)f(i2, j2)a(i3, j3)g(i4, j4)

]
·Trn

[
e(i1, j1)e(i2, j2)e(i3, j3)e(i4, j4)

]
=

∑
1≤i1,... ,i4≤n

E
[
a(i1, i2)a(i3, i4)

]
· E
[
f(i2, i3)g(i4, i1)

]
= E

[ ∑
1≤i1,i2≤n

f(i2, i2)g(i1, i1)
]

= E
[
Trn(F ) · Trn(G)

]
,

as desired. �

3.6 Theorem. For each n in N , let X(1, n), X(2, n), . . . , X(r, n) be independent elements
of SGRM(n, 1

n
). Moreover, let Q be a non-commutative polynomial in r variables and let

x1, x2, . . . , xr be a semi-circular system in a non-commutative probability space (B, τ).
Then, as n→∞,

trn
[
Q(X(1, n), X(2, n), . . . , X(r, n))

]
→ τ

[
Q(x1, x2, . . . , xr)

]
, almost surely.

Proof. By linearity we may assume that Q is a non-commutative monomial, so that

Q
(
X(1, n), X(2, n), . . . , X(r, n)

)
= X(i1, n)X(i2, n) · · ·X(ip, n),

Q(x1, x2, . . . , xr) = xi1xi2 · · ·xip,
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for suitable p in N , and i1, i2, . . . , ip in {1, 2, . . . , r}. For the sake of short notation, in
the following we shall just write Qn for Q

(
X(1, n), X(2, n), . . . , X(r, n)

)
.

From [Vo1, Theorem 2.2] or (ii) in Corollary 3.3, it follows that

E ◦ trn(Qn)→ τ
(
Q(x1, x2, . . . , xr)

)
, as n→∞.

Therefore it suffices to show that

trn(Qn)− E ◦ trn(Qn)
a.s.→ 0, as n→∞.

By the Borel-Cantelli Lemma (cf. for example [Br, Lemma 3.14]), this will follow if we
show that for any ε in ]0,∞[, we have that

∞∑
n=1

P
(
|trn(Qn)− E ◦ trn(Qn)| > ε

)
<∞.

This, in turn, follows from the Chebychev Inequality, if we show that

∞∑
n=1

E
(∣∣trn(Qn)− E ◦ trn(Qn)

∣∣2) <∞. (3.9)

Note here that

E
(∣∣trn(Qn)− E ◦ trn(Qn)

∣∣2) = E
(∣∣trn(Qn)

∣∣2)− ∣∣E ◦ trn(Qn)
∣∣2.

We consider first the quantity
∣∣E ◦ trn(Qn)

∣∣2. Recalling the form of Qn, it follows imme-
diately by application of (ii) in Corollary 3.3, that

E ◦ trn(Qn) = τ
(
Q(x1, x2, . . . , xr)

)
+ O

(
1
n2

)
,

so that, in particular,∣∣E ◦ trn(Qn)
∣∣2 =

∣∣τ(Q(x1, x2, . . . , xr)
)∣∣2 + O

(
1
n2

)
.

Turning next to the quantity E
(∣∣trn(Qn)

∣∣2), we introduce for each n in N an element Zn

of SGRM(n, 1
n
), satisfying that Zn is independent of X(1, n), X(2, n), . . . , X(r, n). By

Lemma 3.5 (and a normalization consideration), it follows then that

E
(∣∣trn(Qn)

∣∣2) = E
(
trn(Qn) · trn(Q∗n)

)
= E ◦ trn(ZnQnZnQ

∗
n).

By another application of Corollary 3.3(ii), it follows thus that

E
(∣∣trn(Qn)

∣∣2) = τ
(
zQ(x1, x2, . . . , xr)zQ(x1, x2, . . . , xr)

∗)+ O
(

1
n2

)
,

where z is an element of (B, τ), satisfying that {x1, x2, . . . , xr, z} is a semi-circular family
in (B, τ).
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Taken together, we have now realized that

E
(∣∣trn(Qn)− E ◦ trn(Qn)

∣∣2)
= E

(∣∣trn(Qn)
∣∣2)− ∣∣E ◦ trn(Qn)

∣∣2
= τ
(
zQ(x1, x2, . . . , xr)zQ(x1, x2, . . . , xr)

∗)− ∣∣τ(Q(x1, x2, . . . , xr)
)∣∣2 + O

(
1
n2

)
,

and thus the validity of (3.9) depends on that of the equality

τ
(
zQ(x1, x2, . . . , xr)zQ(x1, x2, . . . , xr)

∗) =
∣∣τ(Q(x1, x2, . . . , xr)

)∣∣2.
But this equation follows by a standard calculation, using that Q(x1, x2, . . . , xr) and z
are free, and that τ(z) = 0, τ(z2) = 1. �

4 Almost Sure Convergence for Gaussian Random

Matrices with Operator Entries

Let H and K be Hilbert spaces, let r be a positive integer, let a1, a2, . . . , ar be ele-
ments of B(H,K) and let A denote the C∗-subalgebra of B(H) generated by the set
{a∗iaj | 1 ≤ i, j ≤ r} ∪ {111B(H)}. Furthermore, let t be a positive integer, let x1, x2, . . . , xt
be a semi-circular family in some C∗-probability space (B, τ), and for each n in N ,
let X(1, n), X(2, n), . . . , X(t, n) be independent elements of SGRM(n, 1

n
). Finally, let

Q1, Q2, . . . , Qr be non-commutative polynomials in t variables, and then define

Q(i, n) = Qi

(
X(1, n), X(2, n), . . . , X(t, n)

)
, (i ∈ {1, 2, . . . , r}, n ∈ N)

qi = Qi

(
x1, x2, . . . , xt

)
, (i ∈ {1, 2, . . . , r})

Sn =
r∑
i=1

ai ⊗Q(i, n), (n ∈ N)

s =
r∑
i=1

ai ⊗ qi.

Note that for each n, S∗nSn is a random element of A⊗Mn(C ), and similarly s∗s is a (non-
random) element of the algebraic tensor product A� B. In the first part of this section,
we use the results of Section 3 to study, for any state φ on A, the asymptotic behavior of
S∗nSn w.r.t. φ⊗ trn. This is used, in the second part of the section, to obtain asymptotic
lower (respectively upper) bounds on the largest (respectively smallest) element of the
spectrum of S∗nSn.

4.1 Lemma. Let the situation be as described above, and let φ be a state on A. Then
for any p in N , we have

(i) φ⊗ trn
(
(S∗nSn)

p
)
→ φ⊗ τ

(
(s∗s)p

)
, almost surely, as n→∞.

(ii) E
[
φ⊗ trn

(
(S∗nSn)

p
)]
→ φ⊗ τ

(
(s∗s)p

)
, as n→∞.
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Proof. (i) For any positive integer p, we have that

φ⊗ trn
(
(S∗nSn)

p
)

= φ⊗ trn

( ∑
1≤i1,j1,... ,ip,jp≤r

a∗i1aj1 · · ·a
∗
ipajp ⊗Q(i1, n)∗Q(j1, n) · · ·Q(ip, n)∗Q(jp, n)

)
=

∑
1≤i1,j1,... ,ip,jp≤r

φ
(
a∗i1aj1 · · ·a

∗
ipajp) · trn

(
Q(i1, n)∗Q(j1, n) · · ·Q(ip, n)∗Q(jp, n)

)
.

Note here that for each 2p-tuple (i1, j1, . . . , ip, jp) in the set {1, 2, . . . , r}2p, the product
Q(i1, n)∗Q(j1, n) · · ·Q(ip, n)∗Q(jp, n) is some polynomial in X(1, n), X(2, n), . . . , X(t, n),
and hence by Theorem 3.6, we have that

trn
(
Q(i1, n)∗Q(j1, n) · · ·Q(ip, n)∗Q(jp, n)

) a.s.−→
n→∞

τ
(
q∗i1qj1 · · · q

∗
ipqjp

)
.

It follows thus, that

φ⊗ trn
(
(S∗nSn)

p
) a.s.−→
n→∞

∑
1≤i1,j1,... ,ip,jp≤r

φ
(
a∗i1aj1 · · ·a

∗
ipajp) · τ

(
q∗i1qj1 · · · q

∗
ipqjp

)
= φ⊗ τ

(
(s∗s)p

)
,

and this completes the proof of (i).

(ii) As in the proof of (i), we find, for any p in N , that

E
[
φ⊗ trn

(
(S∗nSn)

p
)]

=
∑

1≤i1,j1,... ,ip,jp≤r
φ
(
a∗i1aj1 · · ·a

∗
ipajp) · E ◦ trn

(
Q(i1, n)∗Q(j1, n) · · ·Q(ip, n)∗Q(jp, n)

)
.

It follows here from [Vo1, Theorem 2.2] or (ii) in Corollary 3.3, that

E ◦ trn
(
Q(i1, n)∗Q(j1, n) · · ·Q(ip, n)∗Q(jp, n)

)
→ τ

(
q∗i1qj1 · · · q

∗
ipqjp

)
, as n→∞,

and hence, as in (i), we obtain the desired conclusion. �

We shall need next, a result from (classical) probability theory. Before stating this result,
we recall that a measure µ on R (with Borel σ-algebra) is called determinated, if no other
measure on R has the same moments as µ. All compactly supported measures on R are
determinated. For a more general criteria, cf. [Br, Proposition 8.49]. We recall also, that
a sequence (µn) of measures on R is said to converge weakly to another measure µ on R,
if
∫
R

f dµn →
∫
R

f dµ, for any function f in Cb(R, C ), the set of continuous, bounded,
complex valued functions on R.

4.2 Proposition. Let (µn)n∈N be a sequence of probability measures on R (with Borel
σ-algebra), and let µ be yet another probability on R. Assume that µ and all the µn’s have
moments of all orders, and that µ is determinated. Then if the moments of µn converge,
as n→∞, to those of µ, µn converges weakly to µ, as n→∞.
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Proof. Cf. [Br, Theorem 8.48]. �

Recall that for a selfadjoint element a of a C∗-probability space (C, ψ), there exists a
unique probability measure µa on R, such that supp(µa) ⊆ sp(a), and∫

sp(a)

tp dµa(t) = ψ(ap), (p ∈ N). (4.1)

The probability measure µa is called the distribution of a w.r.t. ψ. Note that there is
no ambiguity between this definition and the definition of distribution in Section 1, since
µa is the unique probability measure on sp(a), carrying as its moments, the moments
of a w.r.t. ψ. The existence and uniqueness of µa follow by application of Weierstrass’
approximation theorem and Riesz’ representation theorem. Note in particular, that (4.1)
extends to all continuous functions on sp(a).

4.3 Theorem. Let a1, . . . , ar, A, X(1, n), . . . , X(t, n), x1, . . . , xt, (B, τ), Sn and s be as
set out in the paragraph preceding Lemma 4.1, and let φ be a state on A. Then the set

S =
{
ω ∈ Ω

∣∣∣ ∀f ∈ Cb(R, C ) : φ⊗ trn
[
f(S∗n(ω)Sn(ω))

]
−→
n→∞

φ⊗ τ
(
f(s∗s)

)}
,

is a (generalized) sure event.

Proof. From Lemma 4.1, it follows that the set

R =
⋂
p∈N0

{
ω ∈ Ω

∣∣∣ φ⊗ trn
[(

S∗n(ω)Sn(ω)
)p] −→

n→∞
φ⊗ τ

(
(s∗s)p

)}
,

has probability 1. Therefore it suffices to show that R ⊆ S.

For this, let ω be an element of R, and for each n in N , let µω,n denote the distribution of
S∗n(ω)Sn(ω) w.r.t. the state φ⊗ trn on the C∗-algebra A⊗Mn(C ). Similarly, consider the
distribution µ of s∗s w.r.t. the state φ⊗τ on the minimal C∗-algebra tensor product A⊗B.
Then the assumption that ω ∈ R means exactly that the moments of µω,n converge, as
n → ∞, to those of µ. Since µ is compactly supported, this implies, by Proposition 4.2,
that µω,n → µ, weakly, as n→∞, i.e., that

φ⊗ trn
(
f(S∗n(ω)Sn(ω))

)
=

∫
R

f(u) dµω,n(u) −→
n→∞

∫
R

f(u) dµ(u) = φ⊗ τ
(
f(s∗s)

)
,

for any f in Cb(R, C ). This shows that ω ∈ S. �

In (the proof of) Proposition 4.5 below, we apply Theorem 4.3 to obtain lower (respectively
upper) asymptotic bounds on the largest (respectively smallest) element of the spectrum
sp(S∗nSn) of S∗nSn. For the proof of Proposition 4.5, we need, in addition, the following
lemma. This result is presumably well-known, but for completeness, we include a proof
in the appendix at the end of the paper.

4.4 Lemma. Let C and D be C∗-algebras, and let φ,ψ be states on C and D respectively.
If φ and ψ are both faithful, then so is the product state φ⊗ψ on the minimal (= spatial)
tensor product C ⊗ D. �
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4.5 Proposition. Let a1, . . . , ar, A, X(1, n), . . . , X(t, n), x1, . . . , xt, (B, τ), Sn and s
be as set out in the paragraph preceding Lemma 4.1, and assume in addition that τ is
faithful on B. Then on a set with probability 1, we have that

lim inf
n→∞

(
max

{
sp(S∗nSn)

})
≥ max

{
sp(s∗s)

}
,

and that
lim sup
n→∞

(
min

{
sp(S∗nSn)

})
≤ min

{
sp(s∗s)

}
.

Proof. Consider the sets

T =
{

ω ∈ Ω
∣∣∣ lim inf

n→∞

(
max

{
sp
(
S∗n(ω)Sn(ω)

)})
≥ max

{
sp
(
s∗s
)}}

and
U =

{
ω ∈ Ω

∣∣∣ lim sup
n→∞

(
min

{
sp
(
S∗n(ω)Sn(ω)

)})
≤ min

{
sp
(
s∗s
)}}

.

We have to show that these sets are (generalized) sure events. For this, note first that
since A is clearly separable, we may choose a faithful state φ on A. With this φ, it follows
then from Theorem 4.3, that the set

S =
{
ω ∈ Ω

∣∣∣ ∀f ∈ Cb(R, C ) : φ⊗ trn
[
f(S∗n(ω)Sn(ω))

]
−→
n→∞

φ⊗ τ
(
f(s∗s)

)}
,

is a (generalized) sure event, and it suffices thus to show that both of the sets T and U
contain S. We shall only prove that S ⊆ T . The inclusion S ⊆ U , is proved similarly.

So consider an element ω of S, and assume also (seeking a contradiction) that ω /∈ T ,
i.e., that

lim inf
n→∞

(
max

{
sp(S∗n(ω)Sn(ω))

})
= max

{
sp(s∗s)

}
− ε,

for some ε in ]0,∞[. Put m = max
{
sp(s∗s)

}
, and then for the considered ε, choose a

function h in Cb(R, C ), such that h(u) ≥ 0 for all u in R, such that {u ∈ R | h(u) > 0} ⊆
[m− ε

2
,∞[ and such that {u ∈ R | h(u) > 0} ∩ sp(s∗s) 6= ∅.

Now h(s∗s) is a non-zero, positive element of the minimal C∗-tensor product A⊗ B and
since φ ⊗ τ is faithful on A ⊗ B (since φ and τ are both faithful; cf. Lemma 4.4), the
number δ := φ⊗ τ [h(s∗s)] is strictly positive.

Since ω ∈ S and h ∈ Cb(R, C ), we have here that

φ⊗ trn
[
h(S∗n(ω)Sn(ω))

]
→ δ, as n→∞,

and thus we may choose N in N such that

φ⊗ trn
[
h(S∗n(ω)Sn(ω))

]
≥ δ

2
, whenever n ≥ N. (4.2)

On the other hand we have that

inf
n≥N

(
max

{
sp(S∗n(ω)Sn(ω))

})
≤ lim inf

n→∞

(
max

{
sp(S∗n(ω)Sn(ω))

})
= m− ε,
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and thus we may choose n0 in N , such that n0 ≥ N and

max
{
sp(S∗n0

(ω)Sn0(ω))
}

< m− ε
2
.

But since supp(h) ⊆ [m− ε
2
,∞[, this implies that h = 0 on sp(S∗n0

(ω)Sn0(ω)), and hence
h(S∗n0

(ω)Sn0(ω)) = 0. Since n0 ≥ N , this contradicts (4.2), and hence we have obtained
the desired contradiction. �

By minor modifications of the proof just given, we can obtain a slightly stronger result:

4.6 Proposition. Let a1, . . . , ar, A, X(1, n), . . . , X(t, n), x1, . . . , xt, (B, τ), Sn and s
be as set out in the paragraph preceding Lemma 4.1, and assume in addition that τ is
faithful on B. Then with

T =
{
ω ∈ Ω

∣∣∣ ∀g ∈ C(R,R) : lim inf
n→∞

(
max

{
sp
(
g[S∗n(ω)Sn(ω)]

)})
≥ max

{
sp
(
g(s∗s)

)}}
and

U =
{

ω ∈ Ω
∣∣∣ ∀g ∈ C(R,R) : lim sup

n→∞

(
min

{
sp
(
g[S∗n(ω)Sn(ω)]

)})
≤ min

{
sp
(
g(s∗s)

)}}
,

we have that T = U , and moreover, this set is a (generalized) sure event.

Proof. The equation T = U follows by noting the following 3 facts:

C(R,R) =
{
− g | g ∈ C(R,R)

}
∀g ∈ C(R,R) : lim inf

n→∞

(
max

{
sp(−g(S∗nSn))

})
= − lim sup

n→∞

(
min

{
sp(g(S∗nSn))

})
∀g ∈ C(R,R) : max

{
sp(−g(s∗s))

}
= −min

{
sp(g(s∗s))

}
.

It remains thus to show that T is a (generalized) sure event. This can be proved by a
slight modification of the argument given in the proof of Proposition 4.5. �

4.7 Corollary. Let a1, . . . , ar, A, X(1, n), . . . , X(t, n), x1, . . . , xt, (B, τ), Sn and s be as
set out in the paragraph preceding Lemma 4.1, and assume in addition that τ is faithful
on B. Then on a set with probability 1, we have that

∀g ∈ C(R, C ) : lim inf
n→∞

‖g(S∗nSn)‖ ≥ ‖g(s∗s)‖. (4.3)

Proof. For any g in C(R, C ), |g| ∈ C(R,R), and therefore the statement (4.3) holds for
all ω in the set T from Proposition 4.6. �

4.8 Remark. Consider the situation described in the paragraph preceding Lemma 4.1.
Instead of the family X(1, n), X(2, n), . . . , X(t, n) in SGRM(n, 1

n
) we might consider a

family Y (1, n), Y (2, n), . . . , Y (t, n) in GRM(n, 1
n
), and instead of the semi-circular family

x1, x2, . . . , xt, we might consider a circular family y1, y2, . . . , yt. Defining then Sn and
s as before, but with X(j, n) and xj replaced by Y (j, n) respectively yj, we claim that
the results 4.1–4.6 are still valid. This follows by recalling from Remark 2.3, that with
X ′(j, n) = 2−1/2(Y (j, n) + Y ∗(j, n)) and X ′′(j, n) = −i2−1/2(Y (j, n) − Y ∗(j, n)), we have
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that X ′(1, n), X ′′(1, n), . . . , X ′(t, n), X ′′(t, n) form a family of 2t independent elements of
SGRM(n, 1

n
). And similarly, with x′j = 2−1/2(yj+y∗j ) and x′′j = −i2−1/2(yj−y∗j ), the family

x′1, x
′′
1, . . . , x′t, x

′′
t is a semi-circular family. The claim now follows by rewriting the poly-

nomials Q(Y (1, n), Y (2, n), . . . , Y (r, n)) and Q(y1, y2, . . . , yr) as some other polynomials
of the variables X ′(1, n), X ′′(1, n), . . . , X ′(t, n), X ′′(t, n) respectively x′1, x

′′
1, . . . , x′t, x

′′
t , via

the equations: Y (j, n) = 2−1/2(X ′(j, n) + iX ′′(j, n)) and yj = 2−1/2(x′j + ix′′j ). �

5 A Strengthening of the Main Result of [HT2]

Let H, K be Hilbert spaces and let a1, . . . , ar be elements of B(H,K). Assume that∥∥ r∑
i=1

a∗iai
∥∥ ≤ c and

∥∥ r∑
i=1

aia
∗
i

∥∥ ≤ 1, (5.1)

for some constant c in ]0,∞[, and that the C∗-subalgebra A of B(H) generated by the
set {a∗iaj | 1 ≤ i, j ≤ r} ∪ {111B(H)}, is exact. Consider furthermore, for each n in N ,
independent elements Y (1, n), . . . , Y (r, n) of GRM(n, 1

n
), and define

Sn =
r∑
i=1

ai ⊗ Y (i, n), (n ∈ N). (5.2)

In [HT2, Theorem 4.5], it was proved, that in this setting

lim sup
n→∞

max
[
sp(S∗nSn)

]
≤
(√

c + 1
)2

, almost surely. (5.3)

It was proved, furthermore, that if, instead of (5.1), a1, . . . , ar, satisfy the condition

r∑
i=1

a∗i ai = c111B(H) and
r∑
i=1

aia
∗
i ≤ 111B(K), (5.4)

for some constant c in [1,∞[, then

lim inf
n→∞

min
[
sp(S∗nSn)

]
≥
(√

c− 1
)2

, almost surely, (5.5)

(cf. [HT2, Theorem 8.7]). In this section, we use the results of Section 4 to show, in
particular, that if a1, . . . , ar satisfy the condition:

r∑
i=1

a∗iai = c111B(H) and
r∑
i=1

aia
∗
i = 111B(K), (5.6)

for some constant c in ]0,∞[, then we can replace lim sup in (5.3) by lim. Moreover, if
c ≥ 1, then we can also replace lim inf in (5.5) by lim.

In order to make use of the results of Section 4 for the particular Sn’s introduced in
(5.2), we need to determine (under the assumption of (5.6)), the spectrum of s∗s, where
s =

∑r
i=1 ai ⊗ yi, and y1, . . . , yr is a circular system in some C∗-probability space (B, τ).

We obtain this by determining the distribution of s∗s w.r.t. φ⊗ τ , for an arbitrary state
φ on A.
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5.1 Lemma. Let a1, . . . , ar be elements of B(H,K), let A denote the (not necessarily
exact) C∗-subalgebra of B(H) generated by {a∗i aj | 1 ≤ i, j ≤ r} ∪ {111B(H)}, and let φ be
a state on A. Consider furthermore a circular system y1, . . . , yr in some C∗-probability
space (B, τ), and put s =

∑r
i=1 ai ⊗ yi. Then for any p in N ,

φ⊗ τ((s∗s)p) =
∑
π∈Snc

p

( ∑
1≤i1,... ,ip≤r

φ(a∗i1aiπ(1)
· · ·a∗ipaiπ(p)

)
)
,

where Snc
p (as in [HT2, Definition 1.14]) denotes the set of permutations π in Sp, for which

the permutation π̂, described in Remark 2.10, is non-crossing.

Proof. For each n in N , let Y (1, n), . . . , Y (r, n) be independent elements GRM(n, 1
n
), and

define

Sn =
r∑
i=1

ai ⊗ Y (i, n), (n ∈ N).

It follows then from Lemma 4.1(ii) and Remark 4.8, that for each p in N ,

E
[
φ⊗ trn

(
(S∗nSn)

p
)]
→ φ⊗ τ

(
(s∗s)p

)
, as n→∞. (5.7)

On the other hand, it follows from [HT2, Corollary 2.2], that for each p in N ,

E
[
φ⊗ trn

(
(S∗nSn)

p
)]

=
∑
π∈Sp

n−2σ(π̂)
( ∑

1≤i1,... ,ip≤r
φ(a∗i1aiπ(1)

· · ·a∗ipaiπ(p)
)
)
. (5.8)

Recall here from Proposition 2.16, that for any π in Sp, σ(π̂) ≥ 0, with equality if and
only if π̂ is non-crossing. Therefore (5.8) implies that

E
[
φ⊗ trn

(
(S∗nSn)

p
)]
→
∑
π∈Snc

p

( ∑
1≤i1,... ,ip≤r

φ(a∗i1aiπ(1)
· · ·a∗ipaiπ(p)

)
)
, as n→∞. (5.9)

Combining (5.7) and (5.9), we obtain the desired formula. �

5.2 Proposition. Let a1, . . . , ar be elements of B(H,K), such that (5.6) holds for some
constant c in ]0,∞[. Let A denote the (unital) C∗-subalgebra of B(H) generated by the
set {a∗iaj | 1 ≤ i, j ≤ r}, and let φ be a state on A. Consider furthermore a circular
system y1, . . . , yr in some C∗-probability space (B, τ), and put s =

∑r
i=1 ai ⊗ yi.

Then, the distribution of s∗s w.r.t. the state φ ⊗ τ on A ⊗ B, is the Mazchenko-Pastur
distribution (also known as the free Poisson distribution) µc with parameter c, i.e., the
probability measure on R, given by

µc = max{1− c, 0}δ0 +

√
(x− a)(b− x)

2πx
· 1[a,b](x) · dx,

where a = (
√

c− 1)2, b = (
√

c + 1)2, and δ0 is the Dirac measure at 0.
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Proof. Let the situation be as set out in the proposition. In [HT2, Corollary 5.4(i)], it
was proved, that in this setting, we have the equation:∑

π∈Snc
p

( ∑
1≤i1,... ,ip≤r

a∗i1aiπ(1)
· · ·a∗ipaiπ(p)

)
=
[

1
p

p∑
j=1

(
p
j

)(
p
j−1

)
cj
]
· 111B(H),

and combining this with Lemma 5.1, it follows that

φ⊗ τ
(
(s∗s)p

)
= 1

p

p∑
j=1

(
p
j

)(
p
j−1

)
cj, (p ∈ N). (5.10)

Recall finally from [OP] or [HT1, Remark 6.8], that the right hand side of (5.10) is exactly
the p’th moment of µc, and hence we obtain the desired conclusion. �

5.3 Corollary. Let a1, . . . , ar be elements of B(H,K), such that (5.6) holds for some con-
stant c in ]0,∞[. Consider furthermore a circular system y1, . . . , yr in some C∗-probability
space (B, τ), and put s =

∑r
i=1 ai ⊗ yi. Then, if τ is faithful, the spectrum sp(s∗s) of s∗s

is equal to the support of the Mazchenko-Pastur distribution µc, i.e.,

sp(s∗s) =

{
[(
√

c− 1)2, (
√

c + 1)2], if c ≥ 1,

{0} ∪ [(
√

c− 1)2, (
√

c + 1)2], if c ∈ [0, 1].

Proof. Let A denote the (unital) C∗-subalgebra of B(H) generated by the set

{a∗iaj | 1 ≤ i, j ≤ r},

and note that since A is clearly separable, we may choose a faithful state φ on A. Since
τ is assumed faithful on B, it follows then from Lemma 4.4, that φ ⊗ τ is faithful on
A⊗B. It is straight-forward to show, that this implies, that for any selfadjoint element b
of A⊗B, sp(b) is equal to the support of the distribution of b w.r.t. φ⊗ τ . In particular,
this holds for b = s∗s. �

We are now able to strengthen the main result in [HT2], in the case where (5.6) holds (cf.
[HT2, Theorem 0.1].

5.4 Theorem. Let a1, a2, . . . , ar be elements of B(H,K), such that
∑r

i=1 a∗i ai = c ·111B(H)

and
∑r

i=1 aia
∗
i = 111B(K), for some positive, real number c. Let A denote the (unital) C∗-

subalgebra of B(H) generated by the set {a∗iaj | 1 ≤ i, j ≤ r}, and assume that A is exact.
Consider furthermore, for each n in N , independent elements Y (1, n), Y (2, n), . . . , Y (r, n)
of GRM(n, 1

n
), and define Sn =

∑r
i=1 ai ⊗ Y (i, n). We then have

(i) max
{
sp(S∗nSn)

}
→
(√

c + 1
)2

, almost surely, as n→∞.

(ii) If c ≥ 1, then

min
{
sp(S∗nSn)

}
→
(√

c− 1
)2

, almost surely, as n→∞.

(iii) If c < 1, then

min
{
sp(S∗nSn)

}
→ 0, almost surely, as n→∞.
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Proof. It follows from [HT2, Theorem 0.1], that under the given assumptions, we have

lim sup
n→∞

(
max

{
sp(S∗nSn)

})
≤
(√

c + 1
)2

, almost surely (5.11)

and

lim inf
n→∞

(
min

{
sp(S∗nSn)

})
≥
(√

c− 1
)2

, almost surely, (5.12)

if c ≥ 1.

On the other hand, let y1, y2, . . . , yr be a circular system in a C∗-probability space (B, τ),
and assume that τ is faithful. Then with s =

∑r
i=1 ai ⊗ yi, we have by Remark 4.8 and

Corollary 4.5,

lim inf
n→∞

(
max

{
sp(S∗nSn)

})
≥ max

{
sp(s∗s)}, almost surely, (5.13)

and

lim sup
n→∞

(
min

{
sp(S∗nSn)

})
≤ min

{
sp(s∗s)}, almost surely. (5.14)

By Corollary 5.3, we have here that max{sp(s∗s)} = (
√

c + 1)2, and that min{sp(s∗s)} =
(
√

c− 1)2, if c ≥ 1. Combining this with (5.11)-(5.14), we obtain (i) and (ii).

If c < 1, then Corollary 5.3 yields that min{sp(s∗s)} = 0, and hence (iii) follows directly
from (5.14). �

Having determined the asymptotic behavior of the largest and smallest elements of the
spectrum of S∗nSn, one might consider the corresponding problem for SnS

∗
n. This is settled,

however, by applying Theorem 5.4 with ai replaced by c−
1
2 a∗i and c by c−1, recalling that

GRM(n, 1
n
) is invariant under the ∗-operation. If c > 1, the case of main interest, it follows

in particular by Theorem 5.4(iii), that min{sp(SnS
∗
n)} → 0, almost surely, as n → ∞.

In Proposition 5.6 below, we sharpen this conclusion, even for a1, . . . , ar satisfying the
condition (5.4), instead of the stronger condition (5.6), which is assumed in Theorem 5.4.
In order to handle this more general setting, we need the following

5.5 Lemma. Let a1, . . . , ar be elements of B(H,K), such that

r∑
i=1

a∗i ai = c111B(H) and
∥∥ r∑
i=1

aia
∗
i

∥∥ ≤ 1, (5.15)

for some constant c in ]1,∞[. Let further y1, . . . , yr be a circular system in some C∗-
probability space (B, τ), with τ faithful. Then with s =

∑r
i=1 ai ⊗ yi, we have that

0 /∈ sp(s∗s) and 0 ∈ sp(ss∗).

Proof. The proof is similar to the proof of [Haa, Lemma 2.3]; the main difference being
that presently we consider circular systems, instead of the semi-circular systems considered
in [Haa, Lemma 2.3].
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Note first that by replacement of ai by c−
1
2 ai, we may assume that a1, . . . , ar satisfy the

condition

r∑
i=1

a∗i ai = 111B(H) and
∥∥ r∑
i=1

aia
∗
i

∥∥ < 1, (5.16)

instead of (5.15).

We note next, that since τ (and hence the corresponding GNS.-representation) is faith-
ful, it follows from [Vo2, Remark 1.8], that we can replace the given circular system
{y1, . . . , yr} in (B, τ) by our favorite circular system in our preferred C∗-probability space
with faithful state. As our favorite circular system, we choose here the circular system
that is naturally obtained from left creation operators on full Fock space. We repeat
briefly the construction:

Let L be a Hilbert space of dimension 2r and choose an orthonormal basis

{e1, . . . , er, f1, . . . , fr}

for L. Consider then the full Fock space associated to L,

T (L) = C ζ0 ⊕
[ ∞⊕
n=1

L⊗n
]
,

where ζ0 is a unit-vector. To each vector h in L, we associate the left creation operator
`(h) in B(T (L)), defined by the equations

`(h)ζ0 = h,

`(h)(h1 ⊗ · · · ⊗ hn) = h⊗ h1 ⊗ · · · ⊗ hn, (n ∈ N , h1, . . . , hn ∈ L).

It is routine to verify the following properties (cf. [VDN, Example 1.5.8]),

`(h)∗ζ0 = 0, (h ∈ L), (5.17)

`(h1)
∗`(h2) = 〈h2, h1〉111B(T (L)), (h1, h2 ∈ L). (5.18)

Define now,
yi = 1

2

(
`(ei) + `(fi)

∗), (i ∈ {1, 2, . . . , r}).
Then it is well-known that the family {yi | 1 ≤ i ≤ r} is a circular system w.r.t. the
vector state τ = 〈 · ζ0, ζ0〉, and that τ is faithful on the C∗-algebra B = C∗(y1, . . . , yr) (cf.
[Vo2, Remark 1.11 and (proof of) Proposition 2.2]). Thus, as mentioned above, it suffices
to prove the lemma with this choice y1, . . . , yr, B and τ .

Note then, that in this situation, we have

2s = 2
r∑
i=1

ai ⊗ yi =
r∑
i=1

ai ⊗ `(ei) +
r∑
i=1

ai ⊗ `(fi)
∗ = v + w,

where v =
∑r

i=1 ai ⊗ `(ei) and w =
∑r

i=1 ai ⊗ `(fi)
∗.
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By (5.18) and (5.16), we have here that

v∗v =
r∑

i,j=1

a∗i aj ⊗ `(ei)
∗`(ej) =

r∑
i=1

a∗i ai ⊗ 111B(T (L)) = 111B(H⊗T (L)),

so that v is an isometry. On the other hand, (5.17) shows that K⊗ ζ0 ⊆ ker(v∗), so that
v∗ is not an isometry. Hence v is a non-unitary isometry.

By (5.18) it follows furthermore, that

ww∗ =
r∑

i,j=1

aia
∗
j ⊗ `(fi)

∗`(fj) =
r∑
i=1

aia
∗
i ⊗ 111B(T (L)),

and combining this with (5.16), we see that

‖w‖2 = ‖ww∗‖ =
∥∥ r∑
i=1

aia
∗
i

∥∥ < 1.

Now, for any vector ξ in H⊗ T (L),

‖2sξ‖ = ‖(v + w)ξ‖ ≥ ‖vξ‖ − ‖wξ‖ ≥ ‖ξ‖ − ‖w‖‖ξ‖ = (1− ‖w‖)‖ξ‖,

which shows that 4s∗s ≥ (1− ‖w‖)2111B(H⊗T (L)). Since ‖w‖ < 1, it follows thus that s∗s is
invertible in B(H⊗ T (L)), i.e., that 0 /∈ sp(s∗s).

Note next that

2s = v + w = (111B(K⊗T (L)) + wv∗)v. (5.19)

Here 111B(K⊗T (L)) + wv∗ is invertible in B(K⊗T (L)), since ‖wv∗‖ ≤ ‖w‖ < 1. Hence, since
v is not invertible in B(H ⊗ T (L),K ⊗ T (L)), (5.19) shows that s cannot be invertible
in B(H⊗T (L),K⊗ T (L)) either. Since s∗s is invertible, this implies that ss∗ cannot be
invertible, i.e., that 0 ∈ sp(ss∗). Indeed, ss∗(K ⊗ T (L)) ⊆ s(H ⊗ T (L)), so if ss∗ was
invertible, s would be both injective and surjective. �

5.6 Proposition. Let a1, . . . , ar be elements of B(H,K), such that
∑r

i=1 a∗i ai = c111B(H)

and ‖
∑r

i=1 aia
∗
i ‖ ≤ 1, for some constant c in ]1,∞[. Let A denote the (unital) C∗-

subalgebra of B(H) generated by the set {a∗i aj | 1 ≤ i, j ≤ r}, and assume that A is
exact. Consider furthermore, for each n in N, independent elements Y (1, n), . . . , Y (r, n)
of GRM(n, 1

n
), and define Sn =

∑r
i=1 ai ⊗ Y (i, n). Then on a set with probability one,

0 ∈ sp(SnS
∗
n), for all but finitely many n.

Proof. Let y1, . . . , yr be a circular system in some C∗-probability space (B, τ), and assume
that τ is faithful. Then with s =

∑r
i=1 ai ⊗ yi, we have according to Lemma 5.5, that

0 ∈ sp(ss∗). By application of Proposition 4.5 and Remark 4.8, with ai replaced by a∗i ,
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and recalling that GRM(n, 1
n
) as well as the circular system {y1, . . . , yr} is invariant under

the ∗-operation, it follows that

lim sup
n→∞

(
min

{
sp(SnS

∗
n)
})
≤ 0, almost surely. (5.20)

On the other hand, it follows from [HT2, Theorem 0.1], that

lim inf
n→∞

(
min

{
sp(S∗nSn)

})
≥ (
√

c− 1)2, almost surely. (5.21)

Let S denote the set of ω’s in Ω, for which (5.20) and (5.21) hold. Then S is a sure
event. Assume that ω ∈ S. Then, since c > 1, we may choose an Nω in N , such that
min{sp(Sn(ω)Sn(ω)∗)} < 1

2
(
√

c−1)2, and min{sp(Sn(ω)∗Sn(ω))} > 1
2
(
√

c−1)2, whenever
n ≥ Nω. Recalling then that

sp(S∗n(ω)Sn(ω)) ∪ {0} = sp(Sn(ω)S∗n(ω)) ∪ {0},

(cf. [KR, Proposition 3.2.8]), it follows that we must have 0 ∈ sp(Sn(ω)Sn(ω)∗), whenever
n ≥ Nω. This completes the proof. �

6 Semi-circular Families in Ultra Products of Matrix

Algebras, and a Result of S. Wassermann

We start this section by recalling the ultra product construction associated to a sequence
of finite von Neumann algebras, and a free ultra filter U on N . For the results stated
below about this construction, we refer to [Mc].

For each n in N , letMn be a finite von Neumann algebra acting on the Hilbert space Hn,
and let τn be a normalized trace onMn. Consider then the direct sum

`∞({Mn}) =
⊕
n∈N
Mn =

{
(xn)

∣∣ xn ∈Mn for all n, and sup
n∈N
‖xn‖ <∞

}
.

Then `∞({Mn}) may be considered as an algebra of “diagonal matrices” acting on the
Hilbert space ⊕n∈NHn, and using this description, it is easily seen that `∞({Mn}) is a
von Neumann algebra acting on ⊕n∈NHn.

Now consider, in addition, a free ultra filter U on N . Recalling, that any bounded sequence
of complex numbers converges along an ultra filter, we then put

IU =
{
(xn) ∈ `∞({Mn})

∣∣ lim
n→U
‖xn‖2 = 0

}
,

where ‖xn‖2 denotes the 2-norm of xn w.r.t. the trace τn. Then IU is a two-sided, ∗-
invariant, norm-closed ideal in `∞({Mn}), and hence we may consider the quotient C∗-
algebra

`∞({Mn},U) := `∞({Mn})/IU .
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Let Ψ denote the quotient ∗-homomorphism of `∞({Mn}) onto `∞({Mn},U). We then
have a natural faithful, normalized trace τU on `∞({Mn},U) given by

τU
(
Ψ[(xn)]

)
= lim

n→U
τn(xn),

(
(xn) ∈ `∞({Mn})

)
.

It can be shown, that in the faithful GNS.-representation of `∞({Mn},U), associated to
τU , `∞({Mn},U) is a finite von Neumann algebra (in standard form). We call `∞({Mn},U)
the ultra product of the finite von Neumann algebrasM1,M2, . . . , associated to the free
ultra filter U .

Next, let G be a countable, discrete, ICC group, and consider the II1 factor L(G) associ-
ated with the left regular representation of G on l2(G). In [Wa1], S. Wassermann proved
that if G is, in addition, residually finite (i.e., there exists a decreasing sequence of normal
subgroups of G, each of which has finite index in G, and whose intersection is the unit
of G), then for any free ultra filter U on N , L(G) can be embedded (as a C∗-algebra)
into the ultra product of Mn1(C ), Mn2 (C ), Mn3 (C ), . . . , associated to U , for a suitable
sequence n1, n2, n3, . . . , of positive integers. Since the free group Fm on m generators is
residually finite for any m in {2, 3, 4, . . .} ∪ {∞} (cf. [Wa2, Lemma 3.6]), it follows, in
particular, that the free group factors L(Fm), 2 ≤ m ≤ ∞, can be embedded into ultra
products of certain matrix algebras. By application of the results obtained in Section 3,
we are able to give a new proof of this result (cf. Corollary 6.3). In fact, we prove a
slightly stronger result, namely that the positive integers n1, n2, n3, . . . , may be chosen as
1, 2, 3, . . . . We achieve this by proving the existence of a semi-circular sequence {xj}j∈N
in the W ∗-probability space (`∞({Mn(C )},U), τU ). Once this has been established, we
may appeal to the fact (already used in the proof of Lemma 5.5), that under certain
faithfulness assumptions, two families of non-commutative random variables with equal
joint ∗-distributions, generate ∗-isomorphic W ∗-algebras (cf. [Vo2, Remark 1.8]).

We start by stating the following result from [HT1]:

6.1 Lemma. For each n in N , let Xn be an element of SGRM(n, 1
n
). Then

lim
n→∞
‖Xn‖ = 2, almost surely.

In particular, (Xn(ω))n∈N ∈ `∞({Mn(C )}), for almost all ω in Ω.

Proof. This was proved in [HT1, Theorem 3.1]. �

Now, for each n in N , consider a sequence (Xj,n)j∈N of independent elements of SGRM(n, 1
n
),

and for each j in N define

Sj =
{
ω ∈ Ω

∣∣ (Xj,n(ω))n∈N ∈ `∞({Mn(C )})
}
.

According to Lemma 6.1, Sj is a sure event for each j, and hence so is the set

S :=
⋂
j∈N
Sj .

Consider then also a free ultra filter U on N , and let Ψ: `∞({Mn(C )}) → `∞({Mn(C )},U)
denote the quotient ∗-homomorphism. We then define

xj(ω) = Ψ
(
(Xj,n(ω))n∈N

)
, (ω ∈ S, j ∈ N). (6.1)
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6.2 Proposition. Let the situation be as described above. Then for almost all ω in the
sure event S, {xj(ω)}j∈N is a semi-circular family in (`∞({Mn(C )},U), τU ).

Proof. Let {x′j}j∈N be a semi-circular family in some non-commutative probability space
(B, τ). Then for any p, i1, i2, . . . , ip in N , we define:

T (i1, i2, . . . , ip) =
{
ω ∈ Ω

∣∣ lim
n→∞

trn
[
Xi1,n(ω)Xi2,n(ω) · · ·Xip,n(ω)

]
= τ [x′i1x

′
i2 · · ·x

′
ip ]
}
.

By Theorem 3.6, T (i1, i2, . . . , ip) is a sure event for all p, i1, i2, . . . , ip, and hence so is the
set

T =
⋂
p∈N

⋂
(i1,... ,ip)∈Np

T (i1, i2, . . . , ip).

Now, for any ω in T ∩ S and any p, i1, i2, . . . , ip in N ,

τ [x′i1x
′
i2 · · ·x

′
ip ] = lim

n→∞
trn
[
Xi1,n(ω)Xi2,n(ω) · · ·Xip,n(ω)

]
= lim

n→U
trn
[
Xi1,n(ω)Xi2,n(ω) · · ·Xip,n(ω)

]
= τU

[
Ψ
(
(Xi1,n(ω))n∈N · (Xi2,n(ω))n∈N · · · (Xip,n(ω))n∈N

)]
= τU

[
xi1(ω)xi2(ω) · · ·xip(ω)

]
.

This shows that for any ω in S ∩ T , {xj(ω)}j∈N is a semi-circular family in the W ∗-
probability space (`∞({Mn(C )},U), τU ). �

6.3 Corollary. For any m in {2, 3, 4, . . .} ∪ {∞} and any free ultra filter U on N , there
exists an injective ∗-homomorphism Φ: L(Fm)→ `∞({Mn(C )},U).

Proof. Let xj , j ∈ N , be as defined in (6.1). According to Proposition 6.2, there exists
an ω in Ω, such that {xj(ω)}j∈N is a semi-circular family in (`∞({Mn(C )},U), τU ). Let
M denote the W ∗-subalgebra of `∞({Mn(C )},U) generated by {xj(ω)}mj=1. Then, since
τU (and hence the corresponding GNS.-representation) is faithful, it follows from [Vo2,
Remark 1.10], thatM is isomorphic, as a W ∗-algebra, to L(Fm). �

Appendix. Faithfulness of Product States

Lemma. Let C andD be unital C∗-algebras, and let φ,ψ be states on C andD respectively.
If φ and ψ are both faithful, then so is the product state φ⊗ψ on the minimal (= spatial)
tensor product C ⊗ D.

Proof. Recall that the right slice map Rφ : C ⊗ D → D, associated to φ, is given by:

Rφ(A⊗B) = φ(A) ·B, (A ∈ C, B ∈ D).

Since Rφ is positive, and φ⊗ψ = ψ ◦Rφ, it suffices thus to show, that Rφ is faithful when
φ is.
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In the first part of the proof, we derive a matrix representation for elements of the minimal
tensor product C ⊗ D, and determine the corresponding appearance of Rφ. We give the
argument leading to these matrix representations, by listing a number of claims/facts, that
add up to the desired result. Each of the claims/facts can either be found in standard
text-books or realized by minor considerations.

(a) Note first that we may assume that C and D are unital C∗-subalgebras of B(H)
respectively B(K), for suitable Hilbert spaces H and K.

(b) Let (ξi)i∈I be an orthonormal basis for K. With respect to this basis, any operator
B in B(K) has a representation as a matrix B = (bij)i,j∈I, where bij ∈ C for all i, j
in I. This representation is such that

B
(∑

i∈I
tiξi
)

=
∑
i∈I

(∑
j∈I

bijtj
)
ξi,

(
(ti)i∈I ∈ `2(I)

)
.

If (Bn) is a sequence in B(K), such that Bn → B in norm, then b
(n)
ij → bij , for all i, j

in I, where Bn = (b
(n)
ij ) is the matrix representation of Bn (cf. [KR, pp. 147-148]).

(c) Put Hi = H for all i in I. Then the Hilbert space H⊗K is isomorphic (as a Hilbert
space) to the Hilbert space direct sum

⊕
i∈I Hi, via the (unitary) operator U , given

by

U
(
(xi)i∈I

)
=
∑
i∈I

xi ⊗ ξi,
(
(xi)i∈I ∈

⊕
i∈IHi

)
(cf. [KR, pp. 148-149]).

(d) Each operator T in B(
⊕

i∈IHi) has a representation as a matrix T = (Tij)i,j∈I,
where Tij ∈ B(H) for all i, j in I. This representation is such that

T
(
(xi)i∈I

)
=
(∑
j∈I

Tijxj

)
i∈I

,
(
(xi)i∈I ∈

⊕
i∈IHi

)
.

If (Tn) is a sequence in B(
⊕

i∈I Hi), such that Tn → T in norm, then T
(n)
ij → Tij

in norm, for all i, j in I, where Tn = (T (n)
ij ) is the matrix representation of Tn. (cf.

[KR, pp. 148-149]).

(e) Combining (c) and (d), it follows that any operator T in B(H ⊗ K) has a matrix
representation T = (Tij)i,j∈I , where Tij ∈ B(H) for all i, j ∈ I. This representation
is such that

T
(∑

i∈I
xi ⊗ ξi

)
=
∑
i∈I

(∑
j∈I

Tijxj

)
⊗ ξi,

(
(xi)i∈I ∈

⊕
i∈IHi

)
.

If (Tn) is a sequence in B(H ⊗ K), such that Tn → T in norm, then T
(n)
ij → Tij in

norm, for all i, j in I, where Tn = (T
(n)
ij ) is the matrix representation of Tn.
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(f) If T from B(H ⊗ K) is of the form T = A ⊗ B, where A ∈ B(H) and B ∈ B(K),
then the matrix representation of T from (e) is given by T = (Abij)i,j∈I , where
B = (bij)i,j∈I is the matrix representation of B from (b).

(g) Consider now the given C∗-algebras C ⊆ B(H) and D ⊆ B(K). From (f) and
linearity, it follows then, that for any T in the algebraic tensor product C � D, the
matrix representation of T from (e) is given by T = (Tij)i,j∈I , where Tij ∈ C, for all
i, j in I. By the continuity assertion in (e), the same is true for any element T in
the minimal tensor product C ⊗D.

(h) Consider now the right slice map Rφ : C ⊗D → D associated to φ, and let A and B
be elements of C respectively D. It follows then, that with B = (bij)i,j∈I the matrix
representation of B from (b),

Rφ(A⊗B) = Rφ

(
(Abij)i,j∈I

)
= (φ(A)bij)i,j∈I ,

where the first equality follows from (f), and the last equality means that (φ(A)bij)i,j∈I
is the matrix representation of Rφ(A⊗B) = φ(A)B from (b).

(i) Let T be an element of the algebraic tensor product C �D, and consider the matrix
representation T = (Tij) from (e). By (f), (g), (h) and linearity, it follows then that

Rφ(T ) = (φ(Tij))i,j∈I ,

in the sense that (φ(Tij))i,j∈I is the matrix representation of Rφ(T ) from (b). By the
last assertion in (g), continuity of Rφ, the continuity assertions in (b) and (e) and
continuity of φ, it follows then that the same formula holds for any T from C ⊗ D.

Having obtained the desired matrix representations for elements of C ⊗ D and for Rφ,
assume now that T ∈ C ⊗ D, that T ≥ 0 and that Rφ(T ) = 0. Consider then the matrix
representation T = (Tij)i,j∈I of T from (e). By (i), the assumption that Rφ(T ) = 0 means
that

φ(Tij) = 0, (i, j ∈ I). (6.2)

Since T ≥ 0, it follows that Tii ≥ 0 for all i in I, and hence, since φ is faithful, (6.2)
implies that Tii = 0 for all i in I. Next, for any distinct i, j in I, consider the 2×2 matrix(

Tii Tij
Tji Tjj

)
.

Since T is positive, so is this matrix, considered as an operator in B(H ⊕H). Knowing
that Tii = Tjj = 0, this implies that also Tij = Tji = 0, as desired. �
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