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Introduction

The eigenvalue distribution of a selfadjoint random n x n matrix A, for n large, was
first studied by E. Wigner in 1955, and has since then been an active research area in
mathematical physics (see Mehta’s book [Meh] and references given there).

For a rectangular random m x n matrix B, the eigenvalue distribution of BB (or B*B in
the complex case), has in fact been studied for much longer by probabilists and statisti-
cians, starting with the work of J. Wishart (1928) and P.L. Hsu (1939) (see [An], [Mu] and
[Se]). However, the asymptotic eigenvalue distribution for random matrices of the form
BB, when both m and n are large numbers, was first studied in the papers of Wachter,
Grenander, Silverstein and Jonsson (cf. [Wa2], [GS] and [Jo]) from the period 1977-1982.
A problem of particular interest has been the asymptotic behavior of the largest and the
smallest eigenvalue of B'B (cf. [Gem], [Si], [YBK] and [BY]).

Many of the results, in the papers cited above, on the asymptotic eigenvalue distribution
of B'B for large m and n, were obtained by very complicated combinatorial methods.
These papers deal only with random matrices with real valued entries, but this is not an
essential problem; the proofs can be generalized to the complex case without much extra
effort.

In this paper, we give a new and entirely analytical treatment of some of the key results on
asymptotic eigenvalue distributions, both for selfadjoint random matrices A (the Wigner
case), and for matrices of the form B*B (the Wishart case), under the extra assumption,
that the entries of A and B are complex Gaussian random variables. By focusing on the
complex Gaussian case, we have been able to obtain both simpler proofs and stronger
results — particularly in the Wishart case — than one can obtain for more general random
matrices. Our treatment is based on the derivation of explicit formulas for the mean
values E(Tr,[exp(sA4)]) in the Wigner case, and E(Tr,[B*Bexp(sB*B)]) in the Wishart
case, as functions of a complex parameter s.
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The results and methods of this paper play a key role in our two papers (in preparation),
[HT] and [Th], in which we apply random matrix techniques to obtain results in C*-algebra
theory.

As indicated above, we shall study two classes of complex Gaussian random matrices:

The first class, denoted SGRM(n,?), is a class of selfadjoint n x n random matrices
A = (aji), satisfying that the entries a5, 1 < j < k < n, form a set of %n(n +1)
independent, Gaussian random variables, which are complex valued whenever j < k, and
fulfill that

E(a;x) =0, and E(|a;x|?) = o?, for all j, &,

(cf. Definition 1.1 for details). The case 02 = £ gives the normalization used by Wigner
in [Wig3] and by Mehta in [Meh], whereas the case 0? = * yields the normalization used
by Voiculescu in [Vo].

The second class, denoted GRM(m, n, ?), is a class of m x n random matrices B = (b;x,),
for which the entries bj,, 1 < j <m, 1 <k <mn, form a set of mn independent, complex
valued, Gaussian random variables, satisfying that

E(bjx) =0, and E(|bjx|?) =0>  forall j,k,

(see Definition 5.1 for details). For B in GRM(m, n, 0?), the distribution of the random
matrix B*B is called the complex Wishart distribution (cf. [Go], [Ja] and [Kh]).

The class SGRM(n, 0?) of selfadjoint, Gaussian random matrices is treated in Sections 1-
4, whereas Sections 5-8 are devoted to the study of the rectangular, Gaussian random
matrices in the class GRM(m, n, 0?). We give next a short description of the contents of
each of the sections 1-8.

In [Wig3], Wigner showed that for an element A of SGRM(n, 1), the “mean density” of
the distribution of the eigenvalues of A is given by

x ko eu(a)?, (0.1)
where g, ©1, @, ..., is the sequence of Hermite functions. This result is the main objec-
tive of Section 1. In Section 2, we use (0.1) to show that for A in SGRM(n, 0?) and s in
C, we have

E(Tr,[exp(sA)]) =n- exp(”2232) - ®(1 —n,2; —0?s?), (0.2)

where Tr, is the usual unnormalized trace on M,(C), and ® is the confluent hyper-
geometric function (cf. formula (2.10) in Section 2). From (0.2), we obtain a simple proof
of Wigner’s Semi-circle Law in the sense of “convergence in moments”, i.e., for a sequence
(X,) of random matrices, such that X,, € SGRM(n, %) for all n,

lim E(tr,[X?]) = %/_223:1’\/4 — z2 dz, (p €N, (0.3)

n—00 d

where tr, = £Tr, is the normalized trace on M, (C).
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In Section 3, we apply (0.2) to show, that if (X,,) is a sequence of random matrices,
defined on the same probability space, and such that X,, € SGRM(n, %) for all n, then

lim Apax (Xp(w)) = 2, for almost all w, (0.4)
n—oo
Hm Apin (Xn(w)) = -2, for almost all w, (0.5)
n—0o0

where Amax (X5 (w)) and Amin (Xn(w)) denote the largest and smallest eigenvalues of X, (w),
for each point w in the underlying probability space. This result is analogous to results
of Geman (cf. [Gem]) and Silverstein (cf. [Si]) for the (real) Wishart case.

We conclude our studies of the class SGRM(n, 0?) in Section 4, where we apply (0.2) to-
gether with the differential equation for the confluent hyper-geometric function, to obtain
a recursion formula for the numbers:

C(p,n) = ]E(Trn[AZP]), (A € SGRM(n, 1), p € N),
namely

Clp+1,n) =n-22.C(p,n) + 220 . O(p—1,n), (0.6)

p+2 p+2

(cf. Theorem 4.1). This gives a new proof of a recursion formula due to Harer and Zagier
(cf. [HZ)).

In Section 5 we apply a results of Bronk, Goodman and James (cf. [Bro], [Go] and [Ja])
to show that for an element B of GRM(m,n,1), where m > n, the mean density of the
distribution of the eigenvalues of B*B is given by

. Zk 09% ()%, (0.7)

where, for any non-negative «, ¢f, ¢f, ¢S, ..., is a particular orthonormal sequence in
Ly(Ry). The functions ¢§, ¢%, 93, ..., can be expressed in terms of the generalized La-
guerre polynomials, L§, L, Lg, .. ., of order «, as follows:

N =

i (2) = [y e exp(=2)] " L (z). (0.8)

From (0.7) and (0.8) we derive in Section 6 the following two formulas:

If m >n, B€ GRM(m,n,1), and s € C such that Re(s) < n,

B(Tfep(s5'B)) = > n ), 09
E(Tr,[B*Bexp(sB*B)]) = mn 0 _(1m_’18)_mf;2;5), (0.10)

where F'(a, b, c;z) is the hyper-geometric function (cf. formula (6.8) in Section 6). From
(0.10) we deduce the complex counterpart of results of Grenander and Silverstein (cf.

[GS]), Jonsson (cf. [Jo]) and Wachter (cf. [Wal]):
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Let (Y,) be a sequence of random matrices, such that for all n, ¥;, € GRM(m(n),n, 1),
where m(n) > n. Then, if lim,,_, m®) — ¢ the mean distribution of the eigenvalues of

Y *Y,, converges in moments to the probability measure p, on [0, co] with density

dpe(z) _ /@ a)b—a)

= -1 a )
dz 2nx 2(7)
where a = (/¢ — 1)2 and b= (y/c+ 1)2. Specificly,
b
lim E(tr[(YY,)7]) = / 2 du(z),  (peN), (0.11)
n—o a

(cf. Theorem 6.7).

In Section 7, we use (0.9) to prove the complex versions of results of Geman (cf. [Gem])
and Silverstein (cf. [Si]): If (Y;,) is a sequence of random matrices, defined on the same
probability space, and such that Y,, € GRM(m(n),n, %) for all n, then, if m(n) > n for

m(n)

all n, and lim,, = ¢, we have that

Hm Apax (Y, Ya) = (Ve+ 1)2, almost surely, (0.12)
n—o0
lim A (YY) = (Ve— 1)2, almost surely. (0.13)
n—oo

Finally, in Section 8, we use (0.10) combined with the differential equation for the hyper-
geometric function, to derive a recursion formula for the numbers:

D(p,m,n) = E(Tr,[(B*B)"]), (B € GRM(m,n,1), peN),

namely

D(p+1,m,n) = GG D(p,m, n) + EEGD - Dp—1,m,n). (0.14)

The recursion formula for the moments of the measure p., discovered by Oravecz and
Petz in [OP], can be considered as a limit case of (0.14).

It would be interesting to know the counterparts of the explicit formulas (0.2), (0.6),
(0.9), (0.10) and (0.14), for random matrices with real or quaternionic Gaussian entries.
The counterpart of the Wigner density (cf. (0.1)) for real and quaternionic, selfadjoint,
Gaussian random matrices, can be found in Mehta’s book [Meh], but to our knowledge,
the counterparts of Bronk’s density (cf. (0.7)) for real and quaternionic Wishart matrices
B*B, have not been computed. In [HSS], Hanlon, Stanley and Stembridge compute
explicitly the moments E(Tr,[(B*B)?]), p < 4, in the real, complex and quaternionic
cases.

Acknowledgment. It is a pleasure to thank K. Dykema, S. Lauritzen, F. Lehner,
S. Szarek, and D. Voiculescu for fruitful conversations concerning the material of this
paper. We are also very grateful to G. Pisier, for providing the idea of using the “concen-
tration of measures phenomenon” to obtain simple proofs of Proposition 3.6 and Propo-
sition 7.4.



1 Selfadjoint Gaussian Random Matrices

Recall first, that for £ in R and o2 in ]0,00[, N(€,0?) denotes the Gaussian distribution
with mean £ and variance o?.

1.1 Definition. Let (€2, F, P) be a (classical) probability space, let n be a positive integer
and let A: Q@ — M,(C) be a complex random n x n-matrix defined on 2. For 7,j in
{1,2,...,2p}, let a(i,j) denote the entry at position (i,5) of A. We say that Ais a
(standard) selfadjoint Gaussian random n X m-matrix with entries of variance o2, if the
following conditions are satisfied:

(i) The entries a(k,l),1 < k <1 < n, form a set of 3n(n + 1) independent, complex
valued random variables.

(ii) Foreach kin {1,2,...,n}, a(k, k) is a real valued random variable with distribution
N(0,0%).

(iii) When £ < [, the real and imaginary parts Re(a(k,!)) and Im(a(k,!)) of a(k,
independent, identically distributed random variables with distribution N (0,

) ar
0)

l
1
2
(iv) When k& > 1, a(k,l) = a(l, k).

We denote by SGRM(n, 0?) the set of all such random matrices (defined on Q). O
Note that if A = (a(k,1))i1<ki<n € SGRM(n, c?), then

E(|a(k,1)|?) = o?, (k, 1€ {1,2,...,n}), (1.1)

where E denotes expectation w.r.t. P. Note also, that the distribution of the real valued
random variable a(k, k) has density

T

5 exp(— ), (z€R), (1.2)

w.r.t. Lebesgue measure on R, whereas, if £ < [, the distribution of the complex valued
random variable a(k, ) has density

20 exp(-L),  (2€0), (1.3)

w.r.t. the Lebesgue measure on C.

For any positive integer n, we denote by 1, the unit of M,(C). By tr, we denote the
trace on M, (C) satisfying that tr,(1,) = 1, and we put Tr, = n - tr,. Note that for any
H = (h)1<ki<n in My(C)sa, we have that

Trn H2 thk+22|hkl|2 (14)

k<l



It follows thus from (1.2) and (1.3), that the distribution of an element A of SGRM(n, 0?),
has density

H — ¢y exp(—50Trn (H?)), (H € M,(C)sa), (1.5)

w.r.t. the Lebesgue measure

dH = [[dhwe [] dRe(hr)) dIm(hy)), (1.6)
k=1 1<k<i<n
on M, (C)s,. The normalization constant ¢; in (1.5) is given by ¢; = (2’“/2(%02)’“2/2)_1.
The following lemma can be extracted from Wigner’s paper [Wig3] (see also [Meh, Chap-
ter 5]).

1.2 Lemma. ([Wig3]) For an element H of M,(C)s,, denote by \i(H) < --- < A\, (H),
the ordered eigenvalues of H, and consider then the mapping

n: Hes (M\(H), ..., \(H)): My (C)ga — R™.

Then 7 transforms the measure on M, (C)s, with density given in (1.6) onto the measure
on R", which has the following density w.r.t. Lebesgue measure:

M) e [T y=27 - x), (-, A) €RY), (L)

1<j<k<n

where A = {(A1, ..., M) €R® | Ay <--- < A} and ¢ = 2D (T} 51) 7.

=17

1.3 Remark. The proof of Lemma 1.2 given in [Wig3] and [Meh] is somewhat heuristic,
but it is possible to give a precise mathematical proof along the same lines (cf. [HZ,
Section 4]). The formula corresponding to (1.7) for real symmetric matrices was obtained
already in 1939 by Hsu (cf. [Hs]). O

A key result of Wigner’s paper [Wig3| is the following theorem, which is needed in the
subsequent sections of this paper.

1.4 Theorem. ([Wig3]) Let A be an element of SGRM(n,0?). Then the joint distri-
bution of the ordered eigenvalues \1(A) < \y(A) < --- < N\ (A) of A, has density w.r.t.
Lebesgue measure on R", given by

(Al,...,)\n)l—>63-( I1 (Aj—Ak)Z)-exp(—#zjﬂx;)-hul,...,An), (1.8)

1<j<k<n

where the normalization constant cs is given by

&r = ((2my (I j!)>_1. (1.9)



Let g, ,2: R* — R be the density function obtained by taking the average of the function
in (1.8) over all permutations of Ay, ... , A, i.e.,

gnorOnr M) =S (T =202 rexp(—5 S5 22, (- An) €RY).

1<j<k<n
(1.10)
Then the function
hng2(A) = / Gno2 (A, Agy oo An) dAg -+ - dA,, (A € R), (1.11)
Rn-1
is given by
n— 2
(V) = 5 V05 [0r(55)] (VeR), (112)
where ©q, @1, @3, - . ., is the sequence of Hermite functions:
0e(2) = G He(@) exp(—%), (k€ No), (1.13)
and Hy, Hi, H, ..., are the Hermite polynomials:
dk
Hy(z) = (—1)* exp(a?) - (M exp(—x2)>, (k € Ny), (1.14)

(cf. [HTF, Vol. 2, p.193, formula (7)]).

1.5 Remark. Note that (1.8) and (1.9) are simple consequences of (1.5) and Lemma 1.2.
The proof of (1.12), in the case 6 = i, can be found [Wig3] and in Mehta’s book
[Meh, Chapter 5|. The general case follows from this, via the simple observation, that if
A € SGRM(n, 0?), then ﬁA € SGRM(n, 5). The mentioned proofs in [Wig3] and [Meh]

both rely on the Vandermonde determinant formula:

1 1 . 1
A\ Ay - A
H (A —Aj) = : : : N (1.15)
1<j<k<n )\111,'71 )\721'*1 . )\2'_1

and on the orthogonality relation for the Hermite functions:

/Rgon(x)gom(x) dz = Sy m, (n,m € N). (1.16)

It can be recommended to read the proof of (1.12) from Wigner’s original paper [Wig3],
because the proof given in [Meh] is more complicated, since it is extracted as a special
case of a much stronger result. o



1.6 Corollary. Let f: R — R be a Borel function, and let a — f(a) be the map from
M, (C)sa into itself, obtained by the usual function calculus for selfadjoint operators on
Hilbert space. Consider furthermore the function hy,> given by (1.12). Then for any
element A of SGRM(n, 0?), we have that

B(Trl /() =1 [ F0)hne() (1.17)
provided that the integral on the right hand side of (1.17) is well-defined (i.e., f > 0 or
Ji | FO)hag2(A) dA < o).

Proof. Assume first that f > 0. Since
TrF(A)] = FOM(A) + -+ F((A)),

is a symmetric function of the eigenvalues A1 (A), ..., A\, (A), it follows from Theorem 1.4,
that

E(Tr, [f(4)]) = /R (I O0) GO M) dAy

Using then that g, ,» is invariant under permutations of A,..., Ay, it follows that
E(Trn[f(A)]) =n- f(/\l) * n,o? (/\1, ce ,)\”) dX - -d\,
Rn

=1 [ FOVhage () N

which proves that (1.17) holds whenever f > 0. For general, complex valued Borel
functions f, satisfying that [; |f(A)[hy 02 () dA < 00, (1.17) follows then from the positive
case, and the standard decomposition:

f=Ref)t = Ref)” +i(Imf)" — (Imf)"). =

2 Wigner’s Semi-circle Law

A real valued random variable is said to be semi-circular distributed with mean p and
variance o2 > 0, if its distribution has the following density w.r.t. Lebesgue measure:

/407 — (2 — )2 - 1 2000(2),  (z €R). (2.1)

It is easily checked that the mean and variance of this distribution are in fact pu and o2
respectively. We shall mostly consider the case where y = 1 and 6% = 1 (the standard
semi-circular distribution), in which case the density (2.1) becomes

T %\/4 — 2219 9(x), (z € R). (2.2)

Wigner’s semi-circle Law asserts, that for large n, the distribution of eigenvalues of an
element A of SGRM(n,?) is approximately a semi-circular distribution with mean 0

X +—
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and variance no? (cf. [Wigl], [Wig3] and [Meh]). Wigner did not state his result in
precise mathematical terms, but this has been done subsequently by several people; see
for example [Gr, pp. 178-180], [Ar] and [Vo].

In [Vo], Voiculescu considered a sequence (X,,) of random matrices, such that for each n,
X, € SGRM(n, =). Voiculescu proved in this case that

lim E(tr,(X?)) = / zPV4 — 2? dz, (p eN).

n—0o0

By Corollary 1.6, this means that the probability measures p, with densities

b (@) = = Y0 dou(y/Ba), (2 €R), (2.3)

obtained by putting o2 = E in (1.12), converge “in moments” (see Definition 2.4 below)
to the standard semi-circular distribution. Below we shall give another proof of this
result, based on the study of special functions. We start by quoting a classical result from
probability theory:

2.1 Proposition. Let pu, 1, pio, pi3, - - ., be probability measures on R, and consider the
corresponding distribution functions:

F(z) = p(] — 00,2]), Fu(z) = pn(] — o0, 2]), (x €R, n€N).

Let Cy(R) and Cy(R) denote the set of continuous functions on R that vanish at oo,
respectively the set of continuous, bounded functions on R.

Then the following conditions are equivalent:

(i) lim,_, F,,(z) = F(z) for all points x of R in which F' is continuous.
(i) Vf € Co(R): limy, o0 [¢ f din = [5 f dp.
(iii) Vf € Co(R): limy o0 [ f dpin = fRf du.

(iv) Vt € R: limy,_,o [ exp(itz) dpu,(z) = [, exp(itz) du(z).

Proof. Cf. [Fe, Chapter VIII: Criterion 1,Theorem 1,Theorem 2 and Chapter XV: Theo-
rem 2]. ]

2.2 Definition. Let p, u1, po, 43, - . ., be probabilities on R. If (i) (and hence all of the
conditions (i)-(iv)) in Proposition 2.1 is satisfied, then we say that p, converges weakly
to pu. m|

2.3 Remark. Condition (i) in Proposition 2.1 actually implies that u,(I) — u(l), as
n — oo, for any interval I in R for which F' is continuous in both endpoints of I (here +oo
should be considered as points of continuity for F'). In particular, u,(I) — u(I), n — oo,
for any interval I, if 4 does not have any atoms, i.e., if y({z}) =0 for any z in R. a



2.4 Definition. Let u, p1, pio, p3, - .., be probabilities on R, which have moments of all
orders, i.e.,

/ |z|P du(z) < oo, and / |zP dpn(z) < oo, (p,n €N).
R R
We say then that p, converges to p in moments, if
/x” dpn () —)/x” du(z), (p € N). O
R R

2.5 Lemma. Let (p,) denote the sequence of Hermite functions introduced in (1.13) of
Theorem 1.4. We then have

@) = —He@) (24)
A@) = \frena@) = Heanl@),  (meN, (25
LT o?) = Vg e,  meN). (2.6)

Proof. The equations (2.4) and (2.5) follow from (1.13) and the elementary formulas

zH,(z) = iHn+nH, ((z), (2.7)
H)(z) = 2nH, (), (2.8)

(cf. [HTF, Vol. 2, p. 193, formulas (10) and (14)]). Moreover, (2.6) is easily derived from
(2.4) and (2.5). [

For any non-negative integer n, and any complex number w, we apply the notation

(), — {1, if n =0, 29)

ww4+1)(w+2) - (w+n-—1), ifneN.

Recall then, that the confluent hyper-geometric function (a,c,z) — ®(a,c;z) is defined
by the expression:

- (2.10)

for a,c,z in C, such that ¢ ¢ Z \ N (cf. [HTF, Vol. 1, p.248|). Note, in particular, that
if a € Z\N, then z — ®(a, c;x) is a polynomial in z of degree —a, for any permitted c.

2.6 Lemma. For any s in C and k in Ny,
/e’q’(&””)eok(w)2 dz = exp(%)®(—k, 1; —%)
R

_ exp(ﬁ)ik(/ﬁ —1)-(h+ 1) (8_2);
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and for s in C and n in N,

/R exp(sz) (X020 04 (2)?) da

=n- exp(%)@(l—n,Q;—%) (2.12)
2 =1)(n—2)-- (n—j) (s2\i
:”'eXp(T);O G+ 1) (5) '

Proof. For I, m in Ny and s in R, we have that

1
(25 milmin)

/Rexp(sx)gol(x)gom(a:) dx = 7 /Rexp(sx — o) Hy(2)Hpp(7) do. (2.13)

By the substitution y = x — 3, the integral on the right hand side of (2.13) becomes

2

exp(§) [ exp(—?)Hily+ )y + ) dy. (2.14)

Note here, that by (1.14) we have for ¢ in R and & in Ny,

Hi(z + a) = (—1)* exp((z + 0)*) - ( d‘fk exp(—(x +a)?))
= (—1)*exp(a® + an)io (’;) (% exp(~a?) ) ddkk jj exp(—2az) )
which can be reduced to )
Hy(z +a) = jz: (';) (2a)" 7 H, (). (2.15)

It follows thus that the quantity in (2.14) equals
Ny
() [ exn-47) (3 () 0 150) (Z (7)) d
R im0 M -0
which by the orthogonality relations (1.16) can be reduced to

min{l,m}
[ . .
exp(%) Z () (m) 20 j1\/m s,

— \U/\J

[¥]

Altogether, we have shown that for m,/ in Ny and s in R,

[ exvtpa@ane) ds = DS () (M) () g

!
ml <=
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But since both sides of (2.16) are analytical functions of s € C, the formula (2.16) holds
for all s in C.

Putting now [ = m = k, and substituting j by & — j, (2.16) becomes

¥

S

frre- 50 ) G

0

= exp(

)Zk:k(k —1)--(k+1—7) (32)3',

J=0

IShE

and this proves (2.11).

The formula (2.12) is trivial in the case s = 0, because of the orthogonality relations
(1.16). If s € C\ {0}, then by (2.6) and partial integration, we get that

[ explen) (S5 eula)?) da = 22 [ explso)ga(o)guns(a) de

Using now (2.16) in the case [ = n, m =n — 1, we get, after substituting j by n — 1 — 7,
that

B fewtenentenit ae =GRS -1 1) (M) ()

and (2.12) follows. [

2.7 Lemma. (i) For any element A of SGRM(n, 0?) and any s in C, we have that

E(Tralexp(sA)]) =n - exp("zsz) - ®(1 —n,2; —0?s?). (2.17)

(ii) Let (X,) be a sequence of random matrices, such that X, € SGRM(n, 1) for all n in
N. Then for any s in C, we have that

lim E(tr,[exp(sX,)]) = %/z exp(sz)vV4 — 2? dx, (2.18)

n—oo

and the convergence is uniform on compact subsets of C.

Proof. From Corollary 1.6 and (2.12), we get by a simple substitution, that

E(Tr,[exp(sA)]) :/exp(s)\)hn,az()\) dA

R

=n-exp(%2) - ®(1 — n,2; —0?s?),

for any s in C, and this proves (i).
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By application of (i), it follows then, that for X, from SGRM(n, 1) and s in C, we have
that

E(tr,lexp(sX,)]) = exp(%) -®(1 —n,2; —%)
> nz(n—l)(n—Q)---(n—j) (5_2)3 (2.19)

— Cal
P (50) J1G+1)! n

§=0

By Lebesgue’s Theorem on Dominated Convergence (for series), it follows thus that

lim E(tr,|exp(sX,)|) = _

The even moments of the standard semi-circular distribution are:

2
i [orvimz o= ("), wem),
R

p+1

and the odd moments vanish. Hence, using the power series expansion of exp(sz), we find
that

3 Cexp(seVi P dr =Y <2j) >
by exXplsT — T T = o Nt - AN . = YRR
), S )G+\i) T ZaG+)!

Therefore,

lim E(tr,[exp(sX,)]) = %/22 exp(sz)vV4 — 22 dx, (s € C). (2.20)

n—0o0

Note next, that by (2.19), we have that
S
E(tralexp(sXn)])| < —_ (s € C),

so the functions s — E(tr,[exp(sX,)]), (n € N), are uniformly bounded on any fixed
bounded subset of C. Hence by a standard application of Cauchy’s Integral Formula and
Lebesgue’s theorem on Dominated Convergence, it follows that the convergence in (2.20)
is uniform on compact subsets of C. [ |

Lemma 2.7(i), will also be needed in Sections 3 and 4. We conclude this section by using
Lemma 2.7(ii) to give a short proof of Wigner’s Semi-circle Law.

2.8 Theorem. (cf. [Wig3], [Gr], [Vo]) Let (X,) be a sequence of random matrices,
such that X, € SGRM(n, 1) for all n. We then have

(i) For any p in N,

2
lim E(tr,[X?]) = %/ V4 — 22 dx. (2.21)
2

n—oo

(ii) For every continuous bounded function f: R — C,

lim E(tra[f (X,)]) = & / @Vi=2 do.

n—o

13



Proof. By Corollary 1.6, Lemma 2.7(ii) and the Cauchy Integral Formulas, we have that

lim ﬁ(/Rexp(sac)hn’i(a:) d:r) = ﬁ(%/z exp(sz)V4 — z2 dx),

n—oo dsP dsP

for all s in C. Putting s = 0, it follows that
2
lim E(tr,[X?]) = lim (/ aPh, 1 (x) daj) = zi/ 2PV4 — 2? dz,
n—00 n—00 R D L SN
which proves (i). Putting s = it in Lemma 2.7(ii), it follows, that for any ¢ in R,

lim exp(itm)hn,%(aj) dx = / exp(itz) dy(x), (2.22)

n—oo R R

where dy = %\/4 — 22 - 1[_9,9() dz. Hence by Proposition 2.1,

B(tn, [/ ())) = lim [ f@)h,1 (@) do = [ 7(a) dy(o)
O JR " R
for any continuous bounded function f on R, and this proves (ii). n

2.9 Remark. Arnold’s strengthening of Wigner’s Semi-circle Law to a result about al-
most sure convergence of the empirical distributions of the eigenvalues (cf. [Ar]), will be
taken up in Section 3 (see Proposition 3.6). A good survey of the history of Wigner’s
Semi-circle Law is given by Olson and Uppuluri in [OU]. m

3 Almost Sure Convergence of the Largest and Smal-
lest Eigenvalues of Selfadjoint, Gaussian Random
Matrices

The main result of this section is contained in Theorem 3.1 below. Due to the results
of Geman ([Gem]) and Silverstein ([Si]) for the Wishart case (see also Section 7 of this
paper), the result is not unexpected, but to our knowledge, a proof of it has not previously
been published.

3.1 Theorem. Let (X,) be a sequence of random matrices, defined on the same prob-
ability space (0, F, P), and such that X, € SGRM(n, %), for each n in N. For each w
in Q and n in N, let Apax(Xn(w)) and Apin(Xn(w)) denote the largest respectively the
smallest eigenvalue of X, (w). We then have

lm Apax(Xn) = 2, almost surely, (3.1)
n—oo
and
lim Apin(X5) = —2, almost surely. (3.2)
n—oo

14



For the proof of Theorem 3.1, we need some lemmas:

3.2 Lemma. (Borel-Cantelli) Let F|, F,, Fs, ..., be a sequence of measurable subsets
of Q, and assume that Y .- P(Q\ F,) < co. Then P(F, eventually) = 1, where

(F,, eventually) = U ﬂ F,,

neNm>n

i.e., for almost all w in 2, w € F,, eventually as n — 00.

Proof. Cf. [Bre, Lemma 3.14]. [

3.3 Lemma. Let (X,) be a sequence of random matrices, defined on the same probability
space (0, F, P), and such that X, € SGRM(n, 1) for all n in N. We then have,

lim sup Amax(Xn) < 2, almost surely,
n—od
and
lim inf Apin (X5,) > =2, almost surely.
n—oo

Proof. By (2.19), we have for any n in N, that

o0

(n=1)m=2)---(n-7j)

E(Trn[exp(tX,)]) = n - exp(%)z G+ 1)
00 427

<n-exp(£)y ———
n jZOj!(j-f-l)!

o0 t] 2
5]

=07

It follows thus, that

E(Tr,[exp(tX,)]) <n- exp(% + 2t), (teRy).

(3.3)

(3.4)

(5

Note here, that since all eigenvalues of exp(t.X,,) are positive, we have that

Tr,[exp(tXy,)] > Amax(exp(tX5)) = exp(tAmax (Xn)),

and hence by integration,

E( exp(tAmax (X)) < n- exp(% + 2t), (teRy).

It follows thus, that for any € in ]0, 0o,

P(Amax(Xn) > 24 €) = P(exp(tAmax(Xn) — t(2+€)) > 1)

< ]E( exp(tAmax (Xn) — t(2 + €)

< exp(—t(2 + ) E( exp(tAmax(Xn))),

15



and hence by (3.5),
PAmax(Xn) > 2+¢€) <n-exp(f —et), (t€Ry). (3.6)

As a function of ¢ € Ry, the right hand side of (3.6) attains its minimum when t = ne.
For this value of ¢, (3.6) becomes,

P(Amax(X5) > 2+ €) < n-exp(722).
Hence by the Borel-Cantelli Lemma (Lemma 3.2),

lim sup Apax(Xn) < 2 +¢, almost surely.

n—oQ

Since this holds for arbitrary positive €, we have proved (3.3). We note finally that
(3.4) follows from (3.3), since the sequence (—X,,) of random matrices also satisfies that
—X,, € SGRM(n, 1) for all n. ]

To complete the proof of Theorem 3.1, we shall need an “almost sure convergence version”
of Wigner’s semi-circle law. This strengthened version of the semi-circle law was proved
by Arnold in [Ar]. Arnold’s result is proved for real symmetric random matrices, with
rather general conditions on the entries. His proof is combinatorial and can be generalized
to the complex case. For convenience of the reader, we include below a short proof in
the case of complex Gaussian random matrices (cf. Proposition 3.6 below). The proof
relies on the following lemma, due to Pisier (cf. [Pi, Theorem 4.7]), which is related to
the “concentration of measure phenomenon” (cf. [Mi]).

3.4 Lemma. ([Pi]) Let Gy, denote the Gaussian distribution on R with density

dGN,U (.’L‘)

ST = (2m0") M2 exp(— =y, (3.7)

202

where ||z|| is the Euclidean norm of x. Furthermore, let F: RY — R be a function that
satisfies the Lipschitz condition

[F(z) = F(y)| <cllz—yl,  (a,y€RY), (3-8)
for some positive constant c. Then for any positive number t, we have that
Gro({z € RY | |F(z) —E(F)| > t}) < 2exp(—£L5),
where E(F) = [.x F(z) dGn (), and K = 5.

Proof. For 0 =1, this is proved in [Pi, Theorem 4.7], and the general case follows easily
from this case, by using that G, is the range measure of G'x; under the mapping
r — or: RY — RY, and that the composed function z — F(oz), satisfies a Lipschitz
condition with constant co. [ ]

The following result is also well-known:

16



3.5 Lemma. Let f: R — R be a function that satisfies the Lipschitz condition
[f(s)=f) <cls—t],  (s,teR). (3.9)
Then for any n in N, and all matrices A, B in M, (C)s,, we have that
1£(A) = f(B)llus = cl|A — Bllus,

where || - ||gs is the Hilbert-Schmidt norm, i.e., ||C||lgzs = Tr,(C*C)'/2, for all C in
M, (C)sa-

Proof. The proof can be extracted from the proof of [Co, Proposition 1.1]: Note first that

we may write,
n n
A:Z)\iEi: B:ZMiFia
i=1 i=1

where Ay,..., A\, and pq, ..., u, are the eigenvalues of A and B respectively, and where
E,... E, and F,...  F, are two families of mutually orthogonal one-dimensional pro-
jections (adding up to 1,). Using then that Tr, (E;F;) > 0 for all 4, j, we find that

1£(A) = F(B)llis = Tra(f(A)%) + Tro(f(B)?) — 2Tra(f(A) f(B))
=3 (F(N) = F(1y))? - Tro(EFy)

ij=1
n

<Y (M= )’ Tro(EiF)

i,j=1
=c|A-B|s. =

3.6 Proposition. (cf. [Ar]) Let (X,,) be a sequence of random matrices, defined on the
same probability space (2, F,P), and such that X, € SGRM(n, %), for each n in N.
For each w in Q, let p,, denote the empirical distribution of the ordered eigenvalues
M(Xp(w)) < X(Xp(w)) < -+ < A\(Xp(w)), of X, (w), i.e., with the usual Dirac measure
notation,

Hnw = 50 _Ox(xu(@): (3.10)
=1

Then for almost all w in €, pi, ., converges weakly to the standard semi-circular distribution
v, with density = — 5-v/4 — 2 - 1j_g /().

Hence, for any interval I in R, and almost all w in ), we have that

lim (% - card (sp[ X, (w)] N I)) = v(I).

n—o0

Proof. Note first that for any f in Cy(R), we have that
5@ dunta) = e £ (D)
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for all w in 2. Hence by Proposition 2.1, it suffices to show, that for almost all w in €2,
we have that

lim tr, [f(X,(w))] = /Rf dp, for all f in Cy(R). (3.11)

n—oo

By separability of the Banach space Cy(R), it is enough to check that (3.11) holds almost
surely for each fixed f in Cy(R) or for each fixed f in some dense subset of Cy(R).
In the following we shall use, as such a dense subset, C}(R), i.e., the set of continuous
differentiable functions on R with compact support. So consider a function f from C}(R),

and put
FA) =t [f(A)], (X € My(Oa).

Then for any A, B in M, (C)s,, we have that
[F(A) = F(B)| < 3| Trn[f(A)] = Tra [£(B)]| < £ (A) = £(B)l|ms,

and since f is Lipschitz with constant ¢ = supger|f'(z)] < oo, it follows then by
Lemma 3.5, that

F(4) = F(B)| < %A~ Bllus, (A, B € My(C)). (312
The linear bijection ®: M, (C)s, — R", given by
®(A) = ((@is)1<i<n, (V2Re(aij))1<icj<n, (V2Im(ai;))1<icj<n), (A = (aij) € Mp(C)sa),

maps the distribution on M, (C)s, of an element of SGRM(n, 1) (cf. (1.5)) onto the joint
distribution of n? independent, identically distributed random variables with distribution
N(0,1), i.e., the distribution G 2 ,,-1/2 on R* with density

= (z € R™).

dGn2,n—1/2(x) n \=n’/2 n|z|?
el = (5s) em(=tl,

Moreover, the Euclidean norm on R™ corresponds, via the mapping ®, to the Hilbert-
Schmidt norm on M, (C)s,. Hence by (3.12) and Lemma 3.4, we get for any positive ¢,
that

P({w € Q| |F(Xn(w)) — E(F(X,))| > t}) < exp(—"5%),

where K = % Hence by the Borel-Cantelli Lemma, it follows that
|tr [ (Xa ()] —E(tra[f(Xa)])| <t eventually,

for almost all w. Since ¢ > 0 was arbitrary, we get by Theorem 2.8, that

n—oo n—oo

lim tr, [f(Xn(w))] = lim E(trn[f(Xn)]) = %/_Zf(x)\/él — 22 dx,

for almost all w. The last assertion in the proposition follows by application of Remark 2.3.
This completes the proof. [ ]

18



Proof of Theorem 3.1. By Lemma 3.3, we have that

lim sup Apax (Xn(w)) < 2, for almost all w in 2.

n—00
On the other hand, given any positive ¢, it follows from Proposition 3.6, that
card (sp[X,(w)] N [2 — €,00[) = 00, asn — oo, for almost all w in €,
and hence that

lim inf Apax (Xn(w)) > 2 — ¢, for almost all w in 2.

n—o0

Since this is true for any positive ¢, it follows that (3.1) holds, and (3.2) follows from (3.1)
by considering the sequence (—X,,). [ ]

4 The Harer-Zagier Recursion Formula

In [HZ, Section 4, Proposition 1], Harer and Zagier considered the numbers:
C(p,n) = 2_’“/27r_k2/2/ Tr, (A%) exp(—3Tr,(A?)) dA, (neNpeNy),
n((c)sa
where dA = H?:l da,-z- Hi<j d(Re(ai,j)) d(Im(am))
Comparing with Section 1, it follows, that if A € SGRM(n, 1), then for all p in Ny,
C(p,n) = E(Tr,[A)).
Harer and Zagier proved that

(%]

C(p,n) = Zsj(p)n”“*%, (n,p €N),

j=1
where the coefficients €;(p) satisfy the following recursion formula:
(p+2)ej(p+1) = (4p+2)e;(p) + p(4p” — Vej_1(p — 1),

(cf. [HZ, p. 460, line 3], with (n, g) substituted by (p+1, j)), and using this formula, they
could quickly generate tables of the coefficients ¢;(p), 1 < p < 12.

Below we give a new proof of the above recursion formula, based on Lemma 2.7 and the
differential equation for the confluent hyper-geometric function z — ®(a, c; x). A different
treatment of this result of Harer and Zagier can be found in [Meh, pp. 117-120].

4.1 Theorem. Let A be an element of SGRM(n, 1), and define
C(p,n) = E(Tra[A7]),  (p € No). (4.1)

Then C(0,n) = n, C(1,n) = n?, and for fixed n in N, the numbers C(p,n) satisfy the
recursion formula:
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Proof. Let a,c be complex numbers, such that ¢ ¢ Z \ N. Then the confluent hyper-
geometric function

a(a+1)
c(c+1)

P Oaa) =1+ 85+ 22 4 s

5T (z € C),
is an entire function, and y = ®(a, ¢; ) satisfies the differential equation

d’y dy
fcﬁnL(c—x)%—ay:O, (4.3)

(cf. [HTF, Vol. 1, p.248, formula (2)]). By Corollary 1.6, we have for any A in SGRM(n, 1),
that

E(Tr,[exp(sA)]) = n/ exp(sx)hy(x) dz, (s € ©),
R
where h,(z) = n\/_ > o gok(%)z. Hence by (2.17) in Lemma 2.7, we get that
E(Trn[exp(sA)]) =n - exp(%) - ®(1 —n,2; —s?), (s € C).

Since h,, is an even function, E(Trn[AQ‘J_l]) =0, for any ¢ in N, and consequently

]E(Trn exp( sA Z 5 Trn AZP])

p=0

It follows thus, that (’2(2’;’)7?) is the coefficient to z? in the power series expansion of the
function
on(z) =n-exp(3) - ®(1 —n,2;—x).

By (4.3) the function p,(z) = ®(1 — n,2; —x), satisfies the differential equation
T, (2) + (2 + )P, (x) — (n — 1)pn(z) = 0,
which implies that o, (z) = n - exp(5) - pn(x), satisfies the differential equation
zo, (z) + 20,,(x) — (§ + n)on(z) = 0. (4.4)

We know that o, has the power series expansion:

- C
T) = Zapxp, where o, = ((22;’)7:), (p eN). (4.5)
Inserting (4.5) in (4.4), we find that
P+ 1)(p+2)aps1 —nay — gap1 =0,  (p>1), (4.6)
and that
204 — nap = 0. (4.7)

Inserting then C(p,n) = (’2(27;)7?), in (4.6), we obtain (4.2). Moreover, it is clear that

C(0,n) = Tr,(1,) = n, and thus, by (4.7), C(1,n) = 2aq = nay = n?. [
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4.2 Corollary. ([HZ]) With C(p,n) as introduced in (4.1), we have that

n) = Zaj(p)n”H_Zj, (p € Np,n € N), (4.8)

where the coefficients ¢(p), j,p € Ny, are determined by the conditions

ej(p) = 0, wheneverj > [§]+1, (4.9)
eolp) = ;7(%), ey, (4.10)

2 .
gip+1) = %'Sj(p)-f'% gj-1(p — 1), (p,J €N). (4.11)

Proof. Tt is immediate from (4.2) of Theorem 4.1, that for fixed p, C(p, n) is a polynomial
in n of degree p+ 1 and without constant term. Moreover, it follows from (4.2), that only
nPT1 nP~1 nP=3 etc., have non-zero coefficients in this polynomial. Therefore C(p,n) is
of the form set out in (4.8) for suitable coefficients

6j(p)7 b > 07 0<

<j <[5
Inserting (4.8) in (4.2), and applying the convention (4.9), we obtain (4.11), and also that

eo(p+1)=%5 colp),  (p>1) (4.12)
Clearly, €¢(0) = &¢(1) = 1, and thus by induction on (4.12), we obtain (4.10). ]
From Theorem 4.1 or Corollary 4.2, one gets, that for any A in SGRM(n, 1),

E(Tr,[A4? n?,

)
E(Tr,[A%Y]) 2n° +n,
E(Tr,[A%]) = 5n*+ 1007
E(Tr,[A%]) = 14n° 4+ 70n° + 21n,

E(Tr,[A"]) = 42n° 4 420n" + 483n?,
etc. (see [HZ, p. 459] for a list of the numbers ¢;(p), p < 12). If, as in Sections 2 and 3,

we replace the A above by an element X of SGRM(n, ;), and Trn by tr,, then we have
to divide the above numbers by n?*!. Hence for X in SGRM( =), we have

E(tr,[X?]) = 1,

E(tr,[X"]) = 2+ n?,
E(tr,[X°]) = 5+ n?,
E(tr,[X®]) = 144 13 + 2}
E(tr,[X"]) = 42+ ‘;%0 + 48,

etc. Note that the constant term in E(tr,[X?]) is
2
eolp) = - () = / V= da,
in concordance with Wigner’s semi-circle law.
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5 Rectangular Gaussian Random Matrices and the
Complex Wishart Distribution

In 1928, Wishart proved that if B is a real, random m x n matrix (m > n), such that
the entries are independent, identically distributed random variables with distribution
N(0,1), then the distribution of the random matrix S = B'B has density w.r.t. the
Lebesgue measure dS = [[,,,, dsi; on the set M, (R); of symmetric matrices, given by

S+ cs - (det §)™ 2 exp(—1Tr,(S)) - 1a ), (S), (S € M,(R),), (5.1)

where M, (R) denotes the set of positive semi-definite matrices, and ¢4 is a normalization

constant,
n

L q-1
o = |20mn)/2n(n=1)/4 H p(%l—f)} ’
7j=1
(cf. [Wis] or [An, Chapter 7]). The distribution with density given in (5.1) is called the
Wishart distribution.

In 1939, Hsu proved that under the same conditions, the joint distribution of the set
of ordered eigenvalues A\ (S) < Ay(S) < -+ < M\(S) of S, has density w.r.t. Lebesgue
measure on R", given by

n m—n—1

i) | T Qo= [TTN] 7 ep(3 S5 A) - 1 s ),

1<j<k<n j=1

(5.2)

where Ay = {(A, Ao, ., A) ER® |0 < A < Ay <--- < A\, }, and where ¢5 is yet a
normalization constant,

n
. o1 —1
s = [2(mn)/27r—n/2 T r(eyr(es=iy] ™

=1
(cf. [Hs, pp. 256-267]). The corresponding results to (5.1) and (5.2) for complex rect-

angular Gaussian random matrices were obtained by Goodman (cf. [Go]) and James (cf.
[Ja]) in 1963-64 (see Theorem 5.2 below).

5.1 Definition. Let m,n be positive integers, and let

B = (b(4,7))1<i<m: @ = My, 1 (C),

1<j<n

be a complex random m x n matrix defined on 2. We say then that B is a (standard)
Gaussian random m x n matrix with entries of variance o2, if the real valued random
variables Re(b(i, 7)), Im(b(4,7)), 1 <i<m, 1 < j < n, form a family of 2mn indepen-
dent, identically distributed random variables, with distribution N (0, "72) We denote by
GRM(m, n,o?) the set of such random matrices defined on €. m
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We note, that if B = (b(s, ]))1<z<m € GRM(m,n,o?), then for any 7 in {1,2,...,m}
1<5<n

and j in {1,2,...,n}, the distribution of the complex valued random variable b(i, j) has
distribution with density

Z 02 exp(—3- |Z| ), (z € ©),

w.r.t. Lebesgue measure on C, and moreover

E([b(i, /)[?) = o”.

In this and the following three sections, we shall consider exclusively the two cases where
o?=1oro*=1.

5.2 Theorem. ([Go|,[Ja]) Let m,n be elements of N, such that m > n, and let B be
an element of GRM(m, n,1). Then the distribution of the random matrix S = B*B, has
density w.r.t. the Lebesgue measure

ds = HdS“ H d(Re(s;;)) d(Im(s;5)), (5.3)

1<i<j<n

on M, (C)s,, given by
S co- (det S)™ ™ - exp(=Tr,(95)) - 1ag, 04 (5), (S € M,(C)ga), (5.4)

where
n

-1
C6 = [7?"("_1)/2 H(m - j)!} :
7j=1
The joint distribution of the ordered eigenvalues A\1(S), A2(S), ... , A\n(S) of S, has density
w.r.t. Lebesgue measure on R", given by

(Al,...,An)H@[ IT - HHA] exp(—_A) - Ty -5 M),

1<i<j<n

(5.5)
where Ay = {(\1,...,\) ER* |0 <\ <--- < )\, }, and

[ﬁln—J —J)!

5.3 Remark. The computation of the density (5.4) is due to Goodman (cf. [Go]), and the
distribution with density given by (5.4) is called the complex Wishart distribution. After
Goodman’s paper, the complex Wishart distribution and its quaternionic counterpart has
been studied by several authors (see [Ja], [Kh], [ABJ], [HSS] and [LM]). James gives in [Ja]
a survey of both the real and the complex Wishart distribution and states the formula
(5.5) (cf. [Ja, pp. 487-489]). Unfortunately, James does not give a proof of (5.5) or a
reference to a proof of it. However, it is not hard to derive (5.5) from (5.4), by application

-1
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of the method of Wigner, that we described in Section 1. Indeed, by Lemma 1.2, the
range-measure (on R") of the measure dS given in (5.3) under the mapping

S = (A1(S), A2(S), - .-, An(5)), (S € M,(Csa),

(where A1 (S) < --- < A\, (S) are the ordered eigenvalues of S), has density w.r.t. Lebesgue
measure on R"”, given by

Aesdn) = e [T v =202 14l M), (5.6)

1<j<k<n

where A = {(A1,..., \) ER? | A} < Xg <--- <\, }, and where

n—1 _
¢y = pn=1/2 [Hﬂ} 1
j=1
Since H?;llj! = [[j=1(n — 7)!, (5.5) now follows from (5.4). O

The following theorem was proved by Bronk (cf. [Bro]) in 1965.

5.4 Theorem. ([Bro]) Assume that a €]—1,00[, and let S = (s;j)1<i j<n be a selfadjoint
random n x n matrix, for which the joint distribution of the entries s;;, 1 < 4,7 < n, is
the measure

cg - (det S)* - exp(—=Tr,(5)) - L, (), (S) dS, (5.7)

where dS is Lebesgue measure on M, (C)gs, (cf. (5.3)), and where
—1

cg = [ /M o (det S) - exp(—Trn(S)) dS

Then the joint distribution of the ordered eigenvalues A\ (S), ..., A,(S) of S has density
w.r.t. Lebesgue measure on R", given by

(/\1,...,/\n)l—>69[ H (A = o) HHA} exp(=X ) - 1oy s M)y (5.8)

for some positive normalization constant cg.

Let g&: R* — R denote the density function obtained by taking the average of the function
in (5.8) over all permutations of the eigenvalues, i.e.,

gz‘(/\l,...,)\n):%[ T Oy —2) HHA} exp(— 3" \)- (5.9)

T U1L<j<k<n

Then the function

hn()\l):/ GO0 Aa e A) da--dhn (N €R), (5.10)
Rn—l
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can be expressed as

ha@) = 1 X5 k@), (2 €R), (5.11)
where
fo' ! @ 1/2 a
o (@) = [mx exp(—z)] " - Lg(2), (k € No), (5.12)
and (L§)ken, is the sequence of generalized Laguerre polynomials of order «, i.e.,

dk

Li(@) = (k) o “exp(z) - =

(2" exp(—1)), (k € Ny). (5.13)

5.5 Remark. The exact values of cg and ¢g can be read out of Bronk’s proof (cf. [Bro]),
namely

n -1
s = [Wn(n_l)/ZHF(CV"‘j)} :

cy = [ﬁf(j)F(a +j)] o

If a € Ny and m,n € N, such that m —n = «, then the constants cg and ¢g coincide with
the constants cg respectively c; given in Theorem 5.2. i

5.6 Corollary. Let B be an element of GRM(m, n, 1), let ¢%, a €]0,00[, k € Ny, be the
functions introduced in (5.12), and let f: [0,00]— R be a Borel function.

(i) If m > n, we have that

B(Trl (B B)) = [ 1) [ S5 @] dn

whenever the integral on the right hand side is well-defined.

(ii) If m < n, we have that

B(Trlf(BB)) = (1= m)0) + [ @) [t (o]

whenever the integral on the right hand side is well-defined.

Proof. (i) The proof of (i) can be copied from the proof of Corollary 1.6, using Theorem 5.2
and Theorem 5.4 instead of Theorem 1.4.

(ii) Assume that m < n, and note that B* € GRM(n,m,1). If T € M,,,(C), then T*T
and TT™ have the same list of non-zero eigenvalues counted with multiplicity, and hence
T*T must have n — m more zeroes in its list of eigenvalues than 77 has. Combining
these facts with (i), we obtain (ii). ]
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5.7 Remark. Bronk’s proof of (5.11) in Theorem 5.4 is a fairly simple generalization of
Wigner’s method from [Wig3] (see also Theorem 1.4 in this paper). It is based on the
orthogonality relation for the generalized Laguerre polynomials:

L (2)Lg(2) -a® exp(—z) dz =14  F
| m@ie) o ep(-a) da {0, o

(5.14)
(cf. [HTF, Vol. 2, p.188, formula (2)]), which implies that the sequence of functions
(%) ken, introduced in formula (5.12), is an orthonormal sequence in the Hilbert space
Ly([0, 00|, dx), i.e., that

/ o2 (@)l () do = 8, (oK € o).
0

Apparently Bronk did not know about the results of Goodman and James, quoted in
Theorem 5.2 above, and he included in his paper an independent proof of Theorem 5.2,
in the case where m = n. However, Bronk seems to have been unaware of the connection
between his work and the complex Wishart distribution for m > n. i

6 The Asymptotic Eigenvalue Distribution in the
Complex Wishart Case

In the paper [GS] from 1977, Grenander and Silverstein considered random m X n matrices,
T = (tjx), satisfying that the entries ¢;5, 1 < j < m,1 < k < n, form a family of
mn independent, identically distributed random variables, such that E(j,) = 1 and
E(|t;x[?) < oo for all pin N. Letting n tend to oo, under the assumptions that m = cn for
some fixed, positive integer ¢, and that the distribution of the entries ¢;; is independent
of n, Grenander and Silverstein proved that the empirical distribution of the eigenvalues
of %TtT converges in probability to the distribution y. on [0, cc[, given by the density

dpe(z) V(z—a)(b— ) .1

dz 2rx

[a,b}(x): (:C € [0,00D, (61)

where a = (y/c—1)? and b = (y/c+1)2. More precisely, if F,, denotes the (random) distri-
bution function for the empirical distribution of the eigenvalues of %TtT, then Grenander
and Silverstein showed that for all z in R, F,(z) — F.(z) in probability, where F, is the
distribution function for p,.

In [Wa2] from 1978 (but written independently of [GS]), Wachter strengthened Grenander
and Silverstein’s result considerably by showing that in fact (with notation as above),
F.(x) — F.(z), almost surely, for all z in R, even under the more general assumption
that ™ — ¢ € [1, 00[, as n — oco. The actual form of the limit measure y. is not exposed
in [Wa2], but it can be found in Jonsson’s paper [Jo, Theorem 2.1], and, according to
Geman (cf. [Gem]), also in Wachter’s thesis [Wal, Theorem 7.7]. The papers [GS], [Wa2]
and [Jo| deal exclusively with random matrices with real valued entries, but it is not hard
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to generalize their results to the complex case. In [OP], Oravecz and Petz give a new
treatment of some of the results of Grenander, Silverstein, Wachter and Jonsson, and the
paper contains also a few comments about the complex case.

The proofs given in [GS],[Wa2],[Jo] and [OP] are mainly combinatorial. The primary aim
of this section is to use Corollary 5.6 to give an entirely analytical proof of convergence
(in the sense considered in Theorem 2.8), of the eigenvalue distribution of 1By B, to the

measure [, under the assumptions that B, € GRM(m(n),n, c) for all n, and % — ¢,

as n — 0o (cf. Theorem 6.7). The analog of Wachter’s result on almost sure convergence
of the empirical eigenvalue distribution for the complex Gaussian case, is discussed in
Section 7 (cf. Proposition 7.4).

As in Section 5, for any « in | — 1, 0o[, we denote by (L{)ken, the sequence of generalized
Laguerre polynomials of order o, i.e.,

L3(2) = (k)2 exp(a)—

m(ka exp(—1)), (ke Ny, 2> 0), (6.2)

and by (¢%)ken, the sequence of functions given by

et () = (e exp(—a)) Lg(@), (> 0) (6.3)

6.1 Lemma. For any n in Ny, we have that
d — o o o
(=X es@?) = Vel @) - vi@)ei(@), (@ >0). (6.4)

Proof. For each n in N, we define

n—1

pn(z) = Z F(]+;+1)L?(LE)2, (z > 0). (6.5)

=0
Using [HTF, Volume 2, p.188, formula (7)], we have here that

n—1
a a

. i
pn(2) = lim ZO et L§ (W) L5 (z)
]:

n! (L1 (v) Ly (w) = L (v) Ly (@)

=% (y=2) T(n+0)
Therefore, it follows that
pa(2) = moay (Lnoy) (@) Ly (2) — (L3)' (2) Loy (@), (6.6)
and hence that
() = ey (o))" (@) Liy(2) — (Lg)" (2) Loy (). (6.7)
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By [HTF, Volume 2, p.188, formula (10)], we have that

2(Ln)" (@) + (@ +1-2) (L)) (2) = —(n = 1) L5_, (2),
2(Lp)" (@) + (o +1—2)(L7) (z) = —nLy(z).

Combining these two formulas with (6.6) and (6.7), we find that

2o (@) + (@ +1—2)pa(z) = #ia)( = (n=1)Lg_(z) L3 (x) + nLi () Ly (2))
= T(n—|—a) Ly 1 (z) L5 (z).

It follows now, that

(X 56P) = Ll expln)

(26,(2) + (o + 1 = 2)pu(z)) 2" exp(—)
L8 (2) L3 (2)a exp(—a)
= ity (Maey tes) P e () a)
=Vl + @) - 2, ()5 (@),

which is the desired formula. u

In order to state the next lemma, we need to introduce the hyper-geometric function F,
which is given by the equation (cf. [HTF, Vol. 1, p.56, formula (2)]),

F(a,b,c; 2) ZC(Ln (6.8)

n=0

with the notation introduced in (2.9). We note that F'(a, b, ¢; z) is well-defined whenever
c ¢ Z\ N and |z| < 1. If either —a € Ny or —b € Ny, then F(a,b,c;z) becomes a
polynomial in z, and is thus well-defined for all z in C.

6.2 Lemma. Consider « in | — 1,00[ and j, k in Ny. Then for any complex number s,
such that s # 0 and Re(s) < 1, we have that

. . itk . _
A ¥ (‘r)wk (SL') exp(sx) dr = ’V(CY,], k) ) (1 — S)a+j+k+1 ) F(_]a _ka a+1is 2)7 (69)

where

(6.10)

_1)itk -+ 7 a 1/2
’y(a,j,k):( 1) <F( +7+ DI —|—k+1)) .

T(a+1) k!

Proof. The formula (6.9) can be extracted from the paper [Ma] by Mayr, but for the
readers convenience, we include an elementary proof. Both sides of the equality (6.9) are

28



analytical functions of s € {z € C | Re(z) < 1}, s0 it suffices to check (6.9) for all s in
| — 00, 1[\{0}. By (6.3), we have that

/0 " o ()¢ (@) exp(sa) do

- 1/2 [o©
~ (sgseebtimn) [ B@E@ (s~ 1) ds 611
— Jlk! 12 1 ooLa Y VLY )y d
= (r(j+a+1)r(k+a+1)> T | i (T5)LE(75)y" exp(—y) dy,
where, in the last equality, we applied the substitution y = ;% . We note here, that by

[HTF, Volume 2, p.192, formula (40)], we have for any positive number A, that

o) =3 (T e

T

I
B IZI)M?T

(6.12)

<IZ i ‘:) A (1= A)FTLE ().

r=0

By application of this formula and the orthogonality relation (5.14) for the Laguerre
polynomials, we obtain that

/0 L (x) Lg (x)x exp((s — 1)x) dx
min{j,k}

“im 2 (L) (IR - T

r=0

(—s)itk g jta\[(k+a\T(a+r+1)
(1 — g)otith+l — j—r)\k—r 7!

(~s)7

; min{j,k} .
_ (st U TtatDl(k+a+l)
(1 — g)otith+l s (G—=—r)lk—-r)r'T(a+r+1)
(6.13)
We note here that
JIET (a4 1) _ (=9)r(—=Fk)r
(G—r)lk—-r)r'l(a+r+1) (a+1),7!"’
and hence it follows that
/ L3 (x) Ly (z)x® exp((s — 1)z) dw
0 (6.14)

I'(G+a+1)D(k+a+1)- (—s)itk _ .
= . CF(—j,—k, o+ 1;572).
JET (a + 1) - (1 — s)etithil (=j: =k, a+1;577)

Combining (6.11) and (6.14), we obtain (6.9). [
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6.3 Lemma. Assume that a €] — 1,00[, and that n,k € Ny. Then for any complex

number s such that Re(s) < 1, we have that

<, F(—k —a,—k,1; 5
/0 i () exp(sz) dz = ( (1 — s)ot2h+l )

F(1-n-a,1—n,2;s?

/ (Z(pj )xexp st)dr = n(n+ ) (1_8’)a+2n

(6.15)

(6.16)

Proof. By continuity, it suffices to prove (6.15) and (6.16) for all s in C\ {0}. Before

doing so, we observe that for j, k in Ny such that j < k, we have that
j :
—J)r —k ro—
F(—j,—k,a-i—l;s_Z):E:( ])( )827"

! JIT (a0 + 1) o
G-k -—r)rTla+r+1)°

=

Replacing now r by j — r in the summation, it follows that

! JIEIT (o + 1) ,
F — ., —k’ + ]_, —2 = 2r—2j
ket 1) ZO (/f—J-i‘T')(J—T)'F(Oé'i'J—T‘f‘l)S

_ ET(a+1) z’: ' —Dr ar-2
(k=) T(a+j+1) r'1+k 7)r '

r—=

Hence for j, k in Ny such that j < &, we have that

El(a+1)  F(—j—oa,—j,1+k—j;s?
(k=T (a+j+1) 5% '

F(—j,—k,a+1;57%) =

(6.17)

Returning now to the proof of (6.15) and (6.16), we note that by Lemma 6.1 and (6.17),

we have that

D(a+k+1)-s*

= o' 2 _ o2
/0 op(z)” exp(sz) do = M+ 1) . (1= s)orsi -F(—k,—k,a+1;s

_ F(-k—a,—k,1;-5%
- (1 _ S)a—|—2k+1 )

which proves (6.15).
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Regarding (6.16), we get by partial integration, Lemma 6.1, Lemma 6.2 and (6.17), that

/ (ngj )xexp sz) dx

= ( ngj )exp sz) dz

0

m/

— . -1 . g2n—1
- ("“l)(ﬁ_(iifm D Fen 1 e 1)

—vnn+a) -yla,n—1,n)-s*1.n-T(a+1) F(-n—a+1,-n+1,2;s%
s(1 —s)et2r . I'(a + n) §2n=2
—v/nn+a)-y(a,n—1,n) -n!-T'(a+1)

= -F(1—n—oa,1—n,2;s%.
(1—s)2 2 - T(a+n) (I-n-al-n2s)

Ph1(2) ¢y (2) exp(sz) do

(6.18)
Recall here from (6.10), that
-1 Fa+n)l(a+n+1)\/2 —T(a+n)
— ]_ = = —
Nen=1n) =5 < (n— 1)/ ) ot n VT
and inserting this in (6.18), we obtain (6.16). n

6.4 Theorem. Assume that m,n € N and that B € GRM(m,n,1). Then for any

complex number s, such that Re(s) < 1, we have that

F(1—m,1—n,2;s?
(1—s)mtn ’

E(Trn[B*Bexp(sB*B)]) =m-n - (6.19)

and that

i " F(k—-m,k—n,1; s _
E(Trnlexp(sB*B)]) = ((1 Ep T ), ifm > n, (6.20)
k=1

F(k—mk—n,1;5) .
E(Tr,[exp(sB*B)]) = +Z a _TZ m+nf1 ka ), ifm <n. (6.21)

Proof. To prove (6.19), assume first that m > n. Then by Corollary 5.6(i), we have that

E(Tr,[B*Bexp(sB*B)] / (Z(p )a: exp(sz) dz,

and hence (6.19) follows from (6.16) in Lemma 6.3. The case m < n is proved similarly
by application of Corollary 5.6(ii) instead of Corollary 5.6(i).
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To prove (6.20), assume that m > n, and note then that by Corollary 5.6(i) and (6.15) in
Lemma 6.3,

[y

n—

E(Tralexp(sB*B)]) = /000 ( gofcn_"(x)z)x dx

??‘

=0
_Z —k—m+n,—k, 1;5%)

(1 m n+2k+1

Replacing then & by n — k in this summation, we obtain (6.20).
We note finally that (6.21) is proved the same way as (6.20), by application Corol-
lary 5.6(ii) instead of Corollary 5.6(i). [

6.5 Definition. For ¢ in |0, 0o, we denote by p., the measure on [0, 00] given by the
equation

V(z—a)(b—z)
1 :
2rx o0](@) - d,
where a = (y/c — 1)? and b = (y/c + 1)2. Tt is not hard to check that

/b\/(x—a)(b—x)d 1, if ¢ > 1,

T =

a 2mx c, ifec <1,

and this implies that . is a probability measure for all ¢ in |0, ocol.

In [OP], the measure . is called the Machenko-Pastur distribution (cf. [MP]). It is also
known as the free analog of the Poisson distribution with parameter ¢ (cf. [VDN]). O

pe = max{1l — ¢,0}dy +

6.6 Lemma. Assume that ¢ €]0,00[, and let (m(n)), be a sequence of positive integers,

such that lim, .., ™™ = ¢. Consider furthermore a sequence (Y,) of random matrices,
such that for all n in N, Y, € GRM(m(n),n, -). We then have

(i) For any s in C and n in N, such that n > Re(s), we have that

IE( ‘trn[Y:Yn exp(sY;Yn)H) < 00.

(ii) For any complex number s, we have that

n—oo

lim E(tr,[Y, Y, exp(sY;Y,)]) = / zexp(sz) du.(z), (6.22)
0
and the convergence is uniform on compact subsets of C.

Proof. For each n in N, put B, = 1/nY,, and note that B, € GRM(m(n),n,1). If s € C
and n € N such that n > Re(s), then by Theorem 6.4, we have that

]E( | trn[Y, Yr exp(sY, Yy)] \) < ]E<trn (Y Y, exp(Re(S)YJYn)])

< n—ﬂE(Trn [B:B, exp(R"T(S)B;;Bn)]) < 0,
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which proves (i). Regarding (ii), Theorem 6.4 yields furthermore (still under the assump-
tion that n > Re(s)), that

E(trn[Yn*Yn eXp(SY;Yn)]) = %E(Trn[B*B exp(2 B;;Bn)])
m(n) - F(1 —m(n),1 —n,Q;Z—i)'

Here,
o0

romon = =35 (") (7 )

with the convention that (’;) = 0, whenever j >k, (j,k € Ny). Since lim,, o, mﬁln) =g, it
follows that for each fixed j in N,

’ 1 <m(n) — 1) (n - 1) s% (cs?)
im —— 2= _
n—oo j + 1 J j Jn¥  glG+1)!

Moreover, with 7 := sup, oy mi") < 00, we have that
1 (m(n) — 1) (n — 1) §% (vs*)!
Jj+1 J J n| = ji(j+1)V

for all j,n. Hence by Lebesgue’s Theorem on Dominated Convergence (for series), it
follows that

lim F(1—m(n),1-mn,2; o = Z% (s € ©), (6.23)
and moreover
P~ m(n).1 - ﬁm_ziﬂl-wwm% (s€0. (629

I(j +1)!

A standard application of Cauchy’s Integral Formula and Lebesgue’s Theorem on Domi-
nated Convergence (using (6.24)) now shows that the convergence in (6.23) actually holds
uniformly on compact subsets of C.

Recalling next that lim, (1 — )" = exp(—s) for any complex number s, it follows that
nh_)rgo(l — £ymmtn = exp(—(c+ 1)s), (s € C). (6.25)
Using then that
(1= g)ymmin] < (1= EHom < exp((y + )Jsl), (s €C),

it follows as before, that (6.25) holds uniformly on compact subsets of C.

33



Taken together, we have verified that,

nli_)rgloE(trn[Y;Yn exp(sY;Y,)]) = cexp((c+1)s ; G + 0 (s € C), (6.26)

and that the convergence is uniform on compact subsets of C.

It remains thus to show that

wammmpWA)_cmm(+1 EIF_IﬁP (s € C). (6.27)

Note for this, that for any ¢ in ]0, oo,

) c+1+24/c
/ zexp(sz) duc(z) = i/ exp(sz)\/4c — (x — ¢ — 1) dx,
0 ct1-2v/c

since, in the case where ¢ < 1, the mass at 0 for u. does not contribute to the integral.
Applying then the substitution z = ¢+ 1 + y/cy, we get that

/ zexp(sz) du.(z) = cexp(( C+1 / V4 — y?exp(sv/cy) dy, (6.28)
0

and here, as we saw in the proof of Theorem 2.8,

%/ VA—2exp(ty) dy=>» ———,  (t€C). (6.29)
-2 jzoj.(j+1).
Combining (6.28) and (6.29), we obtain (6.27). n

6.7 Theorem. Assume that c €]0, oo[ and let (m(n)), be a sequence of positive integers,

such that lim, .., ™™ = ¢. Consider furthermore a sequence (Y,) of random matrices,
satisfying that Y, € GRM(m(n), n, 1) for all n. We then have

(i) For any s in C and n in N, such that n > Re(s),

E( ‘trn[exp(sY;Yn)] |> < 00,

and moreover

n—oo

lim E(tr,[exp(sY,'Y,)]) = /000 exp(sx) duc(x), (s € C), (6.30)

with uniform convergence on compact subsets of C.

(ii) For any positive integer p,

lim E(tra[(Y}Y; m):Awﬂdm@y (6.31)

n—00

(iii) For any bounded continuous function f: [0, co[— C,

hm E(trn[f Yy, / f(z) dp.(z). (6.32)
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Proof. Since exp(u) < 1+ uexp(u), for any u in [0, 0o[, the first statement of (i) follows
immediately from Lemma 6.6.

Consider next an element Y of GRM(m, n, %), and put B = y/nY € GRM(m,n,1). Then
by Corollary 5.6, we have that

E(tr,[f(Y*Y)])
= LE(Tr,[f(1B*B)))
/0 (Cisewr "(nx)?) f(z) da, if m > n, (6.33)
(I-2)f(0)+ /000 (ka:_olgaz_m(nx)Q)f(x) dz, ifm<n,

for any Borel function f: [0, 00[— C, for which the integrals on the right hand side make
sense.

From this formula, it follows easily that s — E(tr,[exp(sY*Y')]), is an analytic function
in the half-plane {s € C | Re(s) < n}, and that

%E(trn[exp(sY*Y)]) = E(tr,[Y*Y exp(sY*Y)]), (Re(s) < n). (6.34)

Now for each n in N, define
fa(s) = E(tra[exp(sY;Y,)]), (Re(s) < n),

where (Y,) is as set out in the theorem. Define furthermore,

f(s) = /000 exp(sx) du(x), (s € C).

Since u. has compact support, f is an entire function, and moreover

Fs)= [ zexp(sa) dude), (s €O)
0
It follows thus by (6.34) and Lemma 6.6, that
fn(s) = f'(s), asn— oo, (s € C), (6.35)
with uniform convergence on compact subsets of C. Now for fixed s in C, we may choose a

smooth path 7: [0,1] — C, such that y(0) = 0 and (1) = s. Then since f,(0) =1 = f(0)
for all n, it follows that

whenever n > Re(s). Combining this fact with (6.35), it follows readily that f,(s) — f(s)
for all s in C, and that the convergence is uniform on compact subsets of C. This completes
the proof of (i). We note next that (ii) follows from (i), by repeating the argument given
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in the proof of Theorem 2.8. Finally, to prove (iii), for any m,n in N, let o,,, denote the
probability measure on [0, oo, given by

(Ziser o )2)-dx, if m > n
Ommn = .
(1—=")60 + (Zk 0 Pr (mm)Q) -dx, if m <n.
Applying then (6.33) and (6.30) in the case s = it, ¢t € R, it follows from the implication
(iv) = (iii) in Proposition 2.1, that (6.32) holds. [

6.8 Remark. In [OP, Proposition 1.1], Oravecz and Petz showed that

/Ooo a? du(z) = %Zp:(i) (k ﬁ 1)ck, (¢>0, peN), (6.36)

k=1

by solving a recursion formula for the moments of u.. It is also possible to derive this
formula directly: For p in N, the point-mass at 0 for u. (if ¢ < 1), does not contribute to
the integral on the left hand side of (6.35), and hence

c+1+42+/c

/ 2P du.(x) = %/ Ve — (z —c—1)22P7" da.
0

c+1-2+/c

Applying now the substitution x = ¢+ 1 + 2y/ccos @, 6 € [0, 7|, we get that
/ 2P dy.(r) = %/ sin?@ - (¢ + 1+ 2y/ccos §)P~" df
0 0
= %/ sin?@ - (c + 1+ 2v/ccos0)P" d.

-7

Consider next the functions,

(0 = (1 Va" P, h(6) = e%,(6), and k(6)=e Tg6), (0 €0,
Using then the formula: sin*# = (1 — cos 26), we find that

/wap dpio(z) = £ / Re(1— ¢) - |g,(6)[> df
= / 19(0)]? df — Re(/ by (0) ke (6) dﬁ))-

By the binomial formula and Parseval’s formula, we have here that

T p—1 p— 1 2 )
£ [ o dezz( j ) o
- 2
p—1
m 1
ﬁ/wh’)( — (J - 1> (J + 1)07

J

(6.37)

and that
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where we have put (pjll) = (p;I) = 0. A simple computation shows that

(57 =600 -7 2)0) ozsmeon e

Now (6.36) follows by combining (6.37)-(6.38), and substituting j by 7 — 1. O

7 Almost Sure Convergence of the Largest and Smal-
lest Eigenvalues of YY),

In the paper [Gem] from 1981, Geman studied a sequence (73,) of random matrices, such
that for all n in N, 7T}, is an m(n) X n random matrix, satisfying that the entries tﬁ),
1 <j<m(n), 1 <k <n, are independent, identically distributed, real valued random

variables, with mean 0 and variance 1. Under the assumption that lim,_, . @ = ¢,

and some extra conditions on the growth of the higher order moments of the entries tﬁ),
Geman proved that
m Apax (A T2T,) = (Ve + 1)2, almost surely, (7.1)

n—oo

where Amax(+717,) denotes the largest eigenvalue of ~T}T,. Under the additional as-
sumptions that T, is Gaussian for all n, (i.e., that tﬁ) ~ N(0,1) for all j,k,n), and that
m(n) > n for all n, Silverstein proved in 1985, that

lm A\ (TET,) = (Ve —1)2, almost surely, (7.2)

n—oo

where Amin(+77T;,) denotes the smallest eigenvalue of TT}T, (cf. [Si] and [Sz, pp. 929-
934]). Both Geman’s condition and Silverstein’s condition have later been relaxed to the
condition that the entries of T;, have finite fourth moment, i.e., E(|t§2) *) < oo (cf. [YBK]
and [BY]). This condition is also necessary for (7.1) (cf. [BSY]).

The above quoted papers consider only real random matrices, but it is not hard to gen-
eralize the proofs to the complex case. In this section we prove (7.1) and (7.2) in the
complex Gaussian case, by taking a different route, namely by applying the explicit for-
mula for E(Tr,[exp(B;B,)]), B € GRM(m,n,1), that we obtained in Section 6. This
route is similar to the one we took in Section 3.

7.1 Theorem. Let ¢ be a strictly positive number, and let (m(n)), be a sequence of
positive integers, such that lim,_, . mn) — ¢. Consider furthermore a sequence (Y;,) of
random matrices, defined on the same probability space (2, F,p), and such that Y, €
GRM(m(n), n, =), for all n. We then have

lim Apax (YY) = (Ve + 1), almost surely, (7.3)
n—oo

and

(Ve—1)2, ife>1,

Imost ly. 7.4
0. ife<l, almost surely (7.4)

nh—golo /\min(Yn Yn) = {
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We start by proving two lemmas:

7.2 Lemma. Consider an element B of GRM(m,n,1). We then have
(i) For anyt in [0, 3],

E(Tr,[exp(tB*B)]) < nexp ((vm + v/n)*t + (m + n)t*), (7.5)

(ii) If m > n andt > 0, then
E(Tr,lexp(—tB*B)]) < nexp (— (vm — v/n)*t + (m + n)t*). (7.6)

Proof. (i) Assume first that m > n. Then by (6.20) in Theorem 6.4, we have that

Eﬂn@mmmezijﬂﬁ:gﬁ;i;”, (te]—o0,1]).  (7.7)

For k in {1,2,... ,n}, we have here that

F(m —k,n—k,1;t) :Z (mj—k) (n;k)th

0

<
I

2
> m—k t
. (gm T By

and thus we obtain the estimate

F(m—k,n—k, 1;t%) <exp(2y/(m — k)(n — k)|t]), (ke{1,2,...,n}). (7.8)

For tin [0,1] and k in N, we have also that (1 —¢)%**"! < 1, and hence by (7.7) and (7.8),
we get the estimate

i exp(2y/mnt)  nexp(2y/mnt)

E(Tr,[exp(tB*B)]) < 1—tmm  (1—fmn

tel0,1). (7.9

k=1
Regarding the denominator of the fraction on the right hand side of (7.9), note that for
¢1in [0, 1], we have that

o
"
—log(l—t)=)Y —<2+iB++t*+...)<t+1t?
8( - + 5

and hence that (1 —¢)~! < exp(t+ t?). Inserting this inequality in (7.9), we obtain (7.5),
in the case where m > n.
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If, conversely, m < n, then by application of (6.21) in Theorem 6.4, we get as above, that
for ¢ in [0, 1],

E(Tr,[exp(tB*B)]) < (n—m) + m?fp_(iﬁt) < n?Tp_(Qt;{n@t)

Estimating then the denominator as above, it follows that (7.5) holds for all ¢ in [0, ].
(ii) Assume that m > n, and note then that for k in {1,2,... ,n}, we have that

Vim—F)n—k) < vmn — k.

Combining this inequality with (7.7) and (7.8), we get for ¢ in [0, oo[, that

n

E(Trnlexp(—tB*B)]) = » |

k=1

F(m—k,n—k,1;t%)
(1 + t)m+n+1—2k

1 (z": exp(2(vmn — k)t))

<
= [+ gymintt (1+8)%

< % ( S ((1+1) exp(—t))2k> .

k=1
Here, (1 +t) exp(—t) <1 for all ¢ in [0, co[, and hence we see that

E(Tr,[exp(—tB*B)]) < ”‘Z’fpﬁﬁt), (t € [0, o0). (7.10)

Regarding the denominator of the fraction on the right hand side of (7.10), we note that
for any t in [0, co[, we have by Taylor’s formula with remainder term,

_ 2 3
10g(1+t) =t — 7+w,

for some number &(t) in [0,¢[. It follows thus that log(1 +t) > ¢ — %, and hence that

(1+1)7" < exp(—t + t?), for any ¢ in [0, co[. Combining this fact with (7.10), we obtain
(7.6). ]

7.3 Lemma. Let ¢, (m(n)), and (Y,) be as set out in Theorem 7.1. We then have

(i) For almost all w in €,

lim sup Amax (V; () Yp(w)) < (Ve + 1)% (7.11)

n—oo

(ii) Ifc > 1, then for almost all w in €,

lim inf Ay (Y, (W) Yo (w)) > (Ve —1)% (7.12)

n—0o0
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Proof. For each n in N, we put ¢, = mn” , and B, = y/nY, € GRM(m(n),n,1). By
Lemma 7.2, we have then that

E(Tr,[exp(tY;Y,)]) < nexp ((ven +1)% + L(cn + 1)8%), (te[0,2]), (7.13)
and that
E(Tr,[exp(—tY;Y,,)]) < nexp (— (vVen — 1)%t + L(cn + 1)82), (t €[0,00[), (7.14)

Since all the eigenvalues of exp(£tY,*Y;,) are positive, we have here for any ¢ in [0, oo,
that

T [exp (1,7 () Ya (@))] 2 Amax (exp(tY;] (@) Ya(w)))

= o (P @)N), ey, 1
and that
Toofexp(— 17,5 () Ya )] 2 A (XD(=1 (0)¥ol)) )
= o (- DunVF@ale)), (@€ Q).
For fixed 7 in N, ¢ in [0, 2] and € in ]0, 1], we get now by the Chebychev Inequality, (7.15)

and (7.13),

P(AmaX(Y* ) > (Ven +1)% + ) = P(exp [EAmax(VV,) — H(y/En +1)2 — te] > 1)

< IE( exp [EAmax (YY) — t(v/en + 1) — te})
< exp[—t(v/cn + 1)* — te]E(Trn[exp(tY,Y;)])
<nexp (—te+ +(c, +1)?).

For fixed n in N and € in ]0, oo], the function ¢ — —te + L(c, + 1)t?, attains its minimum

at to = % € [0, ]. With this value of ¢, the above inequality becomes

P(Mnax (Y7 Y2) > (Ven + 1)+ €) < mexp (= toe + 2 (cn + 1)15) = nexp(255).

Since ¢, — ¢ as n — 00, the sequence (c,) is bounded, and thus it follows that

> POV Y2) > (Ve +1)? Z"exp o)
n=1

Hence the Borel-Cantelli lemma yields, that on a set with probability one, we have that

Amax(YY,) < (Ve + 1) + ¢, eventually,

and consequently that

lim sup Amax (Y, Y5) < limsup [(ve, +1)° + €] = (Ve+1)* + €

n—0o0 n—oo

40



Taken together, we have verified that for any € in ]0, oo[, we have that

P(lim SUp Amax (Y, Yy) < (Ve +1)? + e) =1,
n—00

and this proves (7.11). The proof of (7.12) can be carried out in exactly the same way,
using (7.16) and (7.14) instead of (7.15) respectively (7.13). We leave the details to the
reader. [

To conclude the proof of Theorem 7.1, we must, as in Geman’s paper [Gem], rely on
Wachter’s result from [Wa2] on almost sure convergence of the empirical distribution
of the eigenvalues to the measure y.. As mentioned in the beginning of Section 6, the
random matrices considered by Wachter have real valued (but not necessarily Gaussian)
entries. His method works also for random matrices with complex valued entries, but in
the following we shall give a short proof for the case of complex Gaussian random matrices,
based on the “concentration of measures phenomenon” in the form of Lemma 3.4.

7.4 Proposition. (cf. [Wa2]) Let ¢, (m(n)), and (Y,) be as in Theorem 7.1, and for
all n in N and w in , let u,, denote the empirical distribution of the eigenvalues of
V¥ (w)Y,(w), ie.,

Hnw = 5 251 On(¥ir (@) Ya (@)
where, as usual, A\ (Y (w)Y,(w)) < --- < A\ (Y (w)Y,(w)) are the ordered eigenvalues of
V¥ (w)Yn(w). We then have

(i) For almost all w in ), pn,, converges weakly to the measure p. introduced in Defini-
tion 6.5.

(ii) On a set with probability 1, we have for any interval I in R, that

lim (

n—00

SI=

-card[sp(Y,;Yn) N I]) = pe(I).

Proof. Note first that (ii) follows from (i) and Remark 2.3.

To prove (i), it suffices, as in the proof of Proposition 3.6, to show that for every fixed
function f from C!(R), we have that

lim tr,[f(Y,Y,)] = / f dpe, almost surely.
n—oo 0

So let such an f be given, and define g: R — C by the equation: g(z) = f(z?), (z € R).
Then g € C!(R), so in particular g is Lipschitz with constant

c=sup |¢'(z)] < .
T€R

Consider furthermore fixed m,n in N, and for A, B in M,,,(C), define A and B in
M1 (C) by the equations

(0 A -~ (0 B
=G%) =)
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By Lemma 3.5 it follows then that

l9(A) — g(B)llus < c|A = Bllus. (7.17)
H (A4 0 > (BB 0
A‘(o aa) =0 BB)

= (8 de) 0= (T )

Hence, it follows from (7.17) that

Note here that

so that

1f(A*A) = f(B*B)lis + [If(AA") — F(BB)lis < ¢*(IlIA = Blls + 14" — B*llzs).-
Since ||A* — B*||%45 = ||A — B||%s, the above inequality implies that
1£(A*A) = f(B*B)|lms < eV2||A— Bl|us,

and hence, by the Cauchy-Schwarz inequality, that

[tr[£ (A" A)] — tr,[f(B*B)]| < ey/2]|A — Blus.
It follows thus, that the function F': M,,,(C) — R, given by
F(A) =tra[f(A"4)], (A € Mpnx(C)), (7.18)

satisfies the Lipschitz condition
F(4) = F(B) < e\/214 = Bllus, (4B € Mya(©). (7.19)
The linear bijection ®: M,, ,(C) — R?*™  given by

®(A) = (Re(Aj), Im(Aji))i<j<m, (A € My, 4 (C)),

1<k<n

transforms the distribution on Mp,,(C) of an element of GRM(m,n, =) onto the joint
distribution of 2mn independent, identically N (0, 5-)-distributed random variables, i.e.,
the distribution G 1 on R?*™ with density

2mn,(2n)~ 2

dG _1(37) mn
2mn,(2n)~ 2 ﬁ _ 2 2mn
= (5)" exp(nllef),  (a € BO™),

w.r.t. Lebesque measure on R*™". Moreover, the Hilbert-Schmidt norm on M,, ,(C) corre-
sponds to the Euclidean norm on R?*™* via the mapping ®. Combining these observations
with Lemma 3.4 (in the case 02 = \/%—n) and (7.19), it follows that with (Y;,) as set out in
the proposition, we have for any n in N and ¢ from |0, oo, that

P(|F(Y,) = E(F(Y,))| > t) < 2exp(="55),

2
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where K = % It follows thus by application of the Borel-Cantelli lemma, that

lim |F(Y,) —E(F(Y,))| =0, almost surely.

n—o0

Using then (7.18) and Theorem 6.7(iii), we get that

lim tr,[f(Y,Y, / f dpe, almost surely,

n—o0

as desired. [ |
Proof of Theorem 7.1. By Lemma 7.3, we only need to show, that for any ¢ from |0, oof,
we have that

liminf Ao (YY) > (Ve+1)% almost surely, (7.20)

n—0o0

—1)2 if ¢ > 1
lmsup Apin(Y,Y,) < (vVe=1)% 1 co almost surely. (7.21)
n—>00 0, if ¢ S 1,

By Proposition 7.4, it follows, that for any strictly positive ¢ and almost all w from €2,
the numbers of eigenvalues of Y;*(w)Y,(w) in the intervals [(y/c+1)? — ¢, (y/c+ 1)?] and
[(Ve —1)%,(v/c — 1)® + €], both tend to co, as n — oo. This proves (7.20) and, when
¢ > 1, also (7.21). If ¢ < 1, then m(n) < n eventually, and this implies that eventually, 0
is an eigenvalue for YV,*(w)Y,(w), for any w in . Hence we conclude that (7.21) holds in
this case too. |

8 A Recursion Formula for the Moments of the com-
plex Wishart distribution

In [HSS], Hanlon, Stanley and Stembridge used representation theory of the Lie group
U(n) to compute the moments E(Tr,[(B*B)?]) of B*B, when B € GRM(m,n,1). They
derived the following formula (cf. [HSS, Theorem 2.5]):

p

(Il BY) = 30 R pem 6

7j=1
where we apply the notation: [a], =a(a —1)---(a —p+1), (a € C,p € Np).
By application of the results of Section 6, we can derive another explicit formula for the

moments of B*B.

8.1 Proposition. Let m,n be positive integers, and let B be an element of GRM(m,n, 1).
Then for any p in N, we have that

E(Tea (B BY)) = mn(p — 1)! til; (TR e
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Proof. In Section 6, we saw that that for any complex number s, such that Re(s) < 1, we
have the formula
~m-n-F(l—-m,1-n,2;s%

E(Tr,[B*Bexp(sB*B)]) = A= sy : (8.3)

(cf. formula (6.19)). Hence, by Taylor series expansion, for any s in C, such that |s| < 1,
we have that

iiEmnKWBVDﬂWI:nrniqk—mﬁ—”ﬂwa, (8.4)

2 o) (1= sy

Formula (8.2) now follows by multiplying the two power series

> 1 (m—-1\(n-1
F(l—m,l—n,2;—52):2,—< , )( : )82j,
ItV J

and

~(m+n+k—1
1— —(m—|—n): m k
(1-s) Z( | )

0

and comparing terms in (8.4). ]

We prove next a recursion formula for the moments of B*B, similar to the Harer-Zagier
recursion formula, treated in Section 4.

8.2 Theorem. Let m,n be positive integers, let B be an element of GRM(m,n, 1), and
for p in Ny, define

D(p,m,n) = E(Tr,[(B*B)]). (8.5)

Then D(0,m,n) = n, D(1, m,n) = mn, and for fixed m, n, the numbers D(p, m,n) satisfy
the recursion formula

D(p +1,m, n) = (21"";)% ) D(p’ m, n) + (p—l)(p;;gm—nﬁ) ) D(p —1,m, n), (p € N)
(8.6)

Proof. Recall from Section 6, that the hyper-geometric function F' is defined by the
formula

i akbk k
F(a,b,c;x):;((i)k(k)! o

for a,b,c,z in C, such that ¢ ¢ Z \ Ny, and |z| < 1. For fixed a,b,c, the function
u(z) = F(a,b,c;x), is a solution to the differential equation
d2

d
x(l—x)d—;;+(c—(a+b+1)x)£—abuzO,
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(cf. [HTF, Vol. 1, p.56, formula (1)]). In particular,ifa =1—n,b=1—m and ¢ = 2,
then u satisfies the differential equation

x(l—x)%—i—(?-&-(m+n—3)x)Z—Z—(m—l)(n—l)uzO. (8.7)

Define now, for these a, b, c,
v(t) = u(t?) = F(1 —m,1 —n,2;1?), (It] < 1).

Then (8.7) implies that v satisfies the differential equation

2

11— t)% + (34 (@m+on— 5)%% CAm-Dn-1w=0, (f<1). (88)

Define next

w(t) = . _1)(tt))m+n _ F(1 —(1”31)7—”:: 2;t2)’ (It < 1).

A tedious, but straightforward computation, then shows that w satisfies the differential
equation

d%w dw
t(1—t3)— —2 t — 5t2)—
=) g + B - 2mam)i =50 (8.9)

— (3(m+n) +4t — (m —n)*t)w = 0, (Jt] < 1).

Introduce now the power series expansion w(t) = > a,t?, of w(t). Inserting this

expansion in (8.9), one finds (after some reductions), that the coefficients «, satisfy the
formulas

ag=1, and a3 =m+n, (8.10)
pp+2)a, — 2p+1)(m+n)oy 1 — (" — (m—n)’)ay 2 =0,  (p=>2). (811)

On the other hand, inserting the power series expansion of w(t) in (8.4), yields the formula
D(p,m,n) = E(Tr,[(B*B)?]) = mn(p — 1)lay-1, (p € N). (8.12)

Combining this formula with (8.11), it follows that (8.6) holds, whenever p > 2. Regarding
the case p = 1, it follows from (8.10) and (8.12), that D(1,m,n) = mn, D(2,m,n) =
mn(m + n), and hence (8.6) holds in this case too. It remains to note that D(0,m,n) =
E(Tra[1,]) = n. ]

The recursion formula (8.6) is much more efficient than (8.1) and (8.2) to generate tables
of the moments of B*B. For an element B of GRM(m,n, 1), we get

) = mn

( D) = m’n+mn®

E(Tr,[(B*B)’]) = (m’n+3m*n®+ mn’) 4+ mn
( ) = (m*n+6m’n® +6m°n® + mn*) + (5m°n + 5mn?)
( )%]) (m°n + 10m*n? + 20m>n® + 10m>n* + mn®)

+ (15m°n + 40m*n® + 15mn?®) + 8mn.
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For p < 4, these moments were also computed in [HSS, p.172] by application of (8.1).
Note that only terms of homogeneous degree p+ 1 — 25, j € {0,1,2,... ,[’%1]}, appear
in the above formulas. This is a general fact, which can easily be proved by Theorem 8.2
and induction. If we replace the B from GRM(m,n, 1) considered above by an element
Y from GRM(m,n, &), and Tr, by tr,, then we have to divide the right hand sides of the
above formulas by n?™!. Thus with ¢ = ™, we obtain the formulas

E(tr,[Y*Y]) = ¢
E(tr,[(Y*Y)’]) = S +c¢
E(tr,[(Y*Y)?]) = (*+3cF+¢)+en™
E(tr,[(Y*Y)Y]) = (¢*+6¢° +6¢°+c¢)+ (5¢” + 5e)n™
E(tr,[(Y*Y)?]) = (c®+10c¢" +20¢* + 10¢* + c)

+ (15¢® + 40¢* + 15¢)n 2 + 8cn ™.

In general E(tr,[(Y*Y)?]) is a polynomial of degree [251] in n~2, for fixed ¢. By Theo-
rem 8.2, the constant term (p, ¢) in this polynomial, satisfies the recursion formula

c —1)(c—1)2
A(p+1,0) = B iy o) e iy 0) (peN),

and moreover, v(0,¢) = 1, v(1,¢) = ¢. As was proved in [OP], for any ¢ in |0, oc[, the
solution to this difference equation is exactly the sequence of moments of the free Poisson
distribution p. with parameter c, i.e.,

o0 p
0= [T =3 (0) (0 )4 e,
(cf. [OP, Formula (1.2) and Proposition 1.1]). Thus, if ¥, € GRM(m(n),n, ), for all n
in N, and # — ¢, as n — 00, then we have that

lim E(tr,[(Y*Y)?]) = v(p,c) = /000 2P dp(z),

n—oo

in concordance with Theorem 6.7(ii).
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