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Preface

The interest of the first author of the present Lecture Notes in empirical process theory arose after
having studied Ron Pyke’s beautiful survey [Py72] on Empirical Processes where Ron underlines his
view that “the development of empirical processes provides an excellent illustration of the interplay be-
tween statistics and probability and of increased sophistication of mathematical techniques which have
been introduced into these disciplines in recent years.” Since then the theory of empirical processes
has grown in an enormous way initiated by Dudley’s [Du78] fundamental paper and culminating in
his book [Du99]. Also the books of Shorack-Wellner [Sh86] and van der Vaart-Wellner [Va96] together
with Pollard [Po84],[Po90] and the overview given by Giné [Gi96] confirm Pyke’s early view in a very
impressive way.

In view of the large literature on empirical processes which have appeared in recent years, the present
Lecture Notes will only cover a small amount of the subject. Our approach in revisiting Empirical and
Partial-Sum Processes as so-called Random Measure Processes had its origin in the papers by Pyke
[Py84] and Ossiander-Pyke [Os85].

We hope to raise with our presentation further interest in empirical process theory.

Munich, July 1999 Peter Gaenssler and Daniel Rost
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Summary

In a general framework of so-called Random Measure Processes (RMP’s) we present uniform laws
of large numbers (ULLN) and functional central limit theorems (FCLT) for RMP’s yielding known
and also new results for empirical processes and for so-called smoothed empirical processes based on
data in general sample spaces. At the same time one obtains results for Partial-sum processes with
either fixed or random locations. Proofs are based on tools from modern empirical process theory as

presented e.g. in [Va96].

Our presentation will be also guided by showing up some aspects of the development of empirical
process theory from its classical origin up to its present generality which now offers a wide variety of

applications in statistics as demonstrated e.g. in Part 3 of [Va96].

1 Introduction

1.1 The uniform empirical process «,,

Two important processes in probability and statistics are the empirical and partial-sum process.

Let 5,7 € N, be independent identically distributed (iid) random variables (rv’s) with law £{7;} =
U[0, 1] (the uniform distribution on I = [0, 1]), defined on a basic probability space (p-space) (€,.A,P),
ie. n 1 Q— I with P(n; <t)=F(t) =1t Vtel.

Let F,, be the empirical distribution function (edf) based on 7y, ..., 7y, i.e.

F,(t) =n"" Z Log(n,). tel;

ji<n

to indicate that F, is random, i.e. depending on w € Q, we also write instead of I, (¢)

F,(t,w)=n"" Z Lo, (n;(w))-

i<n

(14 denotes the indicator function of a set A.)

THEN:

Vt € I E(F,(t)) = F(t) (i.e. F,(t)is an unbiased estimator for F'(t))
Vt € I by the classical central limit theorem (CLT)

a, (1) == n'? (F,(t) — F(t)) == N(0, F(t)(1 — F(1))

(where — denotes convergence in law), and by the strong law of large numbers (LLN)

Vtel F,(t) — F(t) P-almost surely (a.s.)



(ie. (F, (t))neN is a strongly consistent sequence of estimators for F'(t));

moreover, by the GLIVENKO-CANTELLI THEORFEM,
sup |[F,(t) — F(t)] — 0 P—a.s.
tel

(Note that sup,c;|Fn(t) — F(t)] is measurable since it remains unchanged when replacing I by the countable
index set 1N Q)

FUNCTIONAL VIEWPOINT
The stochastic process a,, = (e, (t))ses is called UNIFORM EMPIRICAL PROCESS (of sample size
n). Its sample paths

an (@) = (2 (Fy(t,w) = F(1))

ter
are contained in the space D := {z € R : x satisfies () — (z4¢)}:

(i) Vte[0,1) Fa(t+0) :=limsy, 2(s)

(ii) vt € (0,1] Jz(t — 0) := lim, ~ x(s)

(iii) ¥Vt € [0,1) «(t) = z(t +0).

Since sup,c;|z(t)| < 0o Va € D, it is tempting to endow the space D with the sup-metric p, i.e. with
play, xq) = su? |1 (t) —@a(t)], @1 20 € D,
te

which is usually considered in the space C'= C'(I) of continuous functions on /.

Note that (C, p) is a closed separable subspace of (D, p) being also complete (cf. [Bi68], p.220).

In contrast, (D, p) is not separable and «,, : @ — D is not A, B(p)-measurable if D is equipped with
the o-field B(p) of Borel sets w.r.t. the p-topology; cf. [Bi68],p.152.

At this place there were two ways to overcome this difficulty (cf. [Bi68]):

(i) Skorokhod’s metric s being weaker than p which makes o, : Q@ — D A, B(s)-measurable
(B(s) := Borel o-field in (D, s))

(ii) [Du66] (cf. also [Wi68] and [Gael3]):
Consider instead of B(p) the smaller o-field B,(p) generated by the open p-balls in (D, p); then
again «a, : @ — D becomes A, B,(p)-measurable, since B,(p) = oc({m : t € I}) (= o-field
generated by the projections 7, : D — R, () := z(t)).

1.1.1 Remarks.
Let B(C, p) be the Borel o-field in (C,p) and B,(C, p) be the o-field generated by the open p-balls in
(Cv p); then B(Cv p) = Bb(cv p) =N Bb(p); whence

(1.1.2) B(C,p)=oc({restem, : t € I});



furthermore C' € B,(p) and (cf. [Bi68], Th. 14.5) B(s)=oc({m,:t € I}), whence
(1.1.3) B(s) = By(p)-

In the following let B = (B(t))ies be the Wiener process (Brownian Motion) with parameter set

T =1, and let B® = (B°(t)):c; be the Brownian Bridge (B°(t) := B(t) — tB(1)); both processes are

mean-zero Gaussian processes with sample paths in €', whose covariance structure is given by

(114) COU(B(t1)7B(t2)) :tl/\t27 t17t2 € 17 and

(115) COU(BO(t1)7BO(t2)) :tl/\tz _tl ‘tz, t17t2 € 17

respectively. Both processes can be viewed as random elements (re) in (C,B(C,p)) or as random

elements in (D, B,(p)) with L{B}(C) =1 and L{B°}(C) = 1 respectively.

HERE: Given a measurable space (X, X'), we say that nis arein (X, X) ;<= 3 p-space (2, A, P)
s.t. n:Q — X is A, X-measurable.

The following prospect is taken from [Do49]:

“Noticing that, by the multivariate CLT, the finite-dimensional distributions (fidis) of o, are asymptotically (as n — co) the same
as those of B°, we may assume— until a contradiction frustrates our devotion to heuristic reasoning — that in calculating asymptotic
distributional results for the ay,-process one may simply replace the ay’s by B°.”

This prospect was justified by the following Functional Central Limit Theorem (FCLT):

1.1.6 THEOREM (/Don51],[Don52],[Pro56]).

a, =+ B° in (D,s),

ie. lim, o E(f(an)) = E(f(B°)) VfeCD),
where C*(D) :={f : D — R : f s-continuous and bounded }.

Note also that L{B°}(C') =1 in view of 1.1.7 below.
Taking instead of s the sup-metric p one gets

1.1.6/ THEOREM.
a, = B° in (D, p),
ie. lim, o E(f(an)) = E(f(B°))) Vf e CY(D),
where CY(D) :={f: D — R: f p— continuous, By(p) — measurable and bounded}.

In fact 1.1.6 and 1.1.6" are equivalent according to the following lemma. For this, let 1,,n > 0, be a

sequence of re’s in (D, B,(p)) 0T (D, B(s)), and
== = lim E(f(an)) = E(f(B°)) ¥f € C*(D), and
e = lim B(f(e)) = E(f(B%)) V[ € Cy(D),



respectively.

(Note that £{nn},n > 0, is well defined on By(p) = B(s) and that limp o0 E(f(ar)) = E(f(B°)) < limpso fD fadl{nn} =
J, fdc{no})

1.1.7 Lemma (/Gae83],Lemma 18.p.93).

M £, o  and L{n}(C)=1 = 1, SN No;

c c
conversely, 0, —— 1y = N, — No-

The same situation is met in section 1.2 in connection with the classical partial-sum process.

As we shall see in section 2.3 the concept of weak convergence (L - convergence) can be generalized in
such a way that the approximating sequence (7,),ey is not assumed to consist of re’s, i.e. arbitrary
1,’s will be allowed; measurability is solely assumed for 1y to which 7, converges weakly.

1.2 The classical partial-sum process (,
Let &;,j € N, be iid rv’s defined on a basic p-space (2, A, P) with E({;) = 0 and E({7) = 1. Let
Ca(t) :=nt/? Z & el

{7:d/n<t}

THEN:

E(C.(t)) =0 and (1) == N(0,t) Vtel
and COU(Cn(t1)7Cn(t2)) = tl /\tz 7t17t2 € I.

FUNCTIONAL VIEWPOINT
The stochastic process ¢, = (¢, (¢))ter is the CLASSICAL (standardized) PARTIAL-SUM PROCESS

(of sample size n).
(with < a >:=max{z €Z: 2 <a},a € R, ¢, () can also be written as ,(t) = n=1/2 Z;:nlb &)
Its sample paths (,(w) = (n72 30 & (w))tel are contained in D. (, can be viewed as re in

(D, By(p)) = (D, B(s)) and the FCLT for , is also due to Donsker:

1.2.1 THEOREM.
Cn ~4B in (D,s) or, equivalently,

(o —=5 B in (D, p).



Theorem 1.2.1 and 1.1.6 are special cases of FCLT’s to be considered in section 7.

Nevertheless we want to present here proofs in a form due to Franz Strobl [St90] yielding some indications when dealing later with
more general processes.

The following proofs are based on the characterization theorem of L-convergence (CTL-C) presented
in section 2.3 (here with parameter space T'= I and metric d(t,,ts) := |t; — ta], 1,82 € I).

PROOF OF THEOREM 1.1.6. According to CTL-C we have to show (i) and (ii), where

(i) ap L> B°, i.e. weak convergence of the finite-dimensional distributions (fidis) of &y, to the corre-
fidi sponding fidis of B°.

(ii) lims_glimsup, . P*(wq,(d) >¢) =0 Ve >0,
where P*(A) := inf{P(B): AC B,Be€ A} VYA CQ, and where
e (8) = U ey len(t) = an(t)] 8> 0.

li—t'|<6

The proof of (i) follows by the multivariate CLT and can be found in standard textbooks (c.f. e.g. [Gae77],
12.2.1).
PROOF OF (ii). Let £ > 0 be arbitrary; w.l.o.g. let

1
(1) §eQ, 0<5<Z and n > 9216 -67>.
STEP 1:  “We are going back to a grid of span 8”7 in the parameter-space T' = I; then
{we, (0) >t ={Ft; € I,i=1,2,st. 0<ta —t1 < and |ap(t1) — an(t2)| > ¢}

Now, to each gridpoint ¢; we associate a k; € Z4 s.t. k0 <ty < (k; +1)8, where kg — kg < 1ift; — ¢ < 4.
Then

{wa,(6) > e} = |J {3t € (k6. (k + 1SN T = Jan(t) — an(kd)] > £/3},
k‘EZ+
k<t

whence

P*(wa,(8) >e) < Y p*( sup Jan(t) — an(kd)| > 5/3)

k€T te(kd,(k+1)dlnT
k<%

N g b i 1 ;) — (t—ké))| > ¢/3
k§+ (tE(ké,(k+1)6]nm@| §< (ko1 (1i) — ( ))| /)
k<%

IA

1
(=+1) ]P( sup o, (t)] >6/3),
J t€(0,0]nQ

1.e. we have

1
2) P*(wa, (8) > €) < (= + 1)@( sup  Jan(1)] > 5/3).
J t€(0,0]nQ
Now, let Ty, C (0,0]NQ be s.t. |Ty| = m ¥m €N, and T,,, " (0,5] N Q as m — oo; then we have
(3) ]P( sup |an(t)] > 6/3) = lim ]P( sup |, ()] > 6/3) :
t€(0,51nQ m=oo Nl



STEP 2: Let m € N be arbitrary but fixed, T, = {{1,...,0m}, 0 =1 &g < {1 < ... < ty, < 4, and A =
{supser,, lan(t)] > e} then A C B4+ Y, A + Ypc,n Ay with

B:={> lpa(m) >n/2},

Af = Aanlty) <e/3,5 =1, k= Lan(ts) > /3,3 I sg(n) < n/2},

Ay

= {an(tj) >

now, we are going to show

(4)

Let k € {1, ...,
R:={r="(r,...,m)

P(AF " )<4}P>(A+/ N {an(26) >/< (b))~

—e/3,5 =1, k= Lan(te) < —¢/3,> lpe(n) <n/2}, 1<k <m;

— 26
1—1

}) Vi<k<m:

m} be arbitrary but fixed and

i1 €Ly n ™2 (r oy —nty) <e/3 VI<j<k-—1,

n_l/z(rl + .ot —nty) >e/3, i+ <n/2);

then

p(A,j N {an(26) > an(ts)

- 25
)

= ]P(n_l/z(z Loeg(mi) = nty) <ef3,5 =1, k=107 2> 1 e,1(m) — nty) > £/3,

1—24
Zl[o,tk](ni)Sn/Qazl(tk,Zé](nz > Zlotk 1) ntk)l +2 §— ZIOtk 772))

2.

r€R
ri=ri4...+re

2.

reER
ri=ri4...+re

-2

P(E b

i<n

D

28—t
SE[(”—T)l_—t:

n

wTrg,n—7r

i<n i<n i<n

i) =ri i =1k, Zl(tk,zé](ﬁi) > (n—

n r1 Th . s n—r—s
(m e 8) (= to) e (fs = i)™ - (26 — t)* (1 — 20)
n—r)NZ4

)Sl((n;r)' (ty—to)™ . (b — )™ (1 =) " (26 — t(kl)i(ik_)ng_(g)n—r—s

n—r—s)l

_Z]P(leh m)=rjj=1,. ) Z]}D(Zl s () _5)

r i<n

71t
i<n—r



since o2 := Var(l

[0 25—tk](7]1)) = 20=te . 1=20. 5 §/9 it follows that
)

o — 1—tg 1—tg

Zs:p( > SRR :5) :p( D Lz (n) 2 (”_T)Qf—_tﬁf)

T—1 Tty

i<n—r i<n—r
20 — tg
:p(’; N R e > 0)
) 1 6 26 — Uy 3
> ——7}3(1 26—t 1(11) — )
(BERRY-EsskeN) 2 \/n —ro? | [0 tk]( ) 11—t |

1 1
> e > =
(r<n/2) 2 n/2(8/2)3/2 (1) 4

therefore

B(AF 0 {an(29) > antr) T }) >

P(an(tj) <ef3, =1, k=1, an(t) > /3, Y lpoai(m) < n/2),

el

which proves (4) for Af. Analogously one shows that

PUAD) <47 (47 0 {an(29) < an() T }).

STEP 3: According to STEP 2 we have for any fixed m € N with T,,, = {t1,...,t,n} and 0 =: g < 1y < ...

ty < & that
B sup an(t)] > 2) <
t€Tm
n n 1-24
PO Loalm) > 5) +4 30 PAL 0 {on(20) 2 anlte) =) +
- 1—26
> }P(Ak A {0 (20) < nlt) T, }).
k<m
Now, tfi (% % implies that V1 < k <m
N 125, .
Af 0 {an(26) > an(tk)l ; } C Af n{an(20) > ¢/6} and
—t

1—24
11—t

A7 1 {an(20) < anlt) T} C A7 N {an(20) < ~/6},

whence (noticing that the AZ’ s as well as the A_’s are pairwise disjoint (p.d.))

P( sup |an(t)| >¢) <
1T

P ) > 5) +4E (an(26)] 2 ¢/6).



STEP 4: We are now in the position to verify that

lim limsupP*(wq, (§) >€) =0 Ve >0:

d=0 nooo

1 .
P*(wa,(d) >¢) < (=+1) lim P(sup |a,(t)] >¢/3)
@@ 0 Tmoe eer,

(§-+1)(@(}jlwﬁﬂm)>>§)+~4P(mm(ZDI26/®)
. 19 ; —nd n/2 —n
< {p(zlfn [0,61(7:) S _n2-nd )+4P(|an(56)|25/6)]

Vnd(l—19) Vnd(l—19)
cLr 2

—{0+4~2(1—

n—od 6

<

o———=)|.
64/25(1 — 29)
where ® denotes the standard normal df.

Therefore, Ve > 0

. 2 6\20(1-28) 1 -
lim supP*(wq, (§) >¢) < = -8 e 236-25(1-29)
msup (g, 6) > 2) < 5 VA2 L
2 Vi . —
<24 6v29 . 144 -6(1 — 26) 0.
0 eV2r = 50

PROOF OF THEOREM 1.2.1. According to CTL-C we have to show (i) and (ii), where
(i) ¢ —=B, and

(i) lims—olimsup,_, o, P*(w¢,(0) >¢) =0 Ve > 0.

As before, we skip the standard proof of (i).
PROOF OF (ii). Let € > 0 be arbitrary; w.l.o.g.let

(5) o<5<—(%ﬁ,ag1,nazx

As in STEP 1 of the proof above we get

P, (6) > &) < SO sup [Galt) = Ga(kO)] > 2/3)

k€T y te(kd,(k+1)d]nI
k<%
<nt>
<> P( sup ‘n_l/Q 3 &‘ >5/3)
keZiy te(kd,(k+1)s]nInQ R A
k<%
1
<(z+1 ]P( sup ‘n—l/2 &‘>6 3)
N (5 ) 1<k<<2n6> Z /

i<k

To obtain an upper estimate for the last expression we make use of the first Lévy-inequality as follows:



Let m =< 2nd >, Sk = Y, &i/n?, & = ¢/3,s% = Y, Var(&/n?) = m/n = ﬂﬂ < 26, ie.
sm < g/12; then - -
(5)

P(  sup ‘n_l/zz&‘ >¢e/3) =

1<k<<2nd> <k

P( sup |Sg|>e') <P( sup Sy >¢')+P( sup (=Sk) >¢')
1<k<m 1<k<m 1<k<m

Cl2

< z
(1. Lévy-Ineq.) @~ —

[P(Sm > & —asp) + P(=Sp > & — asy)]

for all @ > 1. Taking ¢ = 2 and noticing that ¢’ — 2s,, > ¢/3 — 2¢/12 = ¢/6 > 0, the last expression is
4 4 _
< G P(ISul > ¢/6) = S P72 30 &l > e/6).
1<<2nd>

Therefore (note that 1 < %) we get
5)

—

P*(we, (9) > ) <

24 g 8 - n__)fte
=5 B(h > Gl2¢/6) = 5 B(l<mi>" 3 al2 (gms) 6)
1<<2nd> 1<<2nd>
8 -1/ i _c
< 3—5@0 < 2nd >7! 22.5;2;»&' > 6¢%)

CLT 8 €
— —2(1-®

) 5—> 0 (as in Step 4 above).
=0

1.3 The multivariate case

Let d > 1 and 5;,j € N, be iid random vectors uniformly distributed on 74 = [0,1]%, defined on a
basic p-space (2, A,P),i.e. n; : @ — I¢ with P(n; < t) = F(t) := [1t; Yt := (t1,...,ta) € 1% Let
i<d

ay, =, (t)ere be defined by
an(t) = n'(F, () - F(t), telf

where F, (t) :==n"" 3o, 1o g(n;) and [0,2] = [0,¢,] x -+ - x [0, 2,].
The stochastic process a,, = (@, (t))ere is called MULTIVARIATE UNIFORM EMPIRICAL PRO-
CESS (of sample size n).
The MULTIVARIATE (standardized) PARTIAL-SUM PROCESS (of sample size ) ¢, = (¢o(t))iere
is defined by

Cn(t) = n—d/Z Z gl 7£€ Id7

J€JTn:j/neE0,2]



where J, := {1,...,n}% j = (ji,..., ja), and where the rv’s §ihJ € N? are assumed to be iid with
E(&;) = 0 and E(£7) = 1.

The EMPIRICAL MEASURE v, pertaining to F,, = (F},(t))sera is given by v, = n7' 3. 6.,
where (& denotes the Dirac measure in Y€ 14 N

The following picture illustrates v, in comparison with (,:

d=2

b/i Ii t2
0 121 0 t1
o = n](w),lgjgn, o) :l/n’le‘]”’
RANDOM LOCATIONS " FIXED LOCATIONS
= n~! FIXED MASSES ' o RANDOM MASSES

© | (positive (4) or negative (-))

Generalizations of the FCLT’s 1.1.6 and 1.2.1 to the multivariate case were obtained by Bickel and Wichura [Bi71], Neuhaus [Ne71]
and Straf [Str71] after having extended the Skorokhod-metric to D(Id)7 d > 1, to ensure the necessary measurability of the processes
considered. In contrast, based on the concept of weak convergence (£-convergence) of Hoffmann-Jgrgensen [Ho84], [Ho91] in section
2.3 below, the corresponding FCLT’s for oy, and (5, in the multivariate case can also be obtained in a much simpler way by choosing
a proper metric space, endowed with its natural sup-metric, as sample space of the processes, where the ay,’s adn (,’s need not be
measurable as we shall see (cf. section 7).

1.4 «, and (,, as set-indexed processes

Identifying each ¢ € I¢ with the quadrant C' :=[0,#] C I% d > 1, one gets the representations

(1.4.1) o, (C) = ' (v, (C) = v(C)), C €C,
where v, (C)=n"" Z le(n;)  and
i<n
v := Lebesgue measure on /%, and
(1.4.2) C(C)=n""" 3" 1c(j/n)g CEC,
J€Tn
(1.4.3) with C:={[0,4: ¢ € I‘}.

10



Both processes can be considered as set-indexed Partial-sum processes with random or fixed locations.

Their sample paths are contained in the Banachspace
°0C)={2:C —=R :||z]lc:= sCng|96(C)| < o0},
€

endowed with the sup-norm || - ||.

Moreover, both processes will occur as special cases of so-called RANDOM MEASURE PROCESSES

to be considered in section 3.

1.5 A first glance at Glivenko-Cantelli convergence and Vapnik-
Chervonenkis classes of sets
(Cf. also [Gae79] at this place.)

Let &,7 € N, be iid rv’s with v := £{¢;}, defined on a basic p-space (€2, A,P); then the classical
GLIVENKO-CANTELLI THEOREM ([G133], [Ca33]) states:

(1.5.1) Vv sup v, (C) —v(C)| — 0 P-a.s,
cec
where v, (C) =n" Z 1c(&) and
i<n

C:={(—o0,t]: t € R}.
There are a lot of generalizations of (1.5.1) in the literature. Let us mention here only a few of them:

(1.5.2)  Wolfowitz[Wo60], Dehardt [De71]
(1.5.1) is also valid for re’s &; in (R, B%),d > 1,
being iid with law v and with C := {(—o0,t] : t € R%}.
(B4 := Borel o — field in R%.)

(1.5.3) Ranga Rao [Ra62]
(1.5.1) is also valid for re’s & in (R% B%),d > 1,
being iid with law v and with C := {C' =)
where m € N is arbitrary but fixed.

H; : H; halfspace in R%},

(1.5.4)  Elker-Pollard-Stute [EI79]

(1.5.1) is also valid for re’s & in (R% B%),d > 1,
being iid with law v and with € := {C' C R¢: ' closed Euclidian ball}.

The proofs of (1.5.2) - (1.5.4) are mainly based on geometric arguments.

That Glivenko-Cantelli convergence fails to hold for any v when choosing larger classes of sets can be

seen from the following
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1.5.5 Example.
Let d > 2 and C := {C C R%: C convex Borel set}; let v be the (normalized) uniform distribution on
the unit sphere S; in R% and &;, j € N, be identically distributed with L{&;} = v (defined on (2, A, P)).
Let v, be the empirical measure based on &, ...,&,; then ¥n € N

sup v, (C) —v(C)| =1 P—a.s.

cec
In fact, given any x; = &(w),1 < j < n, where (w) € S, for P-almost all w € Q, there exists a
CeCwithC C{zeR*:|z|] <1} st. CNS, ={ay,....;x,}: Choose C := co({z1,...,x,}) where
co(A) denotes the convex hull of A C R% But then v,(C) = 1, wheras v(C') = 0.

Sy

Ty

Choosing even C = B? one gets for iid re’s & in (R, B%) with law v:

1.5.6 Lemma.
The following assertions are equivalent:

(i) 3 € A withP(Qo) =1 s.t.  supeega [V (Ciw) —v(C)] — 0 Vw € Q.

(ii) v is discrete, i.e. v =73, n M6,z ERYmy >0, ymi =1, N CN.

PROOF. (i) = (ii): By assumption there exists Q¢ € A with P(Qo) =1s.t.  supgega [vn(C,w) —v(C)] —
0 Vw € Qp; thus Qo # @ and for wy € Qg we have lim,,_, o, v, (C,wo) = v(C) VC € B¢, whence for Cj :=
{&(wo) 1 jEeN} € B v(Co) = limy_s 00 n(Co,wo) = 1, since v,(Co,wo) = 1 ¥n € N by definition of Cy. But
v(Cy) = 1 implies that v is discrete.

(ii) = (i): Let v be discrete, i.e. v =) . nymidy,, ¥ € R m; >0, > ieny Mi = 1, N C IN; then, by the strong
law of large numbers, there exists N; € A with P(N;) = 0 s.t. Vw € CNy and Vi € N limy oo v ({7}, w) =
v({z;}). Furthermore, since v concentrates on D := {x; : i € N}, there exists Ny € A with P(N2) = 0 s.t.
Vw € CNy and Vn € N v,(A,w) = 0 YA C RAD. Therefore, Vw € C(N; U N2) (v (-, w))nen is a sequence of
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p-measures on (D, P(D)) (where P(D) denotes the power set of D) which converges pointwise (i.e. Ya; : 1 € N)
towards v. Applying Scheffé’s lemma yields

Z a2}, w) —v{z )| — 0 asn — oo,

1EN
and therefore  lim,_ oo (supAEp(D) | (A w) — I/(A)D =0, yielding (i) with Qq := C(N; U Ny). |

In the following let X = (X, X’) be an arbitrary measurable space, £;,j € N, be iid re’s in X with
v := L{&;} defined as coordinate projections on the p-space

(QAP) = (X" A=,V = xv);
N N

this is what we call CANONICAL MODEL which will always be imposed as our basic p-space when
dealing with iid re’s in X.

Let v, be the empirical measure based on &,...,&,, i.e.
(1.5.7) vo(B) :=n""'> 15(&) =07t > 6, (B), BE X.
j<n j<n

Now, especially from the statistical point of view (i.e. when v is unknown), it is of interest to know
whether

(1.5.8) Vv sup v, (C) —v(C)| — 0 P — a.s.,

cec

for suitable classes C C X' (taking over the role of the classes considered in the special cases (1.5.1) -
(1.5.4)).

According to 1.5.5 and 1.5.6 the classes C C A’ for which (1.5.8) holds true are not allowed to be too
“rich”. As we shall see later in section 6.3, up to measurability, (1.5.8) will hold true in case of iid

re’s & in X, if C C X' is a so-called VAPNIK-CHERVONENKIS CLASS (VCC), i.e. if C fulfills

(1.5.9) Js € Ns.t. VF C X with |F|=s A°(F) < 2°,

where A(F) :=|[{FNC:C €C}|. (1.5.9) means that a VCC is not too rich in a combinatorial sense,
namely that from a certain s on “no s-element subset of X can be shattered by C” (i.e. VF' C X with
|F'| = s there is at least one F' C F for which F' # FnC VC €C).

Note that for ' C X with |F| = n AY(F) < 2" = number of all subsets of F' including the empty set, i.e. the

case were F'NC' = @ is also counted here and in the following.)

In the special case X =R and C = {(—o0,t]: t € R} (1.5.9) holds true with s = 2:

R VF ={z1, 2.}, < 2, —
1 T2 {22} # F N (—o0,t] Vt €R.
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In contrast, considering again 1.5.5 and choosing for any s € N F := {z, ..., 2,} with pairwise differ-
ent x; € Sy, it follows that every subset F' = {a;,,...,2;, } of ' can be represented as ' = FNC with
a convex Borel set ('

Choose C':= co({z;,, -, i, }).

Vi d=2
F={zy,...,2,} C S
F={Q®}
C = co(l").
Ty

The next example of Durst and Dudley [Dur80] shows that (1.5.8) may fail to hold for a VCC without
imposing additional measurability assumptions (cf. [Gae83], p.37-38):

1.5.10 Example.

Let X = (X, <) be an uncountable well-ordered set such that all its initial segments {z € X : x <
y},y € X, are countable (cf. [Ke61], p.29-). Then C := {{z € X : 2 < y},y € X} does not shatter
any F C X with |F| =2 (in fact: VF = {x,2:} C X with 1 < 5 we have {z,} # FNCVC € C,
since x5 € C would necessarily imply that x, € C' VC € C).

Note that C is linearly ordered by inclusion.

Now, by choosing v properly, we will see that

sup v, (C) —v(C)| =1:

cec

For this, let X := {B C X : B countable or 0B countable}, and let v on X be defined by

0 , if B is countable
I/(B) = ,BeX.

1 . if CB is countable

ThenC C X and v(C') =0VC €C.

On the other hand, given any observations z;,1 < i < n,n € N, of iid re’s &, ....&, in X = (X, X)
with L{&;} = v, there exists a C' € C s.t. x; € C' V1 <@ < n, whence

sup v, (C) —v(C)| = 1.

cec
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To avoid discussions about measurability assumptions we shall usually assume for simplicity that the

index sets like C C X are countable.

Even so, note that in cases where

sup [v, (C) = v(C)] = sup | (C) = v(C)]|

cec CeCo

with a countable Cy C C, this is no restriction.
Also in case of empirical processes and partial-sum processes considered in 1.1 and 1.2, respectively,
their sample paths are completely determined through the behaviour on a countable index set.

When considering later classes F of measurable functions f : X — R (instead of 1¢ = {1¢ : C' € C}) there will be instances where
VSJ € {_171}71 S ] S 7,

(+) 1 67 @)lls = ;zng%f(%)l = fseujgolz%f(%)l

J<n I<n j<n

for a countable subclass Fy of F, implying measurability of (z1,...,@n) — || Z]<n §;f(z;)||7. The underlying measurability

concept can be found in [Va96], Example 2.3.4, called there “Pointwise measurability of F” which means that there exists a
countable Fy C F s.t. Vf € F there exists a sequence (fr) C Fg with fn(z) — f(z) Yz € X. In fact, this property implies (+):
It is enough to show that for any £ > 0 there exists fn, € Fo s.t. |E]§n 85 fno (@) > || Z]Sn §;f(z;)||x — e. For this, choose

f € F with |E]§n 8 f(zj)| > szgn §;f(zi)lr —e/2 and (fm) C Fo s.t. fm(z;) — f(z;) asm — oo V1 < j < n which
implies |E]§n 8 fm(zj)| — |E]§n 8; f(x;)| whence there exists an ng s.t. |E]§n 8 fro ()] > szgn §;f(zi)llF—e.

For more about measurability concepts we refer to [Du99].

When restricting to countable C C A’ one may wonder if one ends up with a VCC; this is not the case

as seen by the following example:

Let (X, ) := (R, B),Ji :={[a,b] : a <b,a,b€ Q} and Vn € N J(n) := U;c, Ji with J; = J;. Then
C:=U,en /() is a countable subclass of B with with the following property:

Vn € N JF CR with |F|=nst. {FNC:CeC}|=2",

i.e. Cis not a VCC.

More about VCC’s in arbitrary sample spaces X = (X, X’) and so-called Vapnik-Chervonenkis graph
classes (VCGC) of X-measurable functions f: X — R will be contained in sections 4.2 and 4.3 below.
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2 Empirical Measures in general sample spaces

2.1 Empirical Discrepancies, Glivenko-Cantelli convergence and some
consequences in statistics

Let X = (X, X’) be an arbitrary measurable space serving as sample space of iid re’s §;,j € N, with
L£4{&;} = v, defined as coordinate projections on (2, A, P) := (X", AN, 1Y), i.e. our basic model will be
the canonical one as introduced in section 1.5.

Let v, be the empirical measure based on &,...,&, (cf.(1.5.7)) and let C C A’ be arbitrary but
countable for simplicity. The so-called EMPIRICAL DISCREPANCY is defined by

(2.1.1) [ = vlle := sup |1, (C) — v(C)]
CceC

(Since C is supposed to be countable, ||v, — v||¢ is a rv, defined on (2, .4,P).)

The empirical discrepancies have the following property; in case of arbitrary (i.e. not necessarily count-
able) index sets we refer to [St95]:

2.1.2 Lemma.

(||vn — V||c)nen is a reversed sub-martingale w.r.t. the sequence (G,)nen of o-fields
G = o({m(B) k> n, B e},
i.e. ||lvn — vl|le is G,-measurable and P-integrable Vn € N, and Yn,m € N with m < n one has

(2.1.3) llvn — vlle < E(||vm —v]le|Gn) P —a.s.

PROOF. As shown in [Gae77], 6.5.5(c), the following holds:
VC' € C the sequence (v, (C') —v(C))pen is a reversed martingale w.r.t. (G,)nen, i.e. Vn,m € N
with m < n one has

v, (C) = v(C) = E((vm (C) = v(C)|Gn) P —a.s.;

therefore, since C is countable, it follows that PP — a.s.

sup | (v, (C) = v(C)] =

cec

sup [B{(# (€)= v(CDIGa)] < Blsup [ (€)= (C)][6,),

cec

ie. (2.1.3). O

Now, as in the case of sub-martingales, there holds an analogous CONVERGENCE THEOREM
FOR REVERSED SUB-MARTINGALES (cf. e.g.[Gae77], 6.5.10) stating that for any reversed sub-

martingale (7,),en (on some p-space (€2,.4,P)) w.r.t.a monotone decseasing sequence (G,)nen of
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sub-o-fields of A satisfying the condition that inf, ey E(7,) > —oo there exists an P-integrable rv. T,
st. T, — T, P-a.s. and in the mean.
From this and Lemma 2.1.2 one obtains a rather simple proof of the following result (cf. [Po81]) which,
in a similar form, was one of the main results in [Ste78] proved there with different methods based on
ergodic theory of subadditive processes.

2.1.4 Lemma.
Let (Tn)nen be an arbitrary sequence of non-negative integer-valued rv’s on (Q, A,P) such that
T BRGNS (where L denotes convergence in probability); then

|V = V|le — 0 P—a.s <— ||]/Tn—]/||cl>0;
inparticular,||l/n—y||cl>() — v, —v|le — 0 P— a.s., whence

(2.1.5) E(l|vn, = v|lc) — 0 = ||vn—V|lc —0 P-a.s.

Note that (2.1.5)will lead later to an essential simplification in proving Glivenko-Cantelli convergence
of v, = (1,(C))cec. Especially we will obtain along this way (cf. section 6.3)) the following funda-
mental result of Vapnik-Chervonenkis ([VapT71]):

2.1.6 THEOREM.
Let C C X be a VCC; then — under appropriate measurability conditions — it is true that Yv one has

||t = V|le — 0 P —a.s.

PROOF OF 2.14 = 7. — oo implies that for any subsequence (7,/) of (7,) there exists
a further subsequence (7,/) s.t. 7,, — oo P-a.s., whence ||v; , — v|| — 0 P-a.s. as n” tends to
infinity, and therefore ||v, — v||c — 0.

<:  According to 2.1.2 (||vn — V||c)nen is a reversed sub-martingale. It is uniformly bounded;
therefore, by the convergence theorem for reversed sub-martingales mentioned before, there exists an
P-integrable rv T, s.t. ||y, — v|lc — T P-a.s. From this it follows as in the first part of our proof
that ||, — v|jc — Ts whence, by assumption, it follows that T., = 0 P-a.s. O

Some consequences in statistics

In his book on Probability Theory Alfred Rényi considers the (classical) Glivenko-Cantelli theorem
to be the “Fundamental Theorem of Mathematical Statistics” ([Re70], Chap.VII, §8). Given data
Ty, T, ... viewed as realizations of re’s &,&,, ... in (X, X)) with £{&} = v, Theorem 2.1.6 yields in-
formation about an unknown v through its “statistical pictures” in form of the empirical measures
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vy, e.g.in connection with a test for the null-hypothesis H® : v = vy, vy being a given hypothet-
ical distribution on X', versus the alternative H' : v # v,. In the classical case the corresponding
Kolmogorov-test is based on the test-statistic

Dn(C, ) = [lvn — wolle
with (cf. (1.5.2)) C:={(—o0,t]:t € R%}:
Reject H° if D,(C,v) >¢, ¢>0.
Another possibility would be to use a Kolmogorov-test based on
D, (Co, 1) with Co:= {2+ Cy:2 € RY},

where (g is a given closed Euclidian ball. Also in this case one has for any v that for the so-called
“scan-statistic”

lim D, (Co,v) =0 P—a.s. (cf.(1.5.4)),

n—od
and under H' : v # v, one has
lim D,(Co,vp)=d P-a.s.,

n—od

where d := ||v — vpl|lc > 0 (cf. [Py84], Theorem 6.1), i.e. Kolmogorov-tests based on D, (Cy, 1) are
also consistent against all alternatives.

Furthermore, simulation results in [Py84], Section 6, indicated a considerable improvement in power
that is possible when using the scan-statistic D, (Cqo, 1) instead of D, (C, vp); cf. also the very interest-
ing Monte-Carlo study of Pyke and Wilbour ([Py88]) concerning the power of such tests; as mentioned
in [We92] it would be of some interest to have available sufficient theory in order to theoretically com-
pute (or at least approximate) the power of their tests.

2.2 Functional Central Limit Theorems for set-indexed empirical and
partial-sum processes, respectively

Let X = (X, X) be an arbitrary sample space, 7;,7 € N, be iid re’sin X, v = £{#;}, and v, be the
empirical measure based on 7y, ...,7,. Let C C X be a VCC and 8, = (8,(C))cec be the empirical
C-process (of sample size n), defined by

Ba(C) == 0% (1, (C) = v(C)), C eC.

Then, under appropriate measurability conditions, the following generalization of Theorem 1.1.6 has
been obtained by Dudley:
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2.2.1 THEOREM ([Du78)).

By =G, in (7)1 - le),

where G, = (G,(C))cec is a mean-zero Gaussian process whose covariance structure is given by
COU(GV(01)7 GV(CQ)) = I/(Cl N Cz) — I/(Cl) V(Cz), 017 Cz € C7

£ . . .
and —— -convergence is defined as in section 2.3 below.

The sample paths of G, are contained in the space
U*(C,d,) = {z €1*(C) : z uniformly d,-continuous},
d, being the pseudo-metric in C, defined by d,(Cy,Cs) := v(C1ACS), C,C, € C.

(C1AC; denotes the symmetric difference between C1 and Cs; note that a pseudo-metric has all properties of a metric besides that
dy(C1,C02) = 0 does not imply C1 = C5.)

Compare Theorem 2.2.1 with Theorem 1.1.6 in case of the uniform empirical process oy, where X = I = [0,1], X

Lebesgue measure on X, C = {[0,#] : t € I'} being a VCC, d,,(C1,C2) = |[t; — t2| for C; = [0,%;] and where U?(C,d,)

Functional Central Limit Theorems (FCLT’s) for set-indexed partial-sum processes have been obtained
by the SEATTLE-SCHOOL around Ron Pyke: cf. [Py84], [Os84], [Ba85], [Os85], [Al86], and section
7.2 below.

At this place here we want to mention only the following two results. The first is concerned with the
multivariate (standardized) partial-sum process ¢, = ((,(C))nen of section 1.4 (cf. (1.4.2) and (1.4.3))
generalizing Theorem 1.2.1:

2.2.2 THEOREM ([Al86] and [Gae94], Remark 2.16).

(=5 G, in (1=C), || - lle), v = Lebesgue measure on 1%

where G, = (G,(C))cec is a mean-zero Gaussian process whose covariance structure is given by
COU(GV(01)7GV(CQ)) = I/(Cl N 02)7 01702 € C7

and again SN -convergence is defined as in section 2.3 below.
Also here the sample paths of G, are contained in U*(C,d,).

The second result is concerned with set-indexed partial-sum processes with random locations (cf. 3.2.1
and 7.2 below):
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2.2.3 THEOREM (cf. [Gae94], Cor. 2.15).

Let C C X be a VOC in an arbitrary sample space X = (X, X) and &,; := j(n)~Y%; for each
1 <j<jn) and n € N with j(n) — o0 as n — oo, the &;’s being iid rv’s with E(§;) = 0 and
E(&F) = 1. Let (nj)1<j<j(n)nen be a triangular array of rowwise independent (but not necessarily
identically destributed) re’s in X which is independent of (§;);en.

A

Assume that there is a p-measure v on X s.t.with v,; = L{n,;} the following two conditions are

Sulfilled:
(i) im0 j(n) 7 e (CN D) =v(CND) VO, Del
(ii)  lims_olimsup, SUPycecw(C)<s) jn)~! 2i<iin) Vnj(C) = 0.

Then
(G723 telm) &) =G i (€)1 - [le),

= cec
Ji<i(n)

where G, = (G,(C))cec is a mean-zero Gaussian process whose covariance structure is given by
COU(GV(01)7GV(CQ)) = I/(Cl M 02)7 01702 € C7

and again SN -convergence is defined as in section 2.3 below. Also here the sample paths of G, are
contained in U*(C,d,).

2.3 Weak convergence (L-convergence) in the sense of Hoffmann-
Jorgensen

The classical concept of weak convergence (convergence in law) for random elements (re’s) 7,,n > 0,

in a metric space S = (9, B(5)), endowed with its Borel o-field B(S5), is defined by (cf. [Bi68])
(2.3.1) == = lim E(f on,) =E(f one) ¥f € C*(S)

where C*(S) := {f: S — R: fcontinuous and bounded}.

For such n,’s, being re’s in (5, B(S5)), their laws £{n,} are well defined on B(s), whence (2.3.1) is
equivalent to

(23.1) m—m =l [ gdc{n} = [ ractmy vrech(s),

But, as we have learned from the uniform empirical process, the approximating sequence (7,)nen of
a limitting re 1, may not be ad hoc measurable and this leads to the concept of weak convergence
(L-convergence) in the sense of Hoffmann-Jgrgensen ([Ho84], [Ho91]). In this context, i.e. where the
n.’s, n € N, are allowed to be completely arbitrary maps, we will speak of RANDOM QUANTITIES
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(rq’s) instead of RANDOM ELEMENTS (re’s). So, given a basic p-space (2, A,P), let 5, : Q@ — S
be rq’s and 7, : 2 — S be A, B(S)-measurable (i.e.only 7, is assumed to be a re in (S5, B(5))); then:

(2.3.2) =0 = lim B (fon,) =E(f om) ¥/ € C*(S).

Here, given an arbitrary g : © — R (defined on a p-space (2, A, P)), the so-called “outer expectation”
(“outer integral”) of g w.r.t. P is defined by

(2.3.3) E*(g) :=inf{E(h) : h > g, h : @ — R measurable and E(h)exists}.

In view of (2.3.2) one should note that E(foro ) is well defined, since f € C*(S) = f B(S), B-measurable and bounded = fono P-
integrable (i.e. fong € £(Q, A, P). If, in addition, also the n,’s, n € N, are B(S), B-measurable, then E*(fon,) = E(f onn), L.e.in
this case (2.3.2) coinces with the classical definition (2.3.1).

In connection with (2.3.2) the following definitions and formulas are in order:
Let the so-called “inner expectation” (“inner integral”) of g : @ — R w.r.t. P be defined by

E.(g) := sup{E(h) : h < g, h : @ — R measurable and E(h) exists},

then, for any A C Q, E,(14) = P.(A) :=sup{P(B) : B C A, B € A}, whereas E*(14) = P*(4) :=
inf{P’(B) : B D A, B € A}; furthermore

(2.3.4) E.(9) = —E(-g) , E.(9) <E(9);
g1 <9 = E.(¢1) <E.(g2) and E (g1) < E*(g,)
E" (g1 + g2) <E (g1) + E"(g2)
1B (91) = E (92)| <E (Jgr + g2l) i [E ()| < 00,i=1,2;
E.(9) =E(9) =E(g), if g€ L(Q2AP);
P*(A)+P.(CA) =1 VA CQ.

For some applications it might be useful to allow also rq’s n,,n € N, with values in a larger space
FE D S; one may think (in case of stochastic processes with parameter set T) of F = RT 5 § :=
[°(T), where S is endowed with the sup-metric ||z||z := sup,cp |2(¢)]; this leads to the following
more general model of weak convergence (L-convergence) considered in [St94]:

(2.3.5) Let S = (S, s) be a metric space (with metric s) and F D S be arbitrary; let
M, Q2 — E berq’s,n € Nyand 1, : @ — S be A, B(S)-measurable; then
(2.3.6) T —= 1m0 = im0 B (f o n,) = E(f 0 no)
Vf:FE — R, f bounded and rests(f) € C*(S), where rests(f) denotes the

restriction of f onto S.

If, in addition (compare with the classical situation of section 1), for a separable subspace S, of S
with So € B(S), P(5, € So) = 1, then the limiting re 1, is said to be separable and in this case we

. c
write n, — 1q.
sep

21



Within this general model of £-convergence the known results from the classical theory of weak con-
vergence, like the Portmanteau-Theorem, Cramér-Slutzky-type result, Continuous Mapping Theorem,
etc. remain valid as we shall see below.

In passing we mention the following two facts:

(2.3.7)  (cf. [Va96], 1.3.7 and 1.3.8(1)): 7, —— 10 = E*(fon) — E.(fomn,) — 0
Vf:E — R, f bounded and rests(f) € C*(S), i.e. the 7,’s are “asymptotically
measurable”.

(23.8)  m——sn = P.n.€S) — 1

In case of stochastic processes 1, = (7,(¢))ter, indexed by a pseudo-metric parameter space T' = (T, d),

being all defined on some basic p-space (2, A, P’), the following theorem characterizes weak convergence

(L-convergence), i.e. 7, —— 1, based on the situation (2.3.5) with § = (I*(T),]| - ||z) C E = R”.
sep

2.3.9 CHARACTERIZATION THEOREM OF £-CONVERGENCE (CTL-C).
Let n, = (7 (t))ier, n € N, be a sequence of stochastic processes, indexed by a pseudo-metric parameter
space T = (T, d), being all defined on some basic p-space (2, A, P) and let 7, = (7,(t))ier be a stochastic
process viewed as coordinate process on (R™, BT L{7,}) (where the law L{7,} of 7, is well defined on
the product o-field BY = @B according to Kolmogorov’s theorem) such that

T

(2.3.10) M SN Tos i.e. weak convergence of the finite-dimensional distri-
ds
g butions (fidis) of n, to the corresponding fidis of 7.
Then, if
(2.3.11) (T,d) s totally bounded,

and if the so-called “Asymptotic Equicontinuity Condition” (AEC) is fulfilled, i.e. if

(2.3.12) lim lim sup P*(w,,(6) >¢) =0 Ve >0,

=20 poeo

there exists a stochastic process 1o = (1o(t))ier with sample paths in S = UY(T,d)  ((U*(T,d), |- ||7)

being a separable subspace of S = (I°(T),|| - ||r)) such that
sep

where 1 é‘ Ny t.€. Mo and 7, have the same fidis.

Conversely, (2.5.13) (with S = (U(T, d),|| - ||7) as separable subspace of S = (I=°(T'), || - ||r)) implies
(2.3.11) and (2.3.12).
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Here, U°(T,d) := {2z € [*°(T) : « uniformly d -continuous}, and for any » € R” and & > 0

wy(8) == sup [a(t) — =(t)]
tt'eT,d(t,t')<é

is the oszillation-modulus of z. Note that (2.3.10) will be fulfilled in most of the later applications

according to the classical multivariate CLT’s.

There are several possibilities presented in the literature for proving the CTL-C; cf. e.g. [Gi86], [An87],
Theorem 5.5, [P0o90], Theorem 10.2, [Du92], Theorem 3.7.2, [Gae92], Theorem 3.10, and [Va96], Sec-
tion 1.5. Independently, we want to give here a different (and as we think rather lucid) proof of 2.3.9
based on the following auxiliary lemma and partially on ideas of [Po90] (cf. STEP 2 below).

AUXILIARY LEMMA (Cf.[Bi68], Cor. 1, p. 14, and [Gae83], Thm. 8).
Gliven the situation as in (2.3.5), let Sy C S be separable and P(n, € So) = 1. Suppose that the class

C C{B¢cB(S):P(n€dB) =0}
(where OB denotes the boundary of B) satisfies

(%) VG open C S andVx € GNS§ (where S5 denotes the closure of Sy in S)
3C, € C s.t. x € C2 C C, C G (where C denotes the interior of C,,).

Then the following two statements are equivalent:

(i) o

(i1) limsupP*(n, € C) <Py e C) and
liminf P.(n, € C) > P(n € C) vC e,

where C™ denotes the class of all subsets of S which are finite intersections of sets in C.

PROOF OF THE CTL-C 2.3.9 (carried out in three steps).

Assume (2.3.11) and (2.3.12).

STEP 1: According to (2.3.11) there exists a countable and d-dense subset D of T. We are going to show:
There exists a stochastic process ng = (10(t))ter with sample paths in Sy = U%(T,d) such that

L _ _ _
o0 = To,p,  Where nop = (mo(t))iep and 7o p = (To(t))ren-

For this, let U(D,d) := {# : D — R : z uniformly d -continuous}. Then it suffices to show that
(a)  there exists a stochastic process no p := (n0(t))tep on some proper p-space (Qo, Ao, Po) with sample

paths in U(D, d) such that o p ﬁ%. Top-
.o,
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In fact, once (a) is shown, we can define for each w € Qp no(w) as the uniquely determined uniformly d-
continuous extension on T of 7y p(w) being also bounded since T is totally bounded, whence ng(w) € U°(T, d)
for each w € Q.

Now, verifying (a) is equivalent (cf. [Gae77], 7.2.31 and 7.1.18) with proving
(b) Py, (ﬁo,D cU(D,d)) =1, where Py = L{7,}.
For this, let D = {{1,15,...}; then
Py, (o € U(D, )
Py, (Va >038 >0Vt e D: d(t, )< = [(t) =7, < 5)

Py, (Ve > 030> 0¥m e NVL < j <m: d(ti ;) <8 = [olts) = Tolty)| < <)

o

Py, (Va >03>0VmeNVI<i,j<m: (f(t1),....(tm)) € Fij(e,d, m)),

where
R, if d(t;,t;) > 6
Fii(e,0,m) := ( i)
{(r1, oo, rm) ER” 2 |ry — | < e}, it d(t,t5) < 4.
By the way, since the Fj;’s are closed and since we may restrict ourselves to rational ¢’s and ¢’s, this shows that
{Mo,p € U(D, d)} is measurable.

Furthermore, by o-continuity of Py
Py, (Mo, p € U(D, d)) =

lim lim Tim Py (o(t), - ltm) € () Figle.6,m)) >

e=30§—50m—00

1<i,j<m
(+) limy lim i lim supP? (7 (£1). ..l € ﬂ Fij(z,6,m)),
s gsm

where the inequality follows by (2.3.10) and the classical Portmanteau-Theorem ([Bi68], Theorem 2.1 with
S = R™); furthermore,

(+) > lim hmhmsupp*(\ﬁ,t’ ET: dt,t) <8 = |na(t) — ma(t)| < 5)

T e=06-0 0o

= lim lim lim supP*(w,, (§) < ¢) =

e30630 oo =7 (23.12)
The proof of the following step is due to Franz Strobl ([St94], Thm. 2.1).

STEP 2: Using the auxiliary lemma from above, we are going to show now
(2.3.13) Mn SN o, where w.l.o.g 7o is assumed to be also defined on our basic p-space
(€, .%SCPED) properly enlarged.
Since (by (2.3.11)), So = U®(T,d) is a separable and closed subspace of (S,s) = (I°°(T), || - ||7) (cf. [Gae90],

Corollary 2), we can apply the auxiliary lemma. For this, let

C:={B(x,r):x € Sy,r>0,P(ny € IB(z,r)) =0},
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where B(xz,r) :={y € S: ||y — z||z < r}. Then one easily verifies
(%) VG open C S andVe e GNS;=GNS, AC, € C s.t. xEC’g cC,Cd.

Therefore, to verify (2.3.13) it remains to show

(c)  limsupP*(n, € C) <P(np € C) and
(d)  liminfP.(n, € C) > P(n € C) for aHCECnf:{ﬂiSnC’i:nEN,C’iEC,lgign}.

Now, given any C' € C™/ one can choose appropriate g, h € U®(T,d) such that C' can be represented as
C={yeS:gt) <ult) <hlt) VeeT).
(If C = B(x,r), choose g :== # —r and h := x + r; in case of finite intersections of balls B(z;,r;) one has to

choose maxima and minima of such g¢;’s and h;’s, respectively.)

Next, given C' = ),«,, B(zi, 7)) ={y € S : g <y < h} and an arbitrary € > 0, choose A = A(g) > 0 s.t. with
Cr={yeS:g+2<y<h-2A}
(e)  Pno€C)<P(no€ Csnya) +¢/2.

Before making the next step rigorous, we argue at first informally:

By the AEC (2.3.12) one can choose ¢ > 0 s.t.for n large enough up to probability £/2 the oscillation of n,
within span ¢ is at most A/2 and this is also true for ¢ and h (due to their uniform continuity). Since T is
totally bounded, we can choose a d-net {¢1,...,t} C T (which means that for each ¢t € T there is a t; with
d(t,t;) < d); since the oscillations of g, h and 7, (up to probability £/2) within V (¢;) := {t € T': d(¢,t;) < 6}
are at most A/2, we get

() B glt) + A <alt) < At) —N) < Puln € C) /2,
whence by fidi-convergence we obtain (d):

P(no € C) (g) P € Csaya) +¢/2 < P(Vi :g(ti) + X <mo(ti) < hiti) = A) +¢/2

— P(Vi cg(ti) + X <na(ti) <h(t;) = A) +¢/2

n—od

< Pu(nn € C) +¢/2.
()

Now, making the above reasoning rigorous, note first that C, 1 C% as XA | 0 and P(no € dC) = 0 implies that
for each £ > 0 there exists a A = A(¢) > 0 s.t. (e) holds true.

Since P(ng € U%(T,d)) = 1, there exists a d = §(¢) > 0s.t. P(po€ H) > 1— 5, where

H:={yes: sup |y(t) —y(t)] < A/2}.
tteT,d(t,t) <9

By (2.3.12), choosing ¢ small enough, we have in addition that

limsupP*(n, € CH) < ¢/2 CH =R\ H).

n—od

Since g, h € U%(T,d), we may also assume that g, h € H (again by choosing § small enough).
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Now, let D = {t1,t2,...} be as above and m € N large enough s.t. T =
d(t,t;) < d} (such an m exists by (2.3.11) and since D is d-dense in T).

V(t;,0) with V(t;,0) .= {t € T:

Then, for any € H and t € T we have the following implications (choosing ¢ € {1,...,m} s.t. d(¢,%;) < d):

e(t) <h(t)— A = z(t) < 2{t;)+A/2 < h(t;)—A/2 < h(t), and
(reH) (heH)

z(ti) > g(ti) + A = =z(t) > =2(t;)—A/2 > gti)+A/2 > g(t).
(reH) (9€H)

Thus,
{mn € H and g(t;) + A <mn(ti) < h(t;) = A VI <i<m} C{n, € C},

and therefore
Bu(in € C) > Pu({nn € H} O {g(ts) + A < mati) < Alts) = A Y1 < i < m})
=1- ]P*({nn eCHYUC{g(t:) + A <multi) <h(t)) =X V1 <i< m})
>1—P*n, € CH) - ]P)*([:{g(ti) F A< galts) < R(t) = A VI<i< m})

=P (g(t:) + A < 1(t:) < h(ts) =X V1< i < m) —P"(5, € CH)

= p((nn(tl)a ceey nn(tm)) S G), where
G={(r1,....tm) ER™ 1 g(t;) + A <r; <h(t;) = A V1 <i<m} is an open subset of R™.
Thus, (2.3.10) and the classical Portmanteau-Theorem together with STEP 1 (according to which 79 p ﬁ%. ﬁo,D)

imply

liminfP.(n, € C) > iminfP((n,(t1), ..., Ma(tm)) € G) — limsupP*(n, € CH)
n—od

n—od n—o00

> P((no(t1), .., mo(tm)) € G) —€/2
- ]P)(g(ti) F A< no(ts) < h(t) —A V1< i< m) — /2
>P (o € Csnga) —¢/2 > P(pp€C) —e.

€

—
N

Since € > 0 was choosen arbitrary, (d) is shown.

As to (¢), the proof runs quite similarly: For A > 0 let
Cri={yeS:gly) = A <ylt) <h(t) +AVL €T}
Since C* | C as A | 0, we can choose Ve > 0 a A = A(g) > 0 s.t.
P(no € C*) < P(no € C) 4 ¢/2.

Let H,§ and m be as before. Then, analogously, for # € H,t € T and 7 € {1, ..., m} with d(¢,;) < J:

(t:)
(t:)

ti)) = (1)

(L) = =(1)

(L) + A2 < h(t;) +A/2< h(1)+\, and

x h <z <
x g >a(t) —A/2 > g(ti) — A2 > g(t) — A

[AVARVAN
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Now, P*(n, € C) < P*g(t;) < na(ts) < h(t;) V1 < i < m} = P((ga(t1), ...y Mu(tm)) € F), where F =
{(r1y ooy rm) ER™ 1 g(ty) < < h(t;) V1 < i< m}is a closed subset of R™. Thus, as before (2.3.10) and the
classical Portmanteau-Theorem together with STEP 1 imply

lim sup B (1 € C) < B((no(t), - mo(tm)) € F) = B (g(t:) < molts) < h(ts) Y1 < i < m)

n—co - -
< P(no € CH) —HP(g(t) — A< o(t) <h(t) + A VL€ T)
<e/24P(peC) < Pp€C)+e.
Since £ > 0 was choosen arbitrary, also (c) is shown. Thus, (2.3.13) is proved.

It is now easy to verify g ﬁ% 7y using the continuous mapping theorem 2.3.16 below together with (2.3.10).
1

The proof of the converse part of 2.3.9 is as follows:

STEP 3: (2.3.13) (with U%(T,d) as a separable subspace of {°°(T)) implies (2.3.11) (according to [Gae90],
Corollary 2). So it remains to show that (2.3.13) implies the AEC (2.3.12):
(

For this, let ¢ > 0 and H(§) := {z € RT : w,(6) > ¢},d > 0; then H(J)NS is a closed subset of S, and therefore,
by Theorem 2.3.14 (ii) below

lim lim sup P*(w,, () > €) <

d=0 nooo

lim lim supP* (3, € H(3)) < lim P(n € H(0)) =
—

d=0 nooo

lim P t) —no(t')] > =
61—I>I(1) (t,t’ETs,lll(It),t’)Sé |770( ) 770( )| - 6) (o —continuity of )

PS>0 sup nolt) = mo(t)] > £) < Plno ¢ U(T,d)) = 0. 0
tt'eT,d(t,t')<é

REMARK. The just given proof together with 2.3.14 below also shows:
If 9 = (9n(t))ter with T = (T, d) being totally bounded, n € N, is a sequence of RANDOM QUANTITIES 7y, : @ — R7 (i.e.with

7n(t),t € T, not being necessarily rv's on (2, A, P),if 59 is a re in {°° (T) with sample paths in U?(T,d) s.t. (7n(t1), s 70 (tm)) i}
(no(t1), ---,m0(tm)) (in the sense of (2.3.6)) Vi1, ...,tm € D, m € N (i.e.if the fidi-convergence on D holds true), then (2.3.12) implies
(2.3.13) (in the sense of (2.3.6) with S = [®(T),E =R7, Sy = U¥(T,d)).

The following theorem is part of the Portmanteau-Theorem needed for our purposes. For a more

comprehensive list of equivalent conditions for L-convergence in our general model (2.3.5) we refer to
[St94], Thm. 1.5; cf. also [Va96], Thm.1.3.4.

2.3.14 THEOREM .

Given the general model (2.3.5), the following assertions are equivalent:

() m =m0 (in the sense of (2.3.6))
(i)  limsup,, P*(n, € H)<P(p€ H) YH C E,HNS closed in S

(ir)  limsup,_ . P*(n, € F) <Py € F') YF closed C S, and
limsup,_,. P*(n, € E\S)=0
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(tit)  liminf,, P.(n, € H) >P(no€ H) VYH C E,HNS open in S
(ii/)  liminf, . P.(n, € G) > P(no € G) VG open C S.

The proof of 2.3.14 is tailored along arguments used to prove the classical Portmanteau-Theorem as in [Bi68§].

2.3.15 THEOREM (Cramér-Slutzky-type result) ([St94], Thm. 1.16).
Given a basic p-space (2, A,P), a metric space S = (S, s) and an arbitrary £ > S, let n,,(, : Q@ —
E,n>1, be rg’s and ng : Q@ — S be a re in (S, B(S)) such that

(+) 1i_>m Pu(1n,Cn €S and s(n,, ) <e) =1 Ve >0

where $(Nn, (n) (W) := s(n(w), Gu(w)),w € Q. Then

Tin L> o — Cn L> Mo

PROOF. By symmetry, it suffices to show “=": We are going to use the criterion (ii) from 2.3.14. For
this, given any H C F and € > 0s.t. H NS is closed in S, the set

F:=(HnNS)y ={z¢c S:yelgfws(x,y) <e}
is also closed in S, whence

limsupP*(¢, € H) < limsup |P*(¢, € H, 9, Cn € S and s(nn, () < &) +

P*(C{nn,¢n € S and s(nn, Ca) < e})| <

limsupP*(n, € F) + 1 —lirginfp*(nn,cn € S and s(nn,(n) <€) =

n—00 (+)

limsupP*(n, € F) < P € F).
n—00 2.3.14(i%)

Since H N S is closed in S, we have (HNS)* L HNS as ¢ ] 0, whence for € | 0
Pnoe F)LP(me HNS) =P(ny € H),

and therefore
limsupP*(¢, € H) <P(n € H)

n—od

from which ¢, SN no follows according to 2.3.14(ii). O

2.3.16 THEOREM (Continuous Mapping Theorem (CMT)) ([St94], Thm. 1.8; cf. also [Va96], Thm.

1.3.6)).

In addition to our general model (2.3.5), let S’ = (S',§') be a further metric space and E’ be arbitrary,
E'D 8. Letg: Y — L' be a given map with g(S) C S" and let S, € B(S) be such that restgg is
continuous at every point in Sy; then, assuming in addition that 1, takes its values in Sy, 1, SN Mo

mplies g o n, SN gon.
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In connection with RANDOM QUANTITIES (rq’s) ¢ : Q@ — R:=RU {+oc} (being not necessarily

rv’s) the following concept and its consequences turn out to be useful at some places later on; cf.
[Va96], Lemma 1.2.1 and Lemma 1.2.2; cf. also the Notes on p. 75 in [Va96] refering to early papers
by Blumberg in 1935 and by Eames and May in 1967.

(2.3.17) Let (Q,.A,P) be a p-space and ¢ : 2 — R be a 1q. Then there exists a
measurable function ¢* : @ — R with
i) ¢>¢, and
(ii) ¢ <nP—a.sVY measurable :Q — R with > ( P — a.s.

¢* is P — a.s. uniquely determined and for any ¢* fulfilling (i) and (ii), it holds that E*(¢) = E(¢*),
provided E((*) exists; the latter is certainly true if E*(¢) < oo; furthermore one has P*(¢ > t) =
P(¢*>1t) VteR.

The function * is called minimal measurable majorant of {, or also called MEASURABLE COVER
or ENVELOPE FUNCTION.

Before concluding this section, let us have once more a glance onto the Characterization Theorem
2.3.9:

As already remarked there, the condition (2.3.10) will be fulfilled in most cases due to classical mul-
tivariate CLT’s. Also, (2.3.11) will be fulfilled by choosing the pseudo-metric d appropriately; e.g.in
thecase T =C,C C X a VCC, let d :=d,, v being an arbitrary p-measure on X’; then the condition
(2.3.11) holds as we shall see in section 4.2.

So, in order to prove (2.3.13), the crucial task is to verify the AEC (2.3.12):
Since Markov’s inequality also holds in the case of outer probabilities and outer expectations, respec-
tively, for verifying the AEC it suffices to show

(2.3.18) limlimsupE*( sup | (t) — 1, ()]) = 0,

=0 noeo t ' eT, d(t,t') <5

i.e.later on we will have at our disposal the following fact:

2.3.19 REMARK.
The conditions (2.3.10), (2.3.11) and (2.3.18) imply (2.8.13), i.e. 10, —— 0o, where 1y has all its
sep

sample paths in U*(T, d) and where 1, j%‘ To-

2.3.19 (with (2.3.18) instead of the AEC (2.3.12)) leads to essential simplifications in proving FCLT’s
in section 7 comparable with the role of (2.1.5) in proving ULLN’s.
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3 Random Measures Processes (RMP’s)

3.1 Empirical Processes, partial-sum processes and smoothed empir-
ical processes, respectively, considered as special cases of RMP’s

In order to cope in later sections also with processes indexed by classes of functions instead of sets
(cf. section 4.3 for some motivation) the general context will be now as follows:

Let X = (X, X) be an arbitrary measurable space (sample space) and F be a class of X-measurable
functions f : X — R with A-measurable envelope F' : X — R (i.e. sup;.»|f(z)] < F(z) Vo € X).
Let (wn;)1<j<jn)nen be a triangular array of p-measures on & and (&,;)1<j<j(n)nen be a triangular
array of real-valued rv’s.
Random Measure Processes (RMP’s) S, = (S,(f))rer (of sample size n) (indexed by F) are defined
by
(3.1.1) Sa(f) = > wu(f) &y, [fETF,

i<i(n)
where w,;(f) := [y fdw,;.
We tacitly assume regularity conditions such as measurability and finiteness of w,,;(F) (which implies

that the sample paths of 5, are contained in the Banach space

I°(F) = {a : F — R |[z]|7 = supa(f)| < o0},
JEF

endowed with the sup-norm || - || £.

In connection with Uniform Laws of Large Numbers (ULLN) and Functional Central Limit Theorems
(FCLT) in section 6 and 7, respectively, it will be assumed that j(n) — oo as n — oo and that

for all n € N the sequence of pairs

(Wn1,&01) s ooes (Wnj(n)s &nj(ny) 1 independent.
(Here independence is to be understood in the sense of independence of the rq’s (wy,;(f) - &ns)rer, 1 <
J < j(n), for each n, which means that (w,;(f) - &) rer, 1 < j < j(n), n € N, are considered as
coordinate projections on an appropriately chosen product-p-space (2, A,P) (cf. Section 5.1 for the

definition of independence of rq’s and also section 6.1 below).

However, we do not assume that the above pairs are identically distributed; also dependence within

each pair is allowed.

Processes of the form (3.1.1) with F = {1¢c : C' € C},C C X, and non-random p-measures w,;, were
first considered in [AI87] and in its present general form in [Zi94] (see also [Va96], Section 2.12.2 for

closely related examples).

Now, special cases of RMP’s occur when considering
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e the classical multivariate partial-sum process of section 1.3 and 1.4 where X =14 d > 1, w,; =

Si/ns&nj 1= n‘d/zfi,ie {1,..,n}? and F = {lg: C €C} withC = {[0,4] : t € I*};

e empirical processes indexed by F given by v, (f) := j(n)™* 2 i<in) f(nn;), f € F, based on re’s
1 <

N in (X, &), where w,; =9, and &,; = j(n)™';
e smoothed empirical processes:

Here X is assumed to be a linear metric space endowed with its Borel o-field X'. Let 7;,7 € N,
be iid re’s in (X, X") with law v on X" and v, be the empirical measure based on 7y, ..., 7, i.e.
Vn = 3 j<n Oy,- Now, if v is “smooth” (one may think of random vectors 7; in X = R¢ whose df
has a continuous or even differentiable density w.r.t. Lebesgue measure), it is natural to replace
v, by a smoothed version v, serving as an estimator for an unknown v.

As in [Yu89] we will consider “smoothing through convolution” as explained in section 6.4 below.
As we will see there, this leads to v, = (V,,(f));er which can be represented as RMP’s with
wn;i(B) = pn(B=n;),B € X, and &,; = n~', where (u,,)ner is a given sequence of p-measures i,
on X with p, — &, weakly (in the sense of weak convergence of Borel measures as in [Bi68]).

3.2 Further Examples

3.2.1 Partial-sum processes with random locations

Let X = (X, ) be an arbitrary measurable space, C C X', (7,;)1<j<j(n)nen be a triangular array of
re’s in (X, X) and (&,;)1<j<j(n),nen be a triangular array of real-valued rv’s.
PARTIAL-SUM PROCESSES S, = (S,(C))cec WITH RANDOM LOCATIONS are defined by
(3.2.2) Su(C) == > le(my) &y, CeC.

i<i(n)
These processes were studied in [Ar92], [Gae94] and [Gae94b], being special RMP’s with F = {1¢ :
C e C}and w,; =9,,,.

Many examples of natural phenomena like mineral deposits, earthquakes, forest disease, etc.can be modelled by such processes.

3.2.3 The sequential uniform empirical process

(Cf. [Sh86], Chapter 3.5).
Let n;,7 € N, be iid rv’s with £{n;} = U[0,1] (as in 1.1). The SEQUENTIAL UNIFORM EMPIRI-
CAL PROCESS (of sample size n) K, = (K,(s,t))(s,)er> based on 5, ..., 7, is defined by

Ko(s,t) =07 S (L) = 1), (s,) € 1%

j<<ns>

Choosing X := I*, X := I’ N B*,C := {[0,s] x [0,t] : (s,t) € I*},n,; := (5/n,m;),1 < j < j(n) :=n,
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and 5, (C) :=n"""3 ., 6,,.(C),C e C, we get for C' =10, 5] x [0,]

S _n_l/zzl ]/n 77] _n_l/z Z 10t 77])

j<n j<<ns>

and E(Sn (C)) = n—l/Z Z]SHP(TM] € C) = n—l/Z Z]Sﬂ P(% S 8777j € [07t]) = n—l/Z Zj§<ns> P(n] €
[0,¢]) = n7Y/2 < ns>-t, whence S, (C) —E(S, (C)) = K,(s,t), i.e. K, can be represented as a centered
RMP (with w,; = §,,, and &,; = n='/?) indexed by the VCC C.

If one considers instead of K, the underlying df

Ga(s,t) = nt Z 1[0,t](77j)7 (s,t) € r,

j<<ns>

(in comparison with the edf F,(t) = n~' 3", 1jo,q(1;), t € I), then, through the additional parameter
s it is possible to visualize the appearance of the data yi,...,y, (y; = 1;(w)) successively, (therefore
the notion “sequential” uniform empirical process) as the following picture may illustrate.

n=4:

I

Gn(s,t) 0 e Y2 ya N 1

Y3 Y2 Y1 1

Ending up with s =1, Gn(l, )
- | ¢

. =1 .
ie. Gu(l, )= Fa(-). s \ vs v v W 1

As to the function-indexed sequential empirical process (based on an iid sequence of re’s in an arbitrary sample space (X, X) we
refer to [Va96], Section 2.12.1 and to [Zi97], Section 7.4; as in the uniform case, also this process can be represented as a centered

RMP.
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3.2.4 Nonparametric Regression

(Cf. [Stu97]). Let n be a re in an arbitrary measurable space (X, X’) with law £{7} = v and let
C C X. Let & be arv (defined on the same p-space (2, A, ) as 1) such that E(|¢]) < co. Consider the
regression function

m(y) :=E¢n=y), yeX

and the corresponding integrated regression function indexed by C:

1(C) ::/Cm(y)y(dy), Cec.

Since m is usually v-a.s. uniquely determined by I, statistical inference may be based on I instead of
m as well.

Now, I(C) = E(1c (n)E(&|n)) = E(E(1c(n)é|n)) = E(1c (1) -£), whose empirical version (of sample size
n) based on iid pairs (n;,&;) of re’s in (X X R, Y@QB) (where L{n;} = v and L{&;} = L{&}) is given
by

H”(C) = n_lle(nj)gjv C€C7

i<n
where E(I,(C)) = I(C) for all C' € C. Thus I, is a RMP indexed by C (with w,; = §,, and &,; = n™'¢;).

At this place we may also mention another paper by Stute et al. ([Stu98]) where (in our notation)
processes R, of the following form are considered:

R (C)y =073 " 1e(n) (& — m(n;))

ji<n

based on iid re’s (7;,&;) in (R x R, BQB) with C' € C := {(—o0,y] : y € R}, whence R, is also a
RMP indexed by the VCC C.

3.2.5 Estimation of Intensity Measures for Spatial Poisson Processes

This example is taken from [Zi97], Section 7.8; cf. also [Li90].

Let ® be a Poisson point process on an arbitrary state space (X, ) with finite intensity measure
A on X, i.e. (based on an underlying p-space (2, A,P)) ®(w, ) is a measure on X" with values in
{0,1,2,...} for every fixed w € Q, ®(-, B) is a Poisson rv with parameter A(B) for every fixed B € X,
and for any disloint By, ..., B, € X',n € N, the rv’s ®(-, By), ..., ®(-, B,,) are independent.

In estimating an unknown intensity measure A on the basis of an iid sequence (®;);ey of Poisson
point processes ®; (with intensity measure A) a natural sequence of estimators A,,n € N, is A, :=
n~! >_j<n ®; leading to the corresponding standardized process

Zu(f) =P (A () = AS), feF,
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in view of a FCLT for Z, = (Z,(f))ser, where F is an appropriate class of measurable functions
f: X — Rwith f € £,(X, X, A); note that E(®(f)) = A(f) for all f.

Now,since Zu(f) = 1717 52, (8, (1)~ E(@; (1)) = S0 () —E(S (1)) with Su(f) = 5 001 () Eus
where w,; := ®;/®;(X) and &,; := n~Y2®;(X), Z, can be considered as a RMP indexed by F to
which our result in section 7.1 will apply.

3.2.6 Lévy’s Multivariate Brownian motion as a set-indexed process and as limiting process of a

sequence of Partial-sum processes with random locations

We will follow here the exposition presented in the paper by Mina Ossiander and Ronald Pyke [Os85]:
Let B = (B(t))icr, be a Brownian motion (indexed by the parameter space T'= R ), i.e. a mean-zero
Gaussian process with independent and stationary increments whose covariance function is given by
(1) cov(B(s), B(t)) =sAt, s teR,

or equivalently, since s At = ([t| + |s| — |t — s|)/2, by

2) coo(B(s), B()) = (U +|s| = |t = s])/2, 5,1 € R,

Now, in view of (2) Lévy’s multivariate Brownian motion ([Lé40], [Lé45]) is defined to be a mean-zero
Gaussian process (random field) 7 = (Z(t))iera with

(3) cov(Z(s), Z(t)) = (It + |s| = [t = s)/2, s,tER,

where | - | is the Euclidian norm in R¢ d > 1.

The covariance structure (3) can also be characterized by the isotropic mean square condition
(4) E(Z(s) - Z(1)*) =It—sl, steR"

Notice that Z(s) and Z(t) — Z(s) are independent if and only if 0,s and ¢ are colinear, so that the
independent increments property of one-dimensional Brownian motion has apparently not been fully
generalized.

A second generalization of Brownian motion to multi-dimensional time was given by Chentsov ([Che56]);
cf. also [Py73]:

Let W = (W(t))tere be a mean-zero Gaussian process with covariance structure

(5) cov(W(s),W(t)) =sAt, s,tel

where s At :=T], o (si At;) for s = (sq,...,54) and t = (¢1,...,t4); then, if s; <¢; V1 <14 <d, we have
cov(W(s), W(t) —W(s)) =sAt—sAs=0,ie under the natural partial ordering of I¢, the property
of independent increments has been retained.
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The process W' is called Brownian sheet (cf. [Py73]). A variant of W is the so-called tied-down Brownian
sheet U = (U(t))sera, defined by

Uy :=w(e)-wQ@-[[t, t=(t, ..ty and 1= (1,..,1)

(i.e. ford =1 U coincides with the Brownian bridge).
Identifying (as in 1.4) each ¢ € I with [0,¢]? , and denoting with v the Lebesgue measure on I, then,
with W ([0,¢]) := W(t),t € I, (5) is equivalent to

(5) cov(W ([0, ]), W([0,4])) = v([0,5] N [0,2]), s,t€ T

But note however that the restriction of Z onto the parameter space I¢ is not identical with W, since

for 0,s and t being colinear one has
(It +1s] = [t = s[)/2 = |s| # sAt,

in general. Therefore the following question arises:

Is it possible to represent the Lévy-process 7 as a set-indexed process 2’ = (Z'(C))cec with an
appropriately chosen class C = {C} : t € R} such that anagously to (5’) the covariance of Z’ is given
by

(6) cov(Z'(Cy), Z'(Cy)) = p(Cs N CY)

with a suitable p-measure u?

An answer to this question is given in [Os85]:
Let us restrict ourselves to the unit sphere S* := {t € R*: || < 1}, i.e.consider Lévy’s multivariate
Brownian motion Z = (Z(t));cs« as it is done in [Os85], and, for £ € S¢ let

Croi={v e R Ju—t/2[ < |t/2]},

so that C} is the closed sphere in R? having for a diameter the ray from 0 to ¢.

__....-l-ﬁ
I+

T

The family {C; : ¢t € Sd} plays then (as seen below) in the representaion of the Lévy Brownian motion Z as a set-indexed process

the same role as the class of all lower left orthants [0,¢] N I?¢ do for the W and U processes with parameter set I¢.
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Now, let u be the p-measure on S* N B with density function f; (w.r.t. Lebesgue measure) given by
fa(w) = (ca )™, we s

where ¢, := (27)%2/, (d/2) is the surface area of S¢. Then we get

(7) For any s,t € S* p(C,nCy) =z (Itl+ s — |t — 1) /2.

Comparing this with (3) we see:  For s,t € S? it follows that cov(Z(s), Z(t)) = (ca/2) - p(Cs N CY),
i.e.with Z/(Cy) == (ca/2)"V 2 Z (1) we get

cov(Z'(Cy), Z'(Cy)) = p(Cs N CY), ie. (6).

(Note that scalar multiplication (by (cd/2)_1/2) does not change the process in any essential way.)
Note also that Z’ has independent “increments” in the sense that Z'(Cs) and Z’'(Ct) are independent if Cs NCy = @ p — a.s.
PROOF OF (7) in the case d = 2 (with ¢y = 2m).

Let t = (t1,%2) € S? and @ = (a1, as) € IC}, assuming w.l.o.g. (due to the spherical symmetry of f4) that ¢; = 0
and a; > 0:

(523

Dy

z-axis (w.r.t.z)

Let ¥, denote the angle between a and the z-axis (w.r.t. ¢) and let D{ be the hatched region in the figure.
Representing v = (v, va) by its polar coordinates, we have

v = (Jv|cosd, |v|sin¥) € Df — 0< |yl < [t]cos(d — g) and 0 < ¥ < d,.

Thus we get (note that dv = |v|d|v|dd):

. . 1 . dq |£|cos(19—%) 1
n(DY) = e lpa(v)—dv = ¢ vl d|v] dv
0 0

g2 L |yl |v]
Fa

= [ Cleosv = F)a0 = e l(sin(ie - 3)+ 1)
0]

= ' (It = lsin(G - 00) = ' (it - IL-al), ie.
(+) u(Df) = ez (It - [t - al).
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Considering now C; N C; for s € S and a € dC; N IC;, then (where @’ (see the figure below) takes over the
role of a before, now with s instead of #)

1(Cs N Cy) = u(Ds ) + (DY),
whence by (+) (noticing that |s — a'| = |s — )
p(CnC) = (sl - ls—a |+ 1t~ |t —al) =
e 1t + Isl = (s — al + 1t — al)| = e (1t) + 1| = |t = s1),

since t — a and s — @ are colinear. O

(523

Note that Dg has the same area
as the hatched region.
Cy
Ny R
2N 5 Y
a DE_
DQI z-axis (w.r.t.z)
AN s
Cs
z'-axis (w.r.t.s)
(8) It can be shown that (7) is equivalent to
(7") d,(Cs,Cy) = 2¢; 't — s Vs, t € §¢

(where d,(A, B) :== p(AAB)). Next (as already remarked in (1.5.4)), the class of all closed Euclidian
balls form a VCC, whence

C:={C,:teS%
is also a VCC; thus, we can apply the FCLT 2.2.3 with X = 5% X' = S9N B* and S, = (5,(CY))c,ec,
where

Snl(Cy) =02 e, (my) - &,

j<n
the &, j € N, being iid with E(¢;) =0 and E(£}) = 1, the n;,j € N, being iid with £{n;} = p (having
Lebesgue density f;), and where (7;);en is independent of (£;)en, to obtain the following result (note
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that both conditions (i) and (ii) in Theorem 2.2.3 are obviously fulfilled here):

(9) S Ly

sep

i.e. 7' proves to be the limiting process of a sequence of Partial-sum processes with random locations.

In addition, Z' = (Z'(Cy))¢,ec can be chosen as a process with bounded and uniformly d,-continuous
sample paths; moreover, (7’) shows the existence of a version of the Lévy process Z = (Z(t))ies« with

continuous sample paths, cf. above:

1/2
Z) = (L) z(C)  fortest
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4 Metric Entropy and Vapnik-Chervonenkis classes

4.1 Packing and covering numbers; Metric Entropy

As we have seen in 1.5, Glivenko-Cantelli convergence, i.e. ||v, — v||c — 0 P — a.s., fails to hold for
all v if the class C is “too rich”; cf. our Example 1.5.5.

The same is true in view of the validity of FCLT s:
Consider again 1.5.5 and the corresponding empirical C-process 3, = (8,(C))cec with §,(C) :=
n?(v, (C) — v(C)); then: If (as in Theorem 2.2.1) the assertion

ﬁnL}Gu in (loo(c)vH ) ||C)
would hold true, the CMT 2.3.16 would imply that

sup |3, (C)| == sup|G, (C)],
CeC CceC

where supcge |G, (C,w)| < oo for all w, whence ||v, — v|lc = ™2 supeee |8, (0)] L4 0 and also
||vn — v|le — 0 P — a.s. according to 2.1.4, in contradiction to 1.5.5.

Thus, in order to obtain Uniform Laws of Large Numbers (ULLN) and Functional Central Limit
Theorems (FCLT) for stochastic processes indexed by general parameter spaces 7" in section 6 and 7,
respectively, it is clear that 7T is not allowed to be “too rich”.

To be “too rich” will be described through the behaviour of the so-called metric entropy of T', assuming
that T'= (T, d) is a pseudo-metric space.

So, let T' = (T, d) be a pseudo-metric parameter space (e.g. T'=C C X,d = d,,v p-measure on X,
d,(C1,Cs) = v(C1ACS)). Following Dudley ([Du84]) a set {ty,...,t,} C T is called a u-net (for any
given u > 0) iff for each ¢ € T there is some ¢; such that d(t,¢;) < .

This gives raise to define the so-called covering numbers of (T',d):

4.1.1 Definition.
For each v > 0, let
N(u,T,d):=1inf{n € N: Ju — net {t,,....,t,} C T},

i.e. N(u,T,d) is the minimal number of points in a u-net. H(-,T,d) :=logN(-,T,d) is called the
metric entropy of T'= (T, d). (Note that H(u,T,d) is increasing as u — 0.)

(If d = 0, thatis d(s,t) = 0Vs,t € T, we put N(0,7,d) := 1, whence in this case N(u, T, d) = 1 and therefore H (v, T,d) = 0Vu > 0.

So we may allow v to range in [0, 0).)

A closely related concept are the so-called packing numbers of (T, d). For this, given any u > 0, let
D(u,T,d) denote the largest m such that for some ¢y,...,t,, € T d(t;,t;) > u whenever ¢ # j. The
points tq, ..., t,, may be called u- distinguishable.
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4.1.2 Remark.

If{t1, ..., t,} is a mazimal u- distinguishable set, then {t,,....,t,} is a u-net.

4.1.3 Lemma.
For any v > 0
D(u,T,d) < N(u, T, d) < D(u, T, d),

(So, in this sense covering numbers and packing numbers are equivalent concepts.)

As we shall see in section 6 and 7, respectively, in order to obtain a ULLN for RMP’s indexed by F, stochastic boundedness of a
sequence of random covering numbers of F (equipped with appropriate random pseudo-metrics) will be crucial, wheras, for a FCLT
to hold, a uniform integrable Ly-entropy condition will be imposed.

4.2 Vapnik-Chervonenkis classes in arbitrary sample spaces X =
(X, X)

Let X = (X, X) be an arbitrary measurable space and C C X’ be a VCC (see (1.5.9), i.e.
Js € N s.t. m€(s) < 2%, where m®(n) := max{A°(F): FF C X,|F|=n}

for each n € N, and A°(F) := [{FNC:C e€C}.

Given a VCC C, v = V(C) := min{s € N : m®(s) < 2°} is the so-called Vapnik-Chervonenkis Index
of C.

According to the following lemma VCC’s “are of polynomial discrimination”.

4.2.1 Lemma ([Vap71]; cf. [Gae83], Lemma 9, p. 27).
IfC is a VCC, then m(n) < n' for all n > 2.

(Note that for arbitrary C one has m€(n) < 27 Vn € N.)

Moreover, as shown by Alexander ([Al84], inequality (1.8)),
v—1
CVCC = (4.2.2): m(n) < Yicy s (?) < ( ne ) Vo > v — 1.

v—1

In the following let (X, X, v) be an arbitrary p-space, and, given a class C C X, let d,(C},Cs) =
v(C1ACS)),Ch,Cy € C. Then (T,d) := (C,d,) is a pseudo-metric parameter space. In this situation
Dudley ([Du78], Lemma 7.13) proved the following fundamental result:

4.2.3 Lemma.
Let C C X be a VCC; then

N(u,C,d,) < Ku™"|logul’ V0 < u < 1/2,

where the constant 0 < K < oo does only depend on v =V (C) but not on the p-measure v on X.
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As we shall see in 4.3 below, a corresponding inequality will hold in the more general case of Vapnik-Chervonenkis graph classes F
of X-measurable functions, containing 4.2.3 as a special case (with F = {1 : C € C}).

4.2.4 Examples of VCC’s (cf. [Wen81]).
(a) X =R4d>1,C={(—00,t] : t € R} the class of all “lower-left orthants”; s=d+1.
(b)) X=R%4Ed>1,C= {»fd[s“ti] t oo < s <t <oo); s=2d4+ 1.

(¢) X=R%d>1,C={BCR*: B closed Euclidian ball }; s = d + 2.

We want to present here an independent nice proof of (c) which I learned from Fleming Topsoe in 1976
(personal communication); the proof is based on the following two auxiliary results (+) and (+4):

(+) RADON’S THEOREM (cf. [Val64], Thm. 1.26).

Each FF C R4 d > 1, with |F| > d+2, can be decomposed into two (disjoint) subsets F}, 7 = 1,2,
such that co(F}) N co(Fs) # @ (where co(F;) denotes the convex hull of F;).

For illustration, let d = 2:

T3

o) F: {$17$27$37$4}
T4
Fy = {z3, 5}
71 F2 = {$17$4}.

T2

(++) SEPARATION PROPERTY.
For any two closed Euclidian balls B; C R% d > 1,7 = 1,2, one has

co(B1\B2) Nco(B,\B;) =@ .

For illustration, consider again the case d = 2:

Now, in order to prove (c), we must show:

VE CRY with [F|=s:=d+2 IF C Fst. '#FNB VYBeC.
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Suppose to the contrary that there exists an F' C R¢ with
|Fl=d+2 st. VF'CF 3B € with F'=FnNB.

This implies that for the F;’s in (4+) (which decompose F’) there exist two closed Euclidian balls
B;,i = 1,2, such that F; = F'N B;. Since Fy N F, = @ it follows that F; C B;\B, and F», C By\ By,
whence

co(B1\Bs) Nco(B2\B1) D co(Fy) Neo(lFy) # @

(by (+)) which contradicts (++). O

Further examples of VCC’s are obtained on the basis of the following Lemma (cf. [Du78], Thm. 7.2, and [Po84], Chap. II, Lemma
1.8):

4.2.5 Lemma.

Let G be an arbitrary m-dimensional vectorspace of real-valued functions g being defined on an arbitrary
set X equipped with the o-field X = P(X) (whence each g € G is measurable). Then the class
C:={{g>0}:9€G}isa VCC.

PROOF. W.log.let | X| > m+1 and let A= {#1,...,2,} C X be arbitrary with |A| = s := m + 1; consider
the linear map L : G — R?, defined by L(g) := (g(#1),...,9(xs)). Since L(G) is a linear subspace of R® with
dimension < m = s — 1, there exists a v = (vy,...v5) € R*, v # 0, s.t. vLL(G), i.e.one has

(+) szg(xl) =0 Yg€G.

o —

Now, let Ay :={x; € A:v; >0} and A_ :={x; € A:v; <0}, where w.lo.g. A_ # @ (by replacing v through
—v otherwise). We are going to show

(+4+) Ay £ANn{g >0} Vg €g,
from which the assertion of 4.2.5 follows.

As to (+4), suppose to the contrary that there exists a ¢ € G s.t. A = AN {g > 0}; then

Zvig(l‘i): Z vig(z;) + Z vig(xi) >0

i<s 1T, EAL iy EA_
in contradiction to (4). a

As an immediate consequence of the definition of a VCC it is clear that any subclass of a VCC is also

a VCC.

As a permanence property, we mention here only the following lemma and its corollary:

4.2.6 Lemma ([Du78], Prop. (7.12)).
Let C be a VCC and k € N be arbitrary, but fized. Given C\,...,Cy € C, let a(C, ...,C}) be the algebra
generated by C, ..., C}, and

ap(C) == U{oe(Cl, ey C) 1 O, o, C € C
then oy, (C) is also a VCC.
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4.2.7 Corollary.
If C is a VCC, then the classes {CAD :C,D e C},{C\D:C,D e C} and {CND:C,D € C},
respectively, form also VCC's.

As to further examples we refer to Stengle and Yukich [Sten89] and Laskowski [La92]; see also the

references in the following more general context.

4.3 Vapnik-Chervonenkis graph classes of X'-measurable
functions f: X — R

So far we have mainly considered examples of processes indexed by classes C of sets, where C C
X, (X, X) being a given measurable space.

To motivate the need for extending the index sets from classes of sets to classes of functions, we present
the following examples A) and B):

A) POLLARD’s k-MEANS CLUSTERING PROCEDURE
(Cf. [Po84], Example 4, p.9 and Example 29, p. 30; [Po82a] and [Po82b]; [Gae87]; [Ro91] and [R095].)

Given data 1,...,x, € X = R viewed as realizations of iid re’s & in (R% B%) (on a basic p-space
(Q,AP)) (e z; =¢(w)), let k € N be arbitrary but fixed (i.e. k is given in advance).

Suppose that the underlying unknown v := £{;} is “k-modal” (e.g. with Lebesgue-density ¢, having
k modes).

Consider d = 2 and k = 2 for illustration (i.e. ¢, bimodal)

[e]
[e]
[eRe)
S o

[e]

0,0 ) °

° o o8 090,
o [e]
[e]
o= &(w),1<j<n. a? and a} are the unknown

modes of v (modes of ¢, ).

The question arises how to choose k data-clusters with empirical cluster centers aX, = a,(w) (based
on the data z; = §(w),1 < j < n), 1 <<k, such that, as the sample size n tends to infinity, the
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a’; converge PP — a.s. to the unknown modes af of v, 1 < ¢ < k.
An answer is provided by the k-means clustering procedure (CP):

(CP):  Given the data z;(= &(w)),1 < j < n,n € N, determine a k-tuple (a},,...,a},) which
minimizes the expression

—1 . 2
(4.3.1) n Z min |2, — a;]
j<n =~
over all (ay, ..., a;) with a; € R% and then allocate each z; to its nearest a,.

Let v, be the empirical measure based on &, ..., &, and let for a; € R4 1 < ¢ < k,

) — : 2 )
(4.3.2) Wiay,...,ax;v,) == Rdlrgilélk |z — a;|” v, (dz);
then
(4.3.3) Wiay,, ., a)ivn) = ( min )W(al, vy Qg3 U )«

In the following we confine to the case d = 1 and k = 2) (i.e. v being bimodal), and we shall write

(a*,b*) and (a*,b*) instead of (a’,,a’,) and (af,a}), respectively.

Now, consider (instead of a class C of sets) the following class F of B-measurable functions f : R — R:
(4.3.4) Fi=A{fap: (a;0) € Cy}

where f,,(z) :== |z —a|* Az —b|*,z € R, and Cy := ([-M, M] x R)U (R x [-M, M]), where M >0
is chosen large enough (see [Po84], p.10).
We assume that

/ z?v(dz) < oo,
i
whence W(a,b;v) := [i fop(z) v(dz) < 00 VY(a,b) € R™

Then, by the strong law of large numbers we have V(a,b) € R?

(4.3.5) W(a,b;v,) = v (fap) = 07" D fapl&G) — v(fap) = W(a,biv) P —a.s.

i<n
Now, a further assumption on v is needed:

(4.3.6) J(a*,b*) € R? being uniquely determined up to permutation

of its coordinates such that

V(farpr) = min _v(fys).

(a,b)ER2

The following picture is to visualize (4.3.6) for v with density ¢,:
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P

On the other hand, i.e. on the empirical side, we have by (4.3.3)

(4.3.7) Vp(farpe) = min v, (fas)-

(a,b)ER?

Thus, (4.3.5) - (4.3.7) gives raise to expect

(4.3.8) (ay,by) — (a",b") P—a.s.

n - n

i.e. P — a.s convergence of the empirical cluster centers to the unknown modes of v.

(4.3.8) can be proved by showing

(4.3.9) sup |V (fas) = v(fas)] — 0 P —a.s.

(a,b)ECM

As to (4.3.9), 8up(y pyecy, [Va(fap) = V(fap)| = supser [V (f) = v(f)] with F as defined by (4.3.4) being
a Vapnik-Chervonenkis graph class (VCGC) (see below for the definition of VCGC’s of functions).
Thus (4.3.9) proves to be a consequence of a result generalizing Theorem 2.1.6 from VCC’s C to
VCGC’s F with v(F) < oo, I’ being an envelope of F; note that in the present case

sup  fap(2) < F(2):=(x - M)’ + (z+M)* Ve eR

(a,b)€Cs
and v(F) < oo since [ 2? v(dz) < oo by assumption. (Cf. [Po84], Example 29, and section 6.3 below).
To sketch the proof of (4.3.8) on the basis of (4.3.9) one shows at first
(a):  For sufficiently large M > 0 (a},b:) € Cyy P —a.s. Vn > ny.

n - n

Then one gets
() va(farpr) < vo(farpr) —> V(far pr) P—a.s. by (4.3.5), where P — a.s.
3

(43.7)
V(farpe) < v(far pr) R Vp (fas b+ ), which yields
(4.3.6) by (4%;.%3 an (a)

V(fas o) —> V(farpe) P —a.s.
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(¢):  Finally, since by (4.3.6) (a*,b*) is uniquely determined (up to permutation of its coordinates),
(b) implies (4.3.8). a

A modification of the k-means clustering procedure for k*-modal v with &* unknown to obtain P-a.s.
convergence of k(n) to k* and simultaneously

(4.3.8') @1y ooy Gppgn) — (a7, s agn) P —a.s.,

where k(n) denotes the number of empirical clusters w.r.t.a modification of the empirical clustering
procedure, is contained in [Gae87], [Ro91] and [Ro95].

B) LOCAL EMPIRICAL PROCESSES, STUTE’s CONDITIONAL EMPIRICAL PROCESSES
AND CONDITIONAL EMPIRICAL DISTRIBUTION FUNCTIONS

(See [Ei97], [Stu86a] and [Stu86b].)

As pointed out in [Ei97], local empirical processes occur implicitely in the work of Kim and Pollard [Ki90] on cube root asymptotics
and of Nolan and Marron [No89] on automatic band width selection; local empirical-type processes arise also in certain interval
censoring and deconvolution problems (see Part II of Groeneboom and Wellner [Gro92]).

Let £,7 € N, be iid re’s in (R% B),d > 1, defined on a p-space (22, A, P) with df G.
Let t € R? and J € BY be arbitrary, but fixed. Given an invertible bimeasurable transformation
h:RY— RY let

(4.3.10) A(h):==t+hJ (where hJ == {h(z) : 2z € J}).

To visualize A(h), let d =2,.J = F (the unit ball in R?) and h(z) := $|z|,2 € R%:

| =+

Next, let (h,),en be a sequence of invertible bimeasurable transformations b : RY — R and assume
for

A, = A(h,) and a,: =P € A,), neN,

the following set of conditions

(A1) a,>0VneN, (Adi) na, — oo and (A.i) a, — 0 as n — oo.
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(Note that (A.iiil) implies that G is continuous at ¢; otherwise (A.iii) may be replaced by (A.iii’) an — a for some 0 < a < 1.)

For each n € N, let v, (¢, - ) be defined by

(4.3.11) vn(t, B) == (na,) ™" > I(& € t+ho(JNB)), B e B

i<n

(where I(-) =14.4).
vn(t, ) is called local empirical measure at t.

(Note that vy (2, - ) need not be a probability measure; one only has that E(v, (¢,R%)) = 1.)

Now, let F be a class of measurable functions f : R* — R with supports contained in J (i.e.
f(z)=0Yz e R\J VS € F), and let

(4.3.12) vn(t, f) ::/Jf(ac)yn(gdx) o, () TS0~ ), feF,

i<n

where i ' denotes the inverse of h,,.

o Note at this place that for any fixed ¢ € R? and J € B? the processes (v, (L, f))rer can be considered
as RMP’s (see (3.1.1)) by choosing as random p-measures w,; and as rv’s &,;,1 < j <n,n €N,

Wy := 0, with ,; :=h ' (& — 1), and &, := (na,)”".

(In fact, for each f € F, ngn Wi ([ = (na,)™ ngn Jra [(2)0,,,(d2) = (nan)_lzjgn fmg) =

The standardized process B () = (87 (1, f)) e with 5°(, 1) = (na,) /2 (v (1, f) = Ew (2, f))) is

called local empirical process at t indexed by F.

This setup allows to consider the following interesting examples (see [Ei97]):

4.3.13 Example.

Let &,j € N, be iid rv’s on a p-space (Q, A, P) with df G having a continuous density g in a neigh-
borhood of a firedt € R,

Set J :=[—1,1], F :={K} with a so-called kernel function K satisfying K (x) = 0 if |2] > 1.

Let hy(z) := hy, -z,2 € R, with h, > 0 and h, — 0 as n — oo. Then,

va(t, K) = : (na,)™" Z K(gjh—;t) = hpa; ', (1),

4.3.12
( i<n

where §,(t) = (nh,)™" 3¢, K(i:t) is the so-called kernel density estimator of g(t) with window
size hy,.

(Note that by an = hy'P(§; €t + hnJ) = hy'P(§5 € [t — Shn,t + Shn]) = hy! f“r 2hn Ydo —s g(t) as n — co.)

—lhn
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4.3.14 Example.
Let d = 2, & = (¢,n;),] € N, iid re’s in (R2 B?) with df G having density g., and marginal
densities g and g,, respectively. Choose J := [—$, 1] x R,t:= (t,0),t € R, and, for (z,y) € R? let
ho(z,y) == (hy - z,y) with h, > 0 and h, — 0 as n — oco. Let K be a kernel function as in 4.3.13
and F :={R} with

(+) R(z,y) =y -K(z) ,(zy) €R"

Then,

it ) =, ) S RO & = 1) = (o)™ Sk (1),

(312 i<n i<n
) = K (57)-

since hy'(&—t) = hy ' (G —t, ;) = (szt
Thus

,m;) and therefore R(h;'(§;—t)) = R(i:t

Uty R) = i, () hnay ' §n (t) =, (Ovn(t, K)  (cf.4.3.13),

where §,(t) is the kernel density estimator of the marginal density g.(t) and 1, (t) is the kernel
regression estimator of m(t) := E(n|¢ = t) defined by

T (t) =

(nhy)~! ngn n; K (C;L;t)
gn (1) '

4.3.15 Example.
Keeping up the notation of example 4.3.14, choose now, instead of F = {R}, the class F = {f, : v € R}
of functions f, defined by

folzy) =Ty < v)K(2), (2,9) € R

then (again with t = (¢,0),t € R)

il )= ()™ 105 < K (22 = B0l )

i<n

= F,(v[t)va(t, K) (cf.4.3.13)

with

(nhn)‘12j<n I( ;i < v) K Cﬁ—:t
F,(v|t) == — ﬁn(z) ( )7

which are the conditional empirical distribution functions (of sample size n) first intensively studied

by Stute [Stu86a],[Stu86b].

As to an empirical process approach to the uniform consistency of kernel-type function estimators we
refer to a very remarkable forthcoming paper by Uwe Einmahl and David Mason [Ei98].
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In the following let again X = (X,A’) be an arbitrary measurable space and F be a class of X-
measurable functions f : X — R with A'-measurable envelope I : X — R, (i.e. sup;cs|f(7)| <
F(z) Vo € X).

Generalizing the concept of VCC’s C C X’ (equivalently {1¢ : C' € C}) to more general classes F of
X-measurable functions f: X — R leads to

4.3.16 Definition.
F is called a Vapnik-Chervonenkis graph class (VCGC) if

R:={G;: feF}
is a VOCin (X X R,YQB), where
Gr={(z,t) e X xR:0<t < f(z) or f(z) <t <0}

Gy C X X R is the so-called graph region associated to f.

/e

NOTE: [ A-measurable = G € XYQB whence the graph region class R is a subclass of
XYQB.

Given a VCGC F we denote with V(R) the Vapnik-Chervonenkis Index of the graph region class R
(cf. 4.2) corresponding to F.

Clearly, if C C X is a VCC, then F :={l¢: C € C} is a VCGC with V(R) = V(C).

Examples of VCGC’s as well as permanence properties which allow to construct new VCGC’s from known ones are contained in
[Po84] (there called “classes of polynomial discrimination”) and [Va96], section 2.6.5.

R

4

The present graph regions Gy are called “between graphs” in [Va96]; compared with the open subgraphs of f, defined by {(z,t) : t <
f(z)}, which led to the concept of Vapnik-Chervonenkis subgraph classes (VCSGC) of functions in [Va96], section 2.6.2, it turns
out that F is a VCGC if and only if it is a VCSGC; see [Va96], Problem 11, p. 152. Thus both concepts are equivalent.

The following fundamental lemma is mentioned in [Al84]. It generalizes lemma 4.2.3 above; but notice
that in addition the assumption of v being a p-measure on A" can be dispensed with. The proof, as
carried out by Klaus Ziegler [Zi94], Lemma A4, combines the methods in proving lemma 2.7 in [Al84]

and lemma 25 in section I1.5 of [Po84].
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4.3.17 Lemma.
Let F be a VOCGC with envelope I and graph region class R. Then there exists a constant 0 < K(v) <
oo depending only on v =V (R) such that for all measures v on X with v(F) := [, Fdv < oo

N(ev(F), F,dV) < K(v)e="Y]loge|'~t V0 <e<

N | —

Here, as in 4.2.3, loge = log_c = In¢, and d\V) is defined by d\V(f,g) :=v(|f —gl), f,g9 € F.
NOTE: lim._,|loge|*e? =0 Va,3 > 0, s0 |loge|'~! < e=~Y for small ¢, whence

1
N(ev(F), F,d") < K(v)e72=1 Y0 <e < 5
Also, in the special case F := {1, : C € C},C VCC, FF =1, d"Y) =d,, v an arbitrary p-measure on X',

4.3.17 yields a sharpened version of 4.2.3.

PROOF. W..o.g.assume v > 2; let 0 < ¢ < % be arbitrary, but fixed, and choose fi,..., f,, € F
(w.lo.g. m>2)s.t.

(1) AN ) = fi = fil) > ev(F) - for i # .

Let n be the smallest natural number s.t.

(2) %exp(Qlogm—ne/Q) < 1.

Then, by elementary calculations, one gets

(3) n<(1+4logm)/e <15Lm/es

where La := max(1,loga).

Now, a stochastic argument comes into play (cf. Dudley’s ingenious proof of lemma 4.2.3):

Let 1t be the p-measure on X’ defined by
p(A) = IJ(F)_l/AFdI/7 Ac X,
and let K : X x B — [0, 1] be the stochastic kernel defined by
K(z,B):=U[-F(z),F(z)], z€X,Bebhb,

where Ula, b] denotes the uniform distribution on [a, b]. Let &, ..., &, (with n chosen as above, cf. (2))
beiid re’sin (X X R, Y®B), defined on a basic p-space (2, A, P), with £{&;} = p x K, where p x K
is the p-measure on XYQLB defined by

o K(C) = /X Ul-F(2), F(2)]({t €R: (2,1) € CY) p(dz),  C € XQB.

(To see that K is indeed a stochastic kernel, use the fact that X-measurability of K( -, B) has only to be checked for sets B of the
form (—co,t],t € R. So, fix ¢t € R and distinguish between the three cases t > 0,¢ = 0, and ¢ < 0. Then, e.g.in the case t > 0 we
obtain

K-y (=00,t]) = Lipgey + ((E+ F)/2F) 1ipyn
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which is X-measurable by the assumed measurability of F'.)

Now, let G; := G, be the graph regions of f;,1 < ¢ < m; then (with the convention that in the case
F(z) =0 we set 2 :=0)

4 Ul-F(2), F@)]({t € R: (,1) € GiAG;Y) = 2F (@)~ fi(2) = fi(w)| Vo € X,

as the following picture shows (with G;AG; being the hatched region).

/F

/|fi($) - fi(2)]

fi
fi

Furthermore, we have
(5) V&(w)weQ1<k<n,and V1<i,j<m,i#]j
S'w)nG; =5 w)NG;, < &w) ¢ GAG; V1<k<n,
where S'(w) 1= {& (W), ..., &a(w) .

(Note that S"(w)NG; # S (w)NG; <= 1 < kg < n s.t. &, (w) € G;AG;; note also that |[S'(w)] < n.)

Next, we are going to show that
m < m®(n) ::max{|{SﬂGf:f€]:}| :SCXXR,|S|:n}:
For this, consider first any fixed 1 <1i,5 < m,t# j; then

P(& ¢ GAG; V1 <k<n) = [1-P(&€GAG = [1- (ux K)(GAG]"

(€x iid)

— - /X Ul-F(2), F(2)]({t € R: (2,1) € GiAG,)) p(de)]"
= (1= [ @F@) @) = £ ntda))
= (= vl = @A) T € (1= 2/2)" < explone/2)
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Therefore, according to (5) we get

m

P{weQ:3i#£j st S'w)nG; =5 w)NG; ) < (2) exp(—ne/2)

1
< —m*exp(—ne/2) = §exp(210gm—n€/2) < 1,

(2)

N | —

whence

PweQ: S'w)nG; # S (w)NG; Y1 <i,5<m,i#j})>0.

Therefore there exist < n points in X x R from which R picks out m distinct subsets of S’(wy) for
some wy € §. Since S’(wy) C X x R and |S"(wg)| < n, it follows (by definition of m”™(n) and the fact
that m™(n) is increasing in n) that m < m®(n), whence by (3)

m < m®(15Lm/es).

v—1
Now, if 15Lm/ec > v — 1, it follows by (4.2.2) (according to which m®(n) < (Un_e 1) Vn >v-1)
that m < m®(156Lm/ec) < (15Lm/(v — 1)e)*~*, which implies
(6)  m < (30e7tlog(1he~1))vt.

(In fact, since Lm /(v — 1) < L(m/(*=1) < m/2(*=1  we have m < 15"~ 'm* /2= (=1 and thus m < (15e71)2(*=D | Hence
m < (15L((15e= 1200 =) /(v — 1)e)?~1 = (30~ log(15e~1))?~1.)

On the other hand, if 15Lm/ec < v — 1, it follows that logm < Lm < es(v —1)/15 < e(v —1) <
(v = 1)log(30e™") = log[(30e~1)"~!], whence m < (30e71)*=1 < (30e~'log(15e71))~!; ie. (6)

(e<1/2)

holds also true in this case.
But (6) implies (recall ¢ < 1/2)
(1) m < K(v)emY|loge|*~!  with
K(v) := (30(log 15 + log 2) / log 2)" 1.

Finally, taking now m = m(c) maximal s.t. (1) is fulfilled (note that m(c) < co by (6)), we obtain by
(7) for the packing numbers D(sv(F), F,d(V) that

D(sv(F), F,dV) < K(v)e=“=Y|loge|" !,
which implies the assertion of 4.3.17 according to the second inequality in 4.1.3. (|
REMARK.
The above method of proof is very interesting in its own right:
In order to verify that a certain situation holds true, an appropriate stochastic model is constructed

within which it is shown that a proper event occurs with positive probability, from which one then
infers the existence of the situation one was interested in.
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As discovered by Alexander [AI87], there is an elegant way to pass from the upper bound in 4.3.17
w.r.t. Lj-entropy (i.e. concerning d{!) to an analogous result for L,-entropy, i.e. concerning d(%

instead of d{!), where
1/2

d2(f0)=(vIf=9F) ", fgeF
This is done by using the elementary inequality
(4.3.18) (a — b)* < 2|a” sign(a) — b* sign(b)| Ya,b e R,
where
1 , ifa>0
sign(a) =<0 ,ifa=0 , a€R.
-1 ,ifa<0

4.3.19 Corollary(/7i94], Cor. A5; see also Lemma 36 in section I1.6 of [Po84] for a different method

of proof).
Let F be a VCGC with envelope I' and graph region class R. Then there exists a constant 0 < K'(v) <
oo depending only on v =V (R) such that for all measures v on X with v(F?) < oo

N(e[v(FH]Y?, FdP) < K'(v)e™*=D vo<e< 1.

PROOF. Let F':={f?sign(f): f € F};thenVf,g € F
A1.97 = (1 =9y = [ (@) = (@) v(de)
< 2 [ @) sign(f(a)) - g°(e) sign(g(@)]| v(da)
(4.318) Jx
= 2dV (f2 sign(f), g* sign(g)), ie.

Vf,g€F d?(f.9)* <2d0(f',9')
with f':= f?sign(f) and ¢ :=g?sign(g), whence, by the definition of covering numbers, one gets

(a) NPV, F dP) < N(Gv(F?), F,dD).

2

Now, also F’ is a VCGC with envelope F? and V(R') = V(R) = v, where R' := {G : f' € F'}:

To see this, let M’ := {(2;,¢;),1 < 7 < v} be an arbitrary subset of X x R with |[M’'| = v. Set
M = {(z;, |t:|*?sign(t;)), 1 < i < v} then M C X x R and |M| = v. Since F is a VCGC with
V(R) = v, there exists an N C M, N = {(a;, |t;|'/* sign(t;)), i € J C {1,...,v}} such that

(b) N#£MNG, VfeF.
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But (b) implies that N" A M' NGy Vf € F, where N := {(z;,¢;) 11 € J}:
For, suppose to the contrary, that N’ = M'NG for some f' € F', f' = f2sign(f),i.e. {(z;,t;) i€ J}
={(z;,t;) : 1 <t <v}N Gy, then, since

(witi) € Gy = (a1 sign(t)) € Gy,

we get { (@, |t;|Y/? sign(t;)), 1 € J} = {(ay, [t:]"/? sign(t;)), 1 < i < v} NG, which contradicts (b).

Since M’ was arbitrary with |[M’| = v, 7' is a VCGC with V(R') < v. In the same way one shows
that V(R’) < v would contradict the minimality of v and therefore V(R') = V(R).

Thus, by the NOTE following lemma 4.3.17 with ¢/ := ¢*/2 and k := 2(v — 1) we get

N(Ev(F?), Fd)) < K(v)()™  vVo<e <

N | —

ie. N(5v(F?),F,dV) < 2°K(v)e™? V0 <e <1, whence by (a)

N(e[v(FH]Y?, Fd?) < 28K (v)e™*"D vo<e < 1. 0

4.3.19 suggests the following definition (cf. [Al87] and [Va96], Condition (2.5.1), p.127):

4.3.20 Definition.
Let (X, X) be a measurable space, F a class of X-measurable real-valued functions, and let M(X, F)
be the set of all measures v on X with v(F?*) < oo, where F is an envelope of F. Then F is said to

have uniformly intrgrable Lo-entropy, if
/ (log N (1, F))"?dr < oo,
0
where N (1, F) := SUD, e m(x,F) N(r[v(FH]V2, F,d?).

4.3.21 Remark.
If F has uniformly intrgrable Lo-entropy, then (F,d?) is totally bounded for each v € M(X, F).

14

(In fact, if fooo (log]V(T,}'))l/2 d7 < oo, then for each v € M(X, F') one has
(+) ]\7(7'[1/(}7'2)]1/2,}-7 d£,2)) < oo forA—a.a. 7€[0,00) (A = Lebesgue measure);

but, since N (e, F, d£,2)) is increasing as £ — 0, (4) must hold for all 7 € [0, c0))

Finally, it follows from 4.3.19 that each VCGC F has uniformly intrgrable Ls-entropy.
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5 Some Fundamental Inequalities

5.1 Symmetrization Inequality

Before stating some of the inequalities needed later, the following definition concerning the concept of independence in case of
non-measurable maps, i.e. of random quantities (rq’s) is in order.
Guided by [Du83] and [Du84] (cf. also [Ho85]) we define as in [Zi94], Def. 1.2.1:

5.1.1 Definition.
Let (2, A, P) = ( x Q;, ®A;, xP;) be the countable product of p-spaces (;, A;,P;), let V be an
JEN JEN JEN

arbitrary set and n; : Q@ — V be rq’s of the form n;(w) = h;(w;) for w = (w1, ws,...) € Q,j € N, with
arbitrary rq’s hy : Q; — V.

Then the sequence (1;);en is called independent (or, 1;,j € N, are said to be independent rq’s).

The n;’s are said to be independent and identically distributed (iid), if in addition the p-spaces (;, A;,P;)

as well as the rq’s h; defined on them are identical.

In the case hj =idg,,j € N, the sequence (n;);en is said to be canonically formed.

NOTE: If the h;’s (and so the n;’s) are re’s in V = (V,V) (with an appropriate o-field V) then
independence in the sense of 5.1.1 is equivalent with the usual concept of independence of re’s.

In the following, when dealing with stochastic processes 1; = (1;(t))ter (with common parameter
space T'), these processes will be considered as rq’s with values in V' = R” or V' = [*(T'), respectively,
and independence of stochastic processes is to be understood in the sense of 5.1.1.

To avoid measurability questions we will (if not stated otherwise) tacitely assume that the parameter
spaces 1" are countable. (If not, one has to work with the “E*, P*-calculus”; see e.g. [Zi94] and [Va96].)

Note that, for countable T, the ||n;|| = ||m;l|z := supser |7, (t)] are re’s in (Ry, By) (Ry =Ry U {oo}
endowed with its Borel o-field B,), whence also ||9,||r,n € N, are re’s in (R4, By), where S, :=
2iitm) i

To formulate the Symmetrization Inequality for independent stochastic processes 7, ...,7,,n € N,

indexed by a common parameter space T, we need the concept of a so-called Rademacher sequence
(¢j)j<n, which means that the ¢;’s are iid rv’s taking only the values +1 or —1 with equal probability,
Le. L{g;} = %5_1 + %51 (0, = Dirac measure at z).

Then, given (as in 5.1.1) (', A, F’) := ( x @}, @ A}, x P}) and stochastic processes n; : ' — R
Jj<n ji<n

20 in

with 7;(w’) = h;(w)) for o' = (wi,..,w;) € @, 1 < j < n, where h; : Q) — R7T are stochas-

tic processes (indexed by T'), let (@7, A", P") .= ({—-1,1}",  P({—1,1}), X L{e;}) and (2, A, P) :=
i<n Jj<n

(U< AQA" P'xP") (i.e. (£5);<n is thought to be canonically formed and independent of (7;);<n,

where 7y, ..., 7, are independent processes). Denoting with E,/, E,» and E = K, ,» expectation of rv’s

defined on (€', A", ), (", A”,P”) and (2, A, PP), respectively, then in this setting the following result
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holds true (cf. [Va96], Lemma 2.3.6 and [Zi94], Lemma 1.3.2):

5.1.2 Symmetrization Inequality.
Suppose that B, (|n;(t)]) < oo for allt € T and 1 < j < n; then, for any convex and nondecreasing
function ¢ : Ry — Ry (put, as usual (o0) := lim,_,o, ¥(a))

( sup|Z n;(t (t)))D) < E(¢QSHP|Z€JUJ ))

i<n i<n
PROOF. Let (6y,...,8,) € {—1,1}" be arbitrary but fixed; consider the decomposition

(+)

> (0 () = B ( (Z D+ D GE (0 (1)) - (Z (1) + > 6Fa (0 (1)),

i<n ;=1 dj=-1 dj=-1 ;=1

Since for any M C {1,...,n} (with Ey; and Egy denoting expectation of rv’s indexed by M and CM,
respectively)

B (v(2sup] 3 800 + 3 5jwa(nj(t))|))

jeM jebM

= Eur ((25up By (3 () + X 8y35(0))

jeM jebM

< B ((Eour (2500 | X s (1))

(¢ monotone

nondecreasing) ji<n
< By ($(2sup] 38 0))
(i{leerasfilniy) i<n
= 2 su )
(Fubini) ( p | Z
i<n

we obtain with M = M; :={j <n:6; =1} and M = M, :={j < n:6; = —1}, respectively, by the
ineqality

Plath) < SU(20)+ 62 VabeR,
(valid since 1 is convex), that
<
E,. (4 sup% nit <t>>>|>) 3
B ((supl 3 G0+ 3 GEa (@)l + supl 3 G0+ 3 GBa((1)])) <
JEM, j€C0M, JEM, jeCM,
1
B (v(2sup] 32 g+ 3 5jEw'(nj(t))|))+§Ew( (2sup 3 i) + 3 G (ny(0)D) <
JEM, j€C0M, JEM, jeCM,
( QSup|Z )
i<n
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Since (04, ...,8,) was arbitrary, we get
B (0 (sup | 3o 005(8) B (s (0))D) - <
i<n

E,.E, (¢(2 fgjm Z5j77j(t)|)) (Fubi

. Fubini)
j<n

E((¢(2§3P|Z5j77j(t)))- O

ji<n

5.2 Maximal Inequality for Rademacher Averages

The maximal inequality for Rademacher Averages (see 5.2.3 below) is based on ideas exposited by Pisier [Pi83]. The present proofs
are mainly due to Klaus Ziegler [Zi94]. The following lemma is a special case of (3.2) in combination with (3.1) in [Po90]:

5.2.1 Lemma.
Given a Rademacher sequence e, ...,cx and given a finite and non empty subset M of RY, there exists
for each 1 < p < 0o a universal constant 0 < K, < oo such that

E%(max|2€jxj|p) < Kp(l—l—log|M|)%-maX(Z$§) ,
TEM <N N

zeM

where | M| denotes the cardinality of M and x = (xq, ..., xn).

Note that for |[M| =1 this is just one of Khintchine’s inequalities; see Ledoux and Talagrand [Le91],
Lemma 4.1, p.91.

For the proof of 5.2.1 the following proposition is used which is but a reformulation of Lemma 1.6 in
[Pi83] for the present purposes.

5.2.2 Proposition.
Let &, ..., &, be arbitrary nonnegative rv’s and ® be a strictly increasing, nonnegative, convex function
defined on [0,00) such that there are constants 0 < ¢; < o0, 1 < i < n, and 0 < ¢ < oo with
E(®(c;'&)) < ¢ for all 1 <i < n. Then

E( max &) < @ !(en) - max ¢

1<i<n 1<i<n

(@1 being the inverse function of ®).
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PROOF.

@(B(max &/mancise)) < @(B(max(6/e)) |, <
inequality)
B(@(1ax (6/e))) = Blmax @(6/e)) <
E(Z@ fl/cl)) = ZE (& /c)) < en.
i<n i<n
Applying &~ to both sides yields the assertion. O

PROOF of 5.2.1.  We show at first that the Rademacher average on the l.h.s of the stated inequality
in 5.2.1 can be dominated by a so-called Gaussian average, to which 5.2.2 will be applied.

For this, let gy, ..., gx be iid rv’s with £{g;} = N (0, 1) being independent of £, ...,ex. Note that

(+) L{(e1lgrl; v enlon])} = L{(g1, s gn) }-

Let p :=E(|g.]); then

E( max| Y- cjl") =

J<N

P E(max| 3 & B(g Del’) = pPE( max| 3 eE(lgl o1, en) ) =
JE<N J<N
pE( max [E( Y glgsles e, en) ) < H—PE(%%EQZ@@AW o1, en)) <
<N

TE N Jensen’s
J<N (inequality)

,u_pE(E( grlea}éd Z gilgslz; P ‘51, ...,5N)) =
JEN
pE( max| D <yl 1) 5 #Emax| ) giel)
JE<N J<N
Now, let ®(u) := exp(u*?) for u € [0, o0) and

1—|—q>u)_1 , for 0 <u < w,
O(u) == ! 5
O’ (u) , for u > u,

where u, := (%)p/z; then

(%) ®: R, — R, is a strictly increasing, nonnegative, convex function with & < &', and

() Yo eR; @(v) < u,+ (logv)r/?.
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On the other hand, assigning to each z = (1,...,ax) € M the rv &, := 3.y g;7;, we have for each

x € M that L{&,} = N(0,¢}) with ¢ := (3, v #7), and

B(®(&l/2°eh)) <

(®<@)

E(®'(|&,|7 /20" = E /4, =
( (|€x| / Cx)) (by def. of 3') (exp(fx/ Cx)) (£{€e/cc}=N(0,1))

(QT)—1/2/6u2/46—u2/2 du = (277)—1/2/6_u2/4du =
R R (u::\/Zv)

\/5(277)_1/2/6_U2/2 dv = V2.

R
Thus 5.2.2 can be applied (cf. (x)) with |,.|P,z € M, instead of §;,1 < ¢ < n, and with 2°¢?, 2 € M,
instead of ¢;,1 < i < n, where n = |M| and ¢ := /2.
Hence by 5.2.2 it follows that
P} =
E( max| Y g;a,]") =
JEN
P -1 D P
E( max|&.)") < @7'(v2IM|) max(27c}) 5,
(up + (log(V2IM]))"72) - max(2reh) =
ve

(by def. of cg)
2\p/2 r/ 2\p/2
2, rxneax(;ij)p/ + QP(log\/i—l—log|M|) gnea}é((;vxj)i’/ <
i< i<

(2, + 2" (1 + log | M])72) max(3 @) <
Js

K?(1+log |M|)P/? gnea}é((z x?)p/z with K2 := 2% (u, + 1).
i<N
Since E'/r (maxxeM | > i<n ejxj|p) < pm'EMP (maxxeM | > i<n gj$j|p), as shown above, the assertion

of 5.2.1 holds true with K, := p='K,. O

The following maximal inequality will be an essential tool for proving a ULLN for RMP’s in section
6.1 below. As we shall see, it is an easily to be shown consequence of 5.2.1:

5.2.3 Maximal Inequality for Rademacher Averages.
Given any z; e R, 1< j < N,N €N, let

di(s,t) = Z |z;(s) —a;(t)], s,tel.

J<N
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Then, for each 1 < p < 0o, there exists a universal constant 0 < K, < oo such that for any Rademacher

sequence 1, ...,enx and for all v > 0

E!/ (sup| Z ejxj(t)|p) <

te’l J<N

1/2
v+ K,(1+ H(y,T,dy))"? - sup ( > w?(t))

te’l J<N

(where H(-,T,d,) denotes the metric entropy of T'= (T, d,) as defined in 4.1.1).

PROOF. Given any v > 0, assume w.l.o.g. that N(v,T,d;) < oo; then (cf.the definition of
N(-,T,dy) in 4.1.1) there exists a subset 7”7 of 7" with |1'| = N(v,7T,d;) such that for each ¢t € T
there exists a u(t) € T with d; (¢, u(t)) < 7.

Then we get
EY? ( su g;x: ()P <
(tE/IP |]§V J ]( )| ) (Mink:wski’s Ineq.)
EL/P A () = 2 (u(B)]P EL/P (B P) <
(sup1 32 cstes(®) =i u®F) + B (sup] 3 o50,0F) <
i 1/2

sup | > [ (8) — s (u()] + K,(1+log 1) sup (3 a2(t) <
teT ]SN teT ]SN
- 1/2 2 1/2
Y4 K, (L H(y, T, d)) 2 sup (0 a2(0)

el N O

5.3 Hoffmann-Jgrgensen Inequality

To our knowledge, the Hoffmann-Jgrgensen Inequality was originally proved implicitely in [Ho74], Theorem 3.1, for sums of inde-
pendent and symmetric Banachspace-valued re’s (cf. [Le91], Section 6.2).

Here we will consider as before independent (in the sense of 5.1.1) stochastic processes 1; = (1;(¢))ter, J €
N, indexed by an arbitrary parameter space T' (supposed to be countable for simplicity to avoid mea-
surability considerations). The 7;’s will be viewed as rq’s with values in R” or {°(T'), respectively,

and ||n|| or || >i<n g;1;|| denotes the sup,cp [7(t)| or sup,¢yp | >i<n £;1;|, respectively.

5.3.1 Hoffmann-Jgrgensen Inequality
(Cf. [Va96], A.1.5 and [7i94], Corollary 2.1.3).
Let n; = (1;(t))ier, J € N, be a sequence of independent stochastic processes with common parameter

space T and (£;)jen be a canonically formed Rademacher sequence which is independent of (n;);en (cf.
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section 5.1). Let ¥ : R, — Ry be a nondecreasing function which is absolutely continuous on each

interval [0, a], @ > 0, and which satisfies the so-called Orlicz condition
U(2z) < CU(x) forallz e Ry and some 1 < C' < o0

(think e.g. of V(x) = aP); then for each n € N (as before, we put W(oo) = lima_ . ¥(a))

(01 emll) < 20°E( max () +2079(s,)

j<n

with s, == inf{s > 0: P(|| X<, gm;ll > ) < (4C?)71}.

NOTE: This inequality will be an essential tool in proving a uniform law of large numbers (ULLN)
for Random Measure Processes in the following section 6.1. It will be applied there with U(z) :=
a?,1 < p < oo. In such a case one can infer L,-convergence of )7, , £;n,; to zero from its P-
stochastic convergence to zero, provided that the 7,;’s are asymptotically negligible in the sense that
lim,,_, o E(max;<, [|7,;][") = 0, where the latter is e.g.fulfilled, if the ||7,;||’s are bounded by some §,

with lim,, . 8, = 0.
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6 Uniform Laws of Large Numbers (ULLN)

6.1 A ULLN for RMP’s

Let again X = (X,X’) be an arbitrary measurable space and denote with M (X) the space of all
p-measures w on X, equipped with the smallest o-field M such that all the maps w — w(B), B € X,
are measurable.

Let F be a class of X-measurable functions f : X — R with A'-measurable envelope ' : X — R
(supposed to be countable for simplicity to avoid measurability considerations). Let, as in section 3,
(Wnj)1<j<j(n)nen be a triangular array of random p-measures on X', considered as re’s in (M (X), M),
and let (&,;)1<j<j(n)nen be a triangular array of real-valued rv’s (i.e. re’sin (R, B)), where j(n) — 0

as n — 00.
We are going to present a ULLN for RMP’s S, = (S,(f))er with
(6.1.1) Sulf) = > wu(f) &y fEF,

i<i(n)
as introduced in section 3.1, where, as already remarked there, we do assume (cf. 5.1.1) that the
processes (w,;(f) - &nj) rer are defined via coordinate projections on the product p-space

(QAP) = (x( x (M(X)xR)), ® ® (M®B)), x( x L{(w.;,&,)}),

N j<j(n) N j<i(n) N j<i(n)

whence for all » € N the sequence

(wnh €n1)7 RS (w”j(”)7 g”](”))

is a sequence of independent but not necessarily identically distributed pairs of re’s in (M (X) x
R, MQB), i.e. the laws L{(w,;,&,;) } need not be identical; also dependence within each pair is allowed.

(Note that in the notation of definition 5.1.1 we have now that
Q3w nnj(w) = hnj(wnj) = hpy((wny, €ny)) = (wn; (f) €nj)rer €V = RT')

In order to formulate our ULLN we need some more notation:
Given S, = (S,(f)) rer with S, (f) as in (6.1.1), let for any § > 0
Hns 5= D W [&aj| - T (wns(F)[&ns] < 6),
i<i(n)
and let JL{L)& be the random Li-pseudometric on F defined by
) (fog) = D |wei(f) = wai(9)| - [&ns] - 1w (F)|Ens < 6)
i<i(n)
for f,¢g € F. Finally, for any 7 > 0, let N(7,F, L?E}n)é) be the random covering number of (F, &Lln)&)
(see the definition 4.1.1).
Then we have the following result (cf. [Gae98], Theorem 2.1):
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6.1.2 THEOREM (ULLN for RMP’s).
Assume that (6.1.3) — (6.1.5) hold, where (for 1 < p < o)

: ¥ ()P . lE P . . . —
(6.1.3) Jlim ; )E (w0 (B [ug? - T (F) || > 6)) = 0 for all 6> 0
J53(n
(6.1.4) sup > E(wni (F) - €] - T (wny(F)[€0] € 8)) < 00 for some &, >0
nEN i< (n)

For all 7> 0 there exists 6 =46(r) > 0 such that

(6.1.5) N(7 - pins(F), F,dD) is stochastically bounded.
H Mns 7/ neN
Then
LP
(6.1.6) sup |5, (f) = E(S. ()] —— 0,

JEF

Ly .
where ——— denotes convergence w.r.t. the L,-metric.

((N(7 - pns(F), F,dP ) wen Stochastically bounded means that for all p > 0 there exists an M =

? T hns

M(7, p) < oo such that

limsup]P’*(N(T s (F), Fodi) ) > M) <p.)

n—od

PROOF. Concerning (6.1.6) we remark that by (6.1.3) we also have (since || - [|; <] - ||,)
Tim S B(w (F) - [6] - T(wny(F)|&] > 6)) =0 ¥8 >0,
3<i(n)
whence by (6.1.4)

sup Y E(wa (F) - €,]) < o0,

"N j<in)
and therefore E(|S,(f)]) < oo Vn € Nand Vf e F.

Now, by the Symmetrization Inequality 5.1.2 (applied with ¥(z) := 27,z € Ry), it suffices to show
that

lim ]E(sup| Z gjwn;(f )Enj|p) =0

—
e F€7 i<itn)

where (£;);en is a canonically formed Rademacher sequence which is independent of both arrays (w,;)
and (&,;).

Next, by (6.1.3) there exists a sequence (4,,),en of positive real numbers with §,, — 0 and

Jim 37 B (s (F) - Tans(F) > 6,)) =0,

i<i(n)
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where we put fi,,; := wy; - [£,;] for short. Hence it suffices to show that

lim E( sup|Sm; (HIF) =0,

where S5, (f) = ngg( €5Wni (f)&nj - T (pns (F) < 65)

But, since the summands of S, (f) are bounded by 4, (with §, — 0 as n — o0), it follows by
application of Hoffmann-Jgrgensen’s Inequality 5.3.1 (with ¥(z) := a?, 2 € R,) that it suffices to
verify

(a) sup |Sns, (f)] L
JEF

To prove (a), let 3> 0 and £ > 0 be arbitrary but fixed. Let (cf. (6.1.4))

"ENJ<J( )

Choose 7 :=¢3/2C" and take 6 = 6(7) according to (6.1.5).
Now, for p := /2, let M = M (7, p) > 0 be such that for A, = {N (7,5 (F), F,d} )* > M} we have

7 T lns
by (6.1.5) that limsup,_, . P(A,) < p where the star (*) denotes the measurable cover function (cf.

(2.3.17)). Then, by Markov’s Inequality and Fubini’s theorem it follows that

(b) P(igysmn (N> B) <P(A,) + 57 E(lga, E (?3? |Sns, (F)))s

where E. denotes integration w.r.t. the Rademacher sequence.
Now, for n large enough such that 6, < 6 and 6, < é; (6; as in (6.1.4)) we obtain by the Maximal
Inequality for Rademacher Averages with a universal constant 0 < K; < oo that

E. (sup |Shs, (F)])

FEF
S THns (F) ‘I’
K (14 N(tps (F), F,dP )3 - SUPI Z vy s (F) < 8,))7
J<i(n
S THns (F) ‘I’
(55[&71(1%— N(T,um; (F) , ums % Z :un] HnJ(F) < 51)>5'
Ji<i(n)

(Actually the Maximal Inequality even holds with log N (7 s (F),F, Cﬂf}zs ) instead of N(7ups (F),F, dﬁlz(s ).)
So by definition of A, it follows that for large enough n

E(chnEg(supfeﬂSm; (f)|)) <

© PE(jing (F)) + 65K (14 MYPES (S g (F) - Loy (F) < 61)).
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Now, observe that pins < 375y fng L (ng (F) < 01) + 2icitn) Hnj - I (1 (F) > 61) whence by (6.1.3)
we have

(d) lim sup E(pns (F)) < C + limsup Z E? (i (F)? - T(ptn; (F) > 6,)) = C.

n—o00 n—o00 . .
Ji<i(n)

Hence we obtain by (b) — (d) that

lim sup ]P’(sup|5n5 NI>B) <p+8'7C=¢

n—od

by the choice of p and 7. Since £ and § were arbitrary, this implies (a). O

NOTE: Condition (6.1.5) in the theorem can be replaced by (6.1.5)’

For all 7> 0 there exists = d(7) > 0 such that

(6.1.5) (N(r, F,d}P)) nen 18 stochastically bounded.

P s

Indeed, following the proof of theorem 6.1.2 up to (b) now with 7 := ¢3/2 and A,, := {N(r, F,d) )* >

P s
M}, the Maximal Inequality for Rademacher Averages now gives

E. (sup S, (f)]) <

JeF
T + Kl(l—l—N(T,]:,(JL % ?161£| Z fij-l(,unj(F) < 5n)|%.
Ji<i(n

The result then follows as above.

6.1.7 Remark.

Since for RMP’s we did tacitily assume (cf. section 3.1) measurability and finiteness of w,;(F) for all
1 <j<j(n) and n € N, the same is true for the random measures ji,s, whence p,s(F) < oo for all
n € N and § > 0. Therefore, it follows from /.3.17 that in case of VCGC’s F, for each 7 > 0 there
exists a constant C'= C(7),0 < C' < oo, such that (note that dM) (f,g) < d) = p.s(|f - g|))

sup N (7 - pns(F), F, Lfgn)é) < C,

neN

whence the condition (6.1.5) is automatically fulfilled for VCGC’s F with envelope F.
Thus, from Theorem 6.1.2 we get

6.1.8 Corollary.
Let F be a countable VCGC with envelpoe F. Assume (6.1.3) and (6.1.4), i.e. (for 1 <p < o0)

Tim S EF (wa(F) €l - I(way (F)|€ns| > 8)) =0 for all 5> 0, and

i<i(n)

sup Z E(wm ) 1nsl - T (w;(F)|&0;] < 51)) < oo for some & > 0.

nEN]<] (n)
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Then

sup [, (f) = E(S, (/)] —2— 0,

JEF

where S, (f) := 2i<in) Wn;i (f) &y [ €F, and where the processes (wy;(f) - &n;) rer are defined as

coordinate projections on the product space (2, A, ) as introduced above.

6.2 ULLN’s for partial-sum processes with either fixed or random
locations

Let X = (X, &) be an arbitrary measurable space, C C A" a countable VCC, (7,;)1<j<j(n)nen be a
triangular array of re’s in (X, X') and (&,;)1<j<j(n)nen @ triangular array of 1v’s with j(n) — oo as
n — oo, such that for each n € N the sequence of pairs (wy1,&n1)s -y (Wnj(n)s &njn)) s independent but
not necessarily identically distributed; also the components within each pair need not be independent.

Then, by taking w,; := 9,,, (6,,, = Dirac measure at 7,;) we obtain from 6.1.8 immediately the
following result for partial-sum processes with random locations as introduced in section 3.2.1:

6.2.1 THEOREM (cf. [Gae94b], Theorem 3.1).
Assume that the following two conditions are fulfilled:

(6.2.2) Tim S E(|] - 1(€y] > 8)) =0 forall 5> 0
= i<itn)
(6.2.3) sup Z ]E(|€nj| I(]€n;] < 51)) < oo for somed; > 0.
nENi<itn)

Then, for the partial-sum processes S, = (S,(C))cec defined by

Sa(C) == > lelny) &y, CEC,

i<i(n)

one has

(6.2.4) lim E( supS,(C) — B(S,(C))]) =0.

n—r 00 CEC

6.2.5 Remark.
Note that (6.2.2) and (6.2.3) together imply that sup, ey iciom) E(|€n;l) < 00, and thus E(S, (C))
exists for all n € N and C € C.
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In the identically distributed (id) - case, that is, when &,; = j(n)7'¢;,1 < j < j(n),n € N, with
j(n) — oo as n — oo, for some sequence (§;);en of identically distributed &;, we have for each § > 0
> E([60] - 116l > 8)) = B(I&] - (1] > d5(n)))

i<i(n)
and

sup S E( 16| 1 (wa; (F)[€0] < 6)) <sup 3 E(l]) = B ).

e i<in) PEi<in
whence in the id-case both conditions (6.2.2) and (6.2.3) are fulfilled under the only assumption
E(|&:]) < oc.

From Theorem 6.2.1 together with Remark 6.2.5 we obtain

6.2.6 Corollary.
Let S, (C) = j(n) ™' Yicim Lelmmg) <&, C € C, C C X being a countable VOO, (wyj)1<j<j(n)nen
be a triangular array of re’s in (X, X) with j(n) — oo as n — oo, and let (§;)jen be a sequence of
identically distributed rv’s & with E(|{1]) < oo such that for all n € N (wy1,&1), o, (Wpj(n), &n) 15
a sequence of independent but not necessarily identically distributed pairs of re’s in (X X R, YQB).
Then

lim E( supS,(C) — B(S, (C))]) = 0.
Concerning partial-sum processes with fixed locations in X = IY = [0,1]%,d > 1, Theorem 6.2.1
together with Remark 6.2.5 implies the following result (cf.section 1.3 and 1.4):

6.2.7 Corollary.
Let S, (C) == n_dzjejn le(j/n) - &, C €C, where &, j € NY, are iid rv’s with E(|&]) < oo, and
where C C 14N B¢ is a countable VCC; then
lim E( sup [S,(C) = n~"|.1, 0 (nC)] - (&L ])]) =0,
n—roo CecC
where J, :={1,....,n}* (and nC :={nc:ceC}).

6.2.8 Remark.
Considering, more generally, function-indexed partial-sum processes S, = (S,(f))ter, defined by

Sul£)=3(m)™" Y flmg)-&, feF,

3<i(n)

with F being a countable and uniformly bounded VCGC (i.e. with envelope I' = M < oo), and where
(Mnj)1<j<j(n)men 15 a triangular array of re’s in (X, X) with j(n) — oo as n — oo, and §;,j € N,
are identically distributed rv’s with E(|{,]) < oo such that for alln € N (19,1,&1), s (Mnjn)s §i(ny) 5 @
sequence of independent but not necessarily identically distributed pairs of re’s in (X xR, YQB), then
in the same way as in the set-indexed case above, Theorem 6.2.1 together with Remark 6.2.5 yields

Jim E( sup [5,(f) — E(S, ()]) = 0.
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6.3 ULLN’s for empirical processes

Given an arbitrary measurable space X = (X, X'), let us consider at first the set-indexed case, i.e. with
a countable VCC C C X as parameter space for the empirical measures v,, = (v,,(C'))cec defined by

v, (C) i=j(n)™" Z le(n,g), C€C,

i<i(n)

where (7,;)1<j<jn)nen is a triangular array of rowwise independent but not necessarily identically
distributed re’s in (X, X) with j(n) — oo as n — oo. Then it follows from Corollary 6.2.6 (with

(6.3.1) lim E( sup v, (C) = 7,(C)]) =0,

where 7, (C) := j(n) ™' Y Pl € C), C €C.

Especially, if for each n € N n,; = n;,1 < j < j(n), with 5;,j7 € N, being iid re’s in (X, X') with law
v on A, then for

va(C)=jG(m)™" 3 le(ny), Ce€C,

i<i(n)

it follows together with (2.1.5) that (cf. Theorem 2.1.6)

(6.3.2) ||vn — v|le :==sup v, (C) —v(C)| — 0 P—a.s.
cec

As to the function-indexed case we get from Corollary 6.1.8 (with p = 1,w,; := ¢,, and &,; =

Jj(n)™11 < j < j(n),n € N) the following more general result mentioned already in connection with

(4.3.9):

6.3.3 THEOREM.

Let X = (X, X) be an arbitrary measurable space, 1;,j € N, be iid re’s in (X, X) with law v on X
(defined as coordinate projections on the p-space (2, A, P):= (XN, XN o)) and let F be a countable
VCGC of X-measurable functions [ : X — R with X-measurable envelope F'': X — R such that
v(F) = [y Fdv < oo. Then, for v,(f) :==j(n)™" 3 c;im) [(nj)s [ € F, one has (with j(n) — oo as
n— 00)

(6.3.4) lim E( sup v, (f) - v(f)]) =0.

Moreover, by the same reversed martingale argument which led to (2.1.5) one obtains also

(6.3.5) sup [V, (f) —v(f)| — 0 P—a.s.
fer

PROOF. According to 6.1.8 we have to verify (6.1.3) (with p = 1) and (6.1.4), where now w,;(F) =
8y, (F) = F(n;) and &,; = j(n)™", i.e.
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(+) Timne Sjion B(FO) - 5(0)~1 - 1(F () j(n)™ > §)) =0 ¥ > 0, and

(++) SUPpen 2oj<j(n) E(F(Uj) j(n)t - I(F(ny) j(n)~t < 51)) < oo for some 6; > 0.

As o (+), Sy B(F(m) - i (m) =" - 1(F(n) j(n)™" > 6)) = B(F(m) - [(F(m) > 8j(n))) — 0 as
n — oo, since E(F (1)) = v(F) < oo by assumption.

As to (+4), SUPLen X< E(F L AI(F(ny) j(n)7t < 51)) = supneN]E(F(m) I(F(m) <
81j(n))) < E(F(m)) < . 0

6.4 ULLN’s for smoothed empirical processes

Throughout this section X is supposed to be an arbitrary linear metric space endowed with its Borel

o-field X.

Let n;,j € N, beiid re’sin (X, X') with law v on A’ (defined as coordinate projections on the p-space
(Q, A P) = (XN, XN ).

Let v, :=n"'3]
estimator (of sample size n) for v.

]<n , be the empirical measure based on 7y, ...,m,, n € N, viewed as nonparametric

If the underlying v is “smooth” it is natural to use a “smoothed” version 7, of v, as an estimator for
v, rather than the empirical measure itself.
Following Yukich [Yu89] we consider smoothing through convolution as follows:

Given a sequence (fi,)nen, of p-measures u, on X’ let
Up i= Up * ln

be the so-called smoothed empirical measure based on 1y, ..., n,, i.e.

(6.4.1) 7, (B) = //1B(x—l—y)1/n(dx),un(dy), Bex.

Note that 7, = v, if u, =38y (Dirac measure at 0).

Taking X = R, the following picture shows that by convolution we can turn the discrete empirical

measure v, into a continuous one. This is not surprising since v,, x u,, has a Lebesgue density if pu,

has one.

For illustration we take n = 4, u, the uniform distribution on [—1, 1] and x4, ..., ,, a sample from the
rv’s 11, ..., Iy The picture shows the distribution functions which are also denoted by v, p, and 7,,
respectively.
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(6.4.1) also includes kernel smoothing in density estimation. For this, let us take X = R for simplicity,
and let for each u € Ry, ((—o00, u]) := H(3-), hy, > 0, where

H(s) := /_soo K(v)dv, K >0, /]RI((U) dv=1;

(note that in this case u,, — 0y weakly if h, — 0 as n — o0).
Then, for each u € R

Pal=ool) = [ [0 S L+ )] )

ji<n

=0 (e =gl = 7t H()

Jj<n j<n
_ ot h—l/u k(i g
n ; - ( W ) dv, i.e

u

ﬁn((—oo,u]):/ Gn(dt  YueR  with

— 00

Gn(t) = (nhn) ™' e, K(t;:zj) being the kernel density estimator for the underlying density ¢(¢) of
the £{n;}s.
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Returning to an arbitrary linear metric space X, let F be a class of X-measurable functions f: X — R
with X-measurable envelope F': X — R. For each f € F, put

(6.4.2) 7 (f) = /X fdv,

tacitly assuming that the integrals of functions f € F do exist.
For 7, (f) this is the case if [y |f(z 4+ y)| ptn(dy) <00 Vz € X.

Note that (cf. (6.4.1))

(6.4.3) vn(f) = /X /X f(@ 4+ y)vn (da)p, (dy) = n~* Z /X f(n; + y)pa(dy), and

i<n

(6.4.4) E(, () = v %t (f) Vf € F andneN.

(In fact, as to (6.4.4), E(n (f)) = fXE( fX flz+y) l/n(dl’)) un(dy) = fXE(n_l E]Sn fln; + y)) pn(dy) =
Sx [y F@+wv(de)pn(dy) = vrun(f).)

It will be also tacitly assumed that suprema over f € F, like sup;. |7, (f) — v(f)[, are measurable
(being the case by assuming, as in the former sections, that F is countable, for simplicity).

Now, our aim is to present ULLN’s, i.e.sufficient conditions on F and the smoothing measures u,,n €
N, under which (for 1 < p < o0)

(6.4.5) sup |7, (f) — v(f)] —2— 0.

feF
Concerning (7, )nen as an estimator sequence for an unknown v, from (6.4.5) one can of course only
deduce weak consistency, but, as Pfanzagl [Pf94], p. 188, remarks strong consistency, i.e. almost sure
convergence of an estimator sequence, adds nothing to weak consistency, i.e. convergence in probability,
which could be of use on the way to the asymptotic distributions of estimator sequences. Thus, it is
reasonable to seek for sufficient conditions under which (6.4.5) holds true.

Concerning once more the above example of kernel smoothing, (6.4.5) yields sup, g |Gn(u) — G(u)|
SN 0, where G, (u) := i, ((—00, u]), u € R, and where G is the df of the 7,’s.
Fernholz [Fe91] remarks on the estimator Gy,

Estimators G, derived by integrating density estimators have required less attention. Although esti-
mating a density g by using §, or its distribution function G by using G, are equivalent problems,
the error of the corresponding estimator is usually measured in different ways. For density estimation
the “L, view” (see Devroye and Gyorfi [Dev85]) based on the Ly error ||g, — g|l1 has been gaining
popularity over the more traditional Ly approach using ||G, — gl

In kernel distribution function estimation the discrepancy error between G, and G should be measured
in terms of some distance in the space of distribution functions. Metrics such as the supremum norm,
the Prohorov distance, or the Levy distance, provide a useful framework to study the properties of G,.
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Indeed, from Winter [Win73] and Yamato [Ya73] we have a.s. uniform convergence of G, to (i, see
also Mack [Ma84] and Prakasa Rao [Pra81].

A more general setting for studying estimators (as already considered in [Win73] and [Ya73]) for a
distribution function G is obtained if ,, is defined by

Go(u) :==n~" Z,un((—oo,u -n;) ,u€eR,

ji<n

with p-measures p1, on B (not necessarily having a density). G, is then called smoothed (or perturbed)
empirical distribution function with the above mentioned kernel smoothing as a special case. Note that

in general, i.e. for arbitrary linear metric spaces X, smoothing by convolution is its natural extension,
since (cf. (6.4.1))

(6.4.6) 5o (B) = n~! Z/X L0+ )i (dy) = 07 Y (B =), B €.

Now, we are going to mention at first the traditional approach towards ULLN’s for smoothed empirical
measures. We will formulate it for an arbitrary metric space X and for classes F of A'-measurable
functions f : X — R being uniformly bounded, i.e. with sup;.zsup,cx |f(2)| < M < co. We do
not loose anything if we assume here and in the following that M = 1 (which means that the constant
function M serves as an envelope of F). Let F be the class of all translates of elements of F, i.e.

Fi={fe:eeX,[eF},
where f. : X — R is defined by f.(y) := f(# + y), y € X. Now consider the decomposition
(6.4.7) Uy —V="0Up —Vxfhy+ VK — U,

where (cf. (6.4.4)) E(,(f)) =v*pu,(f) Vf € F, thus v*p,(f) — v(f) being the non-stochastic bias
Ofﬁn(f)7f€ F.

The decomposition (6.4.7) together with the assumption F = F (saying that F is closed under
translation) is essential for the following lemma:

6.4.8 Lemma.
Let X be a linear metric space and suppose that F = F. Assume further that

sup|1/n(f)—1/(f)|i>0 and  sup|vxpu,(f) —v(f)| — 0.
JEF feF

Then

sup |7 (f) = v(f)] —2= 0.
feF
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PROOF. According to (6.4.7) it suffices to show that

sup (2, (f) = v % pn ()] < sup [ (f) = v(f)]-
TeF fexr

For this, let g € F be arbitrary; then

00 (9) — v % p1n (9)] = |Vn % 10 (9) — v % p1n (9)]
|// (@ + y) v (da) p (dy) — /X/ngﬂ/ v(da) pn (dy)|

|//gy )V () pn (dy) — /X/ny v(da) . (dy)|

= | [ (al9) = v{g))ady)

</X§161£|Vn F) = v(f)|un(dy)

= sup |1/n (f) - V(f)|
JEF

g

Concerning the bias-term vxp, —v = v*pu, — v * 0y (§g = Dirac measure at 0) one shows in the same
way that in the case F = F

(6.4.9) sup [vx 1, (f) — v x 8o (f)] < sup [pa (f) = 6o ()],
feF feFr

where, e.g.for separable X and uniformly bounded equicontinuous classes 7 sup ¢ [, (f) =0 (f)| —

0 if u, — dy weakly (in the sense of weak convergence of Borel p-measures in metric spaces); cf.
Theorem 1.12.1 in [Va96].

The conditions of Lemma 6.4.8 are fulfilled e.g. if X = R,F = {1(_ .t € R}, p, — §y weakly
and v being a continuous p-measure on B in R. The result in this special case goes back to Winter
[Win73] and Yamato [Ya73].

The disadvantage of Lemma 6.4.8 (and (6.4.9)) is that it only holds under the rather restrictive
assumption F = F, a condition which cannot be dispensed with in general; see Example 2.2. in
[Gae99].

Note also that assuming the existence of a real-valued envelope F' of F, the condition F = F implies
that F is uniformly bounded (i.e. sup,cy sup;cz |f(7)| < o0).

For X = R4 d < 1, Lemma 6.4.8 can be found in [Yu89] with a.s. convergence replacing convergence
in the L,-norm. Also from Yukich [Yu89] we know the following result in the case X =R% d > 1:

6.4.10 THEOREM (Yukich).
Let X =R% d > 1, and assume p,, — &, weakly and that

F is uniformly bounded
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and

(6.4.11) NU(r, Fivy<oo  forallT >0

where NU(r, F v) := min{m € N:3f;, ..., f, : X — R, f; continuous ,v-integrable such that for all f €
F there exist f;, f; with f; < f < fyand v(f; — f;) < 7}.

Then

sup 7 (f) = v(f)] —=—= 0.
feF

Here one gets tid of the assumption F = F, but the condition (6.4.11) on the so-called covering
number with bracketing is rather strong: Taking F uniformly bounded and p, = 0y, Theorem 6.4.10
leaves (6.4.11) as a sufficient condition for a ULLN in the case of non-smoothed empirical measures,
a sufficient condition which is far away from being necessary (Talagrand [Ta96]), especially in view
of the continuity assumption on the f;’s which normally is not involved in the definition of covering
numbers with bracketing. As we shall see below, Theorem 6.4.10 will follow from our ULLN 6.4.17
(cf. Lemma 6.4.22).

Next, also not imposing the assumtion F = F, there is a completely different way to obtain ULLN’s
for smoothed empirical measures via the Random Measure Process Aprroach, being based on our
Theorem 6.1.2:

For this, note that 7, (f) can be represented as (cf (6.4.3))
Pa(f) = Y wai(f) &g
i<i(n)

by taking j(n) := n,w,;(f) = [x f(n;+y) pa(dy), and &,; := n~'. Thus, in view of the decomposition
(6.4.7) together with (6.4.4) Theorem 6.1.2 yields the following ULLN. (Note that the 7;’s on which
the w,;’s are based are iid.)

6.4.12 THEOREM.
Let X be a linear metric space and assume that (6.4.13) — (6.4.16) hold, where (for 1 < p < o)

(6.4.13) lim E(w,(F)" - [(n~ w1 (F) > 6)) =0 for all§ >0
(6.4.14) sup ]E(wnl(F) A(n"'w, (F) < 81)) < oo for some &, >0
neN
615 For allT > 0 there existsd = §(7) > 0 such that
(6.4.15) (N(T - pns (F), F,d}), ))neN is stochastically bounded.
(6.4.16) sup |V pn (f) —v(f)] — 0.
fer
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Then

sup 7 (f) = v(f)] —=—= 0.
feF

Now again (cf.the Note before 6.1.7) the condition (6.4.15) can be replaced by

For all 7 > 0 there exists § = §(7) > 0 such that

(6.4.15)’ f ) .
(N(r, F, dgfn)é ))neN is stochastically bounded.
and, since
i (f9) <dy)(fg) VigeF
even by
(6.4.15)" (N(r, F, ci(,i)))neN is stochastically bounded for all > 0

where Jl(;ln) is defined by

B9y = [ ][ e+ v) - g+ (d)

vy (dz)

for f,g € F.

Next, take a closer look at the case when F is uniformly bounded. Then {n~'w,;(F) > 6} = @ and
{n~tw,;(F) < 8} = Q for each § > 0 and large enough n. Thus (6.4.13) and (6.4.14) are fulfilled in

this case. Furthermore, for every § > 0 we have JL{L)& = dl(;ln) for large enough n. So Theorem 6.4.12
yields

6.4.17 THEOREM.
Let X be a linear metric space and suppose that F is uniformly bounded. Assume that (6.4.16) and
(6.4.18) hold, where

(6.4.18) ForallT >0 (N(r,F,dV)) is stochastically bounded.

neN

Then (for each 1 < p < o0)

sup |7 (f) = v(f)] —2= 0.
feF

Since, for uniformly bounded F (with /' =1 w.lo.g.),

N(r, F,dY)y = N(7 - pns (F), F,dV)

P s

for large enough n, we get from Theorem 6.4.17 together with 6.1.7 the following result in case of

uniformly bounded VCGC’s F:
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6.4.19 THEOREM.

Let X be a linear metric space and let F be a uniformly bounded VCOGC. Assume uniform convergence
to zero of the bias-term, i.e. sup;cx [V * p, (f) —v(f)| — 0.

Then (for each 1 < p < o0)

sup 7 (f) = v(f)] —=—= 0.
feF

In the context of smoothed empirical measures or processes, respectively, one usually assumes u,, — &9 weakly. Note however
that in our theorems we did not assume weak convergence of (n ) e In advance. This does does not follow from (6.4.16) nor does
un — 8o weakly imply (6.4.16) as can be seen by the following example:

6.4.20 Example.
Let X =R, F:={l(_cn:t €Q},v =20y and pi, := 61,n € N. Then p, — &y weakly, but (6.4.16)
does not hold; in fact, sup;cx [v* p, (f) —v(f)| = 1.

On the other hand, since (6.4.13) — (6.4.15) are fulfilled, this example also shows that (6.4.16) cannot
be dispensed with, in general, for our theorems 6.4.12, 6.4.17 and 6.4.19 to hold true, since in the

present case E(sup ez |7,(f) —v(f)]) = 1.

However, if F is “smooth” we can deduce (6.4.16) from p,, — &y weakly (without assuming F = F;
cf. (6.4.9) and the remarks made there).
Assuming X to be separable, we obtain the following result:

6.4.21 THEOREM.
Let X be a separable linear metric space and let F be a uniformly bounded equicontinuous VCGC.
Suppose that p, — &y weakly. Then (for each 1 < p < c0)

sup |7 (f) = v(f)] —2= 0.
feF

PROOF. According to Theorem 6.4.19 it suffices to verify (6.4.16), i.e. sup;z [vxpu, (f)—v(f)| — 0:

For each bounded and continuous f: X — R we have by dominated convergence that
vinn(f) = [ [ S+ gnldyvido)
X Jx
= [ [ Fewnaldywide) — [ L0w(do),
X Jx X

since p, — & weakly and f, : X — R is also bounded and continuous for all # € X, where

| 1 @)widz) = v(p),

whence v x i, — v weakly.
Applying now Theorem 1.12.1 in [Va96] yields (6.4.16). O
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6.4.22 Lemma.

Let X be a separable linear metric space and let F be uniformly bounded satisfying the condition
(6.4.11) in Yukich’s theorem, i.e. NU(r,F v) < oo for all T > 0. Suppose that p, — & weakly.
Then (6.4.18) and (6.4.16) hold true, whence Yukich’s theorem comes up as a special case of Theorem
6.4.17.

PROOF. Given any 7 > 0 let fi,..., f,, be continuous, v-integrable and bounded (note that F is
assumed to be uniformly bounded) such that for all f € F there exist f;, f; with f; < f < f; and
v(f; — fi) < (note that NU(r, F . v) < o0).
Now, for all f;, f; with

o il =feF  i<f<[fi}#9
choose g;; € [f;, f;]. Then, given f € F and f;, f; with f € [f;, f;] and v(f; — f;) < T, we have

Dn|f = 9i51) S Ou(fs = fi) = v *pun(f; = fi) — vxdo(f; = fi) as.,

since p, — §; weakly and (cf. e.g. [Gae79], Section 1.5) v, — v weakly a.s.; note that f; — f; is
bounded and continuous.

Since v * 8 (f; — fi) = v(f; — fi) < 7, it follows that

lim sup N(r, F, dl(;ln)) <m? a.s.,

n—od

whence (N(T7 F, dl(;i))) is stochastically bounded and therefore also (N(T7 F, (Z(;ln))) , since

neN neN

di)(f,9) < d0)(f.9) = on(lf —gl) for fig € F.
So we conclude that (6.4.18) holds.
Next, from f € [fi, f;] and v(f; — f;) < T we can also conclude that

v % () = V()] < max{|v o pn (f) = v([)| + v (f;) = v ()],
v % (fi) = v(F) [+ v (fi) = v(H)]

thus

Sup [V pn (f) = v(O] < max{|vxpn (f;) —v(fi)] : 1< j<mp+ 7

But v *p,(f;) —v(f;) — 0 forall j =1,...,m, since v x p,, — v weakly and the f;’s are bounded

and continuous. So we get

lim sup sup v+ (1) = v(f)] < 7.
n—oo  fEF

Since 7 > 0 was arbitrary, this gives (6.4.16). O
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Finally, in the non-smoothed case (i.e. with u, = &,) one has the following deep result on empirical
measures v, which we deduce from Talagrand [Ta96]; here X is not required to be a linear metric
space.

6.4.23 THEOREM (Talagrand).
Let (X, X,v) be a complete p-space and F be a uniformly bounded class of X-measurable functions
f: X — R. Then the condition

(6.4.24) (N(r,F,d}) ), en 18 stochastically bounded for all > 0
(with d\V(f, ) = v (|f — g]) , f,g € F) is necessary and sufficient for

sup |va (f) — v(f)] —=— 0.
feF

In view of this result it is tempting to see what comes up in the smoothed case. The following result
will be contained in [Gae99]:

6.4.25 THEOREM.

Let X be a linear metric space endowed with its Borel o-field X such that (X, X,v) is complete, and
let F be a uniformly bounded class of X-measurable functions f : X — R which is closed under
translations, i.e. F = F. Suppose that supfer |pn(f) = f(0)| — 0. Then the following statements
are equivalent:

a) (N(r,F,d}))), o is stochastically bounded for all 7> 0
b) (N7 F o) e
¢) supser 7a(f) = v())] —— 0
d) supser |va(f) = v(f)] —=— 0.

is stochastically bounded for all 7 > 0
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7 Functional Central Limit Theorems (FCLT)

7.1 A FCLT for RMP’s

Our starting point in this section is the same as in 6.1 with the aim to present a Functional Central Limit Theorem (FCLT) for

Random Measure Processes (RMP’s) Sp = (Sn(f))fer, where

Sn(f) = E wpi(f) - €nj, fE€F, with j(n) — oo as n — oo,
J<3(n)
assuming again that the processes (wn;(f)-€nj) fer are given via coordinate projections on the product p-space (2, A, P) as defined
in 6.1.

We tacitly assume regularity conditions such as measurability and finiteness of wy; (F) and now even the same of wp; (F2) (with
F : X — R being an X-measurable envelope of F)
As already remarked in 3.1, this implies that the sample paths os S), are contained in the Banachspace

1°(F) = {2 : F— B ¢ lallz = sup o(f)] < o0}

fer
endowed with the sup-norm || - ||+, and it also implies in view of the condition (7.1.4) imposed in our FCLT 7.1.3 below that also
supser E(|Sn(f)[) < oo for sufficiently large n.
Thus, for sufficiently large n, the processes S,, — E(S5,,) can be viewed as rq’s in S := (I™(F),|| - ||),

and to obtain a FCLT for S,, — E(S,,) amounts to present further sufficient conditions on F and on

both triangular arrays (w,;) and (&,;) under which
S, —E(S,) ==+ G in S =I"(F)
in the sense of (2.3.2) with a limiting re G = (G(f))rer in (S,B(Y5)) being a mean-zero Gaussian

process.

If, in addition, G is separable, we write as in 2.3 £ instead of —=+. We will focus here on
sep

(7.1.1) S, —E(S,) == G in [®(F)

sep
with G having all its sample paths in the subspace U®(F,d) of S, where

U'(F,d) = {x € I(F) : 2 uniformly d-continuous},
in order to apply our Characterization Theorem of £-Convergence 2.3.9 with d being a pseudo-metric

on F such that (F,d) is totally bounded.

Remember that U°(F, d) is a separable subspace of S if and only if (F, d) is totally bounded ([Gae90],

Corollary 2).
. . . . c
Before focussing on (7.1.1), some general comments are in order in comparing our — -convergence
sep

with related concepts found in the literature (see e.g. [Va96]):
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For this, let n, : @ — [*°(F),n > 1, be arbitrary rq’s with 7, SN G, where G has all its sample

sep

paths in some separable subspace Sy of {*°(F). Then the law £L{G} of G is a Radon measure on
B(I*(F)), i.e. for each B € B(I*(F))

L{G}(B) = sup{L{G}(K) : K C B, K compact}.
To see this, note that according to [Bi68], p.9,
L{G} Radon measure <= L{G} tight

(ie. Ve > 03K = K, C [*(F), K compact, s.t. L{G}(K) > 1 —¢). So it remains to show that
S = L{G} is tight:

For this, let D be a countable and dense subset of Sy; let j € N and £ > 0 be arbitrary. Then the open
balls B(z, 3) C I*(F),x € D, (with center = and radius ) form a cover of S, and therefore (due to
the o-continuity of &) there exist zy,...,2,, € D such that

6(@ B(as, %)) S 1 e/,

Put G = U?:HB(QU“%), then ;e Gy is totally bounded and &(N;cyG;) = 1 = 6(U;en0Gy) >
1=y S(CG;) > 1 —e. Since also K := (;cG;)¢ is totally bounded and complete (as a closed
subset of the complete space [*(F), K is compact with &(K) > 1 — ¢, which proves tightness since
€ > 0 was chosen arbitrary.

On the other hand, if £{G} is a Radon measure, whence tight, and if 5, —£5 G in the sense of
(2.3.2) (with S = [*°(F)), it follows that there exists a stochastic process G = (G(f));er defined on
an appropriate p-space (Q,.4,P) with sample paths in a separable subspace S, of [*(F) such that
M LN G, where G ﬁ%, G:

sep i
In fact, L{G} tight — Sy := suppL{G} o-compact and therefore separable; then, taking
(Q, A,P) := (So, B(So), L{G}) and G(f)(z) := m¢(x) := x(f) for € S, the assertion follows (see
[GaeTT7], Lemma 7.2.31).
Finally, let us mention also (without proof) the following result (see [Va96], Section 1.12, and [Gi97],
Corollary 1.5):
Let 1, : @ — [®(F),n > 1, be arbitrary rq’s, 1y : Q@ — [*°(F) be A, B(I*°(F))-measurable with
L(no} being tight; then

(7.1.2) M Ly 7o in the sense of (2.3.2) (with S =1*(F)) <= dgr (W, ) — 0,
where  dpp (1, o) = sup{|E*(H (n,)) — E(H (10))| : H € BL,(I*°(F))} with
H(z)—H
BL, (I (F)) == {H:loo(]:)—HR :osup |H(z)| <1, sup Mgl}.
rei= (¥) ryer=(Flozy 12— Yllz

Now, the Functional Central Limit Theorem (FCLT) for Random Measure Processes (RMP’s) reads
as follows (cf. [Zi97], Theorem 6.1 together with Remark 6.2):
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7.1.3 THEOREM (FCLT for RMP’s).

Let X = (X,X) be an arbitrary measurable space and F be a class of X-measurable functions
f X — R with X-measurable envelope I' : X — R (supposed to be countable to avoid mea-
surability considerations). Assume that F has uniformly integrable Lo-entropy (cf. 4.3.20) and that

there is some pseudometric d on F such that (F,d) is totally bounded. Assume further that the
following conditions (7.1.4) — (7.1.6) are fulfilled:

For each p > 0 there exists 6, = 0,(p) > 0,n € N, with 6, — 0 such that

(7.1.4) limsup > E(wnj(F)|€nj|-I(wnj(F)|€nj| >6.)) <p
T j<itn)
(7.1.5) lim limsup sup Z E( (Wi (f) — w5 (9))E0; - T(wii (F)]ns] < 5n)) =
270 novoo d(fig)<e ;i)
(7.1.6) sup S E(w (FE - I, (F)|€n] < 6,)) < oo
"R <in)

Assume in addition, that there exists a mean-zero Gaussian process G = (G(f))jer such that S, —

E(S,) = G.
Adi
Then there exists a mean zero Gaussian process G = (G(f))jex with sample paths in U*(F,d) (being
a separable subspace of (I°(F),|| - ||#) such that
(7.1.7) Sy —E(S,) =5 G inl®(F) and G =< G.

di

=

sep

PROOF. Concerning (7.1.7) we remark (as already mentioned above) that by (7.1.4) for sufficiently
large n

%EEIS g(:)lem )énil) <
> E(wng (1)) I(was (F)[&] > 6,)) + j(n)d, < oo

Ji<i(n)

Now, since (F,d) is assumed to be totally bounded and since S, — E(S,,) ~5 G by assumption, it
fidi
follows in view of our CTL-C 2.3.9 together with Remark 2.3.19 that it remains to show

() lim oo limsup, .. B( supys e |4 (F) = Sa(9) = (B(S, (F)) — E(S, (9))]) =0 -
For this, according to the Symmetrization Inequality 5.1.2 it suffices to show
(b) lim gy limsup,,_, E( SUPg(f g)<a | ngj(n)gjfnj : (wnj(f) - wn](g))|) =0,

where (£;);en is a canonically formed Rademacher sequence being independent of both arrays (w,;)

and (&n;)-
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Let p > 0 be arbitrary and 6, = 6,(p) > 0,n € N, with §, — 0, fulfilling (7.1.4) — (7.1.6). Then

Z 5 & (wny (f) — wn](g))D

J<i(n

<E( sup | Y e wm'(f)—wnj(g))-f(wnj(F)lfnjl§5n)|)

d(f,g9)<«a §<i(n)

+2 3 B(wn (Bl - L (was(F)lng] > 82)).

i<i(n)

B s |

and so, because of (7.1.4), it remains to show
(€ Tinacso 1 5p, e B 50010 | 5500125 s (003 () = 0(9)) - Ty (F)Es] < 6)]) =0

For this, let, for f,g € F,

025, (1.9) = D E((wai(f) = was(9))€; - T (F)léns] < 6)).

J<i(n)
With this definition of 0,5, condition (7.1.5) reads as follows:
(d) limg_o limsup,,_, ., SUPg(r g)<8 Urzlén(f7 g)=0.

But (d) allows us to switch in (c) from the pseudo-metric d to o,;,, i.e. in doing so we have to show

(e)  limlimsup, E( BUP,,,. (rug)<a | 2oi<i(n) €3 §ni (Wai (f) = Wnj(9)) - T (way (F)[&0] < 5n)|) =

Now
)= 3 (0ns(1) = g0 €l 1] <50
< ;(:)wm((f_gf)&i] Hwns(F)éns] < 82) = fins, ((f — 9)?)
for all f,q € F with _
i) = 32 (1€ I (sl < 1)

where
ne ([,9) =E(pys, (f,9)) forall fgeF.

By this, we arrived at a situation which allows us to apply Ziegler’s Maximal Inequality ([Zi97],
Theorem 3.1, applied here with ®,,;(f) := w,;(f) &, - I{wn; (F)|&q;] < 6,) ) according to which there

nj
exist universal constants 0 < K; < oo,? = 1,2, such that for all & > 0

(f) E( SUPs.s (f,9)<a |Zj§j(n)€j Enj  (W0ni(f) = wnj(9) - T(wn; (F)]&ns] < 5n)|)
< K;-A(n,a)-B(n) + Ky-C(n,a)
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with

An, 0) =0 B2 max sup (€0 (wn; () = wag(9))] - 1 (wa ()€ < 82) - [ina, (F2)]/2 - 1,(1))

i<i(n) f geF
B(n) =B (fins, (F?) (1,(1))?)

and C'(n,a) := B ( max{1, [jins, (F)]"*} - 1, (),

where [, («) is the random integral, defined by

a 1/2
[ () ::/ (logN(T (,dm;n(Fz))l/27]-'7 d%zn)s )) dr.
o "
Here, we have according to (7.1.6) that
(&) sUPnen B(fing, (F*)) = 50 B(was (F2)E2; - Twni (F) || < 6,)) < o0,
whence fi,5, € M(X, F) for all n € N a.s., and thus a.s.
1/2

() 1,(1) < f5° (log [SUPueM(X,F) N(r (v(F*)'?, F, dl(zz))]) dr < oo,

since J has uniformly integrable Ls-entropy.
The latter also implies that a.s

. 1/2
0 (@) < fy (log [sup,empxm N (7 (W(F2)Y2, F,dP)]) " dr — 0 as a« — 0.

Now, concerning A(n, «), note that

max sup |§o;(wa;(f) = waj(g))] - 1w (F)[Enj| < 0n) <2+,

J<in) .geF

which implies by (g) and (h) that for all @ > 0

limsup A(n, ) - B(n) = 0.
n—od
Finally, by (g) and (i) we get
lim lim sup C'(n, o) = 0,

a=0 5500

which completes the proof of (e) according to (f).

g

It is easily seen that the conditions (7.1.4) — (7.1.6) become much simpler in case of a uniformly

bounded index set F (with envelope /' =1 w.l.o.g.) In this case we obtain immediately from Theorem

7.1.3:
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7.1.8 Corollary (cf. [7i97], Corollary 6.3).

Assume that F is uniformly bounded and has uniformly integrable Ly-entropy, and that there is some
pseudo-metric d on F such that (F,d) is totally bounded. Assume further that the following conditions
(7.1.4) — (7.1.6) are fulfilled:

(7.1.4)’ Tim > B(|€u| [(€] > 8)) =0 forall 5> 0
J<J n)

(Noticing that (7.1.4) implies the existence of a sequence (8n)nen of positive real numbers 8y such that §p, — 0
and limp 00 Z]<] E(|§n]| I (|Eng| > Sn)) =0.)

(7.1.5)" lim limsup sup > ]E((wn](f) — w,j(9))7&0; - T([€ns] < 51)) =0 for some §; > 0

a—0 — L=
n=ee d(f,9)Sa jiin)

(7.1.6) sup Z E( (€] < 52)) < oo for some 65 > 0
Nj<itn
(7.1.9) There exists a mean-zero Gaussian process G = (G(f))ser such that
S, — E(S,) = G.
fidi

Then there exists a mean-zero Gaussian process G = (G(f))jer with sample paths in U*(F,d) (being
a separable subspace of (I°(F),|| - ||#) such that

(7.1.7) Sy —E(S,) =5 G inl®(F) and G =< G.

sep di

=

where again

Sn(f) = Z wn;(f) &y, fEF.

i<i(n)

Let us consider next the special case where w,; =4, ., (Unj)lgjsj(n),neN being a triangular array of
re’s in (X, X') in order to present tractable conditions under which (7.1.9) holds true.

7.1.10 Corollary (cf. [Zi97], Corollary 6.4).

Let F be as in Corollary 7.1.8. Let w,; = ¢, . where (Unj)lgjsj(n),neN is a triangular array of re’s
in (X, X) with laws v,; = L{n,;} on X, and suppose now, in addition to the basic independence
assumption for the pairs (1,1,&n1)s s (njn) njn)), that for each n € N and 1 < j < j(n) also
Nny and &,; are independent. Assume further that there is some p-measure v on X and constants
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0 < ¢; < o0 such that the following four conditions are fulfilled:
(7.1.4)" Tim Z(: )E(|§M| (& > 8)) =0 forall >0
i<i(n

(7.1.11) lim limsup sup Z vni (F = 9)°) - E(&; - 1(|€n;] < 61)) = 0 for some 6, > 0

@70 noeo 4O (1 <a i< ()

(7.1.12)
nh_}rlgo Z voi(f-g) - E( Zj A([€n;] < 82))=crv(f-g) forall f,g € F and some 65 > 0
i<i(n)
(7.1.13)
nh_}rlgo Z Vni(f) - vni(9) (E(Em (€] < 53)))2 = cov(f) - v(g) for all f,g € F and some 63 > 0.
i<i(n)

Then, with S, (f) =2 <jn) [(ng) ni s [ €F,

S, —E(S,) =5 G, inl™(F),

sep

where G, = (G, (f))rer is a mean zero Gaussian process with sample paths in U*(F,d?) and
)

cov(G(f), Gul9)) = erv(f - g) = eav(f) -vlg) for frg € F.

PROOF. Note first that (7.1.5)" coincides with (7.1.11) in the present case since ]E((wm(f) —
(90262 T(a] < 81)) = E((wns (/) = was(9))?) E(&E; - 1€ <61)) = way((f—9)*) - BIEE, -

(Wnj=bn, ;)
I(|&,;] < 81)) for each n and 1 < j < j(n). Secondly, assuming w.lo.g. F' =1 € F, (7.1.12) (with
f=¢g=F =1)implies (7.1.6)". Therefore, the assertion follows from Corollary 7.1.8, since under
the present conditions one can verify (7.1.9) in the same way as it was done (in the set-indexed case)
within the proof of Theorem 2.2 in [Gae94], part (a). O

7.2 FCLT’s for partial-sum processes with either fixed or random
locations

Let X = (X,X) be an arbitrary measurable space, C C X a countable VCC being w.l.0.g. closed
under the formation of symmetric differences (cf. 4.2.7). Note that F := {1 : C' € C} has uniformly
integrable Ls-entropy according to 4.3.21.

Let w,; = 6&,.., (Mj)i<j<jmn)nen being a triangular array of re’s in (X, X)) (with j(n) — oo as
n — o0) and (§,5)1<j<jn)nen @ triangular array of rv’s such that for each n € N the sequence of pairs
(M1, &01) s s (Mnjn)s Enj(ny) is independent but not necessarily identically distributed (and where the
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components within each pair need not be independent). Let d := d, for some p-measure v on X’ (where
d,(C,D) = v(CAD) = d?(1¢,1p) for C, D € C); note that (C,d,) is totally bounded (cf. 4.2.3).
Then, specializing Corollary 7.1.8 to the present case, we obtain the following result for partial-sum
processes .S, = (5, (C))cec with random locations as introduced in section 3.2.1, i.e. with

Sa(C) = Z Le(ng) &y , C€C:

i<i(n)

7.2.1 THEOREM (c¢f. [Gae9}], Theorem 2.11).
Assume that the following conditions are fulfilled:

(714 lim S E(|gy| - I(€y] > 8)) =0 for all §> 0

j<itn)
(7.2.2) lim limsup  sup Z E( c(Mnj Efm I(]&,5] < 51)) =0 for some &, > 0
a=0 p_e0 CECIV(C)<OC]<] (n)
(7.1.6) sup Z E( (€] < 52)) < oo for some 65 > 0
"EN <i(n
(7.1.9) There exists a mean-zero Gaussian process G = (G(C))cec such that
S, — E(S,) = G.

fidi

Then there exists a mean-zero Gaussian process G = (G(C))cec with sample paths in U*(C, d,) (being
a separable subspace of (I°(C), || - ||c)) such that

S, —E(S,) ==+ G in1°(C) and@ﬁéd,@.

sep

Specializing Corollary 7.1.10 in the same way as just done with Corollary 7.1.8 to the set-indexed case
yields the following result for S, = (S,(C))cec with

S(C) = Y le(ny) &y, CEC,

i<i(n)

under the additional assumption that for each n € Nand 1 < j < j(n) also 7,,; and &,; are independent.

7.2.3 THEOREM (c¢f. [Gae9}], Theorem 2.2).
Suppose that there is some p-measure v on X' and constants 0 < ¢; < oo such that the following four
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conditions are fulfilled:

(7.1.4)" Tim > B(|€y] - 1€ > 8) =0 forall 5> 0
J<i(n)
(7.2.4) lim limsup  sup Z Vi (C) - E(&; - 1(|&a5] < 81)) = 0 for some &, > 0
a=0 nooo CeC:u(C)Sochj(n)

(7.2.5)

1i_>m Z Vo (C N D) -E(&; - 1(€ns] < 82)) = cv(C' N D) for all C, D € C and some 85 > 0

J<i(n)
(7.2.6)
2

lim > 2 (C) 1) (D) (& - 1([60i] < 65))) = ea(C) - (D) Jor all C, D € C and some 8 > 0.

J<i(n)
Then

S, —E(S,) =5 G, inI™(F),

sep

where G = (G(C))cec is a mean-zero Gaussian process with sample paths in U°(C,d,) and

cov(G,(C), G, (D)) = cv(CN D) —ecav(C)-v(D) for C,DeC.

From Theorem 7.2.3 we get the following result which was already mentioned in section 2 (see Theorem
2.2.3) and used at the end of section 2.3.6.

7.2.7 Corollary (cf. [Gae9{], Theorem 2.15).

Let &,; = j(n)~Y; for each 1 < j < j(n) and n € N (with j(n) — co as n — o), the &;’s being iid
rv’s with B(&;) = 0 and B(E7) = 1. Let (1n7)1<;<j(n)nen being a triangular array of rowwise independent
but not necessarily identically distributed re’s in (X, X') which is independent of the sequence (&;);en-
Suppose that there is some p-measure v on X such that the following two conditions are fulfilled (with

Vnj o= L{nn;}):
(i) limpse j(n) ™' i v (C N D) = v(CNO D) foral C,DeC
(i) lim,_limsup,_, .. SUPcec;u(c)gaj(n)_lngj(n)’/nj(c) = 0.
Then
(jmrl/zg(jn) Le(mg) &), = G

where G, = (G,(C))cec is a mean-zero Gaussian process with sample paths in U°(C,d,) and

cov(G,(C), G, (D)) =v(CN D) for C,DeC.

PROOF. According to Theorem 7.2.3 we have to verify the conditions (7.1.4)", (7.2.4), (7.2.5) with
¢; =1 and (7.2.6) with ¢, = 0 to get the assertion of 7.2.7.
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As to (7.1.4)":  Tor each & > 0 we have 35, ;) E(|&ni] - T(|6n;] > 6)) < 07135050 B(ER; - T(1€ns] >
§)) = §7E(E? - I(|&1] > 85(n)M?)) — 0, since ]E(ff) < 0.

As to (T.2.5): 35 Vai (COVD) - E(&; - T(I6ni] < 02)) = [1(n) 7" 2jjmy wai (COVD)]-E(EY - T(J64] <
857 (n)Y?%)), where by (i) lim, . j(n)~ 1E]<] I/n](Cﬂ D) = (Cﬂ D) and lim,, ., E(&F - I(]&] <
855j(n)1/?)) = E(€2) = 1. This proves (7.2.5) Wlth o =1

As to (7.2.6): Since limsup,_, ., stj(n)an(C)-l/nj(D)-(E(Enj-l(|€nj| < 53)))2 <limsup, o 22 5<in)
(B - 160s] < 8))) =l (B - 18] < daj(m)72)) = (E(€1)) = 0, we get (7.2.6) with

CQZO.

As to (7.2.4): Since 35 ¥ni (C) - B(&o; - 1(6ns] < 1)) = ()7 X vni (O)] - BIEY - T(|&1] <
517 (n)?)), it follows that

sup 3t (OBl S0 = [ sup  J0)7 30 vy (O] BT (] < 81 ()7,

CeCw(C)<a ; S5y cecwv(C)<a i<i(n)

whence by (ii) and the fact that lim, ., E(&? - I(]&] < 815(n)Y?)) = E(§2) = 1 condition (7.2.4) is
also fulfilled. O

NOTE: Corollary 7.2.7 can also be proved more directly by application of Corollary 7.1.8.

Considering as in 6.2.8 function-indexed partial-sum processes S,, = (5,(f))er, defined by

Sa(f)=3()™" Y fly) &, feF,
J<i(n)
F being countable, uniformly bounded, having uniformly integrable L,-entropy (whence (F,d) is
totally bounded w.r.t. d = d?) for each p-measure v on X" according to 4.3.21), Corollary 7.1.10 yields
the following result (cf. [Zi97], 7.2):

7.2.8 THEOREM.

Let (;)1<j<jn)nen being a triangular array of rowwise independent (but not necessarily identically
distributed) re’s in (X, X), (&)en be a sequence of iid rv’s & with E(&,) = 0 and E(&}) = 1, such
that the whole array (1,;) is independent of the sequence (£;). Suppose that there is some p-measure
v on X such that the following conditions are fulfilled (again with v,; == L{n,;}):

(7.2.9) T}Lrgoj(n)_l ST ovai(frg) = v(f-g) forall fgEF
J<i(n)
(7.2.10) lim limsup sup  j(n)™"' Z vai ((f = 9)") = 0.
a=0 5500 d£,2)(f,g)§oc i<i(n)

Then
(G Fo) &) =G in 12(F),

L EF sep
i<i(n) !
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is a mean-zero Gaussian process with sample paths in U*(F,d?) and

where G, = (G, (f))rer
COU(G ( )7Gu(g)) = (f g) Jor f,g € F.

PROQOF. The assertion follows from Corollary 7.1.10 in an analogous way as in the proof of 7.2.7.0J

Concerning on the other hand partial-sum processes S, = (S,(f)) rer with

= Z fny) &y fEF,

J<i(n)
where 7;, j € N,areiid re’sin (X, ') with £{n;} = v, and where ({,;)1<j<j(n)nen (With j(n) — oo as
n — 00) is a triangular array of rowwise independent (but not necessarily identically distributed) rv’s

such that the whole array (§,;) is independent of the sequence (n;), the following result is mentioned

n [7i97], 4.4

7.2.11 THEOREM.
Let EB(&,;) =0 for all 1 < j < j(n) and n € N. Assume that F has uniformly integrable L,-entropy

and that v(F?) < oo, where F denotes the envelope of F. Suppose that the following conditions are
Sulfilled:

(i) T 5y B(F2 (1) €5 - TE ()| > 6)) =0 for all 5> 0
(Lindeberg-type condition)

Then
S, <G, in I®(F),
sep
where G, = (G, (f))jer is a mean-zero Gaussian process with sample paths in U*(F,d?) and
cov(G(f),Gulg)) = v(f - g) for fg € F.

PROOF. We are going to apply Theorem 7.1.3 with w,; = J,, and d = d?). For thist, one has to

verify that 5, LN G, , but this follows from the classical multivariate CLT for triangular arrays. So
fidi

it remains to verify (7.1.4) — (7.1.6):

As to (T.1.4): 3. i) (wm( Nénjl - T (wn; (F)[Eq;] > 5n)) = ng(n)E(F(m’) sl - T(F (0)|Ens] >
5n)) < 6 i< im (Fz(n]) I (F(my)|&nsl > 5n)) — 0 with an appropriate chosen sequence
(0n)nen C Ry with 5n — 0, since by (i)

lim 671 3" B(F () &, - [(F(ny)[&] > 8)) =0 for all §> 0.

i<i(n)
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As to (7.1.6): sup,cy Zij(n)E(wnj(Fz)ngzj'I(wnj(F)|€nj| < 5n)) < sup,ey Ejgj(n) E(F?(n;)) E(fgg)
= v(F7?) - sup,en X< BIE;) < 0o by (i), since v(F?) < oo,
As to (7.1.5) (with d = d?): supd(z)(f 9)<a E]<]( )E((wn](f) — wn;(g))? Zj A (wn; (F)|€n;] < 5n)) <

SUPy@) (1 <o 2 oi<in )E((f( ) SUP 4@ (5 gy< =97 ngj(n)E(fij)
<a? 3o E(&,) which 1mphes (7 1 5)

O

Finally, concerning function-indexed partial-sum processes with fixed locations and index set F being

countable, uniformly bounded and having uniformly integrable Ls-entropy, we obtain from Theorem
7.2.8:

7.2.12 THEOREM (cf. [Zi97], 7.3).
Let (X, X)= (41N BY,d>1, (I*=[0,1]*) and consider (cf. (1.4.2))

Salf)s=n="2 30 Ji/me; T EF,
J€Tn
(Jn :=4{1,...,n}), where the §ihJ € N4, are i1 d with E() =0 and E(&7) = 1. Let v be the restriction

of the d-dimensional Lebesque measure N on 1% N B¢ and suppose that the following two conditions

are fulfilled:

(7.2.13) 1i_>m n- Z i ([ 9) = =X f-g9) foral f,gcF
J€Tn
(7.2.14) lim limsup  sup  n~¢ Z §im((f—9)")=0.
020 neo A((f-g)Sa g7,
Then
S, <5 G, in I®(F),
sep
where G, = (G,(f))fer is @ mean-zero Gaussian process with sample paths in U*(F, d(fd)) and
cov(G,(f),Gu(g9)) = A'(f - g) for fg € F.

In the set-indexed case, i.e. for (cf. (1.4.2))

Su(C) =0~ 3" 1c(j/n)¢; ,CEC,

J€dn

with C C I¢ N B?, attempts to find natural conditions under which (7.2.13) and (7.2.14) hold have
been made in [AI87]; cf. also [Gae94], Remark 2.16 and the results contained in [Va96], Section 2.12.2:
Partial-Sum Processes on Lattices.
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7.3 FCLT’s for empirical processes

Let X = (X, &) be again an arbitrary measurable space (sample space) and (7,;)1<j<j(n)nen (With
j(n) — oo as n — o0) be a triangular array of re’s in (X, X') assumed to be rowwise independent
(but not necessarily identically distributed) with law £{n,;} = v,;). Let F be a class of X-measurable
functions f : X — R with A-measurable envelope I/ : X — R; F being countable for simplicity.
Assume that F has uniformly integrable Li-entropy and that there is some pseudo-metric d on F such
that (F,d) is totally bounded (e.g. d = d{?) for some p-measure v on X’ with v(F?) < oo; cf. 4.3.21).

We are going to apply our FCLT for RMP’s 7.1.3 with w,; = ¢, , and &,; = j(n)~ /2 to obtain the
following

FCLT for empirical processes in the non-iid -case,

i.e. for S, = (5,(f))rer with

SulF) =372 3 (F(mg) = vas (D), S EF.

7.3.1 THEOREM (cf. [2i97], {.2).

Assume S, —— G, where G = (G(f))ser is a mean-zero Gaussian process. Let
fide

Y v al@)= s (m((F—g))) a0,

i<i(n) d(f,g)<o

and suppose that the following conditions are fulfilled:

(7.3.2) sup v, (F?) < oo (whence S, has its sample paths in [ (F))
neN

(7.3.3) lim limsup a,, (o) = 0

a=0 pnyeo

(7.3.4) hm j(n Z ]E( (Mnj) - L(F(0ny) > 5j(n)1/2)) =0 forall 6>0.
i<i(n)
Then
Sy =G in I™(F),

sep

where G = (G(f))jer is a mean-zero Gaussian process with sample paths in U*(F,d) and G £ G.

fide

PROOF. The proof runs along the same pattern as the proof of Theorem 7.2.11. According to
Theorem 7.1.3 we have to verify (7.1.4) — (7.1.6) (with w,; = §,,, and &,; = j(n)~'/?):

As t0 (T.LA): Sy B wng (F) €] - I (0o (F)€nsl > 6)) = sy B F (107) 3 ()77 1(F (1) >
5nj(n)1/2)) <6 ()T Yicim E(Fz(nm) I(F(n,;) > 5nj(n)1/2)) — 0 with an appropriate chosen
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sequence (9,),en C Ry with 6, — 0, since by (7.3.4)

TN B(F () - H(F () > 85(n)') — 0

Ji<i(n)

as n — oo for all § > 0.

As to (7.1.6): sup,cy stj(n)E(wnj(Fz) i T (wni (F)|&] < 5n)) = SUD,en stj(n)E(Fz(nnj)j(n)—l.

I(F(n,;) < 5nj(n)1/2)) < SuPneNj(n)_lngj(n)E(Fz(nnj)) = SuPneNj(n)_lngj(n)’/nj(Fz) =
SUp, ey Pn (F?) < 00 by (7.3.2).

As 10 (T15): SUPy(s g <a Syesiom B (Wi () = w0 (9))2€2; 1 (wai (F)€ns] < 82)) = 8uPugs gy<a Siiim

E((f(105) =9 (1) %7 (n) " L(F () < 8,5(n)%)) < 8py(s g1 aﬂ<>1E]<J<>E(< FO1n)=9(15)%) =

Supd(f,g)gaj(n)_lzg<] Vny((f g) )= SUP4(f g)<a Un((f = ) )= ( ),
from which (7.1.5) follows according to (7.3.3). a

Replacing the triangular array (77,;) by a sequence (7;);en of iid re’s in (X, X') with law L{n;} = v,
we obtain from Theorem 7.3.1 the following FCLT for empirical F-processesin the iid -case, i.e. for

Bu = (BalP)rer with Bu(f) = 0723, (fm) = v(£) = 0! (f) = v(f)), where v, (f) :=
n=t Y, F(ny) (cf. 2.2.1 in the set-indexed case):

7.3.5 THEOREM.
Suppose that F has uniformly integrable Lo-entropy and that v(F?) < oo (F being countable for
stmplicity). Then

8, 55 G, in I®(F),

sep

where G, = (G, (f))jer is a mean-zero Gaussian process with sample paths in U*(F,d?) and
cov(G(f), Gulg)) = v(f -g) —v(f) -vg) Jor g€ F.

PROOF. 3, -+ G, follows by the classical multivariate CLT. The conditions (7.3.2) and (7.3.3)
fidi
are obviously fulfilled. As to (7.3.4) we have in the present case
Tim 7=t SOE(F2 () - L(F(n) > an'/%)) = Tim B(F* () - I(F(m) > on'72)) =0,

4 n—00
j<n

since E(F?(n,)) = v(F?) < co. Thus Theorem 7.3.1 yields the assertion. O

7.3.6 REMARK.

Concerning VCGC’s F (having uniformly integrable Lo-entropy according to 4.3.21) with v(F?) < oo,
the assertion of Thoerem 7.3.5 holds true, especially for F = {1c : C' € C},C C X being a countable
VCC; see Theorem 2.2.1.
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7.4 FCLT’s for smoothed empirical processes

Throughout this section X is supposed to be an arbitrary linear metric space endowed with its Borel
o-field X'. The basic situation is the same as in section 6.4, i.e. given iid re’s 5;,j € N, in (X, A') with
law £{7;} =v on X’ we consider the smoothed empirical measures

Up, = Vp K g n€N7

indexed by classes F of X-measurable functions f : X — R with A’-measurable envelope F/: X — R
assuming that v(F?) := [, F?dv < co. Remember from 6.4 that

(7.4.1) v (f) = /X /X [+ y)va(da)p, (dy) =n™" > /X (O + y)pa(dy)

ji<n

and  E(7,(f) =vxp,(f) VfeF (cf. (6.4.3) and (6.4.4)).
Also our decomposition from 6.4 will be again important, i.e.
(7.4.2) Uy —V="0Up —Vxfhy+ VK — U,

noticing that v, — v xpu, = 0, — E(7,,) is a mean-zero RMP and where v % ui,, — v is the non-stochastic
bias term.

As in 6.4 let F be the class of all translates f, of elements f of F (with f.(y) == f(e +y),y € X).
Without imposing the condition F = F we are going to apply our FCLT for RMP’s 7.1.3 with (cf.
(7.4.1))

wilh) = [ S+ ady). and &= 0 LG <) = mn e N,
to obtain sufficient conditions under which

(7.4.3) (V@ (£ = v(f) =56 in I=(F),

fe]—' sep

where G = (G(f))er is a mean-zero Gaussian process with sample paths in U?(F, d().

Remember that U*(F,d(?) is a separable subspace of (I°°(F),|| - ||) if and only if (F,d{?) is totally
bounded ([Gae90], Corollary 2) where the latter is true for classes F having uniformly integrable
Ls-entropy (cf. 4.3.21).

Now, in view of (7.4.2), Theorem 7.1.3 yields immediately the following FCLT. (Note that the 7;’s on
which the w,;’s are based are iid .)

7.4.4 THEOREM (c¢f. [Ro97], Theorem 3.2.2).

Let X be a linear metric space and let F have uniformly integrable Lo-entropy. Assume that the

following conditions (7.4.5) — (7.4.8) are fulfilled:
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For each p > 0 there exists 6, = 0,(p),n € N, 6, — 0 such that

(7.4.5) lim sup /i - B w1 (F) (w1 (F) > 8,5/n) < p

(7.4.6) lim limsup  sup  E((wni(f) = wni(9))?) - I{wn(F) < 6,1/n)) = 0
n=e0 ) (f,g)<a

(7.4.7) ilégE(wm(Fz) (w,(F) < 8,3/m)) < o

(7.4.8) Sup Volyx i (f) —=v(f)l — 0.

Assume, in addition, that there exists a mean-zero Gaussian process G = (G(f)) jer such that /n(v, —
VoK) —— G.

fidi
Then there exists a mean-zero Gaussian process G = (G(f));ex with sample paths in U*(F,d?)) such
that

Vo, —v) =<5 G in I°(F) and G = G.

sep fide

Before going further, let us have a view on a FCLT for smoothed empirical processes under the
condition F = F:

From van der Vaart [Va94] one gets the following result. For this, F is called a v-Donsker class if (cf.
Theotem 7.3.5) (Va(va (/) = v(f)) =G, in I=(F).

fe]—' sep

7.4.9 THEOREM.
Let X =R d > 1, and assume F = F. Let F be v-Donsker and p, p-measures on B with p, — &,
weakly. Suppose that the following two conditions are fulfilled:

(7.4.10) sup [ [ (£ ) = 1) aldy)) vide) — 0
feFx " Jx

(7.4.11) §1€1£ Valv s, (f) —v(f)| — 0

Then

Vo, —v) =<5 G in [°(F),

sep

where G = (G(f));er is a mean-zero Gaussian process with sample paths in U°(F,d?).

NOTE: In [Va94] the p,’s are even allowed to be random p-measures on B% On the other hand it
should be noted that F being a v-Donsker class does in general not imply that F is also a v-Donsker
class (cf. Example 2.2.8 in [Ro97]) as it is imposed in 7.4.9 via the F = F - assumption. See also
[Ro99] for a comparison with a result of Yukich [Yu92] obtained in the case X = R4, d > 1, F = F, F
a v-Donsker class. The method of proof in [Va94] and [Yu92], respectively, is completely different
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from our approach via RMP’s (see [Ro99] for a discussion). Their key method consists of showing
asymptotic (stochastic) equivalence of the empirical process v/n(v, — v) and the unbiased smoothed
empirical processes \/n(0, — v % pi,,) in order to apply the Cramér-Slutzky-type result (cf. Theorem
2.3.15).

Now, in view of Theorem 7.4.9 we will present in the following more tractable conditions compared
with those in Theorem 7.4.4, but again without imposing the condition F = F:

7.4.12 THEOREM (c¢f. [Ro97], Theorem 3.2.3).
Let X be a linear metric space and F have uniformly integrable Ly-entropy. Assume that the following

conditions (7.4.13) and (7.4.14) are fulfilled:

(7.4.13) sup [ 1 [ (F(o+y) = F)aldy)] vide) — 0
fertx Jx

(7.4.14) feingS}ﬁ|V * i (f) = v(f)] — 0.

Then

Vo, —v) =5 G, in 1°(F),

sep

where G, = (G, (f));er is a mean-zero Gaussian process with sample paths in U*(F,d?) and
)

cov(G(f), Gul9)) = v(f -g) —v(f)-v(g) for frg e F.

PROOF. To prove this result, one shows (7.4.5) — (7.4.7), fidi-convergence and then one applies
Theorem 7.4.4. This is carried out in [Ro99].

NOTE: Condition (7.4.13) is just (7.4.10), whereas (7.4.14) is apparently a bit stronger than (7.4.11) implying convergence also
for F. In (7.4.14) it is tacitly understood that v % un (F?) and v(F®) exist. (7.4.14) can be replaced by (7.4.11) if, in addition,

v pun(F21e) — y(F2%#) for some £ > 0. On the other hand, as already mentioned in section 6.4, the condition F = F implies
that F is uniformly bounded. But for uniformly bounded F (7.4.14) reduces to (7.4.11), and so we get finally the following result:

7.4.15 THEOREM (c¢f. [Ro97], Theorem 3.2.4).
Let X be a linear metric space and let F be uniformly bounded having uniformly integrable Lo-entropy.
Assume that the conditions (7.4.8) and (7.4.13) are satisfied. Then

Vo, —v) =5 G, in 1°°(F),

sep

where G, = (G, (f));er is a mean-zero Gaussian process with sample paths in U*(F,d?) and
)

cov(G(f), Gul9)) = v(f -g) —v(f)-v(g) for frg e F.

7.5 A uniform FCLT for the unbiased smoothed empirical process

As in section 7.4 X is supposed to be an arbitrary linear metric space endowed with its Borel o-field
X and n;,j € Nyare iid re’s in (X, X') with law £{n;} = v on X

95



Let us consider first the non-smoothed empirical process G2 := \/n(v, —v) indexed by a (countable, for
simplicity) class F of X'-measurable functions f: X — R with X'-measurable envelope F': X — R
such that v(F?) < co.

As we know from (7.1.2) and the general comments preceeding (7.1.2) we have

G —~5G, in [®(F) < dp.(G,G,)— 0,

sep

where G, = ((,(g)) fer is a mean-zero Gaussian process with sample paths in U?(F, d{?) and

cov(Gy(f), Gu(g)) = v(f -g) —v(f) -v(g) for figeF,

calling (as in section 7.4) F to be a v-Donsker class in this case.

Now, concerning the question whether F is also a wuniform Donsker class, i.e whether
SUP, e pi(x) 4B (G, Gy ) — 0 (and (F,d() is totally bounded uniformly in ), where M*(X) denotes
the class of all p-measures on X', the following result is known (see [Gi97], Theorem 5.3 and [Gi91]):

7.5.1 THEOREM.
Let X be an arbitrary measurable space and F be uniformly bounded having uniformly integrable L-
entropy. Then (with L{G, } being tight)

(7.5.2) sup dpr(GL,G,) — 0.
VEM!(X)

Uniform Donsker classes were e.g.studied by Sheehy and Wellner [She92] (who also studied in detail (7.5.2) with the supremum
taken over subclasses of M! (X)) and by Giné and Zinn [Gi91]. They showed that (putting measurablilty questions aside) a so-called
uniformly pregaussian class F (saying F is UPQ) is a uniform Donsker class.

F is UPG means that the following two conditions are fulfilled:

(7.5.3) sup E(||Z,[|r) < o0
VEM(X)
(7.5.4) lim sup E(sup{|Zl,(f) - Z,9)|: f.g € F, dl(,z)(f,g) < 5}) =0.

§—0 vEML(X)
In both conditions Z, can be replaced by G, (see [Gi97], Theorem 5.3).

Here Z, = (Z,(f))er stands for a mean-zero Gaussian process with tight law £{Z,} on B(I*°(F))
whose covariance structure is given by

cov(Z,(f), Z.(g9)) =v(f-g) for f,geF.

From [Va96], Example 1.5.10 it follows that also Z, (as G, ) can be chosen to have its sample paths in
Ub(F,d?); note that d* coincides with the so-called intrinsic pseudo-metric py, (on F) for Z,, i.e.

pz,(f.9) =E(Z,(f) - Z.(9)]) = dP(f,g) for f,g € F.
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Now we are going to establish an analogous result as (7.5.2) for smoothed empirical processes under
conditions similar to (7.5.3) and (7.5.4) replacing G, by the unbiased smoothed empirical process

G, = (G (f))ser

where G¥ (f) := /(0 (f) — v xpua(f)), f € F.

7.5.5 THEOREM (cf. [Ro97], Theorem 4.4).
Let X be a linear metric space and F be uniformly bounded. Suppose that for every v € M*(X) there
is a mean-zero Gaussian process G, = (G, (h))herug with tight law L{G, } on B(I®(F UG)) where

G:={gpu,: f€F,neN} with g5, (z):= /Xf(x + Y pa(dy),z € X.
Assume that the following conditions (7.5.6) — (7.5.8) are fulfilled:

(7.5.6) sup E(]|G,||r) < o0
VEM!(X)

(75.7)  lim sup E(sup{|Gy(ha) = Gu(ho)] < b by € F UG, dP (ki hy) < 61) =0

5—>0V6M1(X)

(7.5.8) sup  sup /X [/X(f(ac—l—y) - f(ac)),un(dy)]zl/(dx) — 0.

vEMI(X) fEF

Then

(7.5.9) sup dpL(GY,G,) — 0.

VEM!(X)

In (7.5.9) not only G but also G, (restricted to the index set F) is considered as a process with sam-
ple paths in [*°(F) whose law £{G, } is tight on B(I*°(F)); so dpy in (7.5.9) stands for the bounded
Lipschitz distance based on (*°(F) (and not on [*(F U G)).

PROOF. We follow the lines of proof of (7.5.2) as given in [Gi97], respectively the lines of proof of
Theorem 2.3 in [Gi91] under the conditions (7.5.3) and (7.5.4) using Gaussian comparison methods.

First, we show that for each 7 > 0

(7.5.10) sup  N(r, F,d?) < oc.
vEMI(X)

As to (7.5.10), according to Sudakov’s Inequality (cf. [Va96], A.2.5) there exists a constant 0 < K < oo
such that for every v € M'(X)

1/2
(log N(r, Fpz)) < K -E(||Z,]])
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(with pz,(f,9) =E"*(|1Z,(f) = Z,(9)|") = dP(f.9) ¥V f,g € F)

whence

1/2
(log N(r, 7,d?)) " < K -E(||Z0]|).
Now, let g be a standardnormal distributed rv which is independent of G, ; then
L{G, +¢g-v}=L{Z,}

(as can be seen by computing covariances), so

E(1Z.]17) < E([|G. [|7) + E(lg]) sup (NI,

whence (7.5.6) together with F being uniformly bounded yields (7.5.10).

Next, let k 1= sup, ¢ x)N (7, F, d?), and for each v € MY(X) let fi,..., fx € F denote the centers
of the d{?-balls with radius 7 that cover F. (Note that, of course, fi,..., f, depend on v.) Then for
each f € Flet m.(f) € {fi, ..., fu} be such that

AP (z.(f), f) <7t (where wlo.g. 7 (f)=fi YVi=1,...k).

This allows us to define the following processes G () = (G* (7,)(f)) jer and G, (7,) = (G, (7.)(f)) ser
with sample paths in [*°(F) by

and Gy (m)(f) =G (7. (f)) ,feF.
Then, for each H € BL,(I*°(F)) we have the decomposition

[E* (H(G)) - B(H(G,))| < [E*(H(G})) — E(H (G} (7))

+ [E(H (G}, (7,))) — E(H(G, (7))
+ [E(H(G, (7)) — E(H(G,))]
=: Iln ‘I’ IZn ‘I’ IBn-

We will show

(7.5.11) limsuplimsup sup sup I;,=0fori=1,2,3.

70 n—00 yeML(X) HEBL, (I (F))
As to I3, Since H € BL,(I*°(F)) we have

[E(H(G, (7-))) - E(H(G, )|
S E(H Gu(ﬂ-r) - GVH}') S E(Sup{|Gu(f) - Gu(g)| : fvg € ‘7:7 dz(/z)(fvg) S T})7

so (7.5.7) yields (7.5.11) for ¢ = 3.
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As to Ih,: Letv € M'(X)and H € BL,(I®(F)) be arbitrary. Then there exists a bounded Lipschitz
function L : R* — R s.t.

H(a(m)) = L((@(fi)s - 2(fi)) Vo el™(F)
with @ (7, )(f) := 2(7-(f)), f € F. So we obtain
|[E(H (G, (x.))) — E(H (G, (7,)))]
< dBL((GZ (fl)v ) GZ (fk))tv (GV (fl)v o Gy (fk))t)v

where the superscript ¢t denotes the transposed vector and here dpy is the bounded Lipschitz metric
on the space of all p-measures (laws) on B* in R*.

Now (G (f1), -+ @ (fu))! = /mn™ 3250, Gy with
fX f1(77j + y):un(dy) - V*:un(fl)

C”j: 7j:17"'7n7n€N-

fX Je(nj + ) pn(dy) — vx o (fi)
Let V1 = (V,u(i,0))1<ij<r and X = (Zx(¢,1))1<; j<i denote the covariance matrix of (,; and

(Gy (f1)s -, G (fr))", respectively, where

Se(@, ) =v(fi- fi) —v(fi) - v(fi) ,1<41<k
According to the triangle inequality

dpr (G (f1); s G (fi)'s (G (f1)s o G (£i)")
< dBL((GZ (f1)7"'7G2(fk))t7Nk(07an)) + dBL<Nk(07Vn1)7Nk(072k))'
)

Note that L{(G, (f1), ..., G (fr))'} = Ni (0,3
Now the components [y f;(1n; +y)pn(dy), i =1,..., k, of (,; are rv’s which are bounded by 1 (since F

is assumed to be uniformly bounded with envelope ' =1 w.l.o.g.) for any f; € F, so this bound does
not depend on v. An application of Lemma 2.1 in [Gi91] now gives

lim  sup dBL((GZ(f1)7---7GZ(fk))t7Nk(07Vn1)):0'

n—r 00 VEMI(X)

From Lemma 2.2 in [Gi91] we have

dBL (Nk (07 Vn1)7Nk (07 Ek)) S C . 1<Sl'llp<k |Vn1(l7 l) - Ek (7/7 l)|
with a constant C' depending only on k.
Keeping in mind that the fi,..., fi (and therefore also V,,; and ¥;) depend on v we are going to show
that

(7.5.12) sup  sup |V, (e, ) = X, (:,1)] — 0,
vEML(X) 1<i i<k
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whence limsup,, , . sup, e pp x) @52 (Ve (0, Viur), Ni(0,34)) = 0, which completes the proof of (7.5.11)
for ¢ = 2.

As to (7.5.12):

V(i 1) = / / Fi(@ 4 ) paldy) = v %1 (f:)] / B+ y)pa(dy) = v x o (£)]v(d)

which is equal to (inserting f;(z) and fi(z), respectively)

/ /fz T+ y)pa(dy) — fi(@ /fl z + y)pa(dy) = fi(z)]v(d)
[ L) = vl ) ] it + wyundy) = fife) (o)
+/ [fi(z) = v pn (fi)] /fz (z +y)pn(dy) — fi(z)]v(dz)

+ [ @) =y xpn ()] - [ile) = v o ()] (de)
= L (fi, fi) + L2 (fi, f1) + Las(fis fi) + Lna(fi, fi)-

The Cauchy-Schwarz inequality together with (7.5.8) yields

sup  sup Ini(fi, i) — 0

vEMI(X) 1<i,I<k

Next,

|In4(fi7fl) - Ek(i7l)| = |In4(fi7fl) - (V(fi 'fl) - V(fi) 'V(fl))|
=[x pa(fi) = v(f)l - v x p (fir) = v(f1)]

<swp| [ [ (F+9) =~ F@nmanva@n] <sup [ [ (£t o) - F@)m @] v,

JEF

whence by (7.5.8)

sup  sup |l.a(fi, fi) — Sk(3,0)| — 0.
VEMI(X) 1<i i<k

From this, the Cauchy-Schwarz Inequality and (7.5.8) aggain, we also have

sup  sup I;(fi, i) — 0 for j =2,3.
vEML(X) 1<i i<k

This proves (7.5.12).
Asto I, (=B (H(&,)) - E(H (G (r.))]):
Since H € BL,(I*(F)) it suffices to show that

lim limsup sup ]P’(sup{|@i’l (f1) — GZ ()| : fi fo €F, dl(,z)(flyfz) <71>0)=0

70 n—o0 VEMI(X)

100



for all § > 0.
Since for each f € F

GL() = Blgy) (With gy () i= [ oty ldy) o€ X)

X

we have

sup{| G (/1) — G (f2)| : fu, fo € FdP(fi, f2) < 7}
= sup{|G;, (gfl,un) -G (gfz,un)| S o€ F, dl(/z)(flvfz) <7}
(7-5-13) < SUPHGZ (fl) - GZ (f2)| ch, e F, dl(lz)(flva) < 7'} + 2 ?1612 |GZ (f) - GZ (gf,un)|-

We show first

(a) lim SUPy, 00 SupyEMl(X)P<Supr}' |GZ (f) - GZ (gf,un)| > 5) =0 V¢ > 0.

Let & > 0 be arbitrary but fixed. Then by Markov’s inequality and the Symmetrization Inequality
5.1.2 we obtain

P(sup |G, (f) — G (gr.u.)| > 0)

JEF

<07 B(sup o (f = gre) = v = gp)l)
€
<2670 E(sup [0 g5 (f = gp) (1))
fer i<n
where 1,5, ... is a canonically formed Rademacher sequence which is independent of (n;);ex.

Now, by Lemma 2.9.1 in [Va96] we can replace the £;’s by a sequence of iid rv’s g; with L£{g;} =
N(0,1), to obtain the following upper bound (by taking expectations w.r.t. the g;’s (denoted by E,)
and the 7;’s (denoted by E,) seperately:

P(sup |Gy, (f) — G, (gs.u.)| > 9)

JEF

<C-E, F@(?lelg ™2y g5 (f = 9r) (0)])

ji<n

where the constant C' depends on § but not on n.

Now , for fixed realizations 7, (w), ..., 7,(w) consider the process Z¥ = (Z} (f))ser, With

Vn

Ze () =07 g (@) S f € Fa,
ji<n

and F,:={f, 974, : € F}

Then Zy is a mean-zero Gaussian process with
cov(Zy (f1): 2y, (f2)) = valfi - f2,w) for fi, fo € F,
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where v, (f1 * fo,w) :=n7! > i<n bnstw) (f1 - o).

Considering instead the process (indexed also by F,,)
Gy, +g-vm(-,0)= (G (f)+9-valfiw))ser.,
where GY = (G (f))ser, is a mean-zero Gaussian process with
cov(Gy, (1), G, (f2)) = va(fi - [ @) = v (f1,0) - vn (fo, @)

for fi, fo € F,, and where g with £{g} = N (0,1) is independent of G¥

computing covariances) that Vw

« , we have (as can be seen by

(%) Y/ ﬁﬁd G +g-val-,w).
Thus Yw
E, (sup [0 g5 (f = 9p) (0 (@))])
fer i<n
< E(sup |Gy (f) = G (97,0)1) + E(lg]) - sup [ (f = g7, @)
(x) FEF feF
< sup E(sup [Go(f) = Gulgru,)) +E(lg]) - sup  sup|v(f — gpu,)l-
VEMI(X) fEF VEML(X) fEF

Now let £ > 0 be arbitrary and (using (7.5.7)) choose ¢ > 0 s.t.

sup  E(sup {|Gy(hy) — G, (hs)| : by he € FUG,dP(hy, hy) < 6}) <&

VEM!(X)

Then by (7.5.8) for large enough n we have for all f € F

sup (A (f,95,.))*

VEM!(X)
2
= sup v((F=gp)?) = sp [ [ (fla+y) = f@)uldy) vids) <8
vEML(X) vemi(x)Jx Jx
and so
limsup sup E, E, (sup|n 1/2Zg] (f=g5.) @)D
n—o00 remMi(X) fe j<n
< limsup sup ]E(sup|G (f) —Go(9r.)) + E(lg|) imsup  sup  sup|v(f — g¢,,)]

n—co peMI(X) fe n—+00 yeMI(X) feF

=limsup sup E(sup{|G,(f) = Gu(gsu,)] : [ € F dP (] gp,) < 63) 40

n—oo rveMI(X)

< sup  E(sup {|G,(h) = Gu(hy)| : by he € FUG,dP(hy, hy) < 8}) < ¢

vEML(X)
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where we have used that

limsup sup sup|v(f — gy,
n—co peEML(X) fEF

}1/2

<limsup sup sup {/X [/X(f(x—l—y) - f(x))lun(dy)]zy(d$) =0

n—+o0 reMI(X) feF
according to (7.5.8). Thus (a) is proved.
To conclude the proof of (7.5.11) for ¢ = 1, we still have to show (see (7.5.13)) that
lim lim sup  sup )P(sup{|GZ(f1) — G ) i fo € FodP (fiy o) <73 >6) =0

70 n—00 VEMI(X

for all § > 0.

This is proved by similar techniques. Since this expression, however, does not involve any smoothing
operations we refer to [Gi97] for a proof.

So we have shown (7.5.11) for ¢ = 1, too, and the theorem is proved. O

Finally, from [Va96], Theorem 2.8.3 we have that (7.5.6) and (7.5.7) are fulfilled if ZUG has uniformly
integrable L,-entropy, which in turn is implied if F U G is a VCGC. So, Theorem 7.5.5 yields

7.5.14 THEOREM.
Let X be a linear metric space and let F be uniformly bounded. Suppose that F U G has uniformly
integrable Lo-entropy and that (7.5.8) is fulfilled. Then

sup dBL(GZ7Gl,) — 0.
VEM!(X)

7.5.15 REMARK.

The results of section 7.5 are important in the area of bootstrapping empirical processes (see e.g.
[Gi91], [Gi97], [Ro97], [She92] and [Va96], Section 3.6); concerning smoothed bootstrapped empirical
processes we refer to a forthcoming paper by [Ro99a).
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