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Abstract

In the present paper, we construct parametrized models for point pro-
cesses, allowing for both inhomogeneity and interaction. The inhomo-
geneity is obtained by applying parametrized transformations to ho-
mogeneous Markov point processes. An interesting model class, which
can be constructed by this transformation approach, is the exponen-
tial inhomogeneous Markov point processes. Statistical inference for
such processes is discussed in some detail.
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1. Introduction

Models for spatial point processes, describing inhomogeneity as well as
interaction between the points, have recently attracted considerable atten-
tion, cf. Baddeley and Turner (1998), Baddeley et al. (1998), Brix and Mgller
(1998) and Stoyan and Stoyan (1998). This appears to be a very natural step
towards more realistic modelling, where both first and second order proper-
ties of the point pattern (like mean and variance in a univariate setting) are
taken into account.

At least two of these model classes can be derived from homogeneous
Markov point processes. (In the present paper, we will add another of this
type.) According to the Hammersley-Clifford theorem, cf. Ripley and Kelly
(1977), such a process has a density with respect to a Poisson point process
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where x = {z1,... ,z,}, x; € S and S is a bounded Borel subset of IR™, say.
The function ¢ is an interaction function, i.e. ¢(y) = 1, unless all pairs of
points in y are neighbours. The Markov point process is called homogeneous
if  is constant on all sets consisting of 1 point, cf. e.g. Ogata and Tanemura
(1986) and Stoyan and Stoyan (1998).

The first type of models is constructed by using an independent thinning
of a homogeneous Markov point process, cf. Baddeley et al. (1998). This
is a well-known procedure for generating an inhomogeneous Poisson point
process from a homogeneous one, cf. e.g. Stoyan et al. (1995). In Baddeley
et al. (1998), semi-parametric inference of the thinned Markov point process
is discussed.

Another construction relates more directly to the Hammersley-Clifford
decomposition of the density and has been suggested among others by Ogata
and Tanemura (1986). The idea is here to let the main effects in the decom-
position (the interaction of 1-point sets) be non-constant. Under regularity
conditions, an approximation to the likelihood function can be derived us-
ing methods from statistical physics. Stoyan and Stoyan (1998) has recently
discussed this model in a forestry setting. See also Ripley (1990) and Mgller
et al. (1998).

In the present paper, yet another construction is suggested. The basic
idea is here to introduce the inhomogeneity by applying a transformation to a
homogeneous Markov point process. Inhomogeneous Poisson point processes
as well as homogeneous Markov point processes can be included in such a
model.

The transformed point process is still a Markov point process with respect
to the induced relation. Such a relation seems natural for the definition
of interaction in the transformed process. Thus, in high intensity areas of
the transformed process, the points are regarded as neighbours at a closer
distance than in low intensity areas. A typical application could be in the
modelling of the positions of plants in a natural environment. When the life
conditions are good, the intensity of the plants are high and the plants are
standing closer. Whereas, if the conditions for surviving are bad, there are
only a few plants since each plant need more space to survive.

One of the useful properties of our model class is that the inhomogeneity
and interaction can be separated. The statistical inference is based on the
estimation of the transformation which can remove the inhomogeneity. After
application of this transformation we are left with a homogeneous point pat-
tern which can be analyzed by known tools, cf. e.g. Geyer (1998) and Mgller
(1998).

The idea of modelling inhomogeneity by transformations has been applied
in other areas of spatial statistics; for instance for modeling the covariance
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structure of a non-stationary spatial process, cf. Sampson and Guttorp (1992)
and Smith (1997). Related work can also be found in Monestiez et al. (1993),
Meiring (1995), Perrin (1997) and references therein.

In Section 2, the basic concepts relating to Markov point processes are
outlined. In Section 3, transformations of point processes are introduced and
studied for Markov models. Parametrized transformations are considered in
Section 4, resulting in models for point processes allowing for both inho-
mogeneity and interaction. An important particular case is the exponential
inhomogeneous Markov point processes for which explicit expressions for the
parametrized transformation can be found in the unit cube in IR™ and on the
unit sphere in IR?. In Section 5, maximum likelihood estimation for the mod-
els described in Section 4 is discussed and the actual estimation procedure is
applied to a simulated inhomogeneous point pattern on the unit sphere. In
this section, tests for simple hypotheses are also derived. The final Section 6
discusses open questions and future work.

2. Markov point processes

In this section, we summarize some of the basic terminology for Markov
point processes. A more detailed account of the notation and set-up can be
found in Baddeley and Mgller (1989) and Mgller (1998).

Let (S, B, A) be a measure space where 0 < A\(S) < oo and B is separable
and contains all singletons. Let €2 be the set of finite subsets of S, equipped
with the o—field F, as defined in Mgller (1998). Then, a finite point process
X is a measurable mapping defined on some probability space and taking
values in (€2, F). In what follows, it will be assumed that X has a density f
with respect to the Poisson point process on S with intensity measure \.

In order to define a Markov point process, we need a reflexive and sym-
metric relation ~ on §. Two points £, € S are called neighbours, if & ~ 7.
For n € §, the neighbourhood of 7 is the following set

n={6ecS:E~n)

A finite subset x of S is called a clique if all points in x are neighbours. By
convention, sets of 0 and 1 points are cliques. The set of cliques is denoted

C.

A finite point process X is said to be a Markov point process if
(M1) f(z) >0= f(y) >0forally Cz, z €
(M2) if f(x) > 0, then
p(mz) = flzu{n})/f(z), neS, z€Q né¢x
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depends only on n and dn N z.

Note that u(n; ) can be regarded as the conditional ’intensity’ of adding an
extra point 7 to the point configuration z.

The Hammersley—Clifford theorem gives a factorization of a Markov den-
sity in terms of interactions which are only allowed between points in cliques.

Theorem 2.1 (Hammersley—Clifford) A density f defines a Markov point
process with respect to ~ iff there exists a function ¢ : Q — [0,00), such that
o(y) # 1 implies that y € C, and such that

f@)=]]ew)

yCx
for all x € Q). The function ¢ is called the clique interaction function.

In the present paper, a Markov point process is called inhomogeneous if
¢ is non—constant on sets consisting of 1 point. Other definitions of inho-
mogeneity are of course possible, cf. Stoyan et al. (1995), but the definition
given here suffices the purposes of our studies.

One of the most well-known homogeneous Markov point processes is the
Strauss process, cf. Strauss (1975). If we let n(z) be the number of elements
in z, this process is characterized by the clique interaction function

a ifn(x)=0

) B ifn(x)=1
wlz) = v ifn(z)=2, z€C

1 otherwise,

such that
f(z) = af"@y @ g eq,

where s(x) is the number of neighbour pairs in z,

s(@)=> 1n(z) =2,z €C].

zCx

Note that o = (3, ) is a function of 3,7y > 0.

3. Transformations of point processes

In this section, the attention is restricted to the case where § is a k-
dimensional differentiable manifold X € IR™ and A is the k—dimensional
Hausdorff measure \*, in IR™, cf. e.g. Jensen (1998, Chapter 2) for a formal
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Figure 1: Adding inhomogeneity through transformation. The original point process is
a conditional Strauss process on [0,1]? with 100 points and v = 0.01. Two points are
neighbours if their mutual distance is less than R = 0.05.

definition of Hausdorff measures. Intuitively, AF, measures k-dimensional
volume in IR™. We will study smooth transformations of a point process X
on X. In Figure 1, an example of such a transformation is shown.

If it is important to emphasize the containing space X, the set of finite
subsets of X is from now on denoted {2y, and the associated o—field Fy.
Likewise for other manifolds appearing below.

The coarea formula gives a useful transformation result for a mapping
between two manifolds, cf. Jensen (1998, Theorem 2.1).

Lemma 3.1 (coarea formula) Let X C IR™ and Y C IR? be differentiable
manifolds of dimension k. Let h : X — Y be a 1-1 differentiable mapping
of X onto Y. Then, there erists a function Jh : X — [0,00), called the
Jacobian, such that for any non—negative measurable function g on X

/X ola)h(w)dst = [ g(h™ )i’

Yy
where dz* and dy* are short notations for Ak (dz) and M\k(dy), respectively.

Below, the coarea formula is used to find the density of a transformed
point process h(X) = {h(£) : € € X}.

Proposition 3.2 Let X,Y and h be as in Lemma 3.1. Furthermore, suppose
that X is a point process on X with density fx with respect to the Poisson
point process on X with intensity measure \E. Then, h(X) is the point
process on Y with density, with respect to the Poisson point process on Y
with intensity measure N, of the form

Inx () = Fx (W7 @) OO TTIR (@), y € Q.
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Proof. Let F' € Fy. Using the well-known expansion of the distribution
of the Poisson point process, cf. e.g. Mgller (1998, Section 2), we get

=Ze_wx)l,/ oo [ 1), .. h(wn)} € F]

X X
XfX({ml, s a‘/E'IL})d',IjllC o d.’L’ﬁ

xfx({B7 ), - B ) D) [0 (wi) eyt - - dyl.

i=1
At (%), the coarea formula has been used on h~!. For the term indexed by n,
the formula has been used n times. The result now follows immediately. [J

Next, the attention will be restricted to transformations of a point process
X, which is Markov with respect to a relation ~ on X. In the corollary below
it is shown that the transformed process is again Markov with respect to the
induced relation. As will be apparent later in this paper, it is very important
from a technical point of view to use the induced relation. It is also in
many cases very natural because the criterion for being neighbours in the
transformed point pattern is more strict in regions where the transformation
has attracted the points.

Corollary 3.3 Let X,)Y and h be as in Lemma 3.1. Furthermore, suppose
that X is a Markov point process with respect to ~ such that

fx(z) = H@(?J)a z € Qy,

where ¢ is a clique interaction function. Then, Y = h(X) is a Markov point
process on Y with respect to the induced relation =, defined for n,ne € YV by

& <= h () ~ B ().
Furthermore, the density of Y is of the form

) =1[vk), ve,

zCy

where 1 s the following clique interaction function

POXIED ifn(z) —o
U(z)=q eoh™ (m)Jh7H(n)  ifn(z) =1, 2= {n}
poh () otherwise.



For the transformed point pattern it is worthwhile to notice that, except
for the fact that all interactions are evaluated on the inversely transformed
point pattern, only the main effects of the interaction function change. Fur-
thermore, these values change with the same factor, as if a single point is
transformed from one manifold to another.

Proof of Corollary 3.3. Most of the results of the corollary follows from
Proposition 3.2. It only remains to verify that i is a clique interaction
function with respect to . Thus, let us suppose that ¥(z) # 1. We want to
show that z is a clique with respect to &~. Since every set with 0 and 1 points is
a clique by convention, it suffices to consider the case where n(z) > 2. Then,
Y¥(z) = po h7!(z) and h7'(2) is a clique with respect to ~. Accordingly, z
is a clique with respect to ~. U

4. Exponential inhomogeneous Markov point processes

The transformation result from the previous section can be used to de-
velop a new approach to inhomogeneity. Transforming homogeneous Markov
point processes by a suitable bijective mapping, Markov point processes al-
lowing for both interaction and inhomogeneity can be constructed. In what
follows, we will restrict attention to the case where the transformation is
between the same manifold X.

Let X be a Markov point process on X with respect to a relation ~ and
with clique interaction function ¢. Furthermore, let g : X — X be a
parametrized model of the inhomogeneity where # € © C IR!. Suppose that
we can find, for each 0 € ©, a differentiable 1-1 transformation hy of X onto
X such that

(1) Thy'(n) = ge(n), n € X.

Corollary 3.3 now gives, that Y = hy(X) is a Markov point process on X
with respect to the induced relation ~ and with density

(2) fy(y;0) = ng(ﬂ) H 0(2), ye.

ey 2Chy ' (y)

Notice that the inhomogeneity has been introduced by the transformation
while the interaction has been inherited from the original homogeneous Markov
point process. This has important consequences for the statistical inference,
as shown in the next section.



Using the coarea formula, it is easily seen that (1) implies that

(3) / go(n)dn® = \E (x), foralld € ©.
x

Therefore, {gy : 0 € ©} can be regarded as a parametrized class of densities
on X with respect to the uniform distribution on X (density dn¥/\k (X)). A
natural and useful choice is an exponential family model of the inhomogeneity

(4) g0(1) = B(@)e” 7,

where - indicates inner product in IR™ and 7 : X — IR". Note that (3) then

implies that
— /\k: // 9-1(n

A Markov point process with density (2) and gy given in (4) is called an
exponential inhomogeneous Markov point process. Such a process has density

fr(y; 0) = B(O)" W) H 0(z), yeQ,

2Chy ' (y)

where ¢(y) = > ., T(n).
The problem left is to find a bijective mapping hy that has inverse Jaco-

bian gy. This problem is equivalent to that of solving a differential equation,
which is not always an easy task. However, considering simple, but still
flexible types of inhomogeneity, it is possible to solve the equation. In the
following, two such examples will be studied. Both examples are exponential
inhomogeneous Markov point processes.

Example 4.1 (The unit cube in R™)
Let X = [0,1]™. Suppose that we are interested in adding independent
exponential inhomogeneity on each axis. That is, for § € IR™, we consider

g0(n) = B(O)e™ =07 € [0,1]™,

where 7; : IR — IR and 7, is the 7’th coordinate of 1. For this choice of gy,
there is a unique solution Ay to (1) among differentiable transformations of
the form

h6(77) = (hal(nl)’ s ’ham(nm)) ; NE [0’ 1]m’

where hy; is an increasing function of [0,1] onto itself. The uniqueness can
be seen, using that then k' is of a similar form and

o Oht
Jhyt(n) = % (m), melo, 1™
i1 on;
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Figure 2: Conditional simulations of the exponential inhomogeneous Strauss process on
[0,1]? with 100 points, R=0.05 and v as indicated. The inhomogeneity is introduced by
the transformation (6) with m = 2 and (#1,62) = (—1,—3). The Jacobian of the inverse
transformation is shown to the right.

For any 6 € R™, the unique solution to (1) is given by

(5)
hy () = (51(01) / T eonay 36, / " ee’"Tm(“)du), ne 0, 1™,
0 0

where )

1
m(ei):(/ eam(“)du> . i=1,...,m,
0

and B(0) = [[~, Bi(#;). Note that for 6 = (0,...,0), hy is the identity

mapping.
In particular, if 7;(u) = u for all 4, the integrals in (5) can be calculated
explicitly and

(6)

mw=(g%uﬂﬁ—nmwwi—

0£%G+@%—D%»,HEMH“

In Figure 2, some simulated realizations of the exponential inhomogeneous
Strauss process are shown. d

Example 4.2 (The unit sphere in R?)
Let X = 52, the unit sphere in IR?, and let us consider exponential inho-
mogeneity which depends on m - n where m € S? is fixed. So the aim is for



6 € IR to find a differentiable 1-1 mapping hs of S? onto S? with inverse
Jacobian

(7) Thy'(n) = B()"™ ™, e S?,

where 7 : IR — IR. Note that for 7(u) = u, (7) is the density of the Fisher
distribution in directional statistics whereas for 7(u) = u?, (7) is the density
of the Dimroth—-Watson distribution, cf. Mardia (1972).

Let us choose a coordinate system in IR* such that m = (0,0,1). In the
appendix, it is shown that there is a unique solution to (7) among differen-
tiable 1-1 mappings hg of S? onto S? of the form

V1 —r9(n3)? \/1—?“9 (n3)?
8 h 9 P = 1 Y ’
( ) 0(771 T2 773) ( m \/1_7 M2,Te 773)

where 7y is an increasing differentiable bijection on [-1,1]. Note that such
a transformation only changes the angle between n = (1, 72,73) and m =
(0,0,1).

The solution is most easily expressed in terms of the inverse. We find,
cf. the appendix, that the unique solution to (7) is given by

_ 1 — go(n3)? \/1 —
h 1(7717”2’773) = (\/ 1 7]2a90(773)> )
’ V1-mn3 V1-mn3

where .
u) =1 —/ B0 Wdy, -1 <u<1,
and 5
60) = ——.
( ) f—ll e97(v)

Note that for 8§ = 0, hy is the identity mapping.
For 7 equal to the identity mapping,

gﬂu)zl%—@(ea“—ea), ~-1<u<l,
and
B0 = 52—y
Hence,
() ro(u) = %log (“;1(e9—e9)+e9), 1<u<l.

10



(a) vy =10.02 (byy=1

Figure 3: Conditional simulations of the exponential inhomogeneous Strauss process on
S? with 200 points, R = 0.02 and - as indicated. The inhomogeneity is introduced by the
transformation (8) with # = 3 and 7y given in (9).

(c)§=3 (d) 6 = 10

Figure 4: Conditional simulations of the exponential inhomogeneous continuum random
cluster process on S? with 200 points, R=0.05 and v = 1000. As in Figure 3, the inhomo-
geneity is introduced by the transformation (8), here with 6 as indicated.

In Figure 3, conditional simulations of the exponential inhomogeneous
Strauss process are shown with 7(u) = u and m = (0,0, 1). The relation for
the untransformed process is given by

(10) n~ &< ds(n€) <R,

where dj3 is the spatial distance. Note that the spatial distance is proportional
to the geodesic distance.

In Figure 4, a realization of the continuum random cluster process with
tendency of clustering, cf. Mgller (1998), is transformed with three different
transformation parameters. The original untransformed process is shown in
Figure 4.a. The relation is the one from equation (10). O
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5. Statistical inference for exponential inhomogeneous Markov point
processes

An exponential inhomogeneous Markov point process has a density of the
form

fr(y; 0) = O)"We" ¥ H p(z), ye

2Chy ' (y)

Note that
5(9)n(y)ee-t(y)

is the density of hg(X) when X is a homogeneous Poisson point process on
X with intensity measure \¥ .

We will mainly discuss statistical inference conditional on n(Y) = n,
the observed number of points. It is often claimed that n(y) contains little
information about the interaction structure, cf. Mgller (1998), and this is
surely also true for the inhomogeneity as introduced in this paper. Using
that hg is 1-1 so that n(Y) = n(he(X)) = n(X), it is easy to see that the
conditional density of Y given n(Y) = n is of the form

faly;0) = O[] %), nly) =n,
2Chy (y)

where

b(z) = { ©(2) if n(z) >0

= 9 : _
P(n((px):n) if n(z) = 0.

Let us suppose that the interaction function ) can be parametrized by
some parameter v € I' C IRP. Let L(6,v;y) be the conditional likelihood
function based on the inhomogeneous data y. Furthermore, let

Lo(8;y) = B(6)"e™ ™)

be the conditional likelihood function of # based on y, when disregarding the
interaction, and let

=[[¢(z7)

2Cx

be the likelihood of v, when observing x in the homogeneous model. Then,
L(0,7;y) = Lo(0;9) L1 (7: by (9))-
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This decomposition of the likelihood function has important consequences
for the statistical inference. In particular, for each fixed 6, the maximum of
L with respect to v can be found, using an algorithm developed for the
homogeneous case with data h,'(y). Further results concerning estimation
can be obtained if we choose a specific model for the interaction.

Let us assume that

(11) Li(v;2) = an()7"®, n(z)=n, v>0,

such that the interaction model is a regular exponential family of order 1,
cf. Barndorff-Nielsen (1978). There are three interesting special cases of this
model:

e Strauss model (Strauss (1975))

u(z) =s(z) =Y 1(n(z) =2,z €C)

z2Cx

e Continuum random cluster model (Mgller (1998))

where ¢(z) is the number of path-connected components in z.

e Area—interaction model (Baddeley and van Lieshout (1995))

’U,(.T) = —/\m(UnExB(n: R))

where B(n, R)) C IR™ is a ball with centre n and radius R, and A, = A"
is the Lebesgue measure in IR™.

The reason for using a minus in the two latter models is that then the in-
teraction parameter v has the same qualitative interpretation in all three
models: v < 1 corresponds to inhibition, ¥ = 1 to independence and v > 1
to clustering.

The continuum random cluster model is not an ordinary Markov model,
but a nearest-neighbour Markov model, cf. Baddeley and Mgller (1989), but
this distinction is not important here when discussing likelihood inference.

If a maximum likelihood estimate (6, %) exists of (f,~) under the inter-
action model (11), then u(hafl(y)) € int C where C is the convex support of
u(X), cf. Barndorff-Nielsen (1978, p. 151). It therefore suffices to restrict
attention to transformations in

O* ={0 €O :u(h;'(y)) €intC}.
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For § € ©*, there is a unique v = () for which L(6,-;y) attains its maxi-
mum, viz. the unique solution of

E @u(X) = u(hy ' (y)),

cf. Barndorff-Nielsen (1978, p. 152). This solution can be found, using
Markov chain Monte Carlo simulations, cf. e.g. Geyer (1998) and Mgller
(1998). An example is given later in this section.

The next step is to evaluate the partially maximized likelihood function

for 6 € ©F,
(12) L(6;y) = maxL(6,7;y) = Lo(0; y)an (7(6)7(0)""+ @,
Y

This step also requires Markov chain Monte Carlo simulation since the norm-
ing constant «,(y(#)) is not known explicitly. In order to get a stable cal-
culation, it is very important to evaluate a ratio of likelihoods instead of a
likelihood directly, cf. e.g. Geyer (1998). Typically, we want to determine,
up to a constant, L(6;%) at a grid of §-values. For this purpose, it suffices,
since Lo(f;y) can be calculated directly, to calculate for pairs of neighbour
grid points 6,0 € ©*,

L(6;y)/Lo(0; )
(13) log (f(g;y)/Lo(é;y)>

v(0)

The mean-value at the right hand side of this formula can be evaluated, using
Markov chain Monte Carlo simulations.

Being able to calculate the partially maximized likelihood function L, a
maximum of L can be searched for. Note that if L(-; ) is maximal at , then
L(-, - y) is maximal at (6, v(d)).

For the Strauss model and the continuum random cluster model, u(X)
is discrete and the function § — ~(#) is actually a step function. Let the

support of u(X) be

i\ HX)—ulhg ' @)
= (“(ha_l(y)) - U(hgl(y))> logv(f) + log E () (ﬂ) '

S={u_,u_+1,... us}
such that intC = int[u_,u,] = (u_,uy) and let for s € S
0, = {0 € ©:u(hy'(y)) = i}.
Then,

up—1

o= |J e,

i=u——+1
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and for § € ©;, v() = 7;, say. The partially maximized likelihood function
becomes

L(0;y) = Lo(0; y)an(7:)7i, 0 € 6y,

i=u_+1,...,u; — 1. Accordingly, in the subregion ©;, L(6;y) will be a
rescaling of Ly(6;y) with factor oy, (v;)7:. Therefore, L(+;y) is not continuous
at 0 € 00;N00;, 1 # 7', and traditional iterative procedures such as Newton—
Raphson do not seem to be appropriate for seeking a maximum of L. Instead,
tabulating L in a reduced parameter set O, C ©*, is a better idea, when
u(X) is discrete. In order to be able to disregard parameter values outside
Ored, this reduced set should have the property that for any 6 € ©*\Oeq
there exists 6’ € O,q such that

L(6;y) < L(0;).

The first procedure for reducing the parameter set is based on the pro-
portionality of L and L in the subregions ©;. Note that ©; does not need
to be connected. Since Lg(-;y) is the likelihood function for an exponential
family model, it is log—concave and thereby unimodal. Let 0, be the max-
imum likelihood estimate of 6 based on Lo(+;y). (If Lo is the likelihood for
a regular exponential family, then 6y exists and is unique iff ¢(y) lies in the
interior of its convex support). If # is one-dimensional, all points in ©; can
then be excluded except for points in the two sets

0; = {max{f € ©,;:0 <6}}
and
O, = {min{f € ©;: 0 > 6y} }.

Each of these two sets consists of atmost one point. See also the illustration
in Figure 5 where ©; = {6;_} and ©,; = {6;,}. So as Oq, any set including

up—1

U 0;— U0,

i=u_+1

can be used. Similar procedures must be possible if the dimension of 6 is
larger than 1.

The second procedure for reducing the parameter set requires that the
only interaction considered is inhibition, i.e. v < 1. Such a restriction may
be quite natural, however, since we expect that it is going to be difficult to
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Figure 5: The partial log-likelihood function log L. The parallel curves are translations of
log Ly(8;y). The intervals marked horizontally is ©; for the value of ¢ corresponding to
the second curve from the top.

distinguish between inhomogeneity and clustering. For 6 € ©* let 7(6) be
the unique v € (0, 1] maximizing L(0, -; y). Note that

~ (0) ~(0) <1
7(0) = { o

Furthermore, let Z(G; y) = m(%ﬁ]L(G, v;y). Then, we have
v€(o,

Proposition 5.1 Suppose that 6, € O*. Then, for any 0 € ©F,

u(hy'(y)) = ulhy}(y) = L(0;y) < L(0o;y).

Proof. Since  is the maximum likelihood estimate of 8 based on Lo(-; ),
B(O)"" ) < 3(fo)" ).
1 u(h;?!
Therefore, since y%hs ®)) < 4 Pag @) for v <1,

L8, v;y) < L(bo,v;9), v <1,

and accordingly, the corresponding relation holds for the partially maximized
likelihood function L. Il
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According to Proposition 5.1, when seeking a maximum of Z, it is enough
to search in

{0€ 0" ulhy'(y)) < ulhy (1))}
As will be seen in the example below, this may result in a drastic reduction
in the number of #-values at which L has to be evaluated.

Example 5.2 (An application of the estimation procedure)

In this example we will show how the estimation procedure can be carried
out, using a simulated point pattern y which is a realization of an exponen-
tial inhomogeneous Strauss process on the unit sphere, cf. the right part of
Figure 6. The density is given by

(14) fuly) = ( 20

n
m) I Xiavisg, (V)Vs(hg’l(y)) ’

where y = {y1,... ,yn} and y; = (Vi1, Yi2, ¥i3), ¢ = 1,... ,n. The transforma-
tion hy is given in (8) and (9) and the relation ~ is given in (10).

Figure 6: Transformation into the particular realization of the exponential inhomogeneous
Strauss process studied in Example 5.2. Here n = 400, v = 0.5, R = 0.1 and 6 = 5.

The aim is to estimate (6, ) on the basis of the inhomogeneous data set
y. We will assume that v < 1. As suggested earlier in this section, the
estimation is based on a tabulation of the partially maximized likelihood
function L(#;y) in a reduced region ©,q which is known to contain 0.

In order to construct ©,q, we first determine éo. For the example, éo =
5.24 whereas the true value is § = 5. Secondly, the mapping 8 — s(h, "' (y))
is tabulated, cf. Figure 7, and using this information we find

{02 s(hy" () < s(hy ' (¥)}
= {0:s(hy'(y)) € {110,111,112,113}}
C [4.45,5.50]
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Then, according to Proposition 5.1, 6 € [4.45,5.50]. Furthermore, we know
that -—values with the same value of s(h,'(y)) lie in the same ©;-tegion
and here we can restrict attention to 6—values closest to 90. In the example,
this means that 6 € {5.02,5.06,5.08,5.24,5.27,5.30}, cf. Figure 7. As O,eq,
we can take any set containing these 6 values. Since E(G; y) is evaluated by

calculating ratios at pairs of close §-values, cf. (13) with L replaced by L
and y(0) by 7(0), we take

Orea = {5.02,5.03, ... ,5.30}.

The next step is to determine § — (). Using Markov chain Monte Carlo
simulations (MCMC), the mapping

(15) v — E,s(X)

is tabulated on a coarse grid of y-values in (0, 1]. The mean-value in (15) is
calculated in the homogeneous model. The function (15) is tabulated once
more on a finer reduced grid T'yeq C (0, 1] of y—values. This reduced set is
chosen such that

{5(hg"(4)) : 0 € Orea} C {E,(5(X)) : 7 € Trea},

as we are only interested in these particular values of neighbour pairs.
Regression analysis gives the relation

log(E,(s(X))) = a+ Blog(7), 7 € I,

and replacing E, (s(X)) with s(h;'(y)) we get the following approximation

log(s(hy " (y) —
B

In the studied example, o = 5.254 and 3 = 0.751. Note that +(6) only
depends on s(h;, ' (y)) which is discrete and constant in ©,-regions. Therefore,
these two functions jump at the same time.

Now we are ready to find the partially maximized likelihood function. If
we let

7(0) = exp ( O‘) 0 € O

ered - {005 ola cee aod}a

Z(G; Y), 0 € Oreq, can be determined up to a constant by using the recursive
formula

L(059)/Lo(63; ) : L(0;59)/Lo(05;y)
lo = = lo ~ )
g( (6; )/ Lo(6; )) 2 g(ij_l;y)/Lo(ej_l;y))




s(hg' ()
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Figure 7: The number of neighbours in the inversely transformed process and the likelihood

functions with and without the information about the interaction.

fori=1,...,d. The terms in the sum can be found by MCMC, using (13).
In Figure 7, log L(0;y) is shown for a larger range of §-values than O,eq,
in order to get a general impression of the function. Note that this function

is in fact the same as the one shown in Figure 5. We find (6, %) = (8, v(d)) =
(5.02,0.48). O

Let us finally discuss two types of tests. Let us first consider the hypothesis
of no interaction Hy : 7 = -y, where 7o = 1. Since L;(7;-) = 1, we find

Q- L(6o,v0;y) Lo(0y: ) Ll(%;h?(y))

0 _ .
© L0,%y)  Lo(B;y) Li(¥;hy' () = Qo

where Qg represents a comparison between 0, and é, while Qq is a test for
7 = 7 on the basis of z = hefl(y). Note that

u(X)—u(z)] 7!
Q = lE:, (@) ]
5

and can be calculated, using Markov chain Monte Carlo simulation.

It is also of interest to test for homogeneity. Let us suppose that this
corresponds to Hy : 6 = 6y, where 6y = 0 and hy, is the identity. Furthermore,
let 4y be the estimate of 7y under homogeneity. Then, since Ly(6p;-) = 1,

Q — L(eoaf}?()) — LO(QO;y) L1(’3’0;y)
L6,%)  Lo(By) Li(3:h;' ()
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Lo(60; ) LiGios by (4) Ly (303 )
Lo(9 y) Li(%: gt (y)) La(Fos gt ()
J

U(y u(h g ')
—Qo Q1

say. The intermediate ratio Ql can be calculated using Markov chain Monte
Carlo.

6. Remarks, open questions and related work

The basic idea of the present paper is that of introducing inhomogeneity
by transformation. Observing an inhomogeneous point pattern, the problem
is then to construct the inverse transformation which can compensate for the
inhomogeneity. Similar approaches can be found in a number of related areas.
In addition to the examples presented in the introduction, one could mention
that Baddeley and van Lieshout (1995, p. 605) discuss the possibility to let
the balls, appearing in the area-interaction model, depend on a parameter 6.

Note that our model may be extended, such that densities of the following
form are considered

Ay yn} ocHw hot W) [ (b, (wis i) -

1<J

(Personal communication with Jesper Mgller.) The approach by Ogata and
Tanemura (1986) is then obtained by letting hy, be the identity, while our
transformation approach corresponds to hg, = hg, and

¥(2) = ¢(2)/ Th(2)-

The differential equation (1) makes some restrictions on the kind of inho-
mogeneity which can be described by the transformation approach. It will be
of interest to characterize the class of point processes that can be described
by this approach.

From a practical point of view, it is going to be important to use con-
comitant environmental variables to explain the inhomogeneity. In fact, the
exponential inhomogeneity as described by (4) is identical to the one consid-
ered in Rathbun (1996) if

7(n) = (ri(n), ... ,7u(n))

is a vector of explanatory variables evaluated at n. Rathbun (1996) considers,
however, only the Poisson case. It is included in our future plans to analyze
concrete data sets of this type where also the interaction is taken into account.
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The estimation procedure developed in Section 5 worked surprisingly well
on the simulated example in Example 5.2. The main reason was that the
mapping 6 — s(h, ' (y)) was first essentially decreasing and then essentially
increasing with a minimum near fo. Whether this is true in more generality
needs to be investigated.

Maximum likelihood estimation is somewhat involved and it is therefore
of interest to investigate alternative procedures such as pseudo-likelihood es-
timation. See Baddeley and Turner (1998) for its implementation in cases
where both inhomogeneity and interaction is present. An even simpler pro-
cedure would be to use y as estimate of the inhomogeneity parameter. In
the example, this appeared to work well. Such a procedure would be justi-
fied if the distribution of ¢(Y') does not depend very much on 6. If so, the
extensive work on estimating intensity functions in inhomogeneous Poisson
models could then also be applied.

On the theoretical side it still remains to find conditions that ensure the
existence and uniqueness of the maximum likelihood estimates and to develop
an asymptotic distribution theory for the maximum likelihood estimators as
well as for the likelihood ratio tests.

Appendix
In this appendix, we show that for § € R
(A-1) Thy'(n) = B(0)e” ™, ne S,

has a unique solution among mappings of the form

(A-2) kgt (m,m2,m3) = ( : i/_l—g_a(:;’)Qm, i/_l—g_a(:jynz,ga(ns)> ,

where gy is an increasing differentiable function of [-1,1] onto [-1,1]. This
result is used in Example 4.2.
Let

p:[0,7) x[0,27) — S?

(w1, wz) — (3in(wy) cos(ws), sin(w ) sin(ws), cos(wr)).

be the polar coordinate mapping. Functions of the form (A-2) can then
equivalently be described as

(A-3) hy' =pokgop
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where kg(w1,ws) = (lg(w1),ws) and Iy is an increasing differentiable bijection
on the interval [0, 7).
Below, we show the following result

sin lg(wy) sin lg(w1)

(A-4)  Jhy'(p(wi,wa)) = Jke(wi, ws)

!
= lp(w1)—
sin w; sin wq

In order to prove the first equality, we use the coarea formula and get for
an arbitrary function f on S? that

f(ha( ))dn
fpok op~"(n))dn®
:/ Wf(pok;l(wl,wg))sinwldwgdwl
o Jo

:/Oﬂ/o 7rf(p(cul,cug))chb;(cul,wQ) sin(lg(w1))dwadw;
= [ sy 22D

sin(p~1(n)1)

From these results, the first equality of (A-4) follows. The next equality
follows from the fact that k, is a bijection on a subset of IR? of full dimension

and
Dhig(w1, ws) = [lé(wl) 0 ]

0 1
Combining (A-1) and (A-4), we find

f7(coswi) _ sin lg (wl)
5(0)e oy Tale()
or

(coslg(wy)) = —B(0) sin(w, )efT(coswr),

This equation has the unique solution, among increasing bijections on [0, 7),

1
coslg(wy) =1— / B(8)e’" ™ duy, = gg(coswy),

cos(w1)

say, where
2

T etrw gy
J_, e W duy
Therefore, according to (A-3), b, ' is of the form stated in (A-2).

() =
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