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Summary. Inhomogeneous log Gaussian Cox process models for multi type point pat-
terns are studied and extended to spatial-temporal models called log Gaussian Cox birth-
death processes. This is used in a detailed statistical analysis of a particular agricultural
experiment concerning the development of weeds on an organic barley field.
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1 Introduction

So far most applications of spatial point processes have concerned homogeneous and
relatively small point patterns observed at a fixed time, see, for example, Diggle (1983)
and Stoyan et al. (1995). The purpose of this paper is to show how log Gaussian Cox
processes as introduced in Mgller et al. (1998) can be extended to the inhomogeneous
case and used in the statistical analysis of a time series of multi type point patterns.
For simplicity we consider only the case where X (¢) = (Xi(t), X2(¢)) is a bivariate point
process and t > 0 denotes time; however, everything is easily extended to cases with
three or more types of points. The discussion is related to a particular agricultural
experiment concerning the development of weeds on an organic barley field, see Section
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2. We consider the two most common species, which are observed at eight different dates
in a design consisting of 45 frames, and demonstrate that a certain log Gaussian Cox
birth process model for X (¢), ¢ > 0, fits the data very well (no plants are “dying” during
the experiment). Briefly, under that log Gaussian Cox birth process model, the marginal
distribution of X (¢) is a bivariate log Gaussian Cox process defined as follows. For i =
1,2, s € R?, t > 0, consider a random “intensity surface” given by s exp(Y;(t) (s)) with
Y;.(t) (s) = G(s) + Gi(s) + mz(t)(s), where G, G1,G9 are independent Gaussian processes
(t2) < m") whenever 0 < t; < ty. Here

with mean 0 and mgt) is a mean function so that m; .
G can be thought of as a common environmental factor, while G; and G5 may reflect the
influence of the seed bank for the two species. Then, conditional on (Y”, V"), X;(t)
and X(t) are independent Poisson point processes with intensity functions exp(Y;") and
exp(YQ(t)), respectively. Moreover, for 0 < t; < ty, we can obtain X (¢;) from X (¢3) by
independent thinning of the points in X (¢3), where the thinning probability for a point
located at s € R? is given by p; 4, 1,(s) =1 — mgtl)(s)/mgm(s). Actually, we show that we
Et) so that p; ¢, +,(s) does not depend on s.

Useful properties of bivariate log Gaussian Cox processes are considered in Section

3.1. Bivariate log Gaussian Cox birth processes as briefly introduced above are discussed

can model m

further in Section 3.2. Section 4 is concerned with the statistical analysis of the dataset
for the development of weeds: We investigate to what extent there is non-stationarity
and anisotropy in the observed point patterns, propose parametric forms for the mean
and covariance functions of the underlying Gaussian processes, estimate the unknown
parameters, check the estimated bivariate log Gaussian Cox birth process model, and
discuss how the unobserved intensity surfaces can be predicted. Finally, in Section 5, we
report briefly on an alternative model for the data and discuss how our model easily can
be extended to include death of plants using a so-called log Gaussian Cox birth-death
process model.

2 Description of data

The data considered in this paper originates from an experiment made on a Danish
organic barley field in May 1996, where 30 cm x 20 cm metal frames were placed in a
design consisting of 9 plots each containing 5 frames as shown in Figure 1. The size of the
experimental area is 750 cm x 500 ¢cm, where the longest side agrees with the ploughing
direction. The distance between two neighboring plots is 150 ¢m in the ploughing direction
and 100 cm perpendicular to the ploughing direction. Two neighboring frames in the
same plot are 30 cm apart in the ploughing direction and 20 c¢m apart perpendicular to
the ploughing direction.

Photos of every metal frame were taken at eight different dates (7/5, 9/5, 13/5, 16/5,
20/5, 23/5, 27/5, and 30/5 1994), every plant (weed and barley) was identified to the
most specific taxonomical level based on Haas and Laursen (1994), and the approximate
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Figure 1: Sampling design for the mapped point pattern data set.

Species 7/5 9/5 13/5 16/5 20/5 23/5 27/5 30/5
Veronica spp. 16 58 174 268 321 339 378 406
Trifolium spp. 105 234 503 717 819 860 949 976

Table 1: Counts of Trifolium spp. and Veronica spp. at the eight dates.

position of the plant was noted. The photos were developed to Kodak* photo CD and
these digitized images were used to mark the exact position of each plant by help of the
notes made in the field. Due to the roughness of the field it was not possible to place the
camera at exactly the same position nor in exactly the same height at each photo. The
positions of weed plants used in this paper is thus the rectified coordinates for the weeds,
where the rectification is based on translation, rotation, scaling and skewness estimated
from the corners of the metal frames, see the documentation of the ArcInfo* function
transform (Anonymous (1993)) for more details.

In the sequel we restrict ourselves to considering two species, Trifolium spp. (clover)
and Veronica spp. (speedwell), which are the two most frequent species in the survey. The
bivariate point patterns (z1(t),z2(t)) observed at the eight dates t; < ... < tg form an
increasing sequence so that z;(t;—1) C z;(t;), i = 1,2, j = 2,...,8. Table 1 shows the
increasing number of plants for the two species at the different dates. Barley was sown
26/4 1996, and due to ploughing of the field immediately before sowing, no plants were
present in the field at this date. The bivariate point pattern at date 30/5 for each of the
nine plots is shown in Figure 2. In order to get an idea of the temporal development,
Figure 3 shows the bivariate point pattern in the central plot for the eight dates.

3 Statistical model

In this section we study bivariate log Gaussian Cox processes and relate these to the data
in Section 2. In Section 3.1 we consider the fixed time case and extend some results in

*Kodak and Arclnfo are registered trademarks.
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Figure 2: The mapped bivariate point pattern at date 30/5 within each plot.
Small circles correspond to locations of Trifolium spp. and dots to Veronica
spp. The lower right plot corresponds to the lower left plot in Figure 1 (the
distances between plots are reduced in order to clarify the display of the weed
positions).
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Figure 3: The bivariate point pattern in the central plot for the different dates.
Small circles correspond to locations of Trifolium spp. and dots to Veronica

Spp.-



Mgller et al. (1998) to the inhomogeneous case in space, while extensions to the temporal
domain are considered in Section 3.2.

3.1 Inhomogeneous bivariate log Gaussian Cox processes

As explained in more detail below we consider bivariate log Gaussian Cox processes where
the intensity is allowed to be inhomogeneous while the pair correlation functions are
assumed to be stationary and isotropic.

Recall first the definition of a planar bivariate Cox process X = (X, X5) directed
by a random intensity process A = (A1, Ay) which is locally integrable so that v;(B) :=
S5 Ai(s) ds < oo for all bounded Borel sets B C R* and ¢ = 1,2. Conditional on A, X; and
X, are independent Poisson processes with intensity functions A; and A,, respectively. If
Ai(s) = exp(Yi(s)), i = 1,2, where Y = (Y7, Y3) is a two-dimensional real-valued Gaussian
process defined on R2, then X is called a bivariate log Gaussian Cox process. As discussed
in Mgller et al. (1998) it is necessary to impose weak conditions on the mean functions
m;(s) = EY;(s) and covariance functions ¢;;(s1, s3) = Cov(Yi(s1), Yi(s2)), 7 = 1,2, in order
to ensure that each A; is integrable and that the distribution of v; is uniquely determined
by the distribution of Y;.

Henceforth, we impose the natural condition that the mean functions m; and may
are continuous. Further, we assume that the covariance functions are stationary and
isotropic so that c;;(s1,82) = o274(||s1 — s2||), where o2 is the variance of Y; and r;; its
correlation function; the cross covariance functions ¢;j(a) = Cov(Y;(s1), Yj(s2)), @ # j, are
also assumed to depend only on the distance a = ||s; — s3|| whereby ci19 = co1. Then, if
there exist some positive numbers K, ¢, § so that 1 — ry;(a) < K(—loga)~('*9 whenever
a < 0, we can assume that Y has continuous sample paths whereby A; is integrable and
v; is uniquely determined. Moreover, the covariance function matrix c(a) = {c;;(a) }i j=12
has to be positive semi-definite. If the c;; are absolutely integrable, then c is positive
semi-definite if and only if

Cii(a) >0, 012(61)2 < 011(0)022(61), 1=1,2, a >0, (1)
where
1 o0
Ciyla) = 5 /0 Jo(ab)cs; ()b db

is the Hankel transform of ¢;; and Jj is the Bessel function of first kind and order zero.
In the particular case where

k
Y;' = Z O!iij + m; (2)
j=1

with parameters o;; € R and the Z; being mutually independent Gaussian processes with
mean 0, variance 1, and stationary isotropic correlation functions r;, we have immediately
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that ¢ is well-defined and specified by

k k
§ : 2 § :
Ci; = aijrj , Ci9 = Q10575 . (3)
j=1 j=1

There is a simple one-to-one relationship between the mean and covariance functions
of the Gaussian field Y and the first and second order characteristics of the bivariate point
process X. Let p;(s) = FA;(s) be the intensity function of X;, i = 1,2, and define the
pair correlation functions

9i5(a) = ElAi(s1)A;(s2)]/ (pi(s1)p;(52)), 4,7 € {1, 2}, a = [|s1 = 52, (4)

Roughly speaking, g;;(a)pi(s1)p;(s2)dsidss is the probability that X has a point of type
1 and another of type j at the infinitesimally small regions of volumes ds; and ds,,
respectively. We have that

pils) = exp(mi(s) + 02/2), gi;(a) = exp(ci;(a)). (5)

This means that the distribution of (X,Y’) is specified by the functions p;, gi;, 1 < i <
J<2

For the estimation of g;; we need a definition of the second reduced moment function
K;. Suppose we have observed a bivariate point pattern (x1,z2) of X restricted to some

bounded window W with area |W| > 0. In the inhomogeneous case we follow Baddeley
et al. (1998) and define, for a > 0,

1 e—all<a __[°
@O= @ 2 T a@n) " routndr ©

where 1[-] denotes the indicator function. Note that this is in agreement with the definition
in the stationary case where the p; are constant and p? K;;(a) is interpreted as the mean
number of points of type j within distance a of a typical point of type i (see, e.g., Ripley
(1977) and Diggle (1983)). Further, K5 = K. We use (6) for estimating g;; in Section
4.2.

Furthermore, higher order product densities for X can be expressed in terms of
pis Gij» 1 <1 < j <2 see Theorem 1 in Mgller et al. (1998). In particular, the third
order product density pz(-3) (&,m, k) = E[Ai(§)Ai(n)Ai(k)] is given by

P2 (€., k) = pi(€)pi(m)pi (k) g (1€ — 1) g (1€ — l)gis | 1n — Kl))-

Hence, the third order characteristic z;(a) defined by the expression

E > 1/[7*a[W|pi(&) pi(n)pi (k) gis(11€ — nl1)gis(1l€ — wl)gai(lln — )]

57777K'EX1' : fEW,
EENLERNER,
0<[|¢—n[|<a,0<]|¢~K||<a

(7)



is easily seen to be equal to 1 for all distances a > 0 and ¢ = 1,2, when X; is a log
Gaussian Cox process. An unbiased estimator of z;(a) given by (7) is easily obtained by
modifying Theorem 2 in Mgller et al. (1998) as follows. Let (&, n, k) denote the angle
(anti clockwise) between n — & and Kk — &. For £ €e W, a > 0, b > 0, 0 < ¢ < 27, set
27 Jwe o5, €qual to the length of

Usapyp =10 €10,2m) | &+a(cosy,sinp) € W,
&+ b(cos(p + 1), sin(p + ¢)) € W},

taking we o5 = 00 if the length of Ug 444 is 0. Then

Z 2We ||e—n||,| 1€~k (€m.K) (8)
e 72t |W | pi(&) pi(n) pi (k) gii (|| — nl1)gai(||€ — &l])gis([|n — &l|)
{n,n}gXiﬂ’VV:
E£N EF£ K NEE,
l|6=nl|<a,|[Ex][<a

is an unbiased estimator of z;(a) whenever a < af, where

ot = inf{a > 0| / / / / 1weaps = 00] dib dadbdé > 0}.
cew Jae(0,8] Jbe(0,8] Jpejo,2m)

This is used in Section 4.4 for model checking.

Having estimated the mean and covariance functions of Y using the methods to be dis-
cussed in Sections 4.1-4.2, it is possible to predict Y on any rectangular region containing
a sub-window 7" of W. This is further considered in Section 4.5.

3.2 Spatio-temporal bivariate log Gaussian Cox processes

We now return to the data in Section 2 and specify the general space-time model for the
increasing sequence of bivariate point patterns (z;(t), z2(t)) observed at the eight different
times t; < ... < tg. Letting W denote the union of the 45 frames in Figure 1, we consider
the data as a realization of a time-continuous bivariate point process X (t) = (X (), X2(%))
defined on R? so that the realizations X;(t) N W = z;(t), i = 1,2, are observed at times
t=1t1,... 15

It seems natural to model {X(¢) : ¢ > 0} as a spatial birth process. Specifically,
conditional on a bivariate Gaussian process Y = {Y (s) : s € R?} as considered in Section
3.1, we let {X;(¢) : t > 0}, ¢ = 1,2, be independent Poisson birth processes: conditional
on Y, X; is a Poisson process on R? x [0, 00) with intensity measure v; X 7;, where v; is
defined in the beginning of section 3.1, and ; is a measure defined on the Borel sets of
[0,00) so that 0 < 7;([0,%]) < oo for all t > 0. We call {X(¢) : t > 0} a bivariate log
Gaussian Cox birth process.

If £ = 0 corresponds to the date 26/4 1996, where no plants were present, then
X (0) = (0,0), where ) denotes the empty point configuration. For any fixed ¢t > 0 we
have that conditional on Y, X;(¢) is a Poisson process with intensity measure v;;(B) =
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v;(B)7i([0,t]), and so X (t) is a bivariate log Gaussian Cox process driven by the log Gaus-
sian process {(exp(Y1(s))71([0,1]), exp(Ya(s))72([0,%])) : s € R?}. Hence, by (4) and (5),
the intensity functions at time ¢ becomes

P (s) = ([0, 8]) exp(ma(s) + 02/2), i=1,2,

while the pair correlation functions of X (¢) do not depend on the time ¢. In Section 4
we utilize these properties together with the fact that X (tg),... , X (¢1) is a Markov chain
where X (t;_1) is obtained from X (¢;) by independent thinning, i.e. when the points in
Xi(t;) are independently deleted with probability

pij = (-1, ;1) /%[0, 5]). 9)

We consider mainly the following model for Y. Let Z,U;,Us; be three independent
univariate Gaussian processes with mean 0, variance 1, and correlation functions r,ry, ro,
respectively. Then

where w > 0 and ¢; > 0 are parameters and m; is the mean function of Y;. This model
has the advantage of being well defined for any choice of correlation functions r,ry, rs.
Furthermore, it is easily interpretable as the common component Z of Y; and Y, may
reflect unobserved environmental factors such as soil nutrients or soil humidity, while Uj;
could reflect the bank of seeds of species i. Combining (3) and (10) we have that

crp = W, cy=wlr+olr, i=1,2. (11)

In Section 5 we comment briefly on an alternative model for Y which is neither of the
type (10) nor (2).

4 Statistical analysis

Throughout this section we let the situation be as in Section 3.2, i.e. X denotes a bivariate
log Gaussian Cox birth process with Y specified by (10) and the ~; being arbitrary locally
finite measures with +;([0, ¢]) > 0 for ¢ > 0. The statistical analysis in Sections 4.1-4.2 is
mainly based on the data x(tg), while the entire dataset is considered in Sections 4.3-4.4.
In Section 4.1 we examine inhomogeneity and isotropy properties, and we estimate the
intensity functions. In Section 4.2 we consider non-parametric estimation of the covariance
functions, propose a parametric model for the correlation functions in (11), and estimate
the unknown parameters by a minimum contrast method. The thinning probabilities p;; in
(9) are estimated in Section 4.3 by non-parametric methods. Validation of the estimated
parametric model from Section 4.2 is considered in Section 4.4. Finally, in Section 4.5 we
discuss prediction of the unobserved Gaussian process.



4.1 Analysis of non-stationarity and anisotropy

In many applications of point process models, stationarity and isotropy is often assumed
if the observation window is too small to asses whether apparent heterogeneity is due
to anisotropy or non-stationarity or if it is caused by random variation. However, if a
parametric form is assumed, even a small observation window may be used to determine
if anisotropy or non-stationarity is present. Then the problem is to choose a parametric
form which is reasonable in relation to the problem considered. We will here analyze some
possible parametric forms of non-stationarity and anisotropy which, for our data, can be
explained by ploughing and sowing in the same direction year after year.

Ploughing furrows may cause non-stationarity in form of periodicity of the intensity
perpendicular to the ploughing direction due to the relief of the field. This can be checked
by projecting the intensity onto the axis perpendicular to the ploughing direction. For
neither of the two species such a periodic non-stationarity could be observed. However,
the projected intensity for Trifolium spp. seemed to be increasing, while it appeared to
be constant for Veronica spp. For Trifolium spp., Figure 4 shows the linear regression of
the logaritmized intensity of points in each frame against the position of the frame in the
direction perpendicular to the ploughing direction at time tg. Logarithms have been taken
in order to stabilize the variances. The straight line in Figure 4 is the estimated regression
line, and a t-test for a horizontal line turned out to be highly significant (p < 107%).

-2.5

-3.5

-4.5

0 100 200 300 400 500

cm

Figure 4: Trifolium spp. at the latest date; linear regression of the logaritmized
intensity of points in each frame against the position of the frame in the
direction perpendicular to the ploughing direction.

We will thus assume that the positions of Veronica spp. constitutes a stationary point
pattern, whereas the intensity for Trifolium spp. can be parameterized as
pgts)(s) = exp(a + bsy), s= (s1,s2) € R (12)

Estimation of a and b is done by ordinary linear regression of the logaritmized intensities,

giving ﬁgtS)(s) = exp(d + bsy) with @ = —4.28 and b = 0.0030. The intensity for Veronica
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spp. is estimated by the average of plants per 1cm? giving ,agtg) = 0.015. At the other 7
dates (7/5-27/5) we have checked non-stationarity by the same methods and found the
same pattern; Veronica spp. seems to form a stationary point process, while Trifolium
spp- appears to have a log-linear trend perpendicular to the ploughing direction.

Ploughing and sowing may also cause anisotropy which causes larger correlations in the
ploughing direction. Possible parametric forms are provided by covariance functions with
elliptic contour curves and main axis in the ploughing direction. This type of anisotropy
is called geometric anisotropy (see e.g. Cressie (1987)). It can be investigated by an
orientation analysis using directional K-functions defined as follows (see also Stoyan and
Stoyan (1995)). For ¢ = tg (or any other fixed time), —7/2 < ¢ < 7/2, ¢ < ¢ < P+,
and a > 0, define

Kigy(a) =E > L[| = nll < al/(IW]pi(§)pi(n)), i=1,2, (13)
£eX;(tg)NW,
NEX;(t8)NSe a,6,4:
&#n

where S¢ 4 4.4 is the ‘sector’ given by the union of the two segments of a disc with center
¢ and radius a when the angles of the first segment is between ¢, and the second is
between 7 + ¢, m + 1; here we let the angle 0 correspond to the ploughing direction.
Under the assumption of isotropy, K4, depends only on 7 — ¢. We have considered
two sectors with (¢, ) = (7/4,37/4) and (¢,v) = (—m/4,7/4), respectively. Note that
Kii = Kinjagnja + Ki —njan/a, 50 setting My = K; 74 37/4/ Ky and My = K; _r 474/ Kis,
isotropy implies that M;; = 0.5, 4,7 = 1,2.
We estimated K; 4, by

N 1 w
Kigy(a) = — 1€ —nl| < a]—=21—~, i=1,2, (14)
Z Wl 66;(758), pi(€)pi(n)
'ﬂE.’Ei(ts)ﬂS§,a,¢,¢:
&#n

where we,, is Ripley’s (1977) edge correction factor given by the proportion of the cir-
cumference of the circle with center £, radius || — 7|, and lying within W. Figure 5
shows the estimates of M;; and M;,. The envelopes in Figure 5 (and Figures 8-11 to be
considered later on) are constructed as in Diggle (1983); as we are using 19 simulations
under the estimated parametric model in Section 4.2, the envelopes are pointwise approx-
imate 90%-confidence intervals. The plot for Veronica spp. does not give any reason to
believe that geometric anisotropy is present, while the plot for Trifolium spp. indicates
that some anisotropy may be present. However, since it seems difficult to model this
possible departure from isotropy, we will continue the analysis assuming isotropy for both
species.

4.2 Estimation of the covariance functions

Under the log Gaussian Cox birth process model, the pair correlation functions (and
thereby also the covariance functions) are identical at all times. Therefore we start by

11
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Figure 5: Estimated M;;-functions in the ploughing direction (solid line) and
perpendicular to it (dashed line) using a sector width of ¥ — ¢ = 7/2 for
Veronica spp. (left) and Trifolium spp. (right) at the latest date. Envelopes
(dotted lines) are based on 19 simulations using the estimated parametric
model in Section 4.2.

analyzing the latest bivariate point pattern x(tg); the other patterns are analyzed in
Sections 4.3-4.4.

Inspired by the definition (6) of the K;;-functions for an inhomogeneous bivariate point
process, we estimate the pair correlation functions by

B 1 k(€ = nll — a) We,n -
gij(a) = 1 Z ~(s) l(t ) y 4] € {172}: (15)
Wi £exi(ts),nEm;(ts): 2na bi (f)Pjs (n)
§#£n

where wg , is the edge correction from (14) and k is the Epanecnikov kernel with bandwidth
0.15/(p:p;)/* for all 4,5 € {1,2}, where j; is the average of points in z;(tg) per 1cm?
(see Stoyan and Stoyan (1994)). Since (15) is not symmetric in i and j, the cross pair
correlation function is finally estimated by gi12 = po/(p1+p2)G12+p1/(p1+p2)Gor. Hence by
(5), non-parametric estimators ¢;; = log g11, €12 = 10g 12, €22 = log oo of the covariance
functions are obtained.

Figure 6 shows the non-parametric estimates of the covariance functions at time tg.
Though the estimates for Trifolium spp. have been corrected for the log-linear trend found
in Section 4.1, we observed that they did not differ much from the uncorrected estimates
obtained by assuming stationarity, since the estimates of the pair correlation functions
based on each plot were very alike at distances less than 20 ¢cm (as considered in Figure
6). For distances about 15c¢m and more, a simulation study showed that the estimators
¢;; were heavily biased downwards (see also Figure 6).

The non-parametric estimates of covariance functions in Figure 6 suggest to use
exponential covariance function for Z, U;, U, given by cja(a) = w?exp(—a/B) and

12



ci(a) — cia(a) = oZexp(—a/B;), i = 1,2, cf. (11). Here w?,02,3,5; > 0 are parame-
ters estimated by minimizing integrals on the form

ao
| @) - @) da (16)
where 0 < €;; < ap and o > 0 are user specified parameters. More precisely, we propose
first to obtain estimates &2 and § from (16) when i = 1, = 2, and then for each i = 1,2,
estimate 02 and §; by replacing c;(a) in (16) by &2 exp(—a/B) + o2exp(—a/3;). For
this minimum contrast method we found it appropriate to use ag = 10 cm, o = 0.5, and
€i; = min{||€ —n|| : £ € zi(ts), n € x(ts), € # n}; similar values were used in Mgller et al.
(1998). .

The minimum contrast method gave B = 44.11, &% = 0.22, Bl = 1.24, 62 = 0.5,
BQ = 23.22, 62 = 0.26; inserting these values in the parametric expressions for c;1, ¢i9,
Co9, We obtained the estimated covariance functions ¢11, €19, Coo for the fitted parametric
model, see Figure 6. Finally, the mean functions at time tg can be estimated by mz(-tS)(s) =
log pi'*)(s) — (&% + 67)/2.

15

1.0

0.5

0.0
|

cm

Figure 6: Non-parametric estimates €11, €12, Coo (solid lines) and parametric
estimates ¢11, ¢19, Coo (dotted lines) for the covariance functions at the latest
date. From above (at Ocm) 611, 522, 611, 622, 612, 612.
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4.3 Estimation of thinning probabilities

We do not make any parametric assumptions about the birth intensity measures 7; intro-
duced in Section 3.2. Instead we estimate the thinning probabilities in (9) by

Pij = [na(t;) — na(tj—1)]/ni(ty), 1=1,2, j=1,..,8,

where n;(t;) denotes the number of points in z;(t;) (we set ¢, = 0, so n;(0) = 0). Note
that p;; is the ratio of the maximum likelihood estimates of ;1 = v;(W)~;((¢;-1,¢;]) and
0ijo = vi(W)7i([0,¢;]); actually Y is an ancillary statistic for 6 = (6;5;). The estimated
thinning probabilities are shown in Figure 7.

1.0

0.6

0.4

0.2

days

Figure 7: Estimated thinning probabilities for Veronica spp. (solid) and Tri-
folium spp. (dotted) at times to = 0, t; = 12, ... ,t; = 32 corresponding to
the dates 26/4, 7/5, ..., 27/5 1994.

The estimated thinning probabilities for Veronica spp. and Trifolium spp. are very
similar. This may indicate that the birth intensities mainly are controlled by external
factors such as light intensity, temperature, and soil humidity, which are common to the
two species.

4.4 Model validation

Several summary statistics are available for model checking. These are often defined so
that their expectations have a clear interpretation in the homogeneous case (Veronica
spp.), but plots of the summary statistics together with simulated envelopes can of course
also be used in the inhomogeneous case (Trifolium spp.). For the latest date and for each
species i = 1,2, we consider below the empty space function F; (see Diggle (1983)) and
the third order characteristic z; defined by (7). Moreover, in order to check the modeling
of the time development, we compare the covariance functions at the eight dates.
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We used the Kaplan-Meier estimator introduced in Baddeley and Gill (1997) for non-
parametric estimation of F; — the common estimator for F; based on minus sampling
(see e.g. Stoyan et al. (1995)) is not appropriate due to the relatively low number of
points in each frame (see Figure 2). Figure 8 shows the estimated empty space functions
for the two species. The plot for Veronica spp. shows a fine agreement between data and
the estimated parametric model from Section 4.2, while the estimated F; (Trifolium spp.)
is very close to the upper envelope after about 5 cm.

<
—

0.8
L

0.6

0.4

0.2

0.0
L

cm cm

Figure 8: Non-parametric estimates of empty space functions for Veronica spp.
(left) and Trifolium spp. (right) with envelopes from 19 simulations under the
estimated parametric model at the latest date.

When simulating the log Gaussian Cox processes used to calculate the envelopes in
Figure 8, we discovered that it was important to simulate on the entire 750 x 500 cm?
area rather than simulating nine independent Gaussian processes corresponding to the
nine plots. A simulation study revealed that if nine independent Gaussian processes
are simulated, then the covariance functions will be heavily under estimated, even if the
correlation function decays relatively fast to zero (for example being 0.005 at 100 cm,
which correspond to the minimum distance between plots).

Using (8) with p; replaced by ﬁitS) from Section 4.1 and g;; estimated by §;; = exp(é;;)
as obtained under the parametric model from Section 4.2, we got an estimate for the third
order statistic z; as shown in Figure 9. These plots give no reason to doubt the estimated
parametric model at the latest date for both species. The nearly constant and relatively
wide envelopes for Trifolium spp. is caused by the much larger value of /32 compared to
Bl, as J, increases, coo becomes more heavytailed, whereby extra variation is introduced
into Xs.

We now turn to the model validation for the time development. Recall that the pair
correlation functions are unchanged over time under the bivariate log Gaussian Cox birth
process model. Figures 10 and 11 show the estimated log pair correlation functions at the
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Figure 9: The third order statistic z; for Veronica spp. (left) and Trifolium
spp. (right) with envelopes from 19 simulations under the estimated parametric
model at the latest date.

six latest times ts, ...,ts. The envelopes are based on 19 simulations of X;(#3) under the
estimated parametric model. If instead simulations corresponding to the lower intensities
at the dates 13/5—27/5 had been used, wider envelopes would be expected. Figures 10 and
11 rise no doubt about the estimated bivariate log Gaussian Cox birth process model. The
C;; in Figures 10-11 are heavily biased downwards for distances about 15 cm and more, cf.
Section 4.2, and the envelopes in Figure 11 are wider than in Figure 10 since 52 >> 61

4.5 Prediction

At each of the eight dates t € {t1,...,1s}, it is possible to predict the underlying Gaussian
process Y (s) = (Yl(t)(s), YQ(t) (s)) by simulating from the conditional distribution of Y®
given (X, ()NT, Xo(t)NT) = (z1(t)NT, z2(t)NT), where Y, (s) = (Yi(s)+log ([0, ]), i =
1,2, and T C W is a sub-window. For example, suppose we want to predict Y on a
rectangular region S. We may then extend the Metropolis adjusted Langevin algorithm
(MALA) studied in Mgller et al. (1998) from the univariate case to the bivariate case
considered in the present paper (see also Roberts and Tweedie (1997)); the choice of
T C W may depend both on W, S, and the performance of the MALA as exemplified
below. However, we found it much easier and faster to use the MALA for the univariate

®) conditional on the

case directly by considering for each ¢ = 1, 2, the Gaussian process Y
data X;(t)NT = z;(t)NT only. Then we have of course ignored the possible dependence
between Yl(t) and YQ(t); indeed we have in any case ignored the information provided by
the data concerning the other species of weeds as well.

We illustrate the method by letting 7" be the central plot and the plot right below it,
and predict Yl(tS) on a 300 cm x 300 cm square S containing 7" as indicated in Figure 12

(upper plot). The only reason for not considering e.g. T'= W and S a 500 cm x 750 cm area
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Figure 10: Non-parametric estimates of the log pair correlation functions for
Veronica spp. (solid lines) at the six latest dates with envelopes based on 19
simulations under the estimated parametric model (dotted lines).

containing W is the amount of computer power required. The variance and correlation
function of Yl(ts) are specified by the estimated parametric model from Section 4.2, and
using the variance estimate together with the estimate ﬁ?” (see Section 4.1) we obtained
from (5) an estimate m{"® = —4.56 of the mean. The Markov chain generated by the
MALA appeared to reach equilibrium after 1000 iterations. For safety we used a burn-in of

10000 iterations before collecting a sample of size 40000. Thereby we obtained the Monte

17



30/5 27/5

12 14 16
12 14 16

1.0
1.0

0.8
0.8

0.6

0.6

0.4
0.4

cm cm

23/5 20/5

16
16

14
14

12
12

0.8
0.8

0.6
0.6

0.4
0.4

15 20 0 5 10 15 20

14
14

12
12

0.8 1.0
0.6 0.8 1.0

0.6

0.4
0.4

Figure 11: Non-parametric estimates of the log pair correlation functions for
Trifolium spp. (solid lines) at the six latest dates with envelopes based on 19
simulations under the estimated parametric model (dotted lines).

Carlo estimate Y\ "®(s) of E(Y;"®)(s)|z1(ts) N T), s € S, as shown in Figure 12. Note
how the high predicted intensity in the lower part of Figure 12 is in fine correspondence
with the fact that the lower plot has the highest occurrence of Veronica spp. among all
plots. Furthermore, in contrast to Figure 12 in Mgller et al. (1998), it is not possible to
recognize the original point pattern represented by high peaks of the predicted intensity.
This is because our estimated covariance functions have much heavier tails than the ones
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considered in Mgller et al. (1998).

Incidentally, we mention that it is also possible to predict X(tg) on S\ T from the
conditional distribution of X (¢g) given an estimate of the intensity surface on S\ 7', for
example as provided by exp(Y ®)) (with obvious notation).

5 Concluding remarks

We have also tried to fit another model which is not of the form (2), but with ¢;; a
stable covariance function and c;o and ¢ being exponential covariance functions. First,
we estimated the parameters of the mean and covariance functions in a similar way as
in Sections 4.1-4.2. Secondly, we used (1) to check and see that under the estimated
model we have a well-defined covariance structure. Then we proceeded as in Sections
4.3— 4.4 and concluded that the present model fits the data just as well as the model
(10) analyzed in Section 4 as regards the empty space functions and the third order
characteristics. However, we prefer the model (10) because of its easy interpretation as
discussed at the end of Section 3.2, and since the temporal development seemed better
described by this model when considering the covariance functions at the different dates
(as in Figures 10-11).

Finally, we notice that the log Gaussian Cox birth processes considered so far can be
extended in many ways. For example, death of plants can be incorporated in a straight
forward manner to obtain what we naturally would call a bivariate log Gaussian Cox
birth-and-death process. The construction will be so that the pair correlation functions do
not depend on the time, whereby the statistical analysis will be very similar to what we
have discussed in Section 4. Another possibility is to incorporate covariate information in
the mean functions and the birth intensity measures 7;. Such covariates could e.g. be light
intensity or temperature which is known to trigger germination or patches of humid soil
which can effect the mean functions. If covariate information is used only for modeling
the mean functions, the statistical analysis will again follow the same lines as in Section
4.
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Figure 12: Prediction of Yl(ts) on the 300 cm x 300 cm square S centered around
the central plot and the plot right below it (as indicated by the dashed lines
in the upper plot).
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