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times. Then, one can prove (see e.g. [5, p. 63]) that g and f0 are related by

g(y) =

R1
y

f0(x) dxR1
0

zf0(z) dz
:(1.2)

Substituting

f(x) =
xf0(x)R1

0
zf0(z) dz

;

into (1.2) we see that g and f are related by (1.1). Once obtaining an estimate f̂ of

f one can transform back to an estimate f̂0 of f0 by

f̂0(x) =
f̂(x)=xR1

0
f̂(z)=z dz

:

The reason for this relation is we are sampling with a length bias. Length biased
sampling of forward recurrence times arises naturally in many applications. Examples
can be found in [6, 20]. The application we have in mind, which have a sample size
where non-parametric density estimation is sensible, is due to St�vring and Vach
[24]. In OPED, Odense PharmaEpidemiologic Database, prescription redemptions
are registered for the county of Funen, Denmark (approximately 450000 inhabitants).
Connected to this study it is of interest to estimate the waiting time distribution of
redemptions of a certain drug based on the observed time to the �rst redemption.

A tempting approach for estimating f would be to make an estimate ĝ of g by
standard methods and then use f̂ = K�1ĝ as an estimate of f . However, this could
be a hazardous procedure as in many interesting scienti�c applications (including the
present) K�1 is not a bounded linear operator. Whence, even small perturbations

of ĝ may result in large distortions of f̂ . Such inverse problems are often termed
ill-posed. For mathematical and statistical perspectives on ill-posedness see [16] and
[19], respectively.

A vast literature exists on solutions to these types of problems. The most eye-
catching is o�-course to assume that f belongs to a exible parametric family of
densities and then estimate the parameters by maximum likelihood or a Bayesian
procedure. However, lack of knowledge and high irregularity of the underlying density
f can make this procedure infeasible and it is tempting to turn to more exible non-
parametric methods. One approach is to use non-parametric maximum likelihood
estimation (NPMLE). This was suggested for the present problem in [26]. For recent
references see [10, 11]. An alternative to NPMLE would be to use a non-parametric
Bayesian approach as suggested in [4].

Di�erent routes are to use a kernel estimate or a series expansion of the desired
density f . For a review of these ideas up to 1985 see [19]. The theory has since
then developed in di�erent directions. A direction (which is taken in the present
paper) is to expand f based on a singular value decomposition (SVD) of K. In the
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statistics context this was popularized by [14, 15]. For recent contributions drawing on
more general spectral theory for bounded operators cf. [7, 18, 25]. The most recent
direction being applying wavelets as basis functions in the reconstruction, see e.g.
[1] and [8]. From non-parametric function estimation Koo and Chung [17] imported
the idea of applying log-density estimation in conjunction with maximum indirect
likelihood estimation (MILE) to inverse problems.

An overview of the general theory behind SVD based estimators is given in Sec-
tion 2. In Section 3 an SVD of the operator K is derived and two truncated SVD
estimators are formulated. We justify the estimator in Section 4 by studying asymp-
totic convergence properties. A data-driven method for choosing the regularization
parameter is suggested in Section 5. In order to get some idea of the �nite sample
properties of the estimators suggested a simulation study is conducted in Section 6.
Finally, a brief description of some open problems is given in Section 7.

2. General theory. In our treatment of the problem, we assume f has bounded
support. By rede�ning the units of measurements if necessary, we assume without
loss of generality that f and hence g are supported on (0; 1).

Throughout the paper let f and g be densities with respect to Lebesgue measure
on (0; 1) and F = L2�(0; 1) and G = L2�(0; 1) be Hilbert spaces of functions which
are square integrable with respect to the absolutely continuous measures � and �,
respectively.

Consider now the following general statistical inverse problem. Assume we have
a random sample Y1; : : : ; Yn from a density g which is related to another density f by

g = Kf;(2.1)

where K : F ! G is a linear operator. Estimate the density f .
If we assume K is bounded we can consider the selfadjoint operator L = K�K,

where K� is the adjoint of K. Additionally, if L is compact, we know K possesses an
SVD (see [16, Appendix A.5]). That is, there exist an ordered sequence of positive
numbers �1 � �2 � : : : > 0 (called singular values) and orthonormal systems (fj) � F
and (gj) � G such that

Kfj = �jgj ;(2.2)

K�gj = �jfj ;(2.3)

and

f = f0 +
1X
j=1

��1j (g; gj)fj;(2.4)

for some f0 2 N (K), where N (K) denotes the null-space of K. Equation (2.1) is
uniquely solvable when g satis�es the Picard conditions

P1
j=1 j(g; gj)j=�2j < 1 and

g 2 N (K�)? and in this case

f =
1X
j=1

��1j (g; gj)fj :
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Actually the singular values can be expressed by �j =
p
�j , where �j is the j'th

eigenvalue of the selfadjoint compact operator L : F ! F .
We now use that given a sample Y1; : : : ; Yn from g we can approximate the inner

product (g; gj) by

(g; gj) =

Z 1

0

gj(y)g(y)�(dy)' n�1
nX
i=1

gj(Yi)
d�(Yi)

dy
;(2.5)

and thereby if g satis�es the Picard conditions obtain the following SVD reconstruc-
tion formula

f̂n(x) =
1X
j=1

��1j

"
n�1

nX
i=1

gj(Yi)
d�(Yi)

dy

#
fj(x):(2.6)

Normally, the singular functions fj and gj oscillates more and more for decreasing
values of �j and we would therefore expect the approximation in (2.5) to be bad
for high values of j. This is ampli�ed in the reconstruction (2.6). However, if we
assume that only the coe�cients (g; gj) early in the expansion are important we can
choose to down weight the contribution from ��1j . We now introduce the following
regularization family

��(t) =
1

t
1(t � �); t > 0; � > 0;

which is used to construct the following windowed SVD reconstruction formula

f̂n(x) =
1X
j=1

��(�j)

"
n�1

nX
i=1

gj(Yi)
d�(Yi)

dy

#
fj(x):(2.7)

=
X

j:�j��
��1j

"
n�1

nX
i=1

gj(Yi)
d�(Yi)

dy

#
fj(x):(2.8)

Thus, �� is seen to cuto� big values of ��1j and is therefore termed spectral cuto�.
Hence (2.7) is the spectral cuto� solution.

Remark 2.1. In regularization theory [16, Chapter 2] a regularization family is a
family of linear bounded operators R� : G ! F ; � > 0 such that lim�!0R�Kf = f
for all f 2 F , i.e. the operator R�K converges pointwise to the identity. If we
put R�g =

P1
j=1 ��(�j)(g; gj)fj we immediately obtain that the cuto� scheme is a

regularization family. For further properties of the cuto� scheme cf. [16, Chapter 2]
and [25].

Remark 2.2. There exists a number of other possibilities for regularization fam-
ilies, e.g. ��(x) = 1=(� + x); x > 0; � > 0. This corresponds to minimizing the
Tikhonov functional J�(f) = kKf � gk� + �kfk2�, see for instance [16, Section 2.2].
But in the present paper we deal exclusively with the former as it is easy to deal with
in asymptotics and empirical choices of the �-value.
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Remark 2.3. The possibility of negativeness with SVD-based estimators may be
resolved by projection in L2�(0; 1), that is ~fn(x) = maxff̂n(x); 0g, see e.g. [9, Remark
2.3].

3. SVD of the operator.

3.1. Estimation based on Bessel functions. In this section we introduce two
estimators for the unknown f based on SVD. First, we let F = L2�(0; 1) denote the
space of functions on (0; 1) which are square integrable with respect to the dominating
measure d�(x) = x�1 dx and G = L2�(0; 1) the space of functions on (0; 1) which
are square integrable with respect to Lebesgue measure, �. Hence, the operator
K : F ! G can be expressed by

Kf(y) =

Z 1

y

f(x) d�(x); 0 < y < 1:

In order to achieve an SVD for operator K we �rst show K�K is compact. First of
all notice that

Kf(y) =

Z 1

0

1(y � x)f(x) d�(x)

and therefore by Cauchy-Schwartz's inequality

kKfk2 =
Z 1

0

jKf(y)j2 dy

�
Z 1

0

Z 1

0

1(y � x) d�(x)

Z 1

0

f(x)2 d�(x) dy

= �kfk2�
Z 1

0

ln(y) dy

= kfk2�:
This shows us that Kf 2 G for all f 2 F and that K is a bounded linear map.

Furthermore, consider the self-adjoint operator L = K�K : F ! F which by
Fubini's Theorem can be expressed by

Lf(z) =

Z z

0

Z 1

y

f(x) d�(x) dy

=

Z 1

0

f(x)

Z 1

0

1(x � y)1(y � z) dy d�(x):

Now, let k(x; z) =
R 1
0 1(y � x)1(y � z) dy, then by Schwartz's inequalityZ 1

0

Z 1

0

k2(x; z) d�(x) d�(z)

�
Z 1

0

Z 1

0

�Z 1

0

12(y � x) dy

��Z 1

0

12(y � z) dy

�
d�(x) d�(z)

= 1:
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Hence, L is Hilbert-Schmidt [21, Theorem VI.23] and therefore compact [21, Theorem
VI.22].

In order to determine the singular values we consider the eigenvalue problem
Lf = �f which is equivalent to

�f(x) =

Z x

0

Z 1

y

f(z) d�(z) dy:(3.1)

Di�erentiating twice, we observe that for � 6= 0 this is equivalent to the eigenvalue
problem

�f 00(x) +
f(x)

x
= 0

for x in (0; 1). This is seen to be a transformed version of the Bessel equation, which
has the following general solution, see e.g. [2, 9.1.51]

f(x) =
p
x

�
AJ1

�
2p
�

p
x

�
+BY1

�
2p
�

p
x

��
;

where A and B are arbitrary constants and J1 and Y1 are �rst and second kind Bessel
functions of order 1, respectively. From (3.1) we obtain that the general solution must
satisfy the following boundary conditions

lim
x!0

f(x) = 0(3.2)

and

lim
x!1

f 0(x) = 0:(3.3)

The asymptotic properties J1(x) � x=2 and Y1(x) � �1=(2�x) ([2, 9.1.7 and
9.1.9]) together with boundary condition (3.2) implies that B = 0. Notice, boundary
condition (3.3) implies that

J1

�
2p
�

�
+

2p
�
J 01

�
2p
�

�
= 0(3.4)

which by [2, Equation 9.1.30] is seen to be equivalent to

2p
�
J0

�
2p
�

�
= 0:(3.5)

As J0 is known to have a countable number of real zeroes [2, Section 9.5], we let
�1 � �2 � : : : > 0 be the ordered set of solutions to (3.4) or (3.5).
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We determine A by noting that we want an orthonormal basis and that (3.4)
together with [2, Equation 11.4.5] implies

kfjk2� =

Z 1

0

A2xJ21

 
2p
�j

p
x

!
dx

x
= 2A2

Z 1

0

xJ21

 
2p
�j
x

!
dx

= A2J21

 
2p
�j

!
= 1:

Hence

fj(x) =

�����J1
 

2p
�j

!�����
�1p

xJ1

 
2p
�j

p
x

!
;

where �j satisfy (3.5). From (2.2) we get the following expression for gj with singular
values given by �j =

p
�j

gj(y) =
1

�j
Kfj(y)

=
1p
�j

Z 1

y

fj(x) d�(x)

=

�����J1
 

2p
�j

!�����
�1 Z 2=

p
�j

2
p
y=
p
�j

J1(x) dx

=

�����J1
 

2p
�j

!�����
�1 "Z 2=

p
�j

0

J1(x) dx�
Z 2

p
y=
p
�j

0

J1(x) dx

#

which by [2, Equation 11.1.6] and (3.5) yields

gj(y) =

�����J1
 

2p
�j

!�����
�1

J0

 
2p
�j

p
y

!
:

If we assume that only the coe�cients (f; fj) early in the expansion are important
we get as estimator of g the following windowed SVD reconstruction formula

f̂�n (x) =
1X
j=1

��(�j)n
�1

nX
i=1

gj(Yi)fj(x)

=
X

j:�
�

1

2

j
��

�
� 1

2

j J1

 
2p
�j

!�2p
xJ1

 
2p
�j

p
x

!
n�1

nX
i=1

J0

 
2p
�j

p
Yi

!
:
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3.2. Estimation based on sine functions. Another possibility for reconstruc-
tion would be to substitute h(x) = f(x)=x and then consider the inverse prob-
lem of reconstructing h where we have a random sample Y1; : : : ; Yn from a density

g(y) =
R 1
y
h(x) dx or g = Kh, say. Here K : H ! G is an operator between the spaces

of functions on (0; 1) which are square integrable with respect to Lebesgue measure,
�.

It is easy to verify along the above sketched lines that K is compact and the SVD
becomes (see e.g. [16, Example A.52])

�j =
2

(2j � 1)�

hj(x) =
p
2 sin

�
2j � 1

2
�x

�
gj(y) =

p
2 cos

�
2j � 1

2
�y

�
for j = 1; 2; : : : A reconstruction formula for h is then given by

ĥ�n(x) =
1X
j=1

��(�j)

"
n�1

nX
i=1

gj(Yi)hj(x)

#
;

and for f(x) = xh(x) by

~f�n (x) = xĥ�n(x):

It seems reasonable to let � depend on the sample size n, as the more data we get
the more coe�cients we should be able to estimate. Matters related to this question
are discussed in the following section.

Remark 3.1. The procedure sketched above can also be given a interpretation as
estimation of density derivatives. Equation (1.1) can namely be written as g0(y) =
f(y)=y. Now, expand g in the cosine basis gj(y) =

p
2 cos((2j � 1)�y=2), j = 1; 2; : : :

and estimate f in the following way

~f�n (x) = x
dĝ�n(x)

dx
= x

1X
j=1

��(�j)

"
n�1

nX
i=1

gj(Yi)fj(x)

#
:

Then we arrive at the same estimator.

4. Asymptotic properties of the estimators. In the present section we shall
derive an upper bound on the mean integrated square error (MISE) which provides a
pseudo-consistency result for the estimators suggested in Section 3.

A common way of measuring the quality of an estimator f̂ based on observations
Y1; : : : ; Yn is the mean integrated square error (MISE) given by

MISE(f̂ ; f) = E

Z
(f̂ � f)2 d�(x):
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By standard calculations

MISE(f̂ ; f) =

Z
(Ef̂ � f)2 d�(x) +

Z
Var(f̂) d�(x);

which yields the MISE as a sum of the integrated square bias and the integrated
variance. An assessment of the quality of f̂ should not depend on a particular unknown
f , but is more naturally obtained by restricting f to belong to a certain class of
functions, eF , say. The maximum risk, de�ned by

R(f̂) = sup
f2 eF

MISE(f̂ ; f)

gives an indication of how well an estimator performs.
If we for a general one-dimensional problem, g = Kf , assume the singular values

of the SVD satis�es �j � j�� as j ! 1, for a � > 1, and F�;C is a subspace of F
satisfying

F�;C =

8<:f =
1X
j=1

bjfj 2 F :
1X
j=1

jbjj2(1 + j)2� � C

9=; ;

where � > 1 and 0 < C < 1. Then it is possible by standard calculations to
get estimates for the windowed SVD-estimator introduced in Section 3.1. First an
expression for the integrated square biasZ 1

0

(E f̂�n � f)2 d�(x) =
X

j:�j<�

��2j j(g; gj)j2

and secondly an expression for the integrated varianceZ 1

0

Var(f̂�n ) d�(x) = n�1
X

j:�j��
��2j Var(gj(Y1)):

Hence a �rst expression for the MISE is given by

MISE(f̂�n ; f) =
X

j:�j<�

��2j j(g; gj)j2 + n�1
X

j:�j��
��2j Var(gj(Y1)):(4.1)

Now, let L1�;M (0; 1) denote the space of functions on (0; 1) which have integrals with
respect to d� which are bounded from above by a strictly positive number M . If we
additionally assume f 2 L1�;M (0; 1) it is possible to uniformly bound the variance of
gj(Y1) by M .

Finally let �(n) = n1=(2�+2�+1) and assume f 2 F�;C \ L1�;M (0; 1), then there
exists a constant c > 0 depending on the SVD only such that

MISE(f̂�(n)n ; f) � cMn�2�=(2�+2�+1)
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Therefore, the MISE for the chosen �(n) tends to zero as the number of observations
tends to in�nity. Moreover we have an upper bound on the rate of convergence. Hence
we have the following result.

Proposition 4.1. Let the setup be as in Section 3.1. Let �(n) = n1=(2�+2�+1)

and assume that f 2 F�;C \ L1M (0; 1). Then

Ekf̂�(n)n � fk2� ! 0; n!1:

Now, turning to the SVD-estimator introduced in Section 3.2 and proceeding as
above (but without the L1-assumption, as the basis functions are now bounded by 1),
we get

Ek ~f�(n)n � fk2� � Ekĥ�(n)n � hk2� = O(n�2�=(2�+2�+1));

and hence
Proposition 4.2. Let the setup be as in Section 3.2. Let �(n) = n1=(2�+2�+1)

and assume that h 2 H�;C , where

H�;C =

8<:h =
1X
j=1

bjhj 2 H :
1X
j=1

jbjj2(1 + j)2� � C

9=; :

Then

Ek ~f�(n)n � fk2� ! 0; n!1:

Remark 4.1. The assumption f 2 F�;C is normally interpreted as a smoothness
condition on the function we attempt to reconstruct. This can intuitively be seen
as � determines the decay of the high frequency terms. However, for H�;C in the
setup of Section 3.2 it can be nicely formalized. We have that h2j are trigonometric

polynomials on (0,1), H� = fh =
P1

j=1 bjhj 2 H : jbjj2(1+j)2� <1g corresponds to
the Sobolev space of order �. Therefore h 2 H� if and only if h is a periodic function
that has square integrable �-derivatives on the interval. For details see [3].

5. Empirical choice of cuto� scheme. As seen in the previous section, min-
imization of the MISE as a function of � requires information about the density f ,
which is unknown in practical situations. We therefore turn to a data-driven method
for choosing the smoothing parameters as suggested by [7]. In the present section we
also use the assumption that the variance of gj(Y1) is bounded, which is indeed the
case if we assume f 2 L1�(0; 1).

It is straightforward from (4.1) to show that the MISE(f̂�n ; f) has the same min-
imum as the functional

Mn(�) =
1X
j=1

��2j

�
1

n
�2�(�j)�

2
jE g2j (Y1) +

�
n� 1

n
��(�j)�j � 2

�
��(�j)�jEgj(Y1))

2

�
:
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This still implicitly depend on f and we choose to approximate Mn(�) by plugging
in the following unbiased and consistent estimates of Eg2j (Y1) and (Egj(Y1))

2

Eg2j (Y1) ' g2j = n�1
nX
i=1

g2j (Yi)

and

(Egj(Y1))
2 ' n�1

nX
i=1

g
(i)
j gj(Yi);

where

g
(i)
j =

1

n� 1

nX
k=1;k 6=i

gj(Yk);

(see Remark 5.1 below). This gives the following unbiased and consistent estimate of
Mn(�) (see Remark 5.1 below) using the spectral cut-o�

cMn(�) =
X
�j��

��2j

"
n�1g2j +

�
n� 1

n
� 2

�
n�1

nX
i=1

g
(i)
j gj(Yi)

#
:

Remark 5.1. To show the stated consistencies one should use the law of large numbers
and the equivalents for U -statistics, see e.g. [13, Chapter 7.27]. Drawing on the

connection to U -statistics it is also possible to prove that Var(cMn(�)) = O(n�1), see
[12, Theorem 5.2].

Remark 5.2. The method described above was also termed least-squares cross-
validation in [23], as it has an intimate relation with cross-validation. For a detailed
description of the connection see [22].

6. Finite sample study. The �nite sample performance of the windowed SVD
estimator presented in Section 3.1 is explored using simulated data based on a bimodal
density. For comparison we also present the reconstructions based on sine functions
as described in Section 3.2.

Reconstruction based on Bessel functions. We contemplate the perfor-
mance of the SVD estimator based on Xi's generated from a symmetrical bimodal
density of the form f = 0:5Beta(8; 3) + 0:5Beta(3; 8): Here Beta(a; b) is the density
function of the beta distribution with parameters a and b. We simulated 10 random
samples with sample size n = 1000. The essential results are given in Figure 6.1.
The quality of the estimated density is measured by the risk function cMn, which is
shown in Figure 6.1(a) for all 10 samples together with the averaged risk function.
As expected the estimated risk function varies, however, as the risk functions not
always attain a well de�ned minimum we let the �rst local minimum set the order of
reconstruction. Figure 6.1(b) shows the reconstructed density functions for the �rst
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Reconstruction parameter

R
is

k

2 4 6 8 10 12

-6
0

-4
0

-2
0

0
20

40

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

(a) (b)

Fig. 6.1. Reconstructing a mixture of beta distributions by Bessel functions. The sample size
is n = 1000. (a) An overlap plot of the risk function for all samples (thin lines) compared with the
averaged risk function (thick line); and (b) an overlap plot of reconstructions of the density function
for the �rst 5 samples with the �rst local minimum taken as the order of reconstruction (thin lines)
and the true density function (thick line).

Reconstruction parameter

R
is

k

2 4 6 8 10 12

-1
4

-1
2

-1
0

-8
-6

-4
-2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

N = 4
N = 6 N = 8

True

(a) (b)

Fig. 6.2. Reconstructing a mixture of beta distributions by Bessel functions. The sample size
is n = 1000. (a) The estimated risk function for the �rst sample (thin line) together with the
averaged risk function (thick line); and (b) reconstructions of the �rst sample for di�erent order of
reconstruction compared with the true density (thick line).
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0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

(a) (b)

Fig. 6.3. Reconstructing a mixture of beta distributions by Bessel functions. The sample size
is n = 1000. (a) The mean of the estimated density functions for the 10 samples (dashed line)
compared with the true density (solid line); and (b) an overlap plot of reconstructions of the density
function for the 10 samples with N = 6 taken as the over all order of reconstruction (thin lines)
and the true density (thick line).

5 samples. The rather large variability in the reconstructions is inherent to a large
between sample variation and to a varying number of included eigenfunction.

The reconstructions shown in Figure 6.1 are rather disappointing. However, as
suggested by Rudemo [22] it may be advisable to search through a set of local minima
to �nd the optimal order of reconstruction. Investigating the risk function for the �rst
sample we �nd three local minima, see Figure 6.2. It is apparent from Figure 6.2 that
the reconstruction corresponding to N = 6 is the best, though this is not a global
minimum. Note also, the uctuation of the estimated density increases as we increase
the reconstruction parameter.

Consulting the averaged risk function in Figure 6.2(a) we �nd a well de�ned local
minimum at N = 6, which we therefore take as a new overall order of reconstruc-
tion for every sample. The performance of the reconstruction is shown in Figure 6.3.
Figure 6.3(a) shows the mean of the estimated density functions for the 10 samples
whereas Figure 6.3(b) shows an increased variability inherent to the increased re-
construction order. It is obvious from Figures 6.1 and 6.3, that bias decreases and
variance increases as N increases.

Reconstruction based on sine functions. The performance of the SVD esti-
mator is compared to reconstruction based on a basis of sine functions. The same 10
samples used above were exploited in the sine setting described in Section 3.2. The
basic results are given in Figure 6.4. All estimated risk functions attain a well de�ned
local minimum at N = 4, see Figure 6.4(a), which is taken at the reconstruction
parameter. The corresponding reconstructions is illustrated in Figure 6.4(b) together
with the true density function. It is obvious from the plot that the amplitude of the
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Reconstruction parameter

R
is

k

2 4 6 8 10

-2
-1

0
1

2

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
5

1.
5

(a) (b)

Reconstruction parameter

R
is

k

2 4 6 8 10

-1
.5

-1
.0

-0
.5

0.
0

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
5

1.
5

(c) (d)

Fig. 6.4. Reconstructing a beta distribution by sine functions. The sample size is n = 1000.
(a) An overlap plot of the risk function; (b) the reconstructions (thin lines) for N = 4 compared with
the true density (thick line); (c) the estimated risk function for the �rst sample (thin line) together
with the averaged risk function (thick line); and (d) the mean density function (thin line) compared
with the true density function (thick line).

reconstructions is too large. Consulting Figure 6.4(a) and (c) we �nd in general, that
the estimated risk functions only attain one local minimum. The estimated mean
density function is shown in Figure 6.4(d) together with the true density. Comparing
the reconstructions presented above, we may conclude that the estimated densities in
the sine setting seems to be more symmetrical than in the Bessel setting. This may
be due to the symmetrical structure of the eigenfunctions, which is not the case in
the Bessel setting. Nevertheless, the averaged reconstruction in Figure 6.3(d) seems
to capture the modes of the true density better.
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7. Final Remarks. Although, we have constructed a windowed SVD recon-
struction formula for the (bounded) density of multiplicatively censored random vari-
ables several questions remain open.

One question is how to �nd an asymptotic lower bound on the MISE in order to
make a complete asymptotic analysis. Comparing with the comprehensive literature
on minimax estimation we notice that the upper bound obtained in the present paper
corresponds to the rates obtained in similar problems (see e.g. [14, 18, 17]). These
authors show additionally that the lower bounds equals the upper bound. It might
therefore be possible along their lines to prove that the rate is a minimax bound.

Another question relates to the problem of densities with unbounded support. In
this case one looses the compactness of the operator K, and has to face more general
spectral theorems.

Acknowledgement. For helpful discussions we thank our colleagues in the \in-
verse problems study group" at Aalborg University.
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