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Preface

The interest of the �rst author of the present Lecture Notes in empirical process theory arose after

having studied Ron Pyke's beautiful survey [Py72] on Empirical Processes where Ron underlines his

view that \the development of empirical processes provides an excellent illustration of the interplay be-

tween statistics and probability and of increased sophistication of mathematical techniques which have

been introduced into these disciplines in recent years." Since then the theory of empirical processes

has grown in an enormous way initiated by Dudley's [Du78] fundamental paper and culminating in

his book [Du99]. Also the books of Shorack-Wellner [Sh86] and van der Vaart-Wellner [Va96] together

with Pollard [Po84],[Po90] and the overview given by Gin�e [Gi96] con�rm Pyke's early view in a very

impressive way.

In view of the large literature on empirical processes which have appeared in recent years, the present

Lecture Notes will only cover a small amount of the subject. Our approach in revisiting Empirical and

Partial-Sum Processes as so-called Random Measure Processes had its origin in the papers by Pyke

[Py84] and Ossiander-Pyke [Os85].

We hope to raise with our presentation further interest in empirical process theory.

Munich, July 1999 Peter Gaenssler and Daniel Rost
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Summary

In a general framework of so-called Random Measure Processes (RMP's) we present uniform laws

of large numbers (ULLN) and functional central limit theorems (FCLT) for RMP's yielding known

and also new results for empirical processes and for so-called smoothed empirical processes based on

data in general sample spaces. At the same time one obtains results for Partial-sum processes with

either �xed or random locations. Proofs are based on tools from modern empirical process theory as

presented e.g. in [Va96].

Our presentation will be also guided by showing up some aspects of the development of empirical

process theory from its classical origin up to its present generality which now o�ers a wide variety of

applications in statistics as demonstrated e.g. in Part 3 of [Va96].

1 Introduction

1.1 The uniform empirical process �n

Two important processes in probability and statistics are the empirical and partial-sum process.

Let �j; j 2 N, be independent identically distributed (i i d) random variables (rv's) with law Lf�jg =
U [0; 1] (the uniform distribution on I = [0; 1]), de�ned on a basic probability space (p-space) (
;A;P),
i.e. �j : 
 �! I with P(�j � t) = F (t) := t 8t 2 I .
Let Fn be the empirical distribution function (edf) based on �1; :::; �n, i.e.

Fn(t) := n�1
X
j�n

1[0;t](�j): t 2 I ;

to indicate that Fn is random, i.e. depending on ! 2 
, we also write instead of Fn(t)

Fn(t; !) = n�1
X
j�n

1[0;t](�j(!)):

(1A denotes the indicator function of a set A.)

THEN:

8t 2 I E(Fn(t)) = F (t) (i.e. Fn(t) is an unbiased estimator for F (t))

8t 2 I by the classical central limit theorem (CLT)

�n(t) := n1=2
�
Fn(t)� F (t)

� L��! N (0; F (t)(1� F (t))

(where
L��! denotes convergence in law), and by the strong law of large numbers (LLN)

8t 2 I Fn(t) �! F (t) P-almost surely (a.s.)
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(i.e.
�
Fn(t)

�
n2Nis a strongly consistent sequence of estimators for F (t));

moreover, by the GLIVENKO-CANTELLI THEOREM,

sup
t2I

jFn(t)� F (t)j �! 0 P� a:s:

(Note that supt2I jFn(t) � F (t)j is measurable since it remains unchanged when replacing I by the countable

index set I \Q.)

FUNCTIONAL VIEWPOINT

The stochastic process �n = (�n(t))t2I is called UNIFORM EMPIRICAL PROCESS (of sample size

n). Its sample paths

�n(!) =
�
n1=2

�
Fn(t; !)� F (t)

��
t2I

are contained in the space D := fx 2 RI : x satis�es (i)� (iii)g:
(i) 8t 2 [0; 1) 9x(t + 0) := lims&t x(s)

(ii) 8t 2 (0; 1] 9x(t � 0) := lims%t x(s)

(iii) 8t 2 [0; 1) x(t) = x(t+ 0).

Since supt2I jx(t)j <1 8x 2 D, it is tempting to endow the space D with the sup-metric �, i.e. with

�(x1; x2) := sup
t2I

jx1(t)� x2(t)j; x1; x2 2 D;

which is usually considered in the space C � C(I) of continuous functions on I .

Note that (C; �) is a closed separable subspace of (D; �) being also complete (cf. [Bi68], p.220).

In contrast, (D; �) is not separable and �n : 
 �! D is not A;B(�)-measurable if D is equipped with

the �-�eld B(�) of Borel sets w.r.t. the �-topology; cf. [Bi68],p.152.
At this place there were two ways to overcome this di�culty (cf. [Bi68]):

(i) Skorokhod's metric s being weaker than � which makes �n : 
 �! D A;B(s)-measurable
(B(s) := Borel �-�eld in (D; s))

(ii) [Du66] (cf. also [Wi68] and [Gae83]):

Consider instead of B(�) the smaller �-�eld Bb(�) generated by the open �-balls in (D; �); then

again �n : 
 �! D becomes A;Bb(�)-measurable, since Bb(�) = �(f�t : t 2 Ig) (� �-�eld

generated by the projections �t : D �! R; �t(x) := x(t)).

1.1.1 Remarks.

Let B(C; �) be the Borel �-�eld in (C; �) and Bb(C; �) be the �-�eld generated by the open �-balls in

(C; �); then B(C; �) = Bb(C; �) = C \ Bb(�), whence
B(C; �) = �(frestC�t : t 2 Ig);(1.1.2)

2



furthermore C 2 Bb(�) and (cf. [Bi68], Th. 14.5) B(s) = �(f�t : t 2 Ig), whence
B(s) = Bb(�):(1.1.3)

In the following let B = (B(t))t2I be the Wiener process (Brownian Motion) with parameter set

T = I , and let B� = (B�(t))t2I be the Brownian Bridge (B�(t) := B(t) � tB(1)); both processes are

mean-zero Gaussian processes with sample paths in C, whose covariance structure is given by

cov(B(t1); B(t2)) = t1 ^ t2; t1; t2 2 I; and(1.1.4)

cov(B�(t1); B
�(t2)) = t1 ^ t2 � t1 � t2; t1; t2 2 I;(1.1.5)

respectively. Both processes can be viewed as random elements (re) in (C;B(C;�)) or as random
elements in (D;Bb(�)) with LfBg(C) = 1 and LfB�g(C) = 1 respectively.

HERE: Given a measurable space (X;X ), we say that � is a re in (X;X ) :() 9 p-space (
;A;P)
s.t. � : 
 �! X is A;X -measurable.

The following prospect is taken from [Do49]:

\Noticing that, by the multivariate CLT, the �nite-dimensional distributions (�dis) of �n are asymptotically (as n!1) the same
as those of B�, we may assume{ until a contradiction frustrates our devotion to heuristic reasoning { that in calculating asymptotic
distributional results for the �n-process one may simply replace the �n's by B�."

This prospect was justi�ed by the following Functional Central Limit Theorem (FCLT):

1.1.6 THEOREM ([Don51],[Don52],[Pro56]).

�n
L��! B� in (D; s);

i.e. limn!1 E(f(�n)) = E(f(B�)) 8f 2 Cb(D),

where Cb(D) := ff : D �! R : f s-continuous and bounded g.

Note also that LfB�g(C) = 1 in view of 1.1.7 below.

Taking instead of s the sup-metric � one gets

1.1.60 THEOREM.

�n
Lb���! B� in (D; �);

i.e. limn!1 E(f(�n)) = E(f(B�))) 8f 2 Cb
b(D),

where Cb
b(D) := ff : D �! R : f �� continuous; Bb(�)�measurable and boundedg.

In fact 1.1.6 and 1.1.60 are equivalent according to the following lemma. For this, let �n; n � 0, be a

sequence of re's in (D;Bb(�)) =
(1:1:3)

(D;B(s)), and

�n
L��! �0 :() lim

n!1E(f(�n)) = E(f(B
�)) 8f 2 Cb(D); and

�n
Lb���! �0 :() lim

n!1E(f(�n)) = E(f(B
�)) 8f 2 Cb

b(D);

3



respectively.

(Note that Lf�ng; n � 0, is well de�ned on Bb(�) = B(s) and that limn!1 E(f(�n)) = E(f(B�)) () limn!1

R
D
fdLf�ng =R

D
fdLf�0g.)

1.1.7 Lemma ([Gae83],Lemma 18.p.93).

�n
L��! �0 and Lf�0g(C) = 1 =) �n

Lb���! �0;

conversely, �n
Lb���! �0 =) �n

L��! �0.

The same situation is met in section 1.2 in connection with the classical partial-sum process.

As we shall see in section 2.3 the concept of weak convergence (L - convergence) can be generalized in

such a way that the approximating sequence (�n)n2Nis not assumed to consist of re's, i.e. arbitrary

�n's will be allowed; measurability is solely assumed for �0 to which �n converges weakly.

1.2 The classical partial-sum process �n

Let �j ; j 2 N, be i i d rv's de�ned on a basic p-space (
;A;P) with E(�j ) = 0 and E(�2j ) = 1. Let

�n(t) := n�1=2
X

fj:j=n�tg
�j ; t 2 I ;

THEN:

E(�n(t)) = 0 and �n(t)
L��! N (0; t) 8t 2 I

and cov(�n(t1); �n(t2)) = t1 ^ t2 ; t1; t2 2 I:

FUNCTIONAL VIEWPOINT

The stochastic process �n = (�n(t))t2I is the CLASSICAL (standardized) PARTIAL-SUM PROCESS

(of sample size n).

( with < a >:= maxfz 2Z: z � ag; a 2 R; �n(t) can also be written as �n(t) = n�1=2
P<nt>

j=1 �j. )

Its sample paths �n(!) =
�
n�1=2

P
j�<nt> �j(!)

�
t2I are contained in D. �n can be viewed as re in

(D;Bb(�)) = (D;B(s)) and the FCLT for �n is also due to Donsker:

1.2.1 THEOREM.

�n
L��! B in (D; s) or; equivalently;

�n
Lb���! B in (D; �):

4



Theorem 1.2.1 and 1.1.6 are special cases of FCLT's to be considered in section 7.

Nevertheless we want to present here proofs in a form due to Franz Strobl [St90] yielding some indications when dealing later with
more general processes.

The following proofs are based on the characterization theorem of L-convergence (CTL-C) presented
in section 2.3 (here with parameter space T = I and metric d(t1; t2) := jt1 � t2j; t1; t2 2 I).

PROOF OF THEOREM 1.1.6. According to CTL-C we have to show (i) and (ii), where

(i) �n
L��!
�di

B�, i.e. weak convergence of the �nite-dimensional distributions (�dis) of �n to the corre-

sponding �dis of B�.

(ii) lim�!0 lim supn!1P�(w�n(�) > ") = 0 8" > 0,

where P�(A) := inffP(B) : A � B;B 2 Ag 8A � 
, and where

w�n(�) := sup t;t02I
jt�t0j��

j�n(t) � �n(t
0)j 8� > 0.

The proof of (i) follows by the multivariate CLT and can be found in standard textbooks (c.f. e.g. [Gae77],

12.2.1).

PROOF OF (ii). Let " > 0 be arbitrary; w.l.o.g. let

� 2 Q; 0 < � <
1

4
and n � 9216 � ��3:(1)

STEP 1: \We are going back to a grid of span �" in the parameter-space T = I; then

fw�n(�) > "g = f9ti 2 I; i = 1; 2; s:t: 0 < t2 � t1 � � and j�n(t1) � �n(t2)j > "g:
Now, to each gridpoint ti we associate a ki 2Z+ s.t. ki� < ti � (ki + 1)�, where k2 � k1 � 1 if t2 � t1 � �.

Then

fw�n(�) > "g =
[
k2Z+
k<1

�

f9t 2 (k�; (k + 1)�] \ I : j�n(t)� �n(k�)j > "=3g;

whence

P�(w�n(�) > ") �
X
k2Z+
k<1

�

P�
�

sup
t2(k�;(k+1)�]\I

j�n(t) � �n(k�)j > "=3
�

=
X
k2Z+
k<1

�

P

�
sup

t2(k�;(k+1)�]\I\Q

��n�1=2X
i�n

�
1(k�;t](�i) � (t� k�)

��� > "=3
�

� (
1

�
+ 1) P

�
sup

t2(0;�]\Q
j�n(t)j > "=3

�
;

i.e. we have

P�(w�n(�) > ") � (
1

�
+ 1)P

�
sup

t2(0;�]\Q
j�n(t)j > "=3

�
:(2)

Now, let Tm � (0; �]\Q be s.t. jTmj = m 8m 2 N, and Tm % (0; �]\Q as m!1; then we have

P

�
sup

t2(0;�]\Q
j�n(t)j > "=3

�
= lim

m!1P
�
sup
t2Tm

j�n(t)j > "=3
�
:(3)

5



STEP 2: Let m 2 N be arbitrary but �xed, Tm = ft1; :::; tmg; 0 =: t0 < t1 < ::: < tm � �, and A :=

fsupt2Tm j�n(t)j > "g; then A � B +
P

k�mA+
k +

P
k�mA�k with

B :=
�X
i�n

1[0;�](�i) > n=2
	
;

A+
k := f�n(tj) � "=3; j = 1; :::; k� 1; �n(tk) > "=3 ;

X
i�n

1[0;tk](�i) � n=2g;

A�k := f�n(tj) � �"=3; j = 1; :::; k� 1; �n(tk) < �"=3 ;
X
i�n

1[0;tk](�i) � n=2g; 1 � k � m;

now, we are going to show

P(A
+=�
k ) � 4 P

�
A
+=�
k \ ��n(2�) �=� �n(tk)

1� 2�

1� tk

	� 8 1 � k � m :(4)

Let k 2 f1; :::;mg be arbitrary but �xed and

R := fr = (r1; :::; rk) : ri 2Z+; n
�1=2(r1 + :::+ rj � ntj) � "=3 81 � j � k � 1,

n�1=2(r1 + :::+ rk � ntk) > "=3 ; r1 + :::+ rk � n=2g;

then

P

�
A+
k \

�
�n(2�) � �n(tk)

1 � 2�

1� tk

	�
= P

�
n�1=2

�X
i�n

1[0;tj ](�i)� ntj
� � "=3; j = 1; :::; k� 1; n�1=2

�X
i�n

1[0;tk](�i)� ntk
�
> "=3;

X
i�n

1[0;tk](�i) � n=2;
X
i�n

1(tk;2�](�i) �
�X
i�n

1[0;tk](�i) � ntk
�1� 2�

1� tk
+ 2n� �

X
i�n

1[0;tk](�i)
�

=
X
r2R

r:=r1+:::+rk

P

�X
i�n

1(tj�1;tj ](�i) = rj; j = 1; :::; k;
X
i�n

1(tk;2�](�i) � (n � r)
2� � tk
1� tk

�

=
X
r2R

r:=r1+:::+rk

X
s2[(n�r) 2��tk1�tk

;n�r)\Z+

�
n

r1; :::; rk; s; n� r � s

�
� (t1 � t0)

r1 : : : (tk � tk�1)rk � (2� � tk)
s(1� 2�)n�r�s

=
X
r

X
s

�
n

r1; :::; rk; n� r

�
(n� r)!

s!(n� r � s)!
� (t1 � t0)

r1 : : : (tk � tk�1)rk (1� tk)
n�r (2� � tk)s(1� 2�)n�r�s

(1� tk)n�r

=
X
r

P

�X
i�n

1(tj�1 ;tj](�i) = rj; j = 1; :::; k
�
�
X
s

P

� X
i�n�r

1
[0;

2��tk
1�tk

]
(�i) = s

�
;

6



since �2 := V ar(1
[0;

2��tk
1�tk

]
(�1)) =

2��tk
1�tk � 1�2�1�tk � �

(1)
�=2, it follows that

X
s

P

� X
i�n�r

1
[0;

2��tk
1�tk

]
(�i) = s

�
= P

� X
i�n�r

1
[0;

2��tk
1�tk

]
(�i) � (n � r)

2� � tk
1� tk

�

= P
� X
i�n�r

1
[0;

2��tk
1�tk

]
(�i)� (n� r)

2� � tk
1� tk

� 0
�

�
(BERRY-ESS�EEN)

1

2
� 6p

n� r�3
E

���1
[0;

2��tk
1�tk

]
(�1)� 2� � tk

1� tk

��3�
�

(r�n=2)
1

2
� 6p

n=2(�=2)3=2
�
(1)

1

4
;

therefore

P

�
A+
k \

�
�n(2�) � �n(tk)

1� 2�

1� tk

	� �
1

4
P

�
�n(tj) � "=3; j = 1; :::; k� 1; �n(tk) > "=3 ;

X
i�n

1[0;tk](�i) � n=2
�
;

which proves (4) for A+
k . Analogously one shows that

P(A�k ) � 4 P
�
A�k \

�
�n(2�) � �n(tk)

1� 2�

1� tk

	�
:

STEP 3: According to STEP 2 we have for any �xed m 2 N with Tm = ft1; :::; tmg and 0 =: t0 < t1 < ::: <

tm � � that

P
�
sup
t2Tm

j�n(t)j > "
� �

P
�X
i�n

1[0;�](�i) >
n

2

�
+ 4

X
k�m

P

�
A+
k \

�
�n(2�) � �n(tk)

1� 2�

1� tk

	�
+

4
X
k�m

P

�
A�k \

�
�n(2�) � �n(tk)

1� 2�

1� tk

	�
:

Now, 1�2�
1�tk �

(1)

1
2 implies that 81 � k � m

A+
k \

�
�n(2�) � �n(tk)

1 � 2�

1� tk

	 � A+
k \ f�n(2�) � "=6g and

A�k \
�
�n(2�) � �n(tk)

1� 2�

1� tk

	 � A�k \ f�n(2�) � �"=6g;

whence (noticing that the A+
k 's as well as the A

�
k 's are pairwise disjoint (p.d.))

P
�
sup
t2Tm

j�n(t)j > "
� �

P
�X
i�n

1[0;�](�i) >
n

2

�
+ 4 P

�j�n(2�)j � "=6
�
:
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STEP 4: We are now in the position to verify that

lim
�!0

lim sup
n!1

P�(w�n(�) > ") = 0 8" > 0 :

P�(w�n(�) > ") �
(2)+(3)

(
1

�
+ 1) lim

m!1P
�
sup
t2Tm

j�n(t)j > "=3
�

�
(STEP 3)

(
1

�
+ 1)

�
P
�X
i�n

1[0;�](�i) >
n

2

�
+ 4 P

�j�n(2�)j � "=6
��

�
(1)

2

�

h
P

�P
i�n 1[0;�](�i)� n�p

n�(1� �)
>

n=2� n�p
n�(1 � �)

�
+ 4P

�j�n(s�)j � "=6
�i

CLT���!
n!1

2

�

h
0 + 4 � 2�1��(

"

6
p
2�(1� 2�)

�i
;

where � denotes the standard normal df.

Therefore, 8" > 0

lim sup
n!1

P�(w�n(�) > ") � 2

�
� 86

p
2�(1� 2�)

"

1p
2�

e
� "2

2�36�2�(1�2�)

� 2

�
� 8 6

p
2�

"
p
2�
� 144 � �(1� 2�)

"2
���!
�!0

0:
�

PROOF OF THEOREM 1.2.1. According to CTL-C we have to show (i) and (ii), where

(i) �n
L��!
�di

B, and

(ii) lim�!0 lim supn!1P�(w�n(�) > ") = 0 8" > 0.

As before, we skip the standard proof of (i).

PROOF OF (ii). Let " > 0 be arbitrary; w.l.o.g.let

0 < � <
1

2
(
"

12
)2; � � 1; n� � 1:(5)

As in STEP 1 of the proof above we get

P�(w�n(�) > ") �
X
k2Z+
k< 1

�

P�
�

sup
t2(k�;(k+1)�]\I

j�n(t) � �n(k�)j > "=3
�

�
X
k2Z+
k< 1

�

P

�
sup

t2(k�;(k+1)�]\I\Q

���n�1=2 <nt>X
i=<nk�>+1

�i

��� > "=3
�

� (
1

�
+ 1) P

�
sup

1�k�<2n�>

���n�1=2X
i�k

�i

��� > "=3
�
:

To obtain an upper estimate for the last expression we make use of the �rst L�evy-inequality as follows:
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Let m :=< 2n� >; Sk :=
P

i�k �i=n
1
2 ; "0 := "=3; s2m :=

P
i�m V ar(�i=n

1
2 ) = m=n = <2n�>

n � 2�, i.e.

sm �
(5)

"=12; then

P( sup
1�k�<2n�>

���n�1=2X
i�k

�i

��� > "=3) =

P( sup
1�k�m

jSkj > "0) � P( sup
1�k�m

Sk > "0) +P( sup
1�k�m

(�Sk) � "0)

�
(1. L�evy-Ineq.)

a2

a2 � 1

�
P(Sm � "0 � asm) +P(�Sm � "0 � asm)

�
for all a > 1. Taking a = 2 and noticing that "0 � 2sm � "=3� 2"=12 = "=6 > 0, the last expression is

� 4

3
P(jSmj � "=6) =

4

3
P(jn�1=2

X
i�<2n�>

�ij � "=6):

Therefore (note that 1 �
(5)

1
�
) we get

P�(w�n (�) > ") �
2

�

4

3
P

�
jn�1=2

X
i�<2n�>

�ij � "=6
�
=

8

3�
P

��� < 2n� >�1=2
X

i�<2n�>

�i
�� � � n

< 2n� >

�1=2 "
6

�

� 8

3�
P

�
j < 2n� >�1=2

X
i�<2n�>

�ij � "

6
p
2�

�

CLT���!
n!1

8

3�
2
�
1� �(

"

6
p
2�
)
� ���!

�!0
0 (as in Step 4 above):

�

1.3 The multivariate case

Let d � 1 and �j; j 2 N, be i i d random vectors uniformly distributed on Id = [0; 1]d, de�ned on a
basic p-space (
;A;P), i.e. �j : 
 �! Id with P(�j � t) = F (t) :=

Q
i�d
ti 8t := (t1; :::; td) 2 Id. Let

�n = �n(t)t2Id be de�ned by

�n(t) := n1=2
�
Fn(t)� F (t)

�
; t 2 Id;

where Fn(t) := n�1
P

j�n 1[0;t](�j) and [0; t] = [0; t1]� � � � � [0; td].

The stochastic process �n = (�n(t))t2Id is called MULTIVARIATE UNIFORM EMPIRICAL PRO-
CESS (of sample size n).

The MULTIVARIATE (standardized) PARTIAL-SUM PROCESS (of sample size n) �n = (�n(t))t2Id
is de�ned by

�n(t) := n�d=2
X

j2Jn :j=n2[0;t ]
�j ; t 2 Id;
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where Jn := f1; :::; ngd; j = (j1; :::; jd), and where the rv's �j; j 2 Nd, are assumed to be i i d with

E(�j ) = 0 and E(�2j ) = 1.

The EMPIRICAL MEASURE �n pertaining to Fn = (Fn(t))t2Id is given by �n = n�1
P

j�n ��j ,
where �y denotes the Dirac measure in y 2 Id.
The following picture illustrates �n in comparison with �n:

d = 2

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

0
�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

t2

t1

tc
c c

c

c
c

c

c = �j(!); 1 � j � n;

RANDOM LOCATIONSc � n�1 FIXED MASSES

�
�
�
�
�
�
�
�
�
�
�
�

0
�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
��

�
��

�
��

�
��

t2

t1

tc c c cc c c cc c c cc c c c

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

c = j=n; j 2 Jn;
FIXED LOCATIONSc c(+)

(-)

RANDOM MASSES
(positive (+) or negative (-))

Generalizations of the FCLT's 1.1.6 and 1.2.1 to the multivariate case were obtained by Bickel and Wichura [Bi71], Neuhaus [Ne71]
and Straf [Str71] after having extended the Skorokhod-metric toD(Id); d > 1, to ensure the necessarymeasurability of the processes
considered. In contrast, based on the concept of weak convergence (L-convergence) of Ho�mann-J�rgensen [Ho84], [Ho91] in section
2.3 below, the corresponding FCLT's for �n and �n in the multivariate case can also be obtained in a much simpler way by choosing
a proper metric space, endowed with its natural sup-metric, as sample space of the processes, where the �n's adn �n's need not be
measurable as we shall see (cf. section 7).

1.4 �n and �n as set-indexed processes

Identifying each t 2 Id with the quadrant C := [0; t] � Id; d � 1, one gets the representations

�n(C) = n1=2(�n(C)� �(C)) ; C 2 C;(1.4.1)

where �n(C) = n�1
X
j�n

1C(�j) and

� := Lebesgue measure on Id; and

�n(C) = n�d=2
X
j2Jn

1C(j=n)�j ; C 2 C;(1.4.2)

with C := f[0; t] : t 2 Idg:(1.4.3)
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Both processes can be considered as set-indexed Partial-sum processes with random or �xed locations.

Their sample paths are contained in the Banachspace

l1(C) := fx : C �! R : jjxjjC := sup
C2C

jx(C)j <1g;

endowed with the sup-norm jj � jjC.
Moreover, both processes will occur as special cases of so-called RANDOM MEASURE PROCESSES

to be considered in section 3.

1.5 A �rst glance at Glivenko-Cantelli convergence and Vapnik-
Chervonenkis classes of sets

(Cf. also [Gae79] at this place.)

Let �j; j 2 N, be i i d rv's with � := Lf�jg, de�ned on a basic p-space (
;A;P); then the classical

GLIVENKO-CANTELLI THEOREM ([Gl33], [Ca33]) states:

8� sup
C2C

j�n(C)� �(C)j �! 0 P� a:s:;(1.5.1)

where �n(C) = n�1
X
j�n

1C(�j) and

C := f(�1; t] : t 2 Rg:
There are a lot of generalizations of (1.5.1) in the literature. Let us mention here only a few of them:

Wolfowitz[Wo60]; Dehardt [De71](1.5.2)

(1:5:1) is also valid for re's �j in (Rd;Bd); d � 1,

being i i d with law � and with C := f(�1; t] : t 2 Rdg:
(Bd := Borel � � �eld in Rd:)

Ranga Rao [Ra62](1.5.3)

(1:5:1) is also valid for re's �j in (Rd;Bd); d � 1,

being i i d with law � and with C := fC =
T
i�mHi : Hi halfspace in Rdg;

where m 2 N is arbitrary but �xed.

Elker-Pollard-Stute [El79](1.5.4)

(1:5:1) is also valid for re's �j in (Rd;Bd); d � 1;

being i i d with law � and with C := fC � Rd : C closed Euclidian ballg.

The proofs of (1.5.2) - (1.5.4) are mainly based on geometric arguments.

That Glivenko-Cantelli convergence fails to hold for any � when choosing larger classes of sets can be

seen from the following

11



1.5.5 Example.

Let d � 2 and C := fC � Rd : C convex Borel setg; let � be the (normalized) uniform distribution on

the unit sphere S1 in R
d and �j; j 2 N, be identically distributed with Lf�jg = � (de�ned on (
;A;P)).

Let �n be the empirical measure based on �1; :::; �n; then 8n 2 N

sup
C2C

j�n(C)� �(C)j = 1 P� a:s:

In fact, given any xj = �j(!); 1 � j � n, where �j(!) 2 S1 for P-almost all ! 2 
, there exists a

C 2 C with C � fz 2 Rd : jzj � 1g s.t. C \ S1 = fx1; :::; xng: Choose C := co(fx1; :::; xng) where

co(A) denotes the convex hull of A � Rd. But then �n(C) = 1, wheras �(C) = 0.

















�

�

�
� �

x1

xn









































































C

d = 2 :
S1���

Choosing even C = Bd one gets for i i d re's �j in (Rd;Bd) with law �:

1.5.6 Lemma.

The following assertions are equivalent:

(i) 9
0 2 A with P(
0) = 1 s.t. supC2Bd j�n(C; !)� �(C)j �! 0 8! 2 
0.

(ii) � is discrete, i.e. � =
P

i2N mi�xi ; xi 2 Rd; mi > 0;
P

i2N mi = 1; N � N.

PROOF. (i) =) (ii): By assumption there exists 
0 2 A with P(
0) = 1 s.t. supC2Bd j�n(C;!)��(C)j �!
0 8! 2 
0; thus 
0 6= ? and for !0 2 
0 we have limn!1 �n(C;!0) = �(C) 8C 2 Bd, whence for C0 :=

f�j(!0) : j 2 Ng 2 Bd �(C0) = limn!1 �n(C0; !0) = 1, since �n(C0; !0) = 1 8n 2 N by de�nition of C0. But

�(C0) = 1 implies that � is discrete.

(ii) =) (i): Let � be discrete, i.e. � =
P

i2N mi�xi ; xi 2 Rd;mi > 0;
P

i2N mi = 1; N � N; then, by the strong

law of large numbers, there exists N1 2 A with P(N1) = 0 s.t. 8! 2 {N1 and 8i 2 N limn!1 �n(fxig; !) =
�(fxig). Furthermore, since � concentrates on D := fxi : i 2 Ng, there exists N2 2 A with P(N2) = 0 s.t.

8! 2 {N2 and 8n 2 N �n(A;!) = 0 8A � RdnD. Therefore, 8! 2 {(N1 [N2) (�n( � ; !))n2Nis a sequence of
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p-measures on (D;P(D)) (where P(D) denotes the power set of D) which converges pointwise (i.e. 8xi : i 2 N )

towards �. Applying Sche��e's lemma yieldsX
i2N
j�n(fxig; !)� �(fxig)j �! 0 as n!1;

and therefore limn!1
�
sup�2P(D) j�n(�; !)� �(�)j� = 0, yielding (i) with 
0 := {(N1 [N2). �

In the following let X = (X;X ) be an arbitrary measurable space, �j; j 2 N, be i i d re's in X with

� := Lf�jg de�ned as coordinate projections on the p-space

(
;A;P) := (XN;XN�N
N

X ; �N� �
N
�);

this is what we call CANONICAL MODEL which will always be imposed as our basic p-space when

dealing with i i d re's in X .

Let �n be the empirical measure based on �1; :::; �n, i.e.

�n(B) := n�1
X
j�n

1B(�j) � n�1
X
j�n

��j (B) ; B 2 X :(1.5.7)

Now, especially from the statistical point of view (i.e. when � is unknown), it is of interest to know

whether

8� sup
C2C

j�n(C)� �(C)j �! 0 P� a:s:;(1.5.8)

for suitable classes C � X (taking over the role of the classes considered in the special cases (1.5.1) -

(1.5.4)).

According to 1.5.5 and 1.5.6 the classes C � X for which (1.5.8) holds true are not allowed to be too

\rich". As we shall see later in section 6.3, up to measurability, (1.5.8) will hold true in case of i i d

re's �j in X , if C � X is a so-called VAPNIK-CHERVONENKIS CLASS (VCC), i.e. if C ful�lls

9s 2 N s.t. 8F � X with jF j = s �C(F ) < 2s;(1.5.9)

where �C(F ) := jfF \C : C 2 Cgj. (1.5.9) means that a VCC is not too rich in a combinatorial sense,

namely that from a certain s on \no s-element subset of X can be shattered by C" (i.e. 8F � X with

jF j = s there is at least one F 0 � F for which F 0 6= F \ C 8C 2 C).
Note that for F � X with jF j = n �C(F ) � 2n � number of all subsets of F including the empty set, i.e. the

case were F \C = ? is also counted here and in the following.)

In the special case X = R and C = f(�1; t] : t 2 Rg (1.5.9) holds true with s = 2:

- R�
x1

�
x2

8F = fx1; x2g; x1 < x2 =)
fx2g 6= F \ (�1; t] 8t 2 R.

13



In contrast, considering again 1.5.5 and choosing for any s 2 N F := fx1; :::; xsg with pairwise di�er-

ent xi 2 S1, it follows that every subset F
0 = fxi1 ; :::; xikg of F can be represented as F 0 = F \C with

a convex Borel set C:

Choose C := co(fxi1; :::; xikg).

N
N

N
�

�
�

x1

xs

C

 















































d = 2

F = fx1; :::; xsg � S1

F 0 = fNg
C = co(F 0):

The next example of Durst and Dudley [Dur80] shows that (1.5.8) may fail to hold for a VCC without

imposing additional measurability assumptions (cf. [Gae83], p.37-38):

1.5.10 Example.

Let X = (X;<) be an uncountable well-ordered set such that all its initial segments fx 2 X : x <

yg; y 2 X, are countable (cf. [Ke61], p.29-). Then C := ffx 2 X : x < yg; y 2 Xg does not shatter

any F � X with jF j = 2 (in fact: 8F = fx1; x2g � X with x1 < x2 we have fx2g 6= F \ C 8C 2 C,
since x2 2 C would necessarily imply that x1 2 C 8C 2 C).
Note that C is linearly ordered by inclusion.

Now, by choosing � properly, we will see that

sup
C2C

j�n(C)� �(C)j � 1 :

For this, let X := fB � X : B countable or {B countableg, and let � on X be de�ned by

�(B) :=

8<
:0 ; if B is countable

1 ; if {B is countable
; B 2 X :

Then C � X and �(C) = 0 8C 2 C.
On the other hand, given any observations xi; 1 � i � n; n 2 N, of i i d re's �1; :::; �n in X = (X;X )
with Lf�jg = �, there exists a C 2 C s.t. xi 2 C 81 � i � n, whence

sup
C2C

j�n(C)� �(C)j � 1:
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To avoid discussions about measurability assumptions we shall usually assume for simplicity that the

index sets like C � X are countable.

Even so, note that in cases where

sup
C2C

j�n(C)� �(C)j = sup
C2C0

j�n(C)� �(C)j

with a countable C0 � C, this is no restriction.
Also in case of empirical processes and partial-sum processes considered in 1.1 and 1.2, respectively,

their sample paths are completely determined through the behaviour on a countable index set.

When considering later classes F of measurable functions f : X �! R(instead of 1C � f1C : C 2 Cg) there will be instances where
8�j 2 f�1;1g;1 � j � n,

jj
X
j�n

�jf(xj)jjF := sup
f2F

j
X
j�n

�jf(xj)j = sup
f2F0

j
X
j�n

�jf(xj)j(+)

for a countable subclass F0 of F, implying measurability of (x1; :::; xn) 7�! jj
P

j�n
�jf(xj)jjF . The underlying measurability

concept can be found in [Va96], Example 2.3.4, called there \Pointwise measurability of F" which means that there exists a
countable F0 � F s.t. 8f 2 F there exists a sequence (fn) � F0 with fn(x) �! f(x)8x 2 X. In fact, this property implies (+):

It is enough to show that for any " > 0 there exists fn0 2 F0 s.t. j
P

j�n
�jfn0 (xj)j > jj

P
j�n

�jf(xj)jjF � ". For this, choose

f 2 F with j
P

j�n
�jf(xj)j > jj

P
j�n

�jf(xj)jjF � "=2 and (fm) � F0 s.t. fm(xj) �! f(xj) as m �! 1 81 � j � n which

implies j
P

j�n
�jfm(xj)j �! j

P
j�n

�jf(xj)j whence there exists an n0 s.t. j
P

j�n
�jfn0(xj)j > jj

P
j�n

�jf(xj)jjF � ".

For more about measurability concepts we refer to [Du99].

When restricting to countable C � X one may wonder if one ends up with a VCC; this is not the case

as seen by the following example:

Let (X;X ) := (R;B); J1 := f[a; b] : a < b; a; b 2 Qg and 8n 2 N J(n) :=
S
i�n Ji with Ji � J1. Then

C := S
n2NJ(n) is a countable subclass of B with with the following property:

8n 2 N 9F � R with jF j = n s:t: jfF \ C : C 2 Cgj = 2n;

i.e. C is not a VCC.

More about VCC's in arbitrary sample spaces X = (X;X ) and so-called Vapnik-Chervonenkis graph

classes (VCGC) of X -measurable functions f : X �! Rwill be contained in sections 4.2 and 4.3 below.
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2 Empirical Measures in general sample spaces

2.1 Empirical Discrepancies, Glivenko-Cantelli convergence and some

consequences in statistics

Let X = (X;X ) be an arbitrary measurable space serving as sample space of i i d re's �j ; j 2 N, with
Lf�jg = �, de�ned as coordinate projections on (
;A;P) := (XN;XN; �N), i.e. our basic model will be
the canonical one as introduced in section 1.5.

Let �n be the empirical measure based on �1; :::; �n (cf. (1.5.7)) and let C � X be arbitrary but

countable for simplicity. The so-called EMPIRICAL DISCREPANCY is de�ned by

jj�n � �jjC := sup
C2C

j�n(C)� �(C)j(2.1.1)

(Since C is supposed to be countable, jj�n � �jjC is a rv, de�ned on (
;A;P).)
The empirical discrepancies have the following property; in case of arbitrary (i.e. not necessarily count-

able) index sets we refer to [St95]:

2.1.2 Lemma.

(jj�n � �jjC)n2Nis a reversed sub-martingale w.r.t. the sequence (Gn)n2Nof �-�elds

Gn := �
�f�k(B) : k � n;B 2 Xg�;

i.e. jj�n � �jjC is Gn-measurable and P-integrable 8n 2 N, and 8n;m 2 N with m � n one has

jj�n � �jjC � E(jj�m � �jjCjGn) P� a:s:(2.1.3)

PROOF. As shown in [Gae77], 6.5.5(c), the following holds:

8C 2 C the sequence (�n(C)� �(C))n2Nis a reversed martingale w.r.t. (Gn)n2N, i.e. 8n;m 2 N
with m � n one has

�n(C)� �(C) = E((�m (C)� �(C))jGn) P� a:s:;
therefore, since C is countable, it follows that P� a:s:

sup
C2C

j(�n(C)� �(C)j =

sup
C2C

jE((�m (C)� �(C))jGn)j � E(sup
C2C

j�m(C)� �(C)j jGn);

i.e. (2.1.3). �

Now, as in the case of sub-martingales, there holds an analogous CONVERGENCE THEOREM

FOR REVERSED SUB-MARTINGALES (cf. e.g. [Gae77], 6.5.10) stating that for any reversed sub-

martingale (Tn)n2N(on some p-space (
;A;P)) w.r.t. a monotone decseasing sequence (Gn)n2Nof
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sub-�-�elds of A satisfying the condition that infn2NE(Tn) > �1 there exists an P-integrable rv. T1
s.t. Tn �! T1 P-a.s. and in the mean.

From this and Lemma 2.1.2 one obtains a rather simple proof of the following result (cf. [Po81]) which,

in a similar form, was one of the main results in [Ste78] proved there with di�erent methods based on

ergodic theory of subadditive processes.

2.1.4 Lemma.

Let (�n)n2Nbe an arbitrary sequence of non-negative integer-valued rv's on (
;A;P) such that

�n
P��! 1 (where

P��! denotes convergence in probability); then

jj�n � �jjC �! 0 P� a:s: () jj��n � �jjC P��! 0;

in particular, jj�n � �jjC P��! 0 =) jj�n � �jjC �! 0 P� a:s:, whence

E(jj�n � �jjC) �! 0 =) jj�n � �jjC �! 0 P� a:s:(2.1.5)

Note that (2.1.5)will lead later to an essential simpli�cation in proving Glivenko-Cantelli convergence

of �n = (�n(C))C2C. Especially we will obtain along this way (cf. section 6.3)) the following funda-

mental result of Vapnik-Chervonenkis ([Vap71]):

2.1.6 THEOREM.

Let C � X be a VCC; then { under appropriate measurability conditions { it is true that 8� one has

jj�n � �jjC �! 0 P� a:s:

PROOF OF 2.1.4 =): �n
P��! 1 implies that for any subsequence (�n0) of (�n) there exists

a further subsequence (�n00) s.t. �n00 �! 1 P-a.s., whence jj��n00 � �jj �! 0 P-a.s. as n00 tends to

in�nity, and therefore jj��n � �jjC P��! 0.

(=: According to 2.1.2 (jj�n � �jjC)n2Nis a reversed sub-martingale. It is uniformly bounded;

therefore, by the convergence theorem for reversed sub-martingales mentioned before, there exists an

P-integrable rv T1 s.t. jj�n� �jjC �! T1 P-a.s. From this it follows as in the �rst part of our proof

that jj��n � �jjC P��! T1 whence, by assumption, it follows that T1 = 0 P-a.s. �

Some consequences in statistics

In his book on Probability Theory Alfred R�enyi considers the (classical) Glivenko-Cantelli theorem

to be the \Fundamental Theorem of Mathematical Statistics" ([Re70], Chap.VII, x8). Given data

x1; x2; ::: viewed as realizations of re's �1; �2; ::: in (X;X ) with Lf�ig = �, Theorem 2.1.6 yields in-

formation about an unknown � through its \statistical pictures" in form of the empirical measures
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�n, e.g. in connection with a test for the null-hypothesis H0 : � = �0, �0 being a given hypothet-

ical distribution on X , versus the alternative H1 : � 6= �0. In the classical case the corresponding

Kolmogorov-test is based on the test-statistic

Dn(C; �0) � jj�n � �0jjC
with (cf. (1.5.2)) C := f(�1; t] : t 2 Rdg:

Reject H0 if Dn(C; �0) > c; c > 0:

Another possibility would be to use a Kolmogorov-test based on

Dn(C0; �0) with C0 := fx+ C0 : x 2 Rdg;

where C0 is a given closed Euclidian ball. Also in this case one has for any � that for the so-called

\scan-statistic"

lim
n!1Dn(C0; �) = 0 P� a:s: (cf:(1:5:4));

and under H1 : � 6= �0 one has

lim
n!1Dn(C0; �0) = d P� a:s:;

where d := jj� � �0jjC > 0 (cf. [Py84], Theorem 6.1), i.e. Kolmogorov-tests based on Dn(C0; �0) are
also consistent against all alternatives.

Furthermore, simulation results in [Py84], Section 6, indicated a considerable improvement in power

that is possible when using the scan-statistic Dn(C0; �0) instead of Dn(C; �0); cf. also the very interest-
ing Monte-Carlo study of Pyke and Wilbour ([Py88]) concerning the power of such tests; as mentioned

in [We92] it would be of some interest to have available su�cient theory in order to theoretically com-

pute (or at least approximate) the power of their tests.

2.2 Functional Central Limit Theorems for set-indexed empirical and

partial-sum processes, respectively

Let X = (X;X ) be an arbitrary sample space, �j; j 2 N, be i i d re's in X , � = Lf�jg, and �n be the

empirical measure based on �1; :::; �n. Let C � X be a VCC and �n = (�n(C))C2C be the empirical

C-process (of sample size n), de�ned by

�n(C) := n1=2(�n(C)� �(C)); C 2 C:

Then, under appropriate measurability conditions, the following generalization of Theorem 1.1.6 has

been obtained by Dudley:
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2.2.1 THEOREM ([Du78]).

�n
L��! G� in (l1(C); jj � jjC);

where G � = (G�(C))C2C is a mean-zero Gaussian process whose covariance structure is given by

cov(G�(C1); G�(C2)) = �(C1 \ C2)� �(C1) �(C2); C1; C2 2 C;

and
L��! -convergence is de�ned as in section 2.3 below.

The sample paths of G� are contained in the space

U b(C; d�) := fx 2 l1(C) : x uniformly d�-continuousg;

d� being the pseudo-metric in C, de�ned by d�(C1; C2) := �(C1�C2) ; C1; C1 2 C.
(C1�C2 denotes the symmetric di�erence between C1 and C2; note that a pseudo-metric has all properties of a metric besides that
d�(C1;C2) = 0 does not imply C1 = C2.)

Compare Theorem 2.2.1 with Theorem 1.1.6 in case of the uniform empirical process �n, where X = I � [0;1];X = I \ B; � =
Lebesgue measure on X , C = f[0; t] : t 2 Ig being a VCC, d� (C1; C2) = jt1 � t2j for Ci = [0; ti] and where Ub(C; d�) = C � C(I).

Functional Central Limit Theorems (FCLT's) for set-indexed partial-sum processes have been obtained

by the SEATTLE-SCHOOL around Ron Pyke: cf. [Py84], [Os84], [Ba85], [Os85], [Al86], and section

7.2 below.

At this place here we want to mention only the following two results. The �rst is concerned with the

multivariate (standardized) partial-sum process �n = (�n(C))n2Nof section 1.4 (cf. (1.4.2) and (1.4.3))

generalizing Theorem 1.2.1:

2.2.2 THEOREM ([Al86] and [Gae94], Remark 2.16).

�n
L��! G� in (l1(C); jj � jjC); � � Lebesgue measure on Id;

where G � = (G�(C))C2C is a mean-zero Gaussian process whose covariance structure is given by

cov(G�(C1); G�(C2)) = �(C1 \ C2); C1; C2 2 C;

and again
L��! -convergence is de�ned as in section 2.3 below.

Also here the sample paths of G� are contained in U b(C; d�).

The second result is concerned with set-indexed partial-sum processes with random locations (cf. 3.2.1

and 7.2 below):
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2.2.3 THEOREM (cf. [Gae94], Cor. 2.15).

Let C � X be a VCC in an arbitrary sample space X = (X;X ) and �nj := j(n)�1=2�j for each

1 � j � j(n) and n 2 N with j(n) �! 1 as n �! 1, the �j's being i i d rv's with E(�j ) = 0 and

E(�2j ) = 1. Let (�nj)1�j�j(n);n2Nbe a triangular array of rowwise independent (but not necessarily

identically destributed) re's in X which is independent of (�j)j2N.
Assume that there is a p-measure � on X s.t. with �nj := Lf�njg the following two conditions are

ful�lled:

(i) limn!1 j(n)�1
P

j�j(n) �nj(C \D) = �(C \D) 8C;D 2 C
(ii) lim�!0 lim supn!1 supfC2C:�(C)��g j(n)

�1P
j�j(n) �nj(C) = 0:

Then �
j(n)�1=2

X
j�j(n)

1C(�nj) � �j
�
C2C

L��! G� in (l1(C); jj � jjC);

where G � = (G�(C))C2C is a mean-zero Gaussian process whose covariance structure is given by

cov(G�(C1); G�(C2)) = �(C1 \ C2); C1; C2 2 C;

and again
L��! -convergence is de�ned as in section 2.3 below. Also here the sample paths of G� are

contained in U b(C; d�).

2.3 Weak convergence (L-convergence) in the sense of Ho�mann-

J�rgensen

The classical concept of weak convergence (convergence in law) for random elements (re's) �n; n � 0,

in a metric space S = (S;B(S)), endowed with its Borel �-�eld B(S), is de�ned by (cf. [Bi68])

�n
L��! �0 :() lim

n!1E(f � �n) = E(f � �0) 8f 2 C
b(S)(2.3.1)

where Cb(S) := ff : S �! R : f continuous and boundedg.
For such �n's, being re's in (S;B(S)), their laws Lf�ng are well de�ned on B(s), whence (2.3.1) is

equivalent to

�n
L��! �0 () lim

n!1

Z
S

fdLf�ng =
Z
S

fdLf�0g 8f 2 Cb(S):(2.3.10)

But, as we have learned from the uniform empirical process, the approximating sequence (�n)n2Nof
a limitting re �0 may not be ad hoc measurable and this leads to the concept of weak convergence

(L-convergence) in the sense of Ho�mann-J�rgensen ([Ho84], [Ho91]). In this context, i.e. where the

�n's, n 2 N, are allowed to be completely arbitrary maps, we will speak of RANDOM QUANTITIES
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(rq's) instead of RANDOM ELEMENTS (re's). So, given a basic p-space (
;A;P), let �n : 
 �! S

be rq's and �0 : 
 �! S be A;B(S)-measurable (i.e. only �0 is assumed to be a re in (S;B(S))); then:

�n
L��! �0 :() lim

n!1E
�(f � �n) = E(f � �0) 8f 2 Cb(S):(2.3.2)

Here, given an arbitrary g : 
 �! R (de�ned on a p-space (
;A;P)), the so-called \outer expectation"
(\outer integral") of g w.r.t. P is de�ned by

E�(g) := inffE(h) : h � g; h : 
 �! Rmeasurable and E(h)existsg:(2.3.3)

In view of (2.3.2) one should note that E(f��0) is well de�ned, since f 2 Cb(S) =) f B(S);B-measurable and bounded =) f��0P-
integrable (i.e. f � �0 2 L(
;A;P). If, in addition, also the �n's, n 2 N, are B(S);B-measurable, then E� (f � �n) = E(f � �n), i.e. in
this case (2.3.2) coinces with the classical de�nition (2.3.1).

In connection with (2.3.2) the following de�nitions and formulas are in order:

Let the so-called \inner expectation" (\inner integral") of g : 
 �! R w.r.t. Pbe de�ned by

E�(g) := supfE(h) : h � g; h : 
 �! Rmeasurable and E(h) existsg;

then, for any A � 
, E�(1A) = P�(A) := supfP(B) : B � A;B 2 Ag, whereas E�(1A) = P�(A) :=
inffP(B) : B � A;B 2 Ag; furthermore

E�(g) = �E�(�g) ; E�(g) � E�(g);(2.3.4)

g1 � g2 =) E�(g1) � E�(g2) and E�(g1) � E� (g2)
E�(g1 + g2) � E�(g1) + E�(g2)
jE�(g1)� E�(g2)j � E�(jg1+ g2j) if jE�(gi)j <1; i = 1; 2;

E�(g) = E�(g) = E(g); if g 2 L(
;A;P);
P�(A) + P�({A) = 1 8A � 
:

For some applications it might be useful to allow also rq's �n; n 2 N, with values in a larger space

E � S; one may think (in case of stochastic processes with parameter set T ) of E = RT � S :=

l1(T ), where S is endowed with the sup-metric jjxjjT := supt2T jx(t)j; this leads to the following

more general model of weak convergence (L-convergence) considered in [St94]:

Let S = (S; s) be a metric space (with metric s) and E � S be arbitrary; let

�n : 
 �! E be rq's, n 2 N, and �0 : 
 �! S be A;B(S)-measurable; then
(2.3.5)

�n
L��! �0 :() limn!1 E�(f � �n) = E(f � �0)

8f : E �! R, f bounded and restS(f) 2 Cb(S), where restS(f) denotes the

restriction of f onto S.

(2.3.6)

If, in addition (compare with the classical situation of section 1), for a separable subspace S0 of S

with S0 2 B(S), P(�0 2 S0) = 1, then the limiting re �0 is said to be separable and in this case we

write �n
L��!
sep

�0.

21



Within this general model of L-convergence the known results from the classical theory of weak con-

vergence, like the Portmanteau-Theorem, Cram�er-Slutzky-type result, Continuous Mapping Theorem,

etc. remain valid as we shall see below.

In passing we mention the following two facts:

(cf. [Va96], 1.3.7 and 1.3.8(i)): �n
L��! �0 =) E�(f � �n) � E�(f � �n) �! 0

8f : E �! R, f bounded and restS(f) 2 Cb(S), i.e. the �n's are \asymptotically

measurable".

(2.3.7)

�n
L��! �0 =) P�(�n 2 S) �! 1.(2.3.8)

In case of stochastic processes �n = (�n(t))t2T , indexed by a pseudo-metric parameter space T = (T; d),

being all de�ned on some basic p-space (
;A;P), the following theorem characterizes weak convergence

(L-convergence), i.e. �n L��!
sep

�0 based on the situation (2.3.5) with S = (l1(T ); jj � jjT) � E = RT.

2.3.9 CHARACTERIZATION THEOREM OF L-CONVERGENCE (CTL-C).

Let �n = (�n(t))t2T ; n 2 N, be a sequence of stochastic processes, indexed by a pseudo-metric parameter

space T = (T; d), being all de�ned on some basic p-space (
;A;P) and let �0 = (�0(t))t2T be a stochastic

process viewed as coordinate process on (RT;BT ;Lf�0g) (where the law Lf�0g of �0 is well de�ned on

the product �-�eld BT �N
T
B according to Kolmogorov's theorem) such that

�n
L��!
�di

�0; i.e. weak convergence of the �nite-dimensional distri-

butions (�dis) of �n to the corresponding �dis of �0.

(2.3.10)

Then, if

(T; d) is totally bounded;(2.3.11)

and if the so-called \Asymptotic Equicontinuity Condition" (AEC) is ful�lled, i.e. if

lim
�!0

lim sup
n!1

P�(w�n(�) > ") = 0 8" > 0;(2.3.12)

there exists a stochastic process �0 = (�0(t))t2T with sample paths in S0 � U b(T; d) ((U b(T; d); jj � jjT)
being a separable subspace of S = (l1(T ); jj � jjT)) such that

�n
L��!
sep

�0;(2.3.13)

where �0
L
=
�di

�0; i:e: �0 and �0 have the same �dis.

Conversely, (2.3.13) (with S0 = (U b(T; d); jj � jjT ) as separable subspace of S = (l1(T ); jj � jjT)) implies

(2.3.11) and (2.3.12).

22



Here, U b(T; d) := fx 2 l1(T ) : x uniformly d -continuousg, and for any x 2 RT and � > 0

wx(�) := sup
t;t02T;d(t;t0)��

jx(t)� x(t0)j

is the oszillation-modulus of x. Note that (2.3.10) will be ful�lled in most of the later applications

according to the classical multivariate CLT's.

There are several possibilities presented in the literature for proving the CTL-C; cf. e.g. [Gi86], [An87],
Theorem 5.5, [Po90], Theorem 10.2, [Du92], Theorem 3.7.2, [Gae92], Theorem 3.10, and [Va96], Sec-

tion 1.5. Independently, we want to give here a di�erent (and as we think rather lucid) proof of 2.3.9

based on the following auxiliary lemma and partially on ideas of [Po90] (cf. STEP 2 below).

AUXILIARY LEMMA (Cf. [Bi68], Cor. 1, p. 14, and [Gae83], Thm. 8).

Given the situation as in (2.3.5), let S0 � S be separable and P(�0 2 S0) = 1. Suppose that the class

C � fB 2 B(S) : P(�0 2 @B) = 0g
(where @B denotes the boundary of B) satis�es

8G open � S and 8x 2 G\Sc0 (where Sc0 denotes the closure of S0 in S)

9Cx 2 C s.t. x 2 C0
x � Cx � G (where C0

x denotes the interior of Cx).

(?)

Then the following two statements are equivalent:

(i) �n
L��!
sep

�0

(ii) lim supP�(�n 2 C) � P(�0 2 C) and

lim inf P�(�n 2 C) � P(�0 2 C) 8C 2 C\f ,

where C\f denotes the class of all subsets of S which are �nite intersections of sets in C.

PROOF OF THE CTL-C 2.3.9 (carried out in three steps).

Assume (2.3.11) and (2.3.12).

STEP 1: According to (2.3.11) there exists a countable and d-dense subset D of T . We are going to show:

There exists a stochastic process �0 = (�0(t))t2T with sample paths in S0 � U b(T; d) such that

�0;D
L
=
�di

�0;D; where �0;D := (�0(t))t2D and �0;D = (�0(t))t2D :

For this, let U (D; d) := fx : D �! R : x uniformly d -continuousg. Then it su�ces to show that

(a) there exists a stochastic process �0;D := (�0(t))t2D on some proper p-space (
0;A0;P0) with sample

paths in U (D; d) such that �0;D
L
=
�di

�0;D.
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In fact, once (a) is shown, we can de�ne for each ! 2 
0 �0(!) as the uniquely determined uniformly d-

continuous extension on T of �0;D(!) being also bounded since T is totally bounded, whence �0(!) 2 U b(T; d)

for each ! 2 
0.

Now, verifying (a) is equivalent (cf. [Gae77], 7.2.31 and 7.1.18) with proving

(b) P�0 (�0;D 2 U (D; d)) = 1, where P�0 := Lf�0g.

For this, let D = ft1; t2; :::g; then
P�0(�0;D 2 U (D; d))
= P�0

�
8" > 0 9� > 0 8t; t0 2 D : d(t; t0) � � =) j�0(t)� �0(t

0)j � "
�

= P�0

�
8" > 0 9� > 0 8m 2 N 81� i; j � m : d(ti; tj) � � =) j�0(ti) � �0(tj)j � "

�
= P�0

�
8" > 0 9� > 0 8m 2 N 81� i; j � m : (�0(t1); :::; �0(tm)) 2 Fij("; �;m)

�
;

where

Fij("; �;m) :=

(
Rm; if d(ti; tj) > �

f(r1; :::; rm) 2 Rm : jri � rjj � "g; if d(ti; tj) � �:

By the way, since the Fij's are closed and since we may restrict ourselves to rational "'s and �'s, this shows that

f�0;D 2 U (D; d)g is measurable.

Furthermore, by �-continuity of P�0

P�0 (�0;D 2 U (D; d)) =
lim
"!0

lim
�!0

lim
m!1P�0

�
(�0(t1); :::; �0(tm)) 2

\
1�i;j�m

Fij("; �;m)
�
�

lim
"!0

lim
�!0

lim
m!1 lim sup

n!1
P

�
(�n(t1); :::; �n(tm)) 2

\
1�i;j�m

Fij("; �;m)
�
;(+)

where the inequality follows by (2.3.10) and the classical Portmanteau-Theorem ([Bi68], Theorem 2.1 with

S = Rm); furthermore,

(+) � lim
"!0

lim
�!0

lim sup
n!1

P�
�
8t; t0 2 T : d(t; t0) � � =) j�n(t)� �n(t

0)j � "
�

= lim
"!0

lim
�!0

lim sup
n!1

P�
�
w�n(�) � "

�
=

(2:3:12)
1:

The proof of the following step is due to Franz Strobl ([St94], Thm. 2.1).

STEP 2: Using the auxiliary lemma from above, we are going to show now

�n
L��!
sep

�0, where w.l.o.g �0 is assumed to be also de�ned on our basic p-space

(
;A;P) properly enlarged.

(2.3.13)

Since (by (2.3.11)), S0 = U b(T; d) is a separable and closed subspace of (S; s) = (l1(T ); jj � jjT ) (cf. [Gae90],
Corollary 2), we can apply the auxiliary lemma. For this, let

C := fB(x; r) : x 2 S0; r > 0;P(�0 2 @B(x; r)) = 0g;
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where B(x; r) := fy 2 S : jjy � xjjT � rg. Then one easily veri�es

8G open � S and 8x 2 G \ Sc0 = G \ S0 9Cx 2 C s.t. x 2 C0
x � Cx � G:(?)

Therefore, to verify (2.3.13) it remains to show

(c) lim supP�(�n 2 C) � P(�0 2 C) and

(d) lim infP�(�n 2 C) � P(�0 2 C) for all C 2 C\f = fTi�nCi : n 2 N; Ci 2 C; 1 � i � ng.

Now, given any C 2 C\f one can choose appropriate g; h 2 U b(T; d) such that C can be represented as

C = fy 2 S : g(t) � y(t) � h(t) 8t 2 Tg:

(If C = B(x; r), choose g := x � r and h := x + r; in case of �nite intersections of balls B(xi; ri) one has to

choose maxima and minima of such gi's and hi's, respectively.)

Next, given C =
T
i�nB(xi; ri) = fy 2 S : g � y � hg and an arbitrary " > 0, choose � = �(") > 0 s.t.with

C� := fy 2 S : g + � � y � h� �g
(e) P(�o 2 C) � P(�0 2 C5�=4) + "=2:

Before making the next step rigorous, we argue at �rst informally:

By the AEC (2.3.12) one can choose � > 0 s.t. for n large enough up to probability "=2 the oscillation of �n
within span � is at most �=2 and this is also true for g and h (due to their uniform continuity). Since T is

totally bounded, we can choose a �-net ft1; :::; tmg � T (which means that for each t 2 T there is a ti with

d(t; ti) < �); since the oscillations of g; h and �n (up to probability "=2) within V (ti) := ft 2 T : d(t; ti) < �g
are at most �=2, we get

(f) P(8i : g(ti) + � < �n(ti) < h(ti)� �) � P�(�n 2 C) + "=2,

whence by �di-convergence we obtain (d):

P(�0 2 C) �
(e)
P
�
�0 2 C5�=4

�
+ "=2 � P

�8i : g(ti) + � < �0(ti) < h(ti)� �
�
+ "=2

 �
n!1 P

�8i : g(ti) + � < �n(ti) < h(ti) � �
�
+ "=2

�
(f)
P�(�n 2 C) + "=2:

Now, making the above reasoning rigorous, note �rst that C� " C0 as � # 0 and P(�0 2 @C) = 0 implies that

for each " > 0 there exists a � = �(") > 0 s.t. (e) holds true.

Since P(�0 2 U b(T; d)) = 1, there exists a � = �(") > 0 s.t. P(�0 2 H) � 1� "
2
, where

H := fy 2 S : sup
t;t02T;d(t;t0)<�

jy(t) � y(t0)j � �=2g:

By (2.3.12), choosing � small enough, we have in addition that

lim sup
n!1

P�(�n 2 {H) < "=2 ({H � RTnH):

Since g; h 2 U b(T; d), we may also assume that g; h 2 H (again by choosing � small enough).
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Now, let D = ft1; t2; :::g be as above and m 2 N large enough s.t. T =
S
i�m V (ti; �) with V (ti; �) := ft 2 T :

d(t; ti) < �g (such an m exists by (2.3.11) and since D is d-dense in T ).

Then, for any x 2 H and t 2 T we have the following implications (choosing i 2 f1; :::;mg s.t. d(t; ti) < �):

x(ti) < h(ti)� � =) x(t) �
(x2H)

x(ti) + �=2 < h(ti) � �=2 �
(h2H)

h(t); and

x(ti) > g(ti) + � =) x(t) �
(x2H)

x(ti) � �=2 > g(ti) + �=2 �
(g2H)

g(t):

Thus,

f�n 2 H and g(ti) + � < �n(ti) < h(ti) � � 81 � i � mg � f�n 2 Cg;
and therefore

P�(�n 2 C) � P�
�
f�n 2 Hg \ fg(ti) + � < �n(ti) < h(ti)� � 81 � i � mg

�
= 1�P�

�
f�n 2 {Hg [ {fg(ti) + � < �n(ti) < h(ti)� � 81 � i � mg

�
� 1�P�(�n 2 {H)�P�

�
{fg(ti) + � < �n(ti) < h(ti) � � 81 � i � mg

�
= P�

�
g(ti) + � < �n(ti) < h(ti) � � 81 � i � m)| {z }
= P((�n(t1); :::; �n(tm)) 2 G); where

�P�(�n 2 {H)

G := f(r1; :::; rm) 2 Rm : g(ti) + � < ri < h(ti)� � 81 � i � mg is an open subset of Rm.

Thus, (2.3.10) and the classical Portmanteau-Theorem together with STEP 1 (according to which �0;D
L
=
�di

�0;D)

imply

lim inf
n!1 P�(�n 2 C) � lim inf

n!1 P((�n(t1); :::; �n(tm)) 2 G)� lim sup
n!1

P�(�n 2 {H)

> P((�0(t1); :::; �0(tm)) 2 G)� "=2

= P
�
g(ti) + � < �0(ti) < h(ti)� � 81 � i � m

�
� "=2

� P��0 2 C5�=4

�� "=2 �
(e)

P(�0 2 C)� ":

Since " > 0 was choosen arbitrary, (d) is shown.

As to (c), the proof runs quite similarly: For � > 0 let

C� := fy 2 S : g(y) � � � y(t) � h(t) + � 8t 2 Tg:

Since C� # C as � # 0, we can choose 8" > 0 a � = �(") > 0 s.t.

P(�0 2 C�) � P(�0 2 C) + "=2:

Let H; � and m be as before. Then, analogously, for x 2 H; t 2 T and i 2 f1; :::;mg with d(t; ti) < �:

x(ti) � h(ti) =) x(t) � x(ti) + �=2 � h(ti) + �=2 � h(t) + �; and

x(ti) � g(ti) =) x(t) � x(ti)� �=2 � g(ti)� �=2 � g(t) � �:
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Now, P�(�n 2 C) � P�(g(ti) � �n(ti) � h(ti) 81 � i � mg = P((�n(t1); :::; �n(tm)) 2 F ), where F :=

f(r1; :::; rm) 2 Rm : g(ti) � ri � h(ti) 81 � i � mg is a closed subset of Rm. Thus, as before (2.3.10) and the

classical Portmanteau-Theorem together with STEP 1 imply

lim sup
n!1

P�(�n 2 C) � P((�0(t1); :::; �0(tm)) 2 F ) = P

�
g(ti) � �0(ti) � h(ti) 81 � i � m

�
� P(�0 2 {H) +P

�
g(t) � � � �0(t) � h(t) + � 8t 2 T

�
� "=2 +P(�0 2 C�) � P(�0 2 C) + ":

Since " > 0 was choosen arbitrary, also (c) is shown. Thus, (2.3.13) is proved.

It is now easy to verify �0
L
=
�di

�0 using the continuous mapping theorem 2.3.16 below together with (2.3.10).

The proof of the converse part of 2.3.9 is as follows:

STEP 3: (2.3.13) (with U b(T; d) as a separable subspace of l1(T )) implies (2.3.11) (according to [Gae90],

Corollary 2). So it remains to show that (2.3.13) implies the AEC (2.3.12):

For this, let " > 0 and H(�) := fx 2 RT : wx(�) � "g; � > 0; then H(�)\S is a closed subset of S, and therefore,

by Theorem 2.3.14 (ii) below

lim
�!0

lim sup
n!1

P�(w�n(�) > ") �

lim
�!0

lim sup
n!1

P�(�n 2 H(�)) � lim
�!0

P(�0 2 H(�)) =

lim
�!0

P( sup
t;t02T;d(t;t0)��

j�0(t)� �0(t
0)j � ") =

(��continuity ofP)

P(8� > 0 : sup
t;t02T;d(t;t0)��

j�0(t)� �0(t
0)j � ") � P(�0 =2 U b(T; d)) = 0: �

REMARK. The just given proof together with 2.3.14 below also shows:
If �n = (�n(t))t2T with T = (T;d) being totally bounded, n 2 N, is a sequence of RANDOM QUANTITIES �n : 
 �! RT (i.e.with

�n(t); t 2 T , not being necessarily rv's on (
;A;P), if �0 is a re in l
1(T ) with sample paths in Ub(T;d) s.t. (�n(t1); :::; �n(tm))

L
��!

(�0(t1); :::; �0(tm)) (in the sense of (2.3.6)) 8t1; :::; tm 2 D;m 2 N (i.e. if the �di-convergence on D holds true), then (2.3.12) implies
(2.3.13) (in the sense of (2.3.6) with S = l1(T );E = RT; S0 = Ub(T;d)).

The following theorem is part of the Portmanteau-Theorem needed for our purposes. For a more

comprehensive list of equivalent conditions for L-convergence in our general model (2.3.5) we refer to

[St94], Thm. 1.5; cf. also [Va96], Thm. 1.3.4.

2.3.14 THEOREM .

Given the general model (2.3.5), the following assertions are equivalent:

(i) �n
L��! �0 (in the sense of (2.3.6))

(ii) lim supn!1P
�(�n 2 H) � P(�0 2 H) 8H � E;H \ S closed in S

(ii0) lim supn!1P
�(�n 2 F ) � P(�0 2 F ) 8F closed � S, and

lim supn!1P
�(�n 2 EnS) = 0
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(iii) lim infn!1P�(�n 2 H) � P(�0 2 H) 8H � E;H \ S open in S

(iii0) lim infn!1P�(�n 2 G) � P(�0 2 G) 8G open � S.

The proof of 2.3.14 is tailored along arguments used to prove the classical Portmanteau-Theorem as in [Bi68].

2.3.15 THEOREM (Cram�er-Slutzky-type result) ([St94], Thm. 1.16).

Given a basic p-space (
;A;P), a metric space S = (S; s) and an arbitrary E � S, let �n; �n : 
 �!
E; n � 1, be rq's and �0 : 
 �! S be a re in (S;B(S)) such that

lim
n!1P�(�n; �n 2 S and s(�n; �n) � ") = 1 8" > 0(+)

where s(�n; �n)(!) := s(�n(!); �n(!)); ! 2 
. Then

�n
L��! �0 () �n

L��! �0:

PROOF. By symmetry, it su�ces to show \=)": We are going to use the criterion (ii) from 2.3.14. For

this, given any H � E and " > 0 s.t. H \ S is closed in S, the set

F := (H \ S)" := fx 2 S : inf
y2H\S

s(x; y) � "g

is also closed in S, whence

lim sup
n!1

P�(�n 2 H) � lim sup
n!1

h
P�(�n 2 H; �n; �n 2 S and s(�n; �n) � ") +

P�({f�n; �n 2 S and s(�n; �n) � "g)
i
�

lim sup
n!1

P�(�n 2 F ) + 1 � lim inf
n!1 P�(�n; �n 2 S and s(�n; �n) � ") =

(+)

lim sup
n!1

P�(�n 2 F ) �
2:3:14(ii)

P(�0 2 F ):

Since H \ S is closed in S, we have (H \ S)" # H \ S as " # 0, whence for " # 0
P(�0 2 F ) # P(�0 2 H \ S) = P(�0 2 H);

and therefore

lim sup
n!1

P�(�n 2 H) � P(�0 2 H)

from which �n
L��! �0 follows according to 2.3.14(ii). �

2.3.16 THEOREM (Continuous Mapping Theorem (CMT)) ([St94], Thm. 1.8; cf. also [Va96], Thm.

1.3.6)).

In addition to our general model (2.3.5), let S0 = (S0; s0) be a further metric space and E0 be arbitrary,
E0 � S0. Let g : E �! E0 be a given map with g(S) � S0 and let Sg 2 B(S) be such that restSg is

continuous at every point in Sg; then, assuming in addition that �0 takes its values in Sg, �n
L��! �0

implies g � �n L��! g � �0.
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In connection with RANDOM QUANTITIES (rq's) � : 
 �! R := R[ f+
-
1g (being not necessarily

rv's) the following concept and its consequences turn out to be useful at some places later on; cf.

[Va96], Lemma 1.2.1 and Lemma 1.2.2; cf. also the Notes on p. 75 in [Va96] refering to early papers

by Blumberg in 1935 and by Eames and May in 1967.

Let (
;A;P) be a p-space and � : 
 �! R be a rq. Then there exists a
measurable function �� : 
 �! R with

(i) �� � � , and

(ii) �� � � P� a:s 8 measurable � : 
 �! R with � � � P� a:s:

(2.3.17)

�� is P� a:s: uniquely determined and for any �� ful�lling (i) and (ii), it holds that E�(�) = E(��),
provided E(��) exists; the latter is certainly true if E�(�) < 1; furthermore one has P�(� > t) =

P(�� > t) 8t 2 R.
The function �� is called minimal measurable majorant of �, or also called MEASURABLE COVER

or ENVELOPE FUNCTION.

Before concluding this section, let us have once more a glance onto the Characterization Theorem

2.3.9:

As already remarked there, the condition (2.3.10) will be ful�lled in most cases due to classical mul-

tivariate CLT's. Also, (2.3.11) will be ful�lled by choosing the pseudo-metric d appropriately; e.g. in

the case T = C; C � X a VCC, let d := d� ; � being an arbitrary p-measure on X ; then the condition

(2.3.11) holds as we shall see in section 4.2.

So, in order to prove (2.3.13), the crucial task is to verify the AEC (2.3.12):

Since Markov's inequality also holds in the case of outer probabilities and outer expectations, respec-

tively, for verifying the AEC it su�ces to show

lim
�!0

lim sup
n!1

E�( sup
t;t02T;d(t;t0)��

j�n(t)� �n(t
0)j) = 0;(2.3.18)

i.e. later on we will have at our disposal the following fact:

2.3.19 REMARK.

The conditions (2.3.10), (2.3.11) and (2.3.18) imply (2.3.13), i.e. �n
L��!
sep

�0, where �0 has all its

sample paths in U b(T; d) and where �0
L
=
�di

�0.

2.3.19 (with (2.3.18) instead of the AEC (2.3.12)) leads to essential simpli�cations in proving FCLT's

in section 7 comparable with the role of (2.1.5) in proving ULLN's.
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3 Random Measures Processes (RMP's)

3.1 Empirical Processes, partial-sum processes and smoothed empir-

ical processes, respectively, considered as special cases of RMP's

In order to cope in later sections also with processes indexed by classes of functions instead of sets

(cf. section 4.3 for some motivation) the general context will be now as follows:

Let X = (X;X ) be an arbitrary measurable space (sample space) and F be a class of X -measurable
functions f : X �! Rwith X -measurable envelope F : X �! R+ (i.e. supf2F jf(x)j � F (x) 8x 2 X).

Let (wnj)1�j�j(n);n2Nbe a triangular array of p-measures on X and (�nj)1�j�j(n);n2Nbe a triangular

array of real-valued rv's.

Random Measure Processes (RMP's) Sn = (Sn(f))f2F (of sample size n) (indexed by F) are de�ned
by

Sn(f) :=
X

j�j(n)
wnj(f) � �nj; f 2 F ;(3.1.1)

where wnj(f) :=
R
X fdwnj.

We tacitly assume regularity conditions such as measurability and �niteness of wnj(F ) (which implies

that the sample paths of Sn are contained in the Banach space

l1(F) := fx : F �! R : jjxjjF := sup
f2F

jx(f)j <1g;

endowed with the sup-norm jj � jjF .
In connection with Uniform Laws of Large Numbers (ULLN) and Functional Central Limit Theorems

(FCLT) in section 6 and 7, respectively, it will be assumed that j(n) �! 1 as n!1 and that

for all n 2 N the sequence of pairs

(wn1; �n1); :::; (wnj(n); �nj(n)) is independent.

(Here independence is to be understood in the sense of independence of the rq's (wnj(f) � �nj)f2F ; 1 �
j � j(n), for each n, which means that (wnj(f) � �nj)f2F ; 1 � j � j(n); n 2 N, are considered as

coordinate projections on an appropriately chosen product-p-space (
;A;P) (cf. Section 5.1 for the

de�nition of independence of rq's and also section 6.1 below).

However, we do not assume that the above pairs are identically distributed; also dependence within

each pair is allowed.

Processes of the form (3.1.1) with F = f1C : C 2 Cg; C � X , and non-random p-measures wnj, were

�rst considered in [Al87] and in its present general form in [Zi94] (see also [Va96], Section 2.12.2 for

closely related examples).

Now, special cases of RMP's occur when considering
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� the classical multivariate partial-sum process of section 1.3 and 1.4 where X = Id; d � 1; wnj =

�j=n; �nj := n�d=2�j ; j 2 f1; :::; ngd, and F = f1C : C 2 Cg with C = f[0; t] : t 2 Idg;

� empirical processes indexed by F given by �n(f) := j(n)�1
P

j�j(n) f(�nj); f 2 F , based on re's

�nj in (X;X ), where wnj = ��nj and �nj � j(n)�1;

� smoothed empirical processes:

Here X is assumed to be a linear metric space endowed with its Borel �-�eld X . Let �j; j 2 N,
be i i d re's in (X;X ) with law � on X and �n be the empirical measure based on �1; :::; �n, i.e.

�n =
P

j�n ��j . Now, if � is \smooth" (one may think of random vectors �j in X = Rd whose df

has a continuous or even di�erentiable density w.r.t.Lebesgue measure), it is natural to replace

�n by a smoothed version ~�n serving as an estimator for an unknown �.

As in [Yu89] we will consider \smoothing through convolution" as explained in section 6.4 below.

As we will see there, this leads to ~�n = ( ~�n(f))f2F which can be represented as RMP's with

wnj(B) = �n(B��j); B 2 X , and �nj � n�1, where (�n)n2Nis a given sequence of p-measures �n
on X with �n �! �0 weakly (in the sense of weak convergence of Borel measures as in [Bi68]).

3.2 Further Examples

3.2.1 Partial-sum processes with random locations

Let X = (X;X ) be an arbitrary measurable space, C � X , (�nj)1�j�j(n);n2Nbe a triangular array of

re's in (X;X ) and (�nj)1�j�j(n);n2Nbe a triangular array of real-valued rv's.

PARTIAL-SUM PROCESSES Sn = (Sn(C))C2C WITH RANDOM LOCATIONS are de�ned by

Sn(C) :=
X

j�j(n)
1C(�nj) � �nj; C 2 C:(3.2.2)

These processes were studied in [Ar92], [Gae94] and [Gae94b], being special RMP's with F = f1C :

C 2 Cg and wnj = ��nj .

Many examples of natural phenomena like mineral deposits, earthquakes, forest disease, etc.can be modelled by such processes.

3.2.3 The sequential uniform empirical process

(Cf. [Sh86], Chapter 3.5).

Let �j; j 2 N, be i i d rv's with Lf�jg = U [0; 1] (as in 1.1). The SEQUENTIAL UNIFORM EMPIRI-

CAL PROCESS (of sample size n) Kn = (Kn(s; t))(s;t)2I2 based on �1; :::; �n is de�ned by

Kn(s; t) := n�1=2
X

j�<ns>

�
1[0;t](�j)� t

�
; (s; t) 2 I2:

Choosing X := I2;X := I2 \ B2; C := f[0; s]� [0; t] : (s; t) 2 I2g; �nj := (j=n; �j); 1 � j � j(n) := n,
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and Sn(C) := n�1=2
P

j�n ��nj (C); C 2 C, we get for C = [0; s]� [0; t]

Sn(C) = n�1=2
X
j�n

1C((j=n; �j)) = n�1=2
X

j�<ns>
1[0;t](�j)

and E(Sn(C)) = n�1=2
P

j�nP(�nj 2 C) = n�1=2
P

j�nP(
j
n
� s; �j 2 [0; t]) = n�1=2

P
j�<ns>P(�j 2

[0; t]) = n�1=2<ns> �t, whence Sn(C)�E(Sn(C)) = Kn(s; t), i.e. Kn can be represented as a centered

RMP (with wnj = ��nj and �nj = n�1=2) indexed by the VCC C.
If one considers instead of Kn the underlying df

Gn(s; t) := n�1
X

j�<ns>
1[0;t](�j); (s; t) 2 I2;

(in comparison with the edf Fn(t) = n�1
P

j�n 1[0;t](�j); t 2 I), then, through the additional parameter
s it is possible to visualize the appearance of the data y1; :::; yn (yj = �j(!)) successively, (therefore
the notion \sequential" uniform empirical process) as the following picture may illustrate.

n = 4 :

c c c c
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s

c
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c

c

c cEnding up with s = 1,

i.e. Gn(1; � ) = Fn( � ).

As to the function-indexed sequential empirical process (based on an i i d sequence of re's in an arbitrary sample space (X;X ) we
refer to [Va96], Section 2.12.1 and to [Zi97], Section 7.4; as in the uniform case, also this process can be represented as a centered
RMP.
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3.2.4 Nonparametric Regression

(Cf. [Stu97]). Let � be a re in an arbitrary measurable space (X;X ) with law Lf�g = � and let

C � X . Let � be a rv (de�ned on the same p-space (
;A;P) as �) such that E(j�j) <1. Consider the

regression function

m(y) := E(�j� = y); y 2 X;
and the corresponding integrated regression function indexed by C:

I(C) :=

Z
C
m(y) �(dy); C 2 C:

Since m is usually �-a.s. uniquely determined by I, statistical inference may be based on I instead of

m as well.

Now, I(C) = E(1C (�)E(�j�)) = E(E(1C (�)�j�)) = E(1C (�) � �), whose empirical version (of sample size

n) based on i i d pairs (�j; �j) of re's in (X �R;XNB) (where Lf�jg = � and Lf�jg = Lf�g) is given
by

In(C) := n�1
X
j�n

1C(�j)�j; C 2 C;

where E(In(C)) = I(C) for all C 2 C. Thus In is a RMP indexed by C (with wnj � ��j and �nj = n�1�j).

At this place we may also mention another paper by Stute et al. ([Stu98]) where (in our notation)

processes Rn of the following form are considered:

Rn(C) = n�1=2
X
j�n

1C(�j)(�j �m(�j))

based on i i d re's (�j; �j) in (Rd� R;BdNB) with C 2 C := f(�1; y] : y 2 Rdg, whence Rn is also a

RMP indexed by the VCC C.

3.2.5 Estimation of Intensity Measures for Spatial Poisson Processes

This example is taken from [Zi97], Section 7.8; cf. also [Li90].

Let � be a Poisson point process on an arbitrary state space (X;X ) with �nite intensity measure

� on X , i.e. (based on an underlying p-space (
;A;P)) �(!; � ) is a measure on X with values in

f0; 1; 2; :::g for every �xed ! 2 
, �( � ; B) is a Poisson rv with parameter �(B) for every �xed B 2 X ,
and for any disloint B1; :::; Bn 2 X ; n 2 N, the rv's �( � ; B1); :::;�( � ;Bn) are independent.

In estimating an unknown intensity measure � on the basis of an i i d sequence (�j)j2Nof Poisson
point processes �j (with intensity measure �) a natural sequence of estimators �̂n; n 2 N, is �̂n :=

n�1
P

j�n�j leading to the corresponding standardized process

Zn(f) := n1=2(�̂n(f)� �(f)); f 2 F ;
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in view of a FCLT for Zn = (Zn(f))f2F , where F is an appropriate class of measurable functions

f : X �! R with f 2 L2(X;X ;�); note that E(�(f)) = �(f) for all f .

Now, since Zn(f) = n�1=2
P

j�n(�j(f)�E(�j (f))) = Sn(f)�E(Sn(f)) with Sn(f) :=Pj�nwnj(f)��nj,
where wnj :� �j=�j(X) and �nj := n�1=2�j(X), Zn can be considered as a RMP indexed by F to

which our result in section 7.1 will apply.

3.2.6 L�evy's Multivariate Brownian motion as a set-indexed process and as limiting process of a

sequence of Partial-sum processes with random locations

We will follow here the exposition presented in the paper by Mina Ossiander and Ronald Pyke [Os85]:

Let B = (B(t))t2R+ be a Brownian motion (indexed by the parameter space T = R+), i.e. a mean-zero

Gaussian process with independent and stationary increments whose covariance function is given by

cov(B(s); B(t)) = s ^ t; s; t 2 R+(1)

or equivalently, since s ^ t = (jtj+ jsj � jt� sj)=2, by

cov(B(s); B(t)) = (jtj+ jsj � jt� sj)=2; s; t 2 R+:(2)

Now, in view of (2) L�evy's multivariate Brownian motion ([L�e40], [L�e45]) is de�ned to be a mean-zero

Gaussian process (random �eld) Z = (Z(t))t2Rd with

cov(Z(s); Z(t)) = (jtj+ jsj � jt� sj)=2; s; t 2 Rd;(3)

where j � j is the Euclidian norm in Rd; d � 1.

The covariance structure (3) can also be characterized by the isotropic mean square condition

E((Z(s)� Z(t))2) = jt� sj; s; t 2 Rd:(4)

Notice that Z(s) and Z(t) � Z(s) are independent if and only if 0; s and t are colinear, so that the

independent increments property of one-dimensional Brownian motion has apparently not been fully

generalized.

A second generalization of Brownian motion to multi-dimensional time was given by Chentsov ([Che56]);

cf. also [Py73]:

Let W = (W (t))t2Id be a mean-zero Gaussian process with covariance structure

cov(W (s);W (t)) = s ^ t; s; t 2 Id;(5)

where s ^ t := Q
i�d(si ^ ti) for s = (s1; :::; sd) and t = (t1; :::; td); then, if si � ti 81 � i � d, we have

cov(W (s);W (t)�W (s)) = s^ t� s ^ s = 0, i.e. under the natural partial ordering of Id, the property

of independent increments has been retained.
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The processW is called Brownian sheet (cf. [Py73]). A variant ofW is the so-called tied-down Brownian

sheet U = (U(t))t2Id , de�ned by

U(t) := W (t)�W (1) �
Y
i�d

ti; t = (t1; :::; td) and 1 = (1; :::; 1)

(i.e. for d = 1 U coincides with the Brownian bridge).

Identifying (as in 1.4) each t 2 Id with [0; t]d , and denoting with � the Lebesgue measure on Id, then,

with W ([0; t]) := W (t); t 2 Id, (5) is equivalent to

cov(W ([0; s]);W ([0; t])) = �([0; s] \ [0; t]); s; t 2 Id:(50)

But note however that the restriction of Z onto the parameter space Id is not identical with W , since

for 0; s and t being colinear one has

(jtj+ jsj � jt� sj)=2 = jsj 6= s ^ t;

in general. Therefore the following question arises:

Is it possible to represent the L�evy-process Z as a set-indexed process Z0 = (Z0(C))C2C with an

appropriately chosen class C = fCt : t 2 Rdg such that anagously to (50) the covariance of Z 0 is given
by

cov(Z 0(Cs); Z
0(Ct)) = �(Cs \ Ct)(6)

with a suitable p-measure �?

An answer to this question is given in [Os85]:

Let us restrict ourselves to the unit sphere Sd := ft 2 Rd : jtj � 1g, i.e. consider L�evy's multivariate
Brownian motion Z = (Z(t))t2Sd as it is done in [Os85], and, for t 2 Sd let

Ct := fv 2 Rd : jv � t=2j � jt=2jg;

so that Ct is the closed sphere in Rd having for a diameter the ray from 0 to t.

n = 2 :

-

6

�
�
�
�
�
��

�
�
�
�
�
q t

t=2

v

0

Ct

r
r

The family fCt : t 2 Sdg plays then (as seen below) in the representaion of the L�evy Brownian motion Z as a set-indexed process

the same role as the class of all lower left orthants [0; t] \ Id do for the W and U processes with parameter set Id.
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Now, let � be the p-measure on Sd \ Bd with density function fd (w.r.t.Lebesgue measure) given by

fd(v) := (cd � jvj)�1; v 2 Sd;

where cd := (2�)d=2=�(d=2) is the surface area of Sd. Then we get

For any s; t 2 Sd �(Cs \ Ct) = c�1d
�
jtj+ jsj � jt� sj

�
=2:(7)

Comparing this with (3) we see: For s; t 2 Sd it follows that cov(Z(s); Z(t)) = (cd=2) � �(Cs \ Ct),

i.e. with Z0(Ct) := (cd=2)
�1=2Z(t) we get

cov(Z0(Cs); Z
0(Ct)) = �(Cs \ Ct); i.e. (6):

(Note that scalar multiplication (by (cd=2)
�1=2) does not change the process in any essential way.)

Note also that Z0 has independent \increments" in the sense that Z0(Cs) and Z0(Ct) are independent if Cs \Ct = ? �� a:s:

PROOF OF (7) in the case d = 2 (with c2 = 2�).

Let t = (t1; t2) 2 S2 and a = (a1; a2) 2 @Ct, assuming w.l.o.g. (due to the spherical symmetry of fd) that t1 = 0

and a1 > 0:

p@@@
@

a

r
r

�
�
�
�

-

6

t

0
x-axis (w.r.t. t)

Ct

#t�
�
2

#a

#a

D
a

t

HHY

Let #a denote the angle between a and the x-axis (w.r.t. t) and let D
a
t be the hatched region in the �gure.

Representing v = (v1; v2) by its polar coordinates, we have

v = (jvj cos#; jvj sin#) 2 Da
t () 0 � jvj � jtj cos(#� �

2
) and 0 � # � #a:

Thus we get (note that dv = jvjdjvjd#):

�(D
a
t ) = c�12

Z
R2

1Da

t
(v)

1

jvj dv = c�12

Z #a

0

Z jtj cos(#��
2 )

0

1

jvj jvj djvj d#

= c�12

Z #a

0

jtj cos(#� �

2
) d# = c�12 jtj

�
sin(#a � �

2
) + 1

�
= c�12

�
jtj � jtj sin(�

2
� #a)

�
= c�12

�
jtj � jt� aj

�
; i.e.

�(D
a
t ) = c�12

�
jtj � jt� aj

�
:(+)
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Considering now Cs \ Ct for s 2 S2 and a 2 @Cs \ @Ct, then (where a0 (see the �gure below) takes over the

role of a before, now with s instead of t)

�(Cs \Ct) = �(D
a0

s ) + �(D
a
t );

whence by (+) (noticing that js� a0j = js� aj)

�(Cs \Ct) = c�12

�
jsj � js� a0j+ jtj � jt� aj

�
=

c�12

h
jtj+ jsj � (js� aj+ jt� aj)

i
= c�12

�jtj+ jsj � jt� sj�;
since t� a and s � a are colinear. �

-

6

t

0
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(8) It can be shown that (7) is equivalent to

d�(Cs; Ct) = 2c�1d jt� sj 8s; t 2 Sd(70)

(where d�(A;B) := �(A�B)). Next (as already remarked in (1.5.4)), the class of all closed Euclidian

balls form a VCC, whence

C := fCt : t 2 Sdg
is also a VCC; thus, we can apply the FCLT 2.2.3 with X = Sd;X = Sd \ Bd and Sn = (Sn(Ct))Ct2C ,
where

Sn(Ct) := n�1=2
X
j�n

1Ct(�j) � �j ;

the �j; j 2 N, being i i d with E(�j ) = 0 and E(�2j ) = 1, the �j; j 2 N, being i i d with Lf�jg = � (having

Lebesgue density fd), and where (�j)j2Nis independent of (�j)j2N, to obtain the following result (note
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that both conditions (i) and (ii) in Theorem 2.2.3 are obviously ful�lled here):

Sn
L��!
sep

Z0(9)

i.e. Z0 proves to be the limiting process of a sequence of Partial-sum processes with random locations.

In addition, Z0 = (Z 0(Ct))Ct2C can be chosen as a process with bounded and uniformly d�-continuous

sample paths; moreover, (70) shows the existence of a version of the L�evy process Z = (Z(t))t2Sd with
continuous sample paths, cf. above:

Z(t) =
�cd
2

�1=2
Z0(Ct) for t 2 Sd:
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4 Metric Entropy and Vapnik-Chervonenkis classes

4.1 Packing and covering numbers; Metric Entropy

As we have seen in 1.5, Glivenko-Cantelli convergence, i.e. jj�n � �jjC �! 0 P� a:s:, fails to hold for

all � if the class C is \too rich"; cf. our Example 1.5.5.

The same is true in view of the validity of FCLT's:

Consider again 1.5.5 and the corresponding empirical C-process �n = (�n(C))C2C with �n(C) :=

n1=2
�
�n(C)� �(C)

�
; then: If (as in Theorem 2.2.1) the assertion

�n
L��! G � in (l1(C); jj � jjC)

would hold true, the CMT 2.3.16 would imply that

sup
C2C

j�n(C)j L��! sup
C2C

jG� (C)j;

where supC2C jG� (C; !)j < 1 for all !, whence jj�n � �jjC = n�1=2 supC2C j�n(C)j P��! 0 and also

jj�n � �jjC �! 0 P� a:s: according to 2.1.4, in contradiction to 1.5.5.

Thus, in order to obtain Uniform Laws of Large Numbers (ULLN) and Functional Central Limit

Theorems (FCLT) for stochastic processes indexed by general parameter spaces T in section 6 and 7,

respectively, it is clear that T is not allowed to be \too rich".

To be \too rich" will be described through the behaviour of the so-called metric entropy of T , assuming

that T = (T; d) is a pseudo-metric space.

So, let T = (T; d) be a pseudo-metric parameter space (e.g. T = C � X ; d = d�; � p-measure on X ,
d�(C1; C2) = �(C1�C2)). Following Dudley ([Du84]) a set ft1; :::; tng � T is called a u-net (for any

given u > 0) i� for each t 2 T there is some ti such that d(t; ti) � u.

This gives raise to de�ne the so-called covering numbers of (T; d):

4.1.1 De�nition.

For each u > 0, let

N(u; T; d) := inffn 2 N : 9u � net ft1; :::; tng � Tg;
i.e. N(u; T; d) is the minimal number of points in a u-net. H( � ; T; d) := logN( � ; T; d) is called the

metric entropy of T = (T; d). (Note that H(u; T; d) is increasing as u �! 0.)

(If d � 0, that is d(s; t) = 0 8s; t 2 T , we putN(0; T; d) := 1, whence in this case N(u;T; d) � 1 and thereforeH(u; T; d) = 08u � 0.
So we may allow u to range in [0;1).)

A closely related concept are the so-called packing numbers of (T; d). For this, given any u > 0, let

D(u; T; d) denote the largest m such that for some t1; :::; tm 2 T d(ti; tj) > u whenever i 6= j. The

points t1; :::; tm may be called u- distinguishable.
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4.1.2 Remark.

If ft1; :::; tng is a maximal u- distinguishable set, then ft1; :::; tng is a u-net.

4.1.3 Lemma.

For any u > 0

D(2u; T; d)� N(u; T; d)� D(u; T; d):

(So, in this sense covering numbers and packing numbers are equivalent concepts.)

As we shall see in section 6 and 7, respectively, in order to obtain a ULLN for RMP's indexed by F, stochastic boundedness of a
sequence of random covering numbers of F (equipped with appropriate random pseudo-metrics) will be crucial, wheras, for a FCLT
to hold, a uniform integrable L2-entropy condition will be imposed.

4.2 Vapnik-Chervonenkis classes in arbitrary sample spaces X =

(X;X )

Let X = (X;X ) be an arbitrary measurable space and C � X be a VCC (see (1.5.9), i.e.

9s 2 N s.t. mC(s) < 2s; where mC(n) := maxf�C(F ) : F � X; jF j = ng

for each n 2 N, and �C(F ) := jfF \ C : C 2 Cgj.
Given a VCC C, v � V (C) := minfs 2 N : mC(s) < 2sg is the so-called Vapnik-Chervonenkis Index

of C.
According to the following lemma VCC's \are of polynomial discrimination".

4.2.1 Lemma ([Vap71]; cf. [Gae83], Lemma 9, p. 27).

If C is a VCC, then mC(n) � nv for all n � 2.

(Note that for arbitrary C one has mC(n) � 2n 8n 2 N.)

Moreover, as shown by Alexander ([Al84], inequality (1.8)),

C VCC =) (4.2.2): mC(n) �Pj�v�1
�
n
j

� � � ne
v�1
�v�1

8n � v � 1.

In the following let (X;X ; �) be an arbitrary p-space, and, given a class C � X , let d�(C1; C2) =

�(C1�C2)); C1; C2 2 C. Then (T; d) := (C; d�) is a pseudo-metric parameter space. In this situation

Dudley ([Du78], Lemma 7.13) proved the following fundamental result:

4.2.3 Lemma.

Let C � X be a VCC; then

N(u; C; d�) � K u�vj logujv 80 < u � 1=2;

where the constant 0 < K <1 does only depend on v � V (C) but not on the p-measure � on X .
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As we shall see in 4.3 below, a corresponding inequality will hold in the more general case of Vapnik-Chervonenkis graph classes F
of X -measurable functions, containing 4.2.3 as a special case (with F = f1C : C 2 Cg).

4.2.4 Examples of VCC's (cf. [Wen81]).

(a) X = Rd; d � 1; C = f(�1; t] : t 2 Rdg the class of all \lower-left orthants"; s = d+ 1.

(b) X = Rd; d � 1; C = f �
i�d

[si; ti] : �1 < si � ti <1g; s = 2d+ 1.

(c) X = Rd; d � 1; C = fB � Rd : B closed Euclidian ball g; s = d+ 2.

We want to present here an independent nice proof of (c) which I learned from Fleming Topsoe in 1976

(personal communication); the proof is based on the following two auxiliary results (+) and (++):

(+) RADON'S THEOREM (cf. [Val64], Thm. 1.26).

Each F � Rd; d � 1, with jF j � d+2, can be decomposed into two (disjoint) subsets Fi; i = 1; 2,

such that co(F1)\ co(F2) 6= ? (where co(Fi) denotes the convex hull of Fi).

For illustration, let d = 2:

��
��

��
��

��
��

PPPPPPPPPPc
x2

c
x4

c x3
c
x1

r
F = fx1; x2; x3; x4g
F1 = fx2; x3g
F2 = fx1; x4g.

(++) SEPARATION PROPERTY.

For any two closed Euclidian balls Bi � Rd; d � 1; i = 1; 2; one has

co(B1nB2)\ co(B2nB1) = ? :

For illustration, consider again the case d = 2:

&%
'$

B1

B2b
b

Now, in order to prove (c), we must show:

8F � Rd with jF j = s := d+ 2 9F 0 � F s.t. F 0 6= F \ B 8B 2 C:
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Suppose to the contrary that there exists an F � Rd with

jF j = d+ 2 s.t. 8F 0 � F 9B 2 C with F 0 = F \B:
This implies that for the Fi's in (+) (which decompose F ) there exist two closed Euclidian balls

Bi; i = 1; 2, such that Fi = F \ Bi. Since F1 \ F2 = ? it follows that F1 � B1nB2 and F2 � B2nB1,

whence

co(B1nB2) \ co(B2nB1) � co(F1) \ co(F2) 6= ?
(by (+)) which contradicts (++). �

Further examples of VCC's are obtained on the basis of the following Lemma (cf. [Du78], Thm. 7.2, and [Po84], Chap. II, Lemma
1.8):

4.2.5 Lemma.

Let G be an arbitrary m-dimensional vectorspace of real-valued functions g being de�ned on an arbitrary

set X equipped with the �-�eld X = P(X) (whence each g 2 G is measurable). Then the class

C := ffg � 0g : g 2 Gg is a VCC.

PROOF. W.l.o.g.let jXj � m + 1 and let A = fx1; :::; xsg � X be arbitrary with jAj = s := m + 1; consider

the linear map L : G �! Rs, de�ned by L(g) := (g(x1); :::; g(xs)). Since L(G) is a linear subspace of Rs with

dimension � m = s� 1, there exists a v = (v1; :::vs) 2 Rs; v 6= 0; s.t. v?L(G), i.e. one hasX
i�s

vig(xi) = 0 8g 2 G:(+)

Now, let A+ := fxi 2 A : vi � 0g and A� := fxi 2 A : vi < 0g, where w.l.o.g. A� 6= ? (by replacing v through

�v otherwise). We are going to show

A+ 6= A \ fg � 0g 8g 2 G;(++)

from which the assertion of 4.2.5 follows.

As to (++), suppose to the contrary that there exists a g 2 G s.t. A+ = A \ fg � 0g; thenX
i�s

vig(xi) =
X

i:xi2A+

vig(xi) +
X

i:xi2A�
vig(xi) > 0

in contradiction to (+). �

As an immediate consequence of the de�nition of a VCC it is clear that any subclass of a VCC is also

a VCC.

As a permanence property, we mention here only the following lemma and its corollary:

4.2.6 Lemma ([Du78], Prop. (7.12)).

Let C be a VCC and k 2 N be arbitrary, but �xed. Given C1; :::; Ck 2 C, let �(C1; :::; Ck) be the algebra

generated by C1; :::; Ck and

�k(C) :=
[
f�(C1; :::; Ck) : C1; :::; Ck 2 Cg;

then �k(C) is also a VCC.
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4.2.7 Corollary.

If C is a VCC, then the classes fC�D : C;D 2 Cg ; fCnD : C;D 2 Cg and fC \ D : C;D 2 Cg,
respectively, form also VCC's.

As to further examples we refer to Stengle and Yukich [Sten89] and Laskowski [La92]; see also the

references in the following more general context.

4.3 Vapnik-Chervonenkis graph classes of X -measurable
functions f : X �! R

So far we have mainly considered examples of processes indexed by classes C of sets, where C �
X ; (X;X ) being a given measurable space.

To motivate the need for extending the index sets from classes of sets to classes of functions, we present

the following examples A) and B):

A) POLLARD's k-MEANS CLUSTERING PROCEDURE

(Cf. [Po84], Example 4, p.9 and Example 29, p. 30; [Po82a] and [Po82b]; [Gae87]; [Ro91] and [Ro95].)

Given data x1; :::; xn 2 X = Rd viewed as realizations of i i d re's �j in (Rd;Bd) (on a basic p-space

(
;A;P)) (i.e. xj = �j(!)), let k 2 N be arbitrary but �xed (i.e. k is given in advance).

Suppose that the underlying unknown � := Lf�jg is \k-modal" (e.g. with Lebesgue-density '� having
k modes).

Consider d = 2 and k = 2 for illustration (i.e. '� bimodal)

�
�
�
�
�
�
�
��

bbb bbb b bb
bb
bbbb
b

b b b b bbb bbb
b

b
c = �j(!); 1 � j � n:

�
�
�
�
�
�
�
��

6

s

'�

s
a�1 a�2

a�1 and a�2 are the unknown
modes of � (modes of '�).

The question arises how to choose k data-clusters with empirical cluster centers a�ni = a�ni(!) (based
on the data xj = �j(!); 1 � j � n), 1 � i � k, such that, as the sample size n tends to in�nity, the
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a�ni converge P� a:s: to the unknown modes a�i of �, 1 � i � k.

An answer is provided by the k-means clustering procedure (CP):

(CP): Given the data xj(= �j(!)); 1 � j � n; n 2 N, determine a k-tuple (a�n1; :::; a
�
nk) which

minimizes the expression

n�1
X
j�n

min
1�i�k

jxj � aij2(4.3.1)

over all (a1; :::; ak) with ai 2 Rd, and then allocate each xj to its nearest a
�
ni.

Let �n be the empirical measure based on �1; :::; �n and let for ai 2 Rd; 1 � i � k,

W (a1; :::; ak; �n) :=
Z
Rd

min
1�i�k

jx� aij2 �n(dx);(4.3.2)

then

W (a�n1; :::; a
�
nk; �n) = min

(a1;:::;ak)
W (a1; :::; ak; �n):(4.3.3)

In the following we con�ne to the case d = 1 and k = 2) (i.e. � being bimodal), and we shall write

(a�n; b
�
n) and (a�; b�) instead of (a�n1; a

�
n2) and (a�1; a

�
2), respectively.

Now, consider (instead of a class C of sets) the following class F of B-measurable functions f : R�! R:

F := ffa;b : (a; b) 2 CMg(4.3.4)

where fa;b(x) := jx� aj2 ^ jx� bj2; x 2 R, and CM :=
�
[�M;M ]�R�[ �R� [�M;M ]

�
, where M > 0

is chosen large enough (see [Po84], p.10).

We assume that Z
R

x2 �(dx) <1;

whence W (a; b; �) :=
R
R
fa;b(x) �(dx) <1 8(a; b) 2 R2.

Then, by the strong law of large numbers we have 8(a; b) 2 R2

W (a; b; �n) = �n(fa;b) = n�1
X
j�n

fa;b(�j) �! �(fa;b) = W (a; b; �) P� a:s:(4.3.5)

Now, a further assumption on � is needed:

9(a�; b�) 2 R2 being uniquely determined up to permutation(4.3.6)

of its coordinates such that

�(fa�;b�) = min
(a;b)2R2

�(fa;b):

The following picture is to visualize (4.3.6) for � with density '� :
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a� b�

fa�;b�

'�

On the other hand, i.e. on the empirical side, we have by (4.3.3)

�n(fa�n;b�n) = min
(a;b)2R2

�n(fa;b):(4.3.7)

Thus, (4.3.5) - (4.3.7) gives raise to expect

(a�n; b
�
n) �! (a�; b�) P� a:s:(4.3.8)

i.e. P� a:s convergence of the empirical cluster centers to the unknown modes of �.

(4.3.8) can be proved by showing

sup
(a;b)2CM

j�n(fa;b)� �(fa;b)j �! 0 P� a:s:(4.3.9)

As to (4.3.9), sup(a;b)2CM j�n(fa;b)� �(fa;b)j = supf2F j�n(f)� �(f)j with F as de�ned by (4.3.4) being

a Vapnik-Chervonenkis graph class (VCGC) (see below for the de�nition of VCGC's of functions).

Thus (4.3.9) proves to be a consequence of a result generalizing Theorem 2.1.6 from VCC's C to

VCGC's F with �(F ) <1, F being an envelope of F ; note that in the present case

sup
(a;b)2CM

fa;b(x) � F (x) := (x�M)2 + (x+M)2 8x 2 R

and �(F ) <1 since
R
R
x2 �(dx) <1 by assumption. (Cf. [Po84], Example 29, and section 6.3 below).

To sketch the proof of (4.3.8) on the basis of (4.3.9) one shows at �rst

(a): For su�ciently large M > 0 (a�n; b
�
n) 2 CM P� a:s: 8n � n0.

Then one gets

(b): �n(fa�n;b�n) �
(4:3:7)

�n(fa�;b�) �! �(fa�;b�) P� a:s: by (4.3.5), where P� a:s:

�(fa�;b�) �
(4:3:6)

�(fa�n;b�n) �
for large n
by (4.3.9) and (a)

�n(fa�n;b�n), which yields

�(fa�n ;b�n) �! �(fa�;b�) P� a:s:
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(c): Finally, since by (4.3.6) (a�; b�) is uniquely determined (up to permutation of its coordinates),

(b) implies (4.3.8). �

A modi�cation of the k-means clustering procedure for k�-modal � with k� unknown to obtain P-a.s.

convergence of k(n) to k� and simultaneously

(a�n1; :::; a
�
nk(n)) �! (a�1; :::; a

�
k�) P� a:s:;(4.3.80)

where k(n) denotes the number of empirical clusters w.r.t. a modi�cation of the empirical clustering

procedure, is contained in [Gae87], [Ro91] and [Ro95].

B) LOCAL EMPIRICAL PROCESSES, STUTE's CONDITIONAL EMPIRICAL PROCESSES

AND CONDITIONAL EMPIRICAL DISTRIBUTION FUNCTIONS

(See [Ei97], [Stu86a] and [Stu86b].)

As pointed out in [Ei97], local empirical processes occur implicitely in the work of Kim and Pollard [Ki90] on cube root asymptotics
and of Nolan and Marron [No89] on automatic band width selection; local empirical-type processes arise also in certain interval
censoring and deconvolution problems (see Part II of Groeneboom and Wellner [Gro92]).

Let �j ; j 2 N, be i i d re's in (Rd;Bd); d � 1, de�ned on a p-space (
;A;P) with df G.

Let t 2 Rd and J 2 Bd be arbitrary, but �xed. Given an invertible bimeasurable transformation

h : Rd �! Rd, let

A(h) := t+ hJ (where hJ := fh(x) : x 2 Jg):(4.3.10)

To visualize A(h), let d = 2; J = E (the unit ball in R2) and h(x) := 1
2
jxj; x 2 R2:

&%
'$

J

A(h)6

-
0 1
�
�
�
�
�
�
�
�> t&%
'$
����
���
����
����
����
����
����
������
�

Next, let (hn)n2Nbe a sequence of invertible bimeasurable transformations h : Rd �! Rd and assume

for

An := A(hn) and an := P(�j 2 An); n 2 N;
the following set of conditions

(A:i) an > 0 8n 2 N; (A:ii) nan �! 1 and (A:iii) an �! 0 as n �! 1:
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(Note that (A.iii) implies that G is continuous at t; otherwise (A.iii) may be replaced by (A.iii') an �! a for some 0 � a � 1.)

For each n 2 N, let �n(t; � ) be de�ned by

�n(t; B) := (nan)
�1X

j�n
I(�j 2 t + hn(J \ B)) ; B 2 Bd(4.3.11)

(where I( � )� 1f � g).
�n(t; � ) is called local empirical measure at t.

(Note that �n(t; � ) need not be a probability measure; one only has that E(�n(t;Rd)) = 1.)

Now, let F be a class of measurable functions f : Rd �! R with supports contained in J (i.e.

f(x) = 0 8x 2 RdnJ 8f 2 F), and let

�n(t; f) :=
Z
J

f(x)�n(t; dx) =
(4:3:11)

(nan)
�1X

j�n
f(h�1n (�j � t)); f 2 F ;(4.3.12)

where h�1n denotes the inverse of hn.

� Note at this place that for any �xed t 2 Rd and J 2 Bd the processes (�n(t; f))f2F can be considered

as RMP's (see (3.1.1)) by choosing as random p-measures wnj and as rv's �nj; 1 � j � n; n 2 N,

wnj := ��nj with �nj := h�1n (�j � t); and �nj := (nan)
�1:

(In fact, for each f 2 F ; Pj�nwnj(f)�nj = (nan)
�1P

j�n
R
Rd
f(x)��nj (dx) = (nan)

�1P
j�n f(�nj) =

(nan)�1
P

j�n f(h
�1
n (�j � t)) = �n(t; f).)

The standardized process �locn (t) = (�locn (t; f))f2F with �locn (t; f) := (nan)1=2
�
�n(t; f)� E(�n(t; f))

�
is

called local empirical process at t indexed by F .
This setup allows to consider the following interesting examples (see [Ei97]):

4.3.13 Example.

Let �j; j 2 N, be i i d rv's on a p-space (
;A;P) with df G having a continuous density g in a neigh-

borhood of a �xed t 2 R.
Set J := [�1

2
; 1
2
]; F := fKg with a so-called kernel function K satisfying K(x) = 0 if jxj > 1

2
.

Let hn(x) := hn � x; x 2 R, with hn > 0 and hn �! 0 as n!1. Then,

�n(t;K) =
(4:3:12)

(nan)
�1X

j�n
K
��j � t
hn

�
= hna

�1
n ĝn(t);

where ĝn(t) := (nhn)�1
P

j�nK
�
�j�t
hn

�
is the so-called kernel density estimator of g(t) with window

size hn.

(Note that h�1n an = h�1n P(�j 2 t+ hnJ) = h�1n P(�j 2 [t� 1
2hn; t+

1
2hn]) = h�1n

R t+ 1
2hn

t� 1
2hn

g(x) dx �! g(t) as n!1.)
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4.3.14 Example.

Let d = 2, �j = (�j; �j); j 2 N, i i d re's in (R2;B2) with df G having density g�;� and marginal

densities g� and g�, respectively. Choose J := [�1
2
; 1
2
] � R; t := (t; 0); t 2 R, and, for (z; y) 2 R2 let

hn(z; y) := (hn � z; y) with hn > 0 and hn �! 0 as n ! 1. Let K be a kernel function as in 4.3.13

and F := fRg with

R(z; y) := y �K(z) ; (z; y) 2 R2:(+)

Then,

�n(t; R) =
(4:3:12)

(nan)
�1X

j�n
R(h�1n (�j � t)) = (nan)

�1X
j�n

�jK
��j � t
hn

�
;

since h�1n (�j�t) = h�1n (�j�t; �j) = ( �j�t
hn
; �j) and therefore R(h

�1
n (�j�t)) = R

�
�j�t
hn
; �j
�
=
(+)

�jK
�
�j�t
hn

�
.

Thus

�n(t; R) = m̂n(t)hna
�1
n ĝn(t) = m̂n(t)�n(t;K) (cf: 4:3:13);

where ĝn(t) is the kernel density estimator of the marginal density g�(t) and m̂n(t) is the kernel

regression estimator of m(t) := E(�j� = t) de�ned by

m̂n(t) :=
(nhn)

�1P
j�n �jK

�
�j�t
hn

�
ĝn(t)

:

4.3.15 Example.

Keeping up the notation of example 4.3.14, choose now, instead of F = fRg, the class F = ffv : v 2 Rg
of functions fv de�ned by

fv(z; y) := I(y � v)K(z); (z; y) 2 R2;

then (again with t = (t; 0); t 2 R)

�n(t; fv) := (nan)
�1X

j�n
I(�j � v)K

��j � t
hn

�
= Fn(vjt)hna�1n ĝn(t)

= Fn(vjt)�n(t;K) (cf: 4:3:13)

with

Fn(vjt) :=
(nhn)

�1P
j�n I(�j � v)K

�
�j�t
hn

�
ĝn(t)

;

which are the conditional empirical distribution functions (of sample size n) �rst intensively studied

by Stute [Stu86a],[Stu86b].

As to an empirical process approach to the uniform consistency of kernel-type function estimators we

refer to a very remarkable forthcoming paper by Uwe Einmahl and David Mason [Ei98].
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In the following let again X = (X;X ) be an arbitrary measurable space and F be a class of X -
measurable functions f : X �! R with X -measurable envelope F : X �! R+ (i.e. supf2F jf(x)j �
F (x) 8x 2 X).

Generalizing the concept of VCC's C � X (equivalently f1C : C 2 Cg) to more general classes F of

X -measurable functions f : X �! R leads to

4.3.16 De�nition.

F is called a Vapnik-Chervonenkis graph class (VCGC) if

R := fGf : f 2 Fg

is a VCC in (X �R;XNB), where
Gf := f(x; t) 2 X �R : 0 � t � f(x) or f(x) � t � 0g:

Gf � X �R is the so-called graph region associated to f .
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Gf

f

NOTE: f X -measurable =) Gf 2 XNB whence the graph region class R is a subclass of

XNB.
Given a VCGC F we denote with V (R) the Vapnik-Chervonenkis Index of the graph region class R
(cf. 4.2) corresponding to F .
Clearly, if C � X is a VCC, then F := f1C : C 2 Cg is a VCGC with V (R) = V (C).
Examples of VCGC's as well as permanence properties which allow to construct new VCGC's from known ones are contained in
[Po84] (there called \classes of polynomial discrimination") and [Va96], section 2.6.5.

The present graph regionsGf are called \between graphs" in [Va96]; compared with the open subgraphs of f , de�ned by f(x; t) : t <
f(x)g, which led to the concept of Vapnik-Chervonenkis subgraph classes (VCSGC) of functions in [Va96], section 2.6.2, it turns
out that F is a VCGC if and only if it is a VCSGC; see [Va96], Problem 11, p. 152. Thus both concepts are equivalent.

The following fundamental lemma is mentioned in [Al84]. It generalizes lemma 4.2.3 above; but notice

that in addition the assumption of � being a p-measure on X can be dispensed with. The proof, as

carried out by Klaus Ziegler [Zi94], Lemma A4, combines the methods in proving lemma 2.7 in [Al84]

and lemma 25 in section II.5 of [Po84].

49



4.3.17 Lemma.

Let F be a VCGC with envelope F and graph region class R. Then there exists a constant 0 < K(v) <

1 depending only on v � V (R) such that for all measures � on X with �(F ) :=
R
X F d� <1

N("�(F );F ; d(1)� ) � K(v)"�(v�1)j log "jv�1 80 < " � 1

2
:

Here, as in 4.2.3, log " = loge " � ln ", and d(1)� is de�ned by d(1)� (f; g) := �(jf � gj); f; g 2 F .
NOTE: lim"!0 j log "j� "� = 0 8�; � > 0, so j log "jv�1 � "�(v�1) for small ", whence

N("�(F );F ; d(1)� ) � K(v)"�2(v�1) 80 < " � 1

2
:

Also, in the special case F := f1C : C 2 Cg; C VCC, F � 1, d(1)� = d�, � an arbitrary p-measure on X ,
4.3.17 yields a sharpened version of 4.2.3.

PROOF. W.l.o.g. assume v � 2; let 0 < " � 1
2
be arbitrary, but �xed, and choose f1; :::; fm 2 F

(w.l.o.g. m � 2) s.t.

(1) d(1)� (fi; fj) := �(jfi � fj j) > "�(F ) for i 6= j.

Let n be the smallest natural number s.t.

(2) 1
2
exp(2 logm� n"=2) < 1.

Then, by elementary calculations, one gets

(3) n � (1 + 4 logm)=" � 15Lm=e"

where La := max(1; loga).

Now, a stochastic argument comes into play (cf. Dudley's ingenious proof of lemma 4.2.3):

Let � be the p-measure on X de�ned by

�(A) := �(F )�1
Z
A

F d�; A 2 X ;

and let K : X � B �! [0; 1] be the stochastic kernel de�ned by

K(x;B) := U [�F (x); F (x)]; x 2 X;B 2 B;

where U [a; b] denotes the uniform distribution on [a; b]. Let �1; :::; �n (with n chosen as above, cf. (2))

be i i d re's in (X �R;XNB), de�ned on a basic p-space (
;A;P), with Lf�jg = ��K, where ��K
is the p-measure on XNB de�ned by

��K(C) :=
Z
X

U [�F (x); F (x)]�ft 2 R : (x; t) 2 Cg��(dx); C 2 XNB:
(To see that K is indeed a stochastic kernel, use the fact that X -measurability of K( � ;B) has only to be checked for sets B of the
form (�1; t]; t 2 R. So, �x t 2 Rand distinguish between the three cases t > 0; t = 0, and t < 0. Then, e.g. in the case t > 0 we
obtain

K( � ; (�1; t]) = 1fF�tg + ((t+ F )=2F ) 1fF�tg
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which is X -measurable by the assumed measurability of F .)

Now, let Gi := Gfi be the graph regions of fi; 1 � i � m; then (with the convention that in the case

F (x) = 0 we set 0
0
:= 0)

(4) U [�F (x); F (x)]�ft 2 R : (x; t) 2 Gi�Gjg
�
= (2F (x))�1jfi(x)� fj(x)j 8x 2 X ,

as the following picture shows (with Gi�Gj being the hatched region).
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Furthermore, we have

(5) 8�k(!); ! 2 
; 1 � k � n, and 81 � i; j � m; i 6= j

S0(!) \Gi = S0(!) \Gj () �k(!) =2 Gi�Gj 81 � k � n,

where S0(!) := f�1(!); :::; �n(!)g.

(Note that S0(!)\Gi 6= S0(!)\Gj () 91 � k0 � n s.t. �k0(!) 2 Gi�Gj ; note also that jS0(!)j � n.)

Next, we are going to show that

m � mR(n) := max
n
jfS \ Gf : f 2 Fgj : S � X �R; jSj= n

o
:

For this, consider �rst any �xed 1 � i; j � m; i 6= j; then

P(�k =2 Gi�Gj 81 � k � n) =
(�k i i d )

[1�P(�1 2 Gi�Gj]
n = [1� (� �K)(Gi�Gj]

n

= [1�
Z
X

U [�F (x); F (x)]�ft 2 R : (x; t) 2 Gi�Gjg
�
�(dx)]n

=
(4)

[1�
Z
X

(2F (x))�1jfi(x)� fj(x)j�(dx)]n

= [1� �(jfi � fj j)(2�(F ))�1]n <
(1)

(1� "=2)n � exp(�n"=2):
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Therefore, according to (5) we get

P(f! 2 
 : 9i 6= j s.t. S 0(!) \Gi = S0(!)\Gjg) <
 
m

2

!
exp(�n"=2)

� 1

2
m2 exp(�n"=2) =

1

2
exp(2 logm� n"=2) <

(2)
1;

whence

P(f! 2 
 : S0(!)\Gi 6= S0(!)\Gj 81 � i; j � m; i 6= jg) > 0:

Therefore there exist � n points in X � R from which R picks out m distinct subsets of S0(!0) for

some !0 2 
. Since S0(!0) � X �R and jS0(!0)j � n, it follows (by de�nition of mR(n) and the fact

that mR(n) is increasing in n) that m � mR(n), whence by (3)

m � mR(15Lm=e"):

Now, if 15Lm=e" � v � 1, it follows by (4.2.2) (according to which mR(n) �
�
ne
v � 1

�v�1
8n � v� 1)

that m � mR(15Lm=e") � (15Lm=(v� 1)")v�1, which implies

(6) m � (30"�1 log(15"�1))v�1.

(In fact, since Lm=(v � 1) � L(m1=(v�1)) � m1=2(v�1), we have m � 15v�1m1=2"�(v�1) and thus m � (15"�1)2(v�1). Hence
m � (15L((15"�1)2(v�1))=(v� 1)")v�1 = (30"�1 log(15"�1))v�1.)

On the other hand, if 15Lm=e" < v � 1, it follows that logm � Lm < e"(v � 1)=15 < "(v � 1) �
(v � 1) log(30"�1) = log[(30"�1)v�1], whence m � (30"�1)v�1 �

("�1=2)
(30"�1 log(15"�1))v�1; i.e. (6)

holds also true in this case.

But (6) implies (recall " � 1=2)

(7) m � K(v)"�(v�1)j log "jv�1 with

K(v) := (30(log 15 + log 2)= log 2)v�1.

Finally, taking now m = m(") maximal s.t. (1) is ful�lled (note that m(") <1 by (6)), we obtain by

(7) for the packing numbers D("�(F );F ; d(1)� ) that

D("�(F );F ; d(1)� ) � K(v)"�(v�1)j log "jv�1;

which implies the assertion of 4.3.17 according to the second inequality in 4.1.3. �

REMARK.

The above method of proof is very interesting in its own right:

In order to verify that a certain situation holds true, an appropriate stochastic model is constructed

within which it is shown that a proper event occurs with positive probability, from which one then

infers the existence of the situation one was interested in.
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As discovered by Alexander [Al87], there is an elegant way to pass from the upper bound in 4.3.17

w.r.t. L1-entropy (i.e. concerning d(1)� ) to an analogous result for L2-entropy, i.e. concerning d(2)�

instead of d(1)� , where

d(2)� (f; g) :=
�
�(jf � gj2

�1=2
; f; g 2 F :

This is done by using the elementary inequality

(a� b)2 � 2ja2 sign(a)� b2 sign(b)j 8a; b 2 R;(4.3.18)

where

sign(a) :=

8>>><
>>>:
1 ; if a > 0

0 ; if a = 0

�1 ; if a < 0

; a 2 R:

4.3.19 Corollary([Zi94], Cor. A5; see also Lemma 36 in section II.6 of [Po84] for a di�erent method

of proof).

Let F be a VCGC with envelope F and graph region class R. Then there exists a constant 0 < K 0(v) <
1 depending only on v � V (R) such that for all measures � on X with �(F 2) <1

N("[�(F 2)]1=2;F ; d(2)� ) � K0(v)"�4(v�1) 8 0 < " � 1:

PROOF. Let F 0 := ff2 sign(f) : f 2 Fg; then 8f; g 2 F

d(2)� (f; g)2 = �(jf � gj2) =
Z
X

(f(x)� g(x))2 �(dx)

�
(4:3:18)

2

Z
X

jf2(x) sign(f(x))� g2(x) sign(g(x))j �(dx)

= 2d(1)�

�
f2 sign(f); g2 sign(g)

�
; i.e.

8f; g 2 F d(2)� (f; g)2 � 2d(1)� (f 0; g0)

with f 0 := f2 sign(f) and g0 := g2 sign(g), whence, by the de�nition of covering numbers, one gets

(a) N("[�(F 2)]1=2;F ; d(2)� ) � N( "
2

2
�(F 2);F 0; d(1)� ).

Now, also F 0 is a VCGC with envelope F 2 and V (R0) = V (R) � v, where R0 := fGf 0 : f
0 2 F 0g:

To see this, let M 0 := f(xi; ti); 1 � i � vg be an arbitrary subset of X � R with jM 0j = v. Set

M := f(xi; jtij1=2 sign(ti)); 1 � i � vg then M � X � R and jM j = v. Since F is a VCGC with

V (R) = v, there exists an N �M , N = f(xi; jtij1=2 sign(ti)); i 2 J � f1; :::; vgg such that

(b) N 6=M \Gf 8f 2 F .
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But (b) implies that N 0 6=M 0 \ Gf 0 8f 0 2 F , where N 0 := f(xi; ti) : i 2 Jg:
For, suppose to the contrary, thatN 0 =M 0\Gf 0 for some f

0 2 F 0; f 0 = f2 sign(f), i.e. f(xi; ti) : i 2 Jg
= f(xi; ti) : 1 � i � vg \ Gf 0 ; then, since

(xi; ti) 2 Gf 0 () (xi; jtij1=2 sign(ti)) 2 Gf ;

we get f(xi; jtij1=2 sign(ti)); i 2 Jg = f(xi; jtij1=2 sign(ti)); 1 � i � vg \ Gf , which contradicts (b).

Since M 0 was arbitrary with jM 0j = v; F 0 is a VCGC with V (R0) � v. In the same way one shows

that V (R0) < v would contradict the minimality of v and therefore V (R0) = V (R).
Thus, by the NOTE following lemma 4.3.17 with "0 := "2=2 and k := 2(v � 1) we get

N("0�(F 2);F 0; d(1)� ) � K(v)("0)�k 8 0 < "0 � 1

2
;

i.e. N( "
2

2
�(F 2);F 0; d(1)� ) � 2kK(v)"�2k 8 0 < " � 1, whence by (a)

N("[�(F 2)]1=2;F ; d(2)� ) � 2kK(v)"�4(v�1) 8 0 < " � 1: �

4.3.19 suggests the following de�nition (cf. [Al87] and [Va96], Condition (2.5.1), p.127):

4.3.20 De�nition.

Let (X;X ) be a measurable space, F a class of X -measurable real-valued functions, and let M(X;F )

be the set of all measures � on X with �(F 2) < 1, where F is an envelope of F . Then F is said to

have uniformly intrgrable L2-entropy, ifZ 1

0
(logN(�;F))1=2d� <1;

where N(�;F) := sup�2M(X;F )N(� [�(F 2)]1=2;F ; d(2)� ):

4.3.21 Remark.

If F has uniformly intrgrable L2-entropy, then (F ; d(2)� ) is totally bounded for each � 2 M(X;F ).

(In fact, if
R1
0

(logN(�;F))1=2 d� <1, then for each � 2M(X;F ) one has

N(� [�(F 2)]1=2;F; d
(2)
� ) < 1 for �� a:a: � 2 [0;1) (� � Lebesgue measure);(+)

but, since N(";F; d
(2)
� ) is increasing as "! 0, (+) must hold for all � 2 [0;1))

Finally, it follows from 4.3.19 that each VCGC F has uniformly intrgrable L2-entropy.
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5 Some Fundamental Inequalities

5.1 Symmetrization Inequality

Before stating some of the inequalities needed later, the following de�nition concerning the concept of independence in case of
non-measurable maps, i.e. of random quantities (rq's) is in order.
Guided by [Du83] and [Du84] (cf. also [Ho85]) we de�ne as in [Zi94], Def. 1.2.1:

5.1.1 De�nition.

Let (
;A;P) := ( �
j2N


j ;
N
j2N
Aj; �

j2N
Pj) be the countable product of p-spaces (
j;Aj;Pj), let V be an

arbitrary set and �j : 
 �! V be rq's of the form �j(!) = hj(!j) for ! = (!1; !2; :::) 2 
; j 2 N, with
arbitrary rq's hj : 
j �! V .

Then the sequence (�j)j2Nis called independent (or, �j; j 2 N, are said to be independent rq's).

The �j's are said to be independent and identically distributed (i i d), if in addition the p-spaces (
j;Aj;Pj)

as well as the rq's hj de�ned on them are identical.

In the case hj = id
j ; j 2 N, the sequence (�j)j2Nis said to be canonically formed.

NOTE: If the hj 's (and so the �j's) are re's in V = (V;V) (with an appropriate �-�eld V) then
independence in the sense of 5.1.1 is equivalent with the usual concept of independence of re's.

In the following, when dealing with stochastic processes �j = (�j(t))t2T (with common parameter

space T ), these processes will be considered as rq's with values in V = RT or V = l1(T ), respectively,
and independence of stochastic processes is to be understood in the sense of 5.1.1.

To avoid measurability questions we will (if not stated otherwise) tacitely assume that the parameter

spaces T are countable. (If not, one has to work with the \E� ; P�-calculus"; see e.g. [Zi94] and [Va96].)
Note that, for countable T , the jj�jjj � jj�jjjT := supt2T j�j(t)j are re's in (�R+; �B+) (�R+ := R+[ f1g
endowed with its Borel �-�eld �B+), whence also jjSnjjT ; n 2 N, are re's in (�R+; �B+), where Sn :=P

j�j(n) �j.

To formulate the Symmetrization Inequality for independent stochastic processes �1; :::; �n; n 2 N,

indexed by a common parameter space T , we need the concept of a so-called Rademacher sequence

("j)j�n, which means that the "j 's are i i d rv's taking only the values +1 or �1 with equal probability,

i.e. Lf"jg = 1
2��1 +

1
2�1 (�x � Dirac measure at x).

Then, given (as in 5.1.1) (
0;A0;P0) := ( �
j�n


0j;
N
j�n
A0j; �

j�n
P0j) and stochastic processes �j : 
0 �! RT

with �j(!
0) = hj(!

0
j) for !0 = (!01; :::; !

0
n) 2 
0; 1 � j � n, where hj : 
0j �! RT are stochas-

tic processes (indexed by T ), let (
00;A00;P00) := (f�1; 1gn; N
j�n
P(f�1; 1g); �

j�n
Lf"jg) and (
;A;P) :=

(
0�
00;A0NA00;P0�P00) (i.e. ("j)j�n is thought to be canonically formed and independent of (�j)j�n,
where �1; :::; �n are independent processes). Denoting with E!0 ; E!0 0 and E � E!0 ;!00 expectation of rv's

de�ned on (
0;A0;P0); (
00;A00;P00) and (
;A;P), respectively, then in this setting the following result
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holds true (cf. [Va96], Lemma 2.3.6 and [Zi94], Lemma 1.3.2):

5.1.2 Symmetrization Inequality.

Suppose that E!0 (j�j(t)j) < 1 for all t 2 T and 1 � j � n; then, for any convex and nondecreasing

function  : R+ �! R+ (put, as usual  (1) := lima!1  (a))

E!0
�
 
�
sup
t2T

j
X
j�n

(�j(t)� E!0 (�j(t)))j
�� � E

�
 (2 sup

t2T
j
X
j�n

"j�j(t)j)
�
:

PROOF. Let (�1; :::; �n) 2 f�1; 1gn be arbitrary but �xed; consider the decomposition

X
j�n

(�j(t)� E!0 (�j(t))) =
� X
�j=1

�j�j(t) +
X
�j=�1

�jE!0 (�j(t))
�
�
� X
�j=�1

�j�j(t) +
X
�j=1

�jE!0 (�j(t))
�
:

(+)

Since for any M � f1; :::; ng (with EM and E{M denoting expectation of rv's indexed by M and {M ,

respectively)

E!0
�
 
�
2 sup
t2T

j
X
j2M

�j�j(t) +
X
j2{M

�jE!0 (�j(t))j
��

= EM
�
 
�
2 sup
t2T

jE{M
� X
j2M

�j�j(t) +
X
j2{M

�j�j(t))j
��

�
( monotone
nondecreasing)

EM

�
 
�
E{M (2 sup

t2T
j
X
j�n

�j�j(t)j)
��

�
(Jensen's
inequality)

EM E{M

�
 (2 sup

t2T
j
X
j�n

�j�j(t)j)
�

=
(Fubini)

E!0
�
 (2 sup

t2T
j
X
j�n

�j�j(t)j)
�
;

we obtain with M = M1 := fj � n : �j = 1g and M = M2 := fj � n : �j = �1g, respectively, by the

ineqality

 (a+ b) � 1

2
 (2a) +

1

2
 (2b) 8 a; b 2 �R+

(valid since  is convex), that

E!0
�
 
�
sup
t2T

j
X
j�n

(�j(t)� E!0 (�j(t)))j
�� �

(+)

E!0
�
 
�
sup
t2T

j
X
j2M1

�j�j(t) +
X

j2{M1

�jE!0 (�j(t))j + sup
t2T

j
X
j2M2

�j�j(t) +
X

j2{M2

�jE!0 (�j(t))j
��

�

1

2
E!0
�
 
�
2 sup
t2T

j
X
j2M1

�j�j(t) +
X

j2{M1

�jE!0 (�j(t))j
��

+
1

2
E!0
�
 
�
2 sup
t2T

j
X
j2M2

�j�j(t) +
X

j2{M2

�jE!0 (�j(t))j
�� �

E!0
�
 (2 sup

t2T
j
X
j�n

�j�j(t)j)
�
:
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Since (�1; :::; �n) was arbitrary, we get

E!0
�
 
�
sup
t2T

j
X
j�n

(�j(t)� E!0 (�j(t)))j
�� �

E!0 0E!0
�
 (2 sup

t2T
j
X
j�n

"j�j(t)j)
�

=
(Fubini)

E(
�
 (2 sup

t2T
j
X
j�n

"j�j(t))
�
:

�

5.2 Maximal Inequality for Rademacher Averages

The maximal inequality for Rademacher Averages (see 5.2.3 below) is based on ideas exposited by Pisier [Pi83]. The present proofs
are mainly due to Klaus Ziegler [Zi94]. The following lemma is a special case of (3.2) in combination with (3.1) in [Po90]:

5.2.1 Lemma.

Given a Rademacher sequence "1; :::; "N and given a �nite and non empty subset M of RN, there exists

for each 1 � p <1 a universal constant 0 < Kp <1 such that

E
1
p

�
max
x2M

j
X
j�N

"jxjjp
�
� Kp(1 + log jM j) 12 �max

x2M

�X
j�N

x2j

� 1
2

;

where jM j denotes the cardinality of M and x = (x1; :::; xN).

Note that for jM j = 1 this is just one of Khintchine's inequalities; see Ledoux and Talagrand [Le91],

Lemma 4.1, p.91.

For the proof of 5.2.1 the following proposition is used which is but a reformulation of Lemma 1.6 in

[Pi83] for the present purposes.

5.2.2 Proposition.

Let �1; :::; �n be arbitrary nonnegative rv's and � be a strictly increasing, nonnegative, convex function

de�ned on [0;1) such that there are constants 0 < ci < 1, 1 � i � n, and 0 < c < 1 with

E(�(c�1i �i)) � c for all 1 � i � n. Then

E( max
1�i�n

�i) � ��1(cn) � max
1�i�n

ci

(��1 being the inverse function of �).
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PROOF.

�
�
E( max

1�i�n
�i=max1�i�nci)

�
� �

�
E( max

1�i�n
(�i=ci))

�
�

(Jensen's
inequality)

E
�
�(max

1�i�n
(�i=ci))

�
= E( max

1�i�n
�(�i=ci)) �

E
�X
i�n

�(�i=ci)
�
=
X
i�n
E(�(�i=ci)) � c n:

Applying ��1 to both sides yields the assertion. �

PROOF of 5.2.1. We show at �rst that the Rademacher average on the l.h.s of the stated inequality

in 5.2.1 can be dominated by a so-called Gaussian average, to which 5.2.2 will be applied.

For this, let g1; :::; gN be i i d rv's with Lfgig = N (0; 1) being independent of "1; :::; "N. Note that

Lf("1jg1j; :::; "NjgN j)g = Lf(g1; :::; gN)g:(+)

Let � := E(jg1 j); then

E
�
max
x2M

j
X
j�N

"jxj jp
�
=

��pE
�
max
x2M

j
X
j�N

"jE(jgj j)xjjp
�

= ��pE
�
max
x2M

j
X
j�N

"jE
�
jgjj

���"1; :::; "N�xj jp� =

��pE
�
max
x2M

jE
� X
j�N

"j jgjjxj
���"1; :::; "N�jp� �

(Jensen's
inequality)

��pE
�
max
x2M

E
�
j
X
j�N

"j jgjjxjjp
���"1; :::; "N�� �

��pE
�
E
�
max
x2M

j
X
j�N

"j jgjjxjjp
���"1; :::; "N�� =

��pE
�
max
x2M

j
X
j�N

"jjgjjxjjp
�

=
(+)

��pE(max
x2M

j
X
j�N

gjxj jp):

Now, let �0(u) := exp(u2=p) for u 2 [0;1) and

�(u) :=

8><
>:
1 + �0(up)�1

up
; for 0 � u � up

�0(u) ; for u > up

;

where up :=
�
p
2

�p=2
; then

(?) � : R+ �! R+ is a strictly increasing, nonnegative, convex function with � � �0, and

(??) 8v 2 R+ ��1(v) � up + (log v)p=2.
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On the other hand, assigning to each x = (x1; :::; xN) 2M the rv �x :=
P

j�N gjxj , we have for each
x 2M that Lf�xg = N (0; c2x) with c

2
x := (

P
j�N x

2
j), and

E
�
�(j�xjp=2pcpx)

�
�

(���0)

E
�
�0(j�xjp=2pcpx)

�
=

(by def. of �0)
E
�
exp(�2x=4c

2
x)
�

=
(Lf�x=cxg=N (0;1))

(2�)�1=2
Z
R

eu
2=4 e�u

2=2 du = (2�)�1=2
Z
R

e�u
2=4 du =

(u:=
p
2v)

p
2 (2�)�1=2

Z
R

e�v
2=2 dv =

p
2:

Thus 5.2.2 can be applied (cf. (?)) with j�xjp; x 2 M , instead of �i; 1 � i � n, and with 2pcpx; x 2 M ,

instead of ci; 1 � i � n, where n = jM j and c := p
2.

Hence by 5.2.2 it follows that

E
�
max
x2M

j
X
j�N

gjxjjp
�
=

E
�
max
x2M

j�xjp
�
� ��1(

p
2jM j)max

x2M
(2pcpx) �

(??)�
up + (log(

p
2jM j))p=2

�
�max
x2M

(2pcpx) =
(by def. of cx)

2pupmax
x2M

(
X
j�N

x2j)
p=2 + 2p

�
log

p
2 + log jM j

�p=2
max
x2M

(
X
j�N

x2j)
p=2 �

�
2pup + 2p(1 + log jM j)p=2

�
�max
x2M

(
X
j�N

x2j)
p=2 �

�Kp
p(1 + log jM j)p=2 �max

x2M
(
X
j�N

x2j)
p=2 with �Kp

p := 2p(up + 1):

Since E1=p
�
maxx2M jPj�N "jxjjp

�
� ��1E1=p

�
maxx2M jPj�N gjxj jp

�
, as shown above, the assertion

of 5.2.1 holds true with Kp := ��1 �Kp. �

The following maximal inequality will be an essential tool for proving a ULLN for RMP's in section

6.1 below. As we shall see, it is an easily to be shown consequence of 5.2.1:

5.2.3 Maximal Inequality for Rademacher Averages.

Given any xj 2 RT; 1 � j � N;N 2 N, let

d1(s; t) :=
X
j�N

jxj(s)� xj(t)j; s; t 2 T:
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Then, for each 1 � p <1, there exists a universal constant 0 < Kp <1 such that for any Rademacher

sequence "1; :::; "N and for all 
 > 0

E1=p
�
sup
t2T

j
X
j�N

"jxj(t)jp
�
�


 +Kp(1 +H(
; T; d1))
1=2 � sup

t2T

� X
j�N

x2j(t)
�1=2

(where H( � ; T; d1) denotes the metric entropy of T = (T; d1) as de�ned in 4.1.1).

PROOF. Given any 
 > 0, assume w.l.o.g. that N(
; T; d1) < 1; then (cf. the de�nition of

N( � ; T; d1) in 4.1.1) there exists a subset T 0 of T with jT 0j = N(
; T; d1) such that for each t 2 T

there exists a u(t) 2 T 0 with d1(t; u(t)) � 
.

Then we get

E1=p
�
sup
t2T

j
X
j�N

"jxj(t)jp
�

�
(Minkowski's Ineq.)

E1=p
�
sup
t2T

j
X
j�N

"j(xj(t)� xj(u(t)))jp
�
+ E1=p

�
sup
t2T 0

j
X
j�N

"jxj(t)jp
�

�
5:2:1

sup
t2T

j
X
j�N

jxj(t)� xj(u(t))j + Kp(1 + log jT 0j)1=2 sup
t2T

� X
j�N

x2j(t)
�1=2

�


 +Kp(1 +H(
; T; d1))
1=2 � sup

t2T

�X
j�N

x2j(t)
�1=2

:
�

5.3 Ho�mann-J�rgensen Inequality

To our knowledge, the Ho�mann-J�rgensen Inequality was originally proved implicitely in [Ho74], Theorem 3.1, for sums of inde-
pendent and symmetric Banachspace-valued re's (cf. [Le91], Section 6.2).

Here we will consider as before independent (in the sense of 5.1.1) stochastic processes �j = (�j(t))t2T ; j 2
N, indexed by an arbitrary parameter space T (supposed to be countable for simplicity to avoid mea-

surability considerations). The �j's will be viewed as rq's with values in RT or l1(T ), respectively,
and jj�jj or jjPj�n "j�jjj denotes the supt2T j�(t)j or supt2T j

P
j�n "j�jj, respectively.

5.3.1 Ho�mann-J�rgensen Inequality

(Cf. [Va96], A.1.5 and [Zi94], Corollary 2.1.3).

Let �j = (�j(t))t2T ; j 2 N, be a sequence of independent stochastic processes with common parameter

space T and ("j)j2Nbe a canonically formed Rademacher sequence which is independent of (�j)j2N(cf.
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section 5.1). Let 	 : R+ �! R+ be a nondecreasing function which is absolutely continuous on each

interval [0; a]; a > 0, and which satis�es the so-called Orlicz condition

	(2x) � C	(x) for all x 2 R+ and some 1 � C <1

(think e.g. of 	(x) = xp); then for each n 2 N (as before, we put 	(1) := lima!1	(a))

E
�
	(jj

X
j�n

"j�jjj)
�
� 2C2E

�
max
j�n

	(jj�jjj)
�
+ 2C2	(sn)

with sn := inffs > 0 : P(jjPj�n "j�jjj > s) � (4C2)�1g.

NOTE: This inequality will be an essential tool in proving a uniform law of large numbers (ULLN)

for Random Measure Processes in the following section 6.1. It will be applied there with 	(x) :=

xp; 1 � p < 1. In such a case one can infer Lp-convergence of
P

j�n "j�nj to zero from its P-

stochastic convergence to zero, provided that the �nj's are asymptotically negligible in the sense that

limn!1 E(maxj�n jj�njjjp) = 0, where the latter is e.g. ful�lled, if the jj�njjj's are bounded by some �n
with limn!1 �n = 0.
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6 Uniform Laws of Large Numbers (ULLN)

6.1 A ULLN for RMP's

Let again X = (X;X ) be an arbitrary measurable space and denote with M(X) the space of all

p-measures w on X , equipped with the smallest �-�eldM such that all the maps w 7�! w(B); B 2 X ,
are measurable.

Let F be a class of X -measurable functions f : X �! R with X -measurable envelope F : X �! R

(supposed to be countable for simplicity to avoid measurability considerations). Let, as in section 3,

(wnj)1�j�j(n);n2Nbe a triangular array of random p-measures on X , considered as re's in (M(X);M),

and let (�nj)1�j�j(n);n2Nbe a triangular array of real-valued rv's (i.e. re's in (R;B)), where j(n) �! 0

as n!1.

We are going to present a ULLN for RMP's Sn = (Sn(f))f2F with

Sn(f) :=
X

j�j(n)
wnj(f) � �nj; f 2 F ;(6.1.1)

as introduced in section 3.1, where, as already remarked there, we do assume (cf. 5.1.1) that the

processes (wnj(f) � �nj)f2F are de�ned via coordinate projections on the product p-space

(
;A;P) :=
�
�
N
( �
j�j(n)

(M(X)�R)) ; N
N

(
N

j�j(n)
(MNB)) ; �

N
( �
j�j(n)

Lf(wnj; �nj)g)
�
;

whence for all n 2 N the sequence

(wn1; �n1); :::; (wnj(n); �nj(n))

is a sequence of independent but not necessarily identically distributed pairs of re's in (M(X) �
R;MNB), i.e. the laws Lf(wnj; �nj)g need not be identical; also dependence within each pair is allowed.
(Note that in the notation of de�nition 5.1.1 we have now that


 3 ! 7�! �nj(!) = hnj(!nj) := hnj((wnj; �nj)) := (wnj(f) � �nj)f2F 2 V := RF.)

In order to formulate our ULLN we need some more notation:

Given Sn = (Sn(f))f2F with Sn(f) as in (6.1.1), let for any � > 0

�n� :=
X

j�j(n)
wnj � j�njj � I(wnj(F )j�njj � �);

and let �d(1)�n�
be the random L1-pseudometric on F de�ned by

�d(1)�n�
(f; g) :=

X
j�j(n)

jwnj(f)� wnj(g)j � j�njj � I(wnj(F )j�njj � �)

for f; g 2 F . Finally, for any � > 0, let N(�;F ; �d(1)�n�
) be the random covering number of (F ; �d(1)�n�

)

(see the de�nition 4.1.1).

Then we have the following result (cf. [Gae98], Theorem 2.1):
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6.1.2 THEOREM (ULLN for RMP's).

Assume that (6.1.3) { (6.1.5) hold, where (for 1 � p <1)

lim
n!1

X
j�j(n)

E
1
p

�
wnj(F )

p � j�njjp � I(wnj(F )j�njj > �)
�
= 0 for all � > 0(6.1.3)

sup
n2N

X
j�j(n)

E
�
wnj(F ) � j�njj � I(wnj(F )j�njj � �1)

�
<1 for some �1 > 0(6.1.4)

For all � > 0 there exists � � �(�) > 0 such that�
N(� � �n�(F );F ; �d(1)�n�

)
�
n2N is stochastically bounded.

(6.1.5)

Then

sup
f2F

jSn(f)� E(Sn(f))j Lp����! 0 ;(6.1.6)

where
Lp����! denotes convergence w.r.t. the Lp-metric.

(
�
N(� � �n�(F );F ; �d(1)�n�

)
�
n2N stochastically bounded means that for all � > 0 there exists an M �

M(�; �)<1 such that

lim sup
n!1

P�
�
N(� � �n�(F );F ; �d(1)�n�

) > M
�
< �: )

PROOF. Concerning (6.1.6) we remark that by (6.1.3) we also have (since jj � jj1 � jj � jjp)

lim
n!1

X
j�j(n)

E
�
wnj(F ) � j�njj � I(wnj(F )j�njj > �)

�
= 0 8� > 0;

whence by (6.1.4)

sup
n2N

X
j�j(n)

E
�
wnj(F ) � j�njj

�
<1;

and therefore E(jSn(f)j) <1 8n 2 N and 8f 2 F .
Now, by the Symmetrization Inequality 5.1.2 (applied with 	(x) := xp; x 2 R+), it su�ces to show

that

lim
n!1E

�
sup
f2F

j
X

j�j(n)
"jwnj(f)�njjp

�
= 0

where ("j)j2Nis a canonically formed Rademacher sequence which is independent of both arrays (wnj)

and (�nj).

Next, by (6.1.3) there exists a sequence (�n)n2Nof positive real numbers with �n ! 0 and

lim
n!1

X
j�j(n)

E
1
p

�
�nj(F )

p � I(�nj(F ) > �n)
�
= 0;
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where we put �nj := wnj � j�njj for short. Hence it su�ces to show that

lim
n!1E

�
sup
f2F

jSn�n (f)jp
�
= 0;

where Sn�n (f) :=
P

j�j(n) "jwnj(f)�nj � I(�nj(F ) � �n) .

But, since the summands of Sn�n (f) are bounded by �n (with �n �! 0 as n ! 1), it follows by

application of Ho�mann-J�rgensen's Inequality 5.3.1 (with 	(x) := xp; x 2 R+) that it su�ces to

verify

sup
f2F

jSn�n (f)j P��! 0:(a)

To prove (a), let � > 0 and " > 0 be arbitrary but �xed. Let (cf. (6.1.4))

C := sup
n2N

X
j�j(n)

E
�
�nj(F ) � I(�nj(F ) � �1)

�
:

Choose � := "�=2C and take � = �(�) according to (6.1.5).

Now, for � := "=2, let M =M(�; �) > 0 be such that for An := fN(��n� (F );F ; �d(1)�n�
)� > Mg we have

by (6.1.5) that lim supn!1P(An) < � where the star (?) denotes the measurable cover function (cf.

(2.3.17)). Then, by Markov's Inequality and Fubini's theorem it follows that

P(sup
f2F

jSn�n (f)j > �) � P(An) + ��1E(1{An
E"(sup

f2F
jSn�n (f)j));(b)

where E" denotes integration w.r.t. the Rademacher sequence.

Now, for n large enough such that �n � � and �n � �1 (�1 as in (6.1.4)) we obtain by the Maximal

Inequality for Rademacher Averages with a universal constant 0 < K1 <1 that

E"(sup
f2F

jSn�n (f)j)

� ��n� (F ) +

K1(1 +N(��n� (F );F ; �d(1)�n�
))

1
2 � sup

f2F
j
X

j�j(n)
w2
nj(f) � �2nj � I(�nj(F ) � �n)j 12

� ��n� (F ) +

�
1
2
nK1(1 +N(��n� (F );F ; �d(1)�n�

))
1
2
� X
j�j(n)

�nj(F ) � I(�nj(F ) � �1)
� 1
2 :

(Actually the Maximal Inequality even holds with logN(��n� (F );F; �d
(1)
�n� ) instead of N(��n� (F );F; �d

(1)
�n� ).)

So by de�nition of An it follows that for large enough n

E(1{An
E"(supf2F jSn�n (f)j)) �

�E(�n� (F )) + �
1
2
nK1(1 +M)

1
2 E

1
2

�P
j�j(n)�nj(F ) � I(�nj(F ) � �1)):

(c)
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Now, observe that �n� �Pj�j(n)�nj �I(�nj(F ) � �1) +
P

j�j(n)�nj �I(�nj(F ) > �1) whence by (6.1.3)

we have

lim sup
n!1

E(�n� (F )) � C + lim sup
n!1

X
j�j(n)

E
1
p

�
�nj(F )

p � I(�nj(F ) > �1)) = C:(d)

Hence we obtain by (b) { (d) that

lim sup
n!1

P(sup
f2F

jSn�n (f)j > �) � �+ ��1�C = "

by the choice of � and � . Since " and � were arbitrary, this implies (a). �

NOTE: Condition (6.1.5) in the theorem can be replaced by (6.1.5)0

For all � > 0 there exists � � �(�) > 0 such that�
N(�;F ; �d(1)�n�

)
�
n2N is stochastically bounded.

(6.1.5)0

Indeed, following the proof of theorem 6.1.2 up to (b) now with � := "�=2 and An := fN(�;F ; �d(1)�n�
)� >

Mg, the Maximal Inequality for Rademacher Averages now gives

E"(sup
f2F

jSn�n (f)j) �

� + K1(1 +N(�;F ; �d(1)�n�
))

1
2 � sup

f2F
j
X

j�j(n)
w2
nj(f) � �2nj � I(�nj(F ) � �n)j 12 :

The result then follows as above.

6.1.7 Remark.

Since for RMP's we did tacitily assume (cf. section 3.1) measurability and �niteness of wnj(F ) for all

1 � j � j(n) and n 2 N, the same is true for the random measures �n�, whence �n�(F ) < 1 for all

n 2 N and � > 0. Therefore, it follows from 4.3.17 that in case of VCGC's F , for each � > 0 there

exists a constant C = C(�); 0 < C <1, such that (note that �d(1)�n�
(f; g) � d(1)�n�

:= �n�(jf � gj))
sup
n2N

N(� � �n�(F );F ; �d(1)�n�
) � C;

whence the condition (6.1.5) is automatically ful�lled for VCGC's F with envelope F .

Thus, from Theorem 6.1.2 we get

6.1.8 Corollary.

Let F be a countable VCGC with envelpoe F . Assume (6.1.3) and (6.1.4), i.e. (for 1 � p <1)

lim
n!1

X
j�j(n)

E
1
p

�
wnj(F )

p � j�njjp � I(wnj(F )j�njj > �)
�
= 0 for all � > 0; and

sup
n2N

X
j�j(n)

E
�
wnj(F ) � j�njj � I(wnj(F )j�njj � �1)

�
<1 for some �1 > 0:
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Then

sup
f2F

jSn(f)� E(Sn(f))j Lp����! 0;

where Sn(f) :=
P

j�j(n)wnj(f) � �nj; f 2 F , and where the processes (wnj(f) � �nj)f2F are de�ned as

coordinate projections on the product space (
;A;P) as introduced above.

6.2 ULLN's for partial-sum processes with either �xed or random

locations

Let X = (X;X ) be an arbitrary measurable space, C � X a countable VCC, (�nj)1�j�j(n);n2Nbe a

triangular array of re's in (X;X ) and (�nj)1�j�j(n);n2Na triangular array of rv's with j(n) �! 1 as

n!1, such that for each n 2 N the sequence of pairs (wn1; �n1); :::; (wnj(n); �nj(n)) is independent but

not necessarily identically distributed; also the components within each pair need not be independent.

Then, by taking wnj := ��nj (��nj = Dirac measure at �nj) we obtain from 6.1.8 immediately the

following result for partial-sum processes with random locations as introduced in section 3.2.1:

6.2.1 THEOREM (cf. [Gae94b], Theorem 3.1).

Assume that the following two conditions are ful�lled:

lim
n!1

X
j�j(n)

E
�
j�njj � I(j�njj > �)

�
= 0 for all � > 0(6.2.2)

sup
n2N

X
j�j(n)

E
�
j�njj � I(j�njj � �1)

�
<1 for some �1 > 0:(6.2.3)

Then, for the partial-sum processes Sn = (Sn(C))C2C de�ned by

Sn(C) :=
X

j�j(n)
1C(�nj) � �nj; C 2 C;

one has

lim
n!1E

�
sup
C2C

jSn(C)� E(Sn(C))j
�
= 0 :(6.2.4)

6.2.5 Remark.

Note that (6.2.2) and (6.2.3) together imply that supn2N
P

j�j(n) E(j�nj j) < 1, and thus E(Sn(C))

exists for all n 2 N and C 2 C.
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In the identically distributed (id) - case, that is, when �nj = j(n)�1�j ; 1 � j � j(n); n 2 N, with
j(n) �! 1 as n!1, for some sequence (�j)j2Nof identically distributed �j , we have for each � > 0X

j�j(n)
E
�
j�njj � I(j�njj > �)

�
= E

�
j�1j � I(j�1j > �j(n))

�
and

sup
n2N

X
j�j(n)

E
�
j�njj � I(wnj(F )j�njj � �)

�
� sup

n2N

X
j�j(n)

E(j�nj j) = E(j�1 j);

whence in the id-case both conditions (6.2.2) and (6.2.3) are ful�lled under the only assumption

E(j�1 j) <1.

From Theorem 6.2.1 together with Remark 6.2.5 we obtain

6.2.6 Corollary.

Let Sn(C) := j(n)�1
P

j�j(n) 1C(�nj) � �j; C 2 C; C � X being a countable VCC, (wnj)1�j�j(n);n2N
be a triangular array of re's in (X;X ) with j(n) �! 1 as n ! 1, and let (�j)j2Nbe a sequence of

identically distributed rv's �j with E(j�1 j) < 1 such that for all n 2 N (wn1; �1); :::; (wnj(n); �n) is

a sequence of independent but not necessarily identically distributed pairs of re's in (X � R;XNB).
Then

lim
n!1 E

�
sup
C2C

jSn(C)� E(Sn(C))j
�
= 0:

Concerning partial-sum processes with �xed locations in X = Id � [0; 1]d; d � 1, Theorem 6.2.1

together with Remark 6.2.5 implies the following result (cf. section 1.3 and 1.4):

6.2.7 Corollary.

Let Sn(C) := n�d
P

j2Jn 1C(j=n) � �j; C 2 C, where �j ; j 2 Nd, are i i d rv's with E(j�1 j) < 1, and

where C � Id \ Bd is a countable VCC; then

lim
n!1 E

�
sup
C2C

jSn(C)� n�djJn \ (nC)j � E(j�1 j)j
�
= 0;

where Jn := f1; :::; ngd (and nC := fnc : c 2 Cg).

6.2.8 Remark.

Considering, more generally, function-indexed partial-sum processes Sn = (Sn(f))f2F , de�ned by

Sn(f) := j(n)�1
X

j�j(n)
f(�nj) � �j; f 2 F ;

with F being a countable and uniformly bounded VCGC (i.e. with envelope F � M < 1), and where

(�nj)1�j�j(n);n2Nis a triangular array of re's in (X;X ) with j(n) �! 1 as n ! 1, and �j; j 2 N,
are identically distributed rv's with E(j�1 j) <1 such that for all n 2 N (�n1; �1); :::; (�nj(n); �j(n)) is a

sequence of independent but not necessarily identically distributed pairs of re's in (X�R;XNB), then
in the same way as in the set-indexed case above, Theorem 6.2.1 together with Remark 6.2.5 yields

lim
n!1E

�
sup
f2F

jSn(f)� E(Sn(f))j
�
= 0:
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6.3 ULLN's for empirical processes

Given an arbitrary measurable space X = (X;X ), let us consider at �rst the set-indexed case, i.e.with

a countable VCC C � X as parameter space for the empirical measures �n = (�n(C))C2C de�ned by

�n(C) := j(n)�1
X

j�j(n)
1C(�nj); C 2 C;

where (�nj)1�j�j(n);n2Nis a triangular array of rowwise independent but not necessarily identically

distributed re's in (X;X ) with j(n) �! 1 as n ! 1. Then it follows from Corollary 6.2.6 (with

�j � 1) that

lim
n!1E

�
sup
C2C

j�n(C)� ��n(C)j
�
= 0;(6.3.1)

where ��n(C) := j(n)�1
P

j�j(n)P(�nj 2 C); C 2 C.
Especially, if for each n 2 N �nj = �j; 1 � j � j(n), with �j; j 2 N, being i i d re's in (X;X ) with law

� on X , then for

�n(C) := j(n)�1
X

j�j(n)
1C(�j); C 2 C;

it follows together with (2.1.5) that (cf. Theorem 2.1.6)

jj�n � �jjC := sup
C2C

j�n(C)� �(C)j �! 0 P� a:s:(6.3.2)

As to the function-indexed case we get from Corollary 6.1.8 (with p = 1; wnj := ��j and �nj :=

j(n)�1; 1 � j � j(n); n 2 N) the following more general result mentioned already in connection with

(4.3.9):

6.3.3 THEOREM.

Let X = (X;X ) be an arbitrary measurable space, �j; j 2 N, be i i d re's in (X;X ) with law � on X
(de�ned as coordinate projections on the p-space (
;A;P) := (XN;XN; �N)), and let F be a countable

VCGC of X -measurable functions f : X �! R with X -measurable envelope F : X �! R such that

�(F ) :=
R
X F d� < 1. Then, for �n(f) := j(n)�1

P
j�j(n) f(�j); f 2 F , one has (with j(n) �! 1 as

n!1)

lim
n!1E

�
sup
f2F

j�n(f)� �(f)j
�
= 0:(6.3.4)

Moreover, by the same reversed martingale argument which led to (2.1.5) one obtains also

sup
f2F

j�n(f)� �(f)j �! 0 P� a:s:(6.3.5)

PROOF. According to 6.1.8 we have to verify (6.1.3) (with p = 1) and (6.1.4), where now wnj(F ) =

��j (F ) = F (�j) and �nj = j(n)�1, i.e.
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(+) limn!1
P

j�j(n) E
�
F (�j) � j(n)�1 � I(F (�j) j(n)�1 > �)

�
= 0 8� > 0, and

(++) supn2N
P

j�j(n) E
�
F (�j) � j(n)�1 � I(F (�j) j(n)�1 � �1)

�
<1 for some �1 > 0.

As to (+),
P

j�j(n) E
�
F (�j) � j(n)�1 � I(F (�j) j(n)�1 > �)

�
= E

�
F (�1) � I(F (�1) > �j(n))

�
�! 0 as

n!1, since E(F (�1)) = �(F ) <1 by assumption.

As to (++), supn2N
P

j�j(n) E
�
F (�j) � j(n)�1 � I(F (�j) j(n)�1 � �1)

�
= supn2NE

�
F (�1) � I(F (�1) �

�1j(n))
�
� E(F (�1)) <1. �

6.4 ULLN's for smoothed empirical processes

Throughout this section X is supposed to be an arbitrary linear metric space endowed with its Borel

�-�eld X .
Let �j; j 2 N, be i i d re's in (X;X ) with law � on X (de�ned as coordinate projections on the p-space

(
;A;P) := (XN;XN; �N)).
Let �n := n�1

P
j�n ��j be the empirical measure based on �1; :::; �n; n 2 N, viewed as nonparametric

estimator (of sample size n) for �.

If the underlying � is \smooth" it is natural to use a \smoothed" version ~�n of �n as an estimator for

�, rather than the empirical measure itself.

Following Yukich [Yu89] we consider smoothing through convolution as follows:

Given a sequence (�n)n2N, of p-measures �n on X let

~�n := �n ? �n

be the so-called smoothed empirical measure based on �1; :::; �n, i.e.

~�n(B) :=

Z
X

Z
X

1B(x+ y)�n(dx)�n(dy); B 2 X :(6.4.1)

Note that ~�n � �n if �n � �0 (Dirac measure at 0).

Taking X = R, the following picture shows that by convolution we can turn the discrete empirical

measure �n into a continuous one. This is not surprising since �n ? �n has a Lebesgue density if �n
has one.

For illustration we take n = 4, �n the uniform distribution on [�1; 1] and x1; :::; xn a sample from the

rv's �1; :::; �n. The picture shows the distribution functions which are also denoted by �n; �n and ~�n,

respectively.

69



-
x2 x1 x4 x3

1

R

�n

r r r r

b b b b

1

- R

1

1�1
�
�
�
�
�
�
� �n

- Rx2 x1 x4 x3

1
~�n

���
���

� ���
���

� ���
�

���
�

��
��

1

(6.4.1) also includes kernel smoothing in density estimation. For this, let us take X = R for simplicity,

and let for each u 2 R �n((�1; u]) := H( u
hn
); hn > 0, where

H(s) :=
Z s

�1
K(v)dv; K � 0;

Z
R

K(v) dv = 1;

(note that in this case �n �! �0 weakly if hn �! 0 as n!1).

Then, for each u 2 R

~�n((�1; u]) =
(6:4:1)

Z
R

h
n�1

X
j�n

1(�1;u](�j + y)
i
�n(dy)

= n�1
X
j�n

�n((�1; u� �j]) = n�1
X
j�n

H(
u� �j
hn

)

= n�1
X
j�n

h�1n

Z u

�1
K(

v � �j
hn

) dv; i.e.

~�n((�1; u]) =
Z u

�1
ĝn(t) dt 8u 2 R with

ĝn(t) := (nhn)
�1P

j�nK( t��j
hn

) being the kernel density estimator for the underlying density g(t) of

the Lf�jg's.
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Returning to an arbitrary linear metric spaceX , let F be a class ofX -measurable functions f : X �! R

with X -measurable envelope F : X �! R. For each f 2 F , put

~�n(f) :=
Z
X

f d~�n ;(6.4.2)

tacitly assuming that the integrals of functions f 2 F do exist.

For ~�n(f) this is the case if
R
X jf(x+ y)j�n(dy) <1 8 x 2 X .

Note that (cf. (6.4.1))

~�n(f) =

Z
X

Z
X
f(x+ y)�n(dx)�n(dy) = n�1

X
j�n

Z
X
f(�j + y)�n(dy); and(6.4.3)

E(~�n(f)) = � ? �n(f) 8f 2 F and n 2 N:(6.4.4)

(In fact, as to (6.4.4), E(~�n (f)) =
R
X
E

� R
X
f(x+ y) �n(dx)

�
�n(dy) =

R
X
E

�
n�1

P
j�n

f(�j + y)

�
�n(dy) =R

X

R
X
f(x+ y)�(dx)�n(dy) = � ? �n(f).)

It will be also tacitly assumed that suprema over f 2 F , like supf2F j~�n(f) � �(f)j, are measurable
(being the case by assuming, as in the former sections, that F is countable, for simplicity).

Now, our aim is to present ULLN's, i.e. su�cient conditions on F and the smoothing measures �n; n 2
N, under which (for 1 � p <1)

sup
f2F

j~�n(f)� �(f)j Lp����! 0:(6.4.5)

Concerning (~�n)n2Nas an estimator sequence for an unknown �, from (6.4.5) one can of course only

deduce weak consistency, but, as Pfanzagl [Pf94], p. 188, remarks strong consistency, i.e. almost sure

convergence of an estimator sequence, adds nothing to weak consistency, i.e. convergence in probability,

which could be of use on the way to the asymptotic distributions of estimator sequences. Thus, it is

reasonable to seek for su�cient conditions under which (6.4.5) holds true.

Concerning once more the above example of kernel smoothing, (6.4.5) yields supu2RjĜn(u) � G(u)j
Lp����! 0, where Ĝn(u) := ~�n((�1; u]); u 2 R, and where G is the df of the �j's.

Fernholz [Fe91] remarks on the estimator Ĝn:

Estimators Ĝn derived by integrating density estimators have required less attention. Although esti-

mating a density g by using ĝn or its distribution function G by using Ĝn are equivalent problems,

the error of the corresponding estimator is usually measured in di�erent ways. For density estimation

the \L1 view" (see Devroye and Gyor� [Dev85]) based on the L1 error jjĝn � gjj1 has been gaining

popularity over the more traditional L2 approach using jjĝn � gjj2.
In kernel distribution function estimation the discrepancy error between Ĝn and G should be measured

in terms of some distance in the space of distribution functions. Metrics such as the supremum norm,

the Prohorov distance, or the Levy distance, provide a useful framework to study the properties of Ĝn.
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Indeed, from Winter [Win73] and Yamato [Ya73] we have a.s. uniform convergence of Ĝn to G, see

also Mack [Ma84] and Prakasa Rao [Pra81].

A more general setting for studying estimators (as already considered in [Win73] and [Ya73]) for a

distribution function G is obtained if Ĝn is de�ned by

Ĝn(u) := n�1
X
j�n

�n((�1; u� �j) ; u 2 R;

with p-measures �n on B (not necessarily having a density). Ĝn is then called smoothed (or perturbed)

empirical distribution function with the above mentioned kernel smoothing as a special case. Note that

in general, i.e. for arbitrary linear metric spaces X , smoothing by convolution is its natural extension,

since (cf. (6.4.1))

~�n(B) = n�1
X
j�n

Z
X

1B(�j + y)�n(dy) = n�1
X
j�n

�n(B � �j); B 2 X :(6.4.6)

Now, we are going to mention at �rst the traditional approach towards ULLN's for smoothed empirical

measures. We will formulate it for an arbitrary metric space X and for classes F of X -measurable
functions f : X �! R being uniformly bounded, i.e. with supf2F supx2X jf(x)j � M < 1. We do

not loose anything if we assume here and in the following thatM = 1 (which means that the constant

function M serves as an envelope of F). Let ~F be the class of all translates of elements of F , i.e.
~F := ffx : x 2 X; f 2 Fg;

where fx : X �! R is de�ned by fx(y) := f(x+ y); y 2 X . Now consider the decomposition

~�n � � = ~�n � � ? �n + � ? �n � �;(6.4.7)

where (cf. (6.4.4)) E(~�n(f)) = � ? �n(f) 8f 2 F , thus � ? �n(f)� �(f) being the non-stochastic bias

of ~�n(f); f 2 F .
The decomposition (6.4.7) together with the assumption F = ~F (saying that F is closed under

translation) is essential for the following lemma:

6.4.8 Lemma.

Let X be a linear metric space and suppose that F = ~F. Assume further that

sup
f2F

j�n(f)� �(f)j Lp����! 0 and sup
f2F

j� ? �n(f)� �(f)j �! 0:

Then

sup
f2F

j~�n(f)� �(f)j Lp����! 0 :
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PROOF. According to (6.4.7) it su�ces to show that

sup
f2F

j~�n(f)� � ? �n(f)j � sup
f2F

j�n(f)� �(f)j:

For this, let g 2 F be arbitrary; then

j~�n(g)� � ? �n(g)j = j�n ? �n(g)� � ? �n(g)j
=
�� Z

X

Z
X

g(x+ y)�n(dx)�n(dy)�
Z
X

Z
X

g(x+ y)�(dx)�n(dy)
��

=
�� Z

X

Z
X

gy(x)�n(x)�n(dy)�
Z
X

Z
X

gy(x)�(dx)�n(dy)
��

=
�� Z

X

(�n(gy)� �(gy))�n(dy)
��

�
Z
X

sup
f2F

���n(f)� �(f)���n(dy)
= sup

f2F

���n(f)� �(f)
��:

�

Concerning the bias-term � ?�n� � = � ?�n� � ? �0 (�0 = Dirac measure at 0) one shows in the same

way that in the case F = ~F

sup
f2F

j� ? �n(f)� � ? �0(f)j � sup
f2F

j�n(f)� �0(f)j;(6.4.9)

where, e.g. for separableX and uniformly bounded equicontinuous classes F supf2F j�n(f)��0(f)j �!
0 if �n �! �0 weakly (in the sense of weak convergence of Borel p-measures in metric spaces); cf.

Theorem 1.12.1 in [Va96].

The conditions of Lemma 6.4.8 are ful�lled e.g. if X = R;F = f1(�1;t]; t 2 Rg, �n �! �0 weakly

and � being a continuous p-measure on B in R. The result in this special case goes back to Winter

[Win73] and Yamato [Ya73].

The disadvantage of Lemma 6.4.8 (and (6.4.9)) is that it only holds under the rather restrictive

assumption F = ~F , a condition which cannot be dispensed with in general; see Example 2.2. in

[Gae99].

Note also that assuming the existence of a real-valued envelope F of F , the condition F = ~F implies

that F is uniformly bounded (i.e. supx2X supf2F jf(x)j <1).

For X = Rd; d � 1, Lemma 6.4.8 can be found in [Yu89] with a.s. convergence replacing convergence

in the Lp-norm. Also from Yukich [Yu89] we know the following result in the case X = Rd; d � 1:

6.4.10 THEOREM (Yukich).

Let X = Rd; d � 1, and assume �n �! �0 weakly and that

F is uniformly bounded
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and

N [ ](�;F ; �)<1 for all � > 0(6.4.11)

where N [ ](�;F ; �) := minfm 2 N : 9f1; :::; fm : X �! R; fi continuous ; �-integrable such that for all f 2
F there exist fi; fj with fi � f � fjand �(fj � fi) < �g:
Then

sup
f2F

j~�n(f)� �(f)j Lp����! 0 :

Here one gets rid of the assumption F = ~F , but the condition (6.4.11) on the so-called covering

number with bracketing is rather strong: Taking F uniformly bounded and �n � �0, Theorem 6.4.10

leaves (6.4.11) as a su�cient condition for a ULLN in the case of non-smoothed empirical measures,

a su�cient condition which is far away from being necessary (Talagrand [Ta96]), especially in view

of the continuity assumption on the fi's which normally is not involved in the de�nition of covering

numbers with bracketing. As we shall see below, Theorem 6.4.10 will follow from our ULLN 6.4.17

(cf. Lemma 6.4.22).

Next, also not imposing the assumtion F = ~F , there is a completely di�erent way to obtain ULLN's

for smoothed empirical measures via the Random Measure Process Aprroach, being based on our

Theorem 6.1.2:

For this, note that ~�n(f) can be represented as (cf (6.4.3))

~�n(f) =
X

j�j(n)
wnj(f) � �nj

by taking j(n) := n; wnj(f) :=
R
X f(�j+y)�n(dy), and �nj := n�1. Thus, in view of the decomposition

(6.4.7) together with (6.4.4) Theorem 6.1.2 yields the following ULLN. (Note that the �j's on which

the wnj's are based are i i d .)

6.4.12 THEOREM.

Let X be a linear metric space and assume that (6.4.13) { (6.4.16) hold, where (for 1 � p <1)

lim
n!1E

�
wn1(F )

p � I(n�1wn1(F ) > �)
�
= 0 for all � > 0(6.4.13)

sup
n2N

E
�
wn1(F ) � I(n�1wn1(F ) � �1)

�
<1 for some �1 > 0(6.4.14)

For all � > 0 there exists � � �(�) > 0 such that�
N(� � �n�(F );F ; �d(1)�n�

)
�
n2N is stochastically bounded.

(6.4.15)

sup
f2F

j� ? �n(f)� �(f)j �! 0 :(6.4.16)
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Then

sup
f2F

j~�n(f)� �(f)j Lp����! 0 :

Now again (cf. the Note before 6.1.7) the condition (6.4.15) can be replaced by

For all � > 0 there exists � � �(�) > 0 such that�
N(�;F ; �d(1)�n�

)
�
n2N is stochastically bounded.

(6.4.15)0

and, since
�d(1)�n�

(f; g) � �d
(1)
~�n (f; g) 8f; g 2 F

even by

�
N(�;F ; �d(1)~�n

)
�
n2Nis stochastically bounded for all � > 0(6.4.15)00

where �d
(1)
~�n is de�ned by

�d(1)~�n
(f; g) :=

Z
X

��� Z
X

(f(x+ y)� g(x+ y))�n(dy)
����n(dx)

for f; g 2 F .
Next, take a closer look at the case when F is uniformly bounded. Then fn�1wnj(F ) > �g = ? and

fn�1wnj(F ) � �g = 
 for each � > 0 and large enough n. Thus (6.4.13) and (6.4.14) are ful�lled in

this case. Furthermore, for every � > 0 we have �d(1)�n�
= �d(1)~�n for large enough n. So Theorem 6.4.12

yields

6.4.17 THEOREM.

Let X be a linear metric space and suppose that F is uniformly bounded. Assume that (6.4.16) and

(6.4.18) hold, where

For all � > 0
�
N(�;F ; �d(1)~�n )

�
n2Nis stochastically bounded.(6.4.18)

Then (for each 1 � p <1)

sup
f2F

j~�n(f)� �(f)j Lp����! 0 :

Since, for uniformly bounded F (with F � 1 w.l.o.g.),

N(�;F ; �d(1)~�n
) = N(� � �n�(F );F ; �d(1)�n�

)

for large enough n, we get from Theorem 6.4.17 together with 6.1.7 the following result in case of

uniformly bounded VCGC's F :
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6.4.19 THEOREM.

Let X be a linear metric space and let F be a uniformly bounded VCGC. Assume uniform convergence

to zero of the bias-term, i.e. supf2F j� ? �n(f)� �(f)j �! 0.

Then (for each 1 � p <1)

sup
f2F

j~�n(f)� �(f)j Lp����! 0 :

In the context of smoothed empirical measures or processes, respectively, one usually assumes �n �! �0 weakly. Note however
that in our theorems we did not assume weak convergence of (�n)n2N in advance. This does does not follow from (6.4.16) nor does
�n �! �0 weakly imply (6.4.16) as can be seen by the following example:

6.4.20 Example.

Let X := R;F := f1(�1;t] : t 2 Qg; � = �0 and �n := � 1
n
; n 2 N. Then �n �! �0 weakly, but (6.4.16)

does not hold; in fact, supf2F j� ? �n(f)� �(f)j � 1.

On the other hand, since (6.4.13) { (6.4.15) are ful�lled, this example also shows that (6.4.16) cannot

be dispensed with, in general, for our theorems 6.4.12, 6.4.17 and 6.4.19 to hold true, since in the

present case E(supf2F j~�n(f)� �(f)j) � 1.

However, if F is \smooth" we can deduce (6.4.16) from �n �! �0 weakly (without assuming F = ~F ;
cf. (6.4.9) and the remarks made there).

Assuming X to be separable, we obtain the following result:

6.4.21 THEOREM.

Let X be a separable linear metric space and let F be a uniformly bounded equicontinuous VCGC.

Suppose that �n �! �0 weakly. Then (for each 1 � p <1)

sup
f2F

j~�n(f)� �(f)j Lp����! 0 :

PROOF. According to Theorem 6.4.19 it su�ces to verify (6.4.16), i.e. supf2F j�?�n(f)��(f)j �! 0:

For each bounded and continuous f : X �! R we have by dominated convergence that

� ? �n(f) =
Z
X

Z
X

f(x+ y)�n(dy)�(dx)

=
Z
X

Z
X

fx(y)�n(dy)�(dx) �!
Z
X

fx(0)�(dx);

since �n �! �0 weakly and fx : X �! R is also bounded and continuous for all x 2 X , whereZ
X
fx(0)�(dx) = �(f);

whence � ? �n �! � weakly.

Applying now Theorem 1.12.1 in [Va96] yields (6.4.16). �
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6.4.22 Lemma.

Let X be a separable linear metric space and let F be uniformly bounded satisfying the condition

(6.4.11) in Yukich's theorem, i.e. N [ ](�;F ; �) < 1 for all � > 0. Suppose that �n �! �0 weakly.

Then (6.4.18) and (6.4.16) hold true, whence Yukich's theorem comes up as a special case of Theorem

6.4.17.

PROOF. Given any � > 0 let f1; :::; fm be continuous, �-integrable and bounded (note that F is

assumed to be uniformly bounded) such that for all f 2 F there exist fi; fj with fi � f � fj and

�(fj � fi) < � (note that N [ ](�;F ; �)<1).

Now, for all fi; fj with

[fi; fj] := ff 2 F : fi � f � fjg 6= ?
choose gij 2 [fi; fj]. Then, given f 2 F and fi; fj with f 2 [fi; fj] and �(fj � fi) < � , we have

~�n(jf � gijj) � ~�n(fj � fi) = �n ? �n(fj � fi) �! � ? �0(fj � fi) a.s.;

since �n �! �0 weakly and (cf. e.g. [Gae79], Section 1.5) �n �! � weakly a.s.; note that fj � fi is

bounded and continuous.

Since � ? �0(fj � fi) = �(fj � fi) < � , it follows that

lim sup
n!1

N(�;F ; d(1)~�n ) � m2 a.s.;

whence
�
N(�;F ; d(1)~�n )

�
n2N

is stochastically bounded and therefore also
�
N(�;F ; �d(1)~�n )

�
n2N

, since

�d(1)~�n (f; g) � d(1)~�n (f; g) := ~�n(jf � gj) for f; g 2 F :

So we conclude that (6.4.18) holds.

Next, from f 2 [fi; fj] and �(fj � fi) < � we can also conclude that

j� ? �n(f)� �(f)j � maxfj� ? �n(fj)� �(fj)j+ j�(fj)� �(f)j;
j� ? �n(fi)� �(fi)j+ j�(fi)� �(f)jg;

thus

sup
f2F

j� ? �n(f)� �(f)j � maxfj� ? �n(fj)� �(fj)j : 1 � j � mg+ �:

But � ? �n(fj) � �(fj) �! 0 for all j = 1; :::; m, since � ? �n �! � weakly and the fj's are bounded

and continuous. So we get

lim sup
n!1

sup
f2F

j� ? �n(f)� �(f)j � �:

Since � > 0 was arbitrary, this gives (6.4.16). �
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Finally, in the non-smoothed case (i.e.with �n � �0) one has the following deep result on empirical

measures �n which we deduce from Talagrand [Ta96]; here X is not required to be a linear metric

space.

6.4.23 THEOREM (Talagrand).

Let (X;X ; �) be a complete p-space and F be a uniformly bounded class of X -measurable functions

f : X �! R. Then the condition

�
N(�;F ; d(1)�n

)
�
n2N is stochastically bounded for all � > 0(6.4.24)

(with d(1)�n
(f; g) := �n(jf � gj) ; f; g 2 F) is necessary and su�cient for

sup
f2F

j�n(f)� �(f)j L1����! 0:

In view of this result it is tempting to see what comes up in the smoothed case. The following result

will be contained in [Gae99]:

6.4.25 THEOREM.

Let X be a linear metric space endowed with its Borel �-�eld X such that (X;X ; �) is complete, and

let F be a uniformly bounded class of X -measurable functions f : X �! R which is closed under

translations, i.e. ~F = F . Suppose that supf2F j�n(f)� f(0)j �! 0. Then the following statements

are equivalent:

a)
�
N(�;F ; d(1)�n

)
�
n2Nis stochastically bounded for all � > 0

b)
�
N(�;F ; �d(1)~�n

)
�
n2Nis stochastically bounded for all � > 0

c) supf2F j~�n(f)� �(f)j L1����! 0

d) supf2F j�n(f)� �(f)j L1����! 0.
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7 Functional Central Limit Theorems (FCLT)

7.1 A FCLT for RMP's

Our starting point in this section is the same as in 6.1 with the aim to present a Functional Central Limit Theorem (FCLT) for
Random Measure Processes (RMP's) Sn = (Sn(f))f2F, where

Sn(f) :=
X
j�j(n)

wnj(f) � �nj; f 2 F; with j(n) �! 1 as n!1;

assuming again that the processes (wnj(f) ��nj)f2F are given via coordinate projections on the product p-space (
;A;P) as de�ned
in 6.1.

We tacitly assume regularity conditions such as measurability and �niteness of wnj(F ) and now even the same of wnj(F
2) (with

F : X �! Rbeing an X -measurable envelope of F)
As already remarked in 3.1, this implies that the sample paths os Sn are contained in the Banachspace

l1(F) := fx : F �! R : jjxjjF := sup
f2F

jx(f)j <1g

endowed with the sup-norm jj � jjF , and it also implies in view of the condition (7.1.4) imposed in our FCLT 7.1.3 below that also
supf2F E(jSn(f)j) <1 for su�ciently large n.

Thus, for su�ciently large n, the processes Sn � E(Sn) can be viewed as rq's in S := (l1(F); jj � jjF),
and to obtain a FCLT for Sn � E(Sn) amounts to present further su�cient conditions on F and on

both triangular arrays (wnj) and (�nj) under which

Sn � E(Sn) L��! G in S = l1(F)

in the sense of (2.3.2) with a limiting re G = (G(f))f2F in (S;B(S)) being a mean-zero Gaussian

process.

If, in addition, G is separable, we write as in 2.3
L��!
sep

instead of
L��!. We will focus here on

Sn � E(Sn) L��!
sep

G in l1(F)(7.1.1)

with G having all its sample paths in the subspace U b(F ; d) of S, where

U b(F ; d) := fx 2 l1(F) : x uniformly d-continuousg;

in order to apply our Characterization Theorem of L-Convergence 2.3.9 with d being a pseudo-metric
on F such that (F ; d) is totally bounded.

Remember that U b(F ; d) is a separable subspace of S if and only if (F ; d) is totally bounded ([Gae90],

Corollary 2).

Before focussing on (7.1.1), some general comments are in order in comparing our
L��!
sep

-convergence

with related concepts found in the literature (see e.g. [Va96]):
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For this, let �n : 
 �! l1(F); n � 1, be arbitrary rq's with �n
L��!
sep

G , where G has all its sample

paths in some separable subspace S0 of l1(F). Then the law LfGg of G is a Radon measure on

B(l1(F)), i.e. for each B 2 B(l1(F))
LfGg(B) = supfLfGg(K) : K � B;K compactg:

To see this, note that according to [Bi68], p. 9,

LfGg Radon measure () LfGg tight

(i.e. 8" > 0 9K = K" � l1(F); K compact, s.t. LfGg(K) � 1 � "). So it remains to show that

S := LfGg is tight:

For this, let D be a countable and dense subset of S0; let j 2 N and " > 0 be arbitrary. Then the open

balls B(x; 1
j
) � l1(F); x 2 D, (with center x and radius 1

j
) form a cover of S0 and therefore (due to

the �-continuity of S) there exist x1; :::; xnj 2 D such that

S(
nj[
i=1

B(xi;
1

j
)) � 1� "=2j:

Put Gj :=
Snj
i=1B(xi;

1
j
); then

T
j2NGj is totally bounded and S(

T
j2NGj) = 1 � S(Sj2N{Gj) �

1 �Pj2NS({Gj) � 1 � ". Since also K := (
T
j2NGj)c is totally bounded and complete (as a closed

subset of the complete space l1(F), K is compact with S(K) � 1 � ", which proves tightness since

" > 0 was chosen arbitrary.

On the other hand, if LfGg is a Radon measure, whence tight, and if �n
L��! G in the sense of

(2.3.2) (with S = l1(F)), it follows that there exists a stochastic process �G = ( �G(f))f2F de�ned on

an appropriate p-space (�
; �A; �P) with sample paths in a separable subspace S0 of l1(F) such that

�n
L��!
sep

�G , where �G
L
=
�di
G :

In fact, LfGg tight =) S0 := suppLfGg �-compact and therefore separable; then, taking

(�
; �A; �P) := (S0;B(S0);LfGg) and �G(f)(x) := �f(x) := x(f) for x 2 S0 the assertion follows (see

[Gae77], Lemma 7.2.31).

Finally, let us mention also (without proof) the following result (see [Va96], Section 1.12, and [Gi97],

Corollary 1.5):

Let �n : 
 �! l1(F); n � 1, be arbitrary rq's, �0 : 
 �! l1(F) be A;B(l1(F))-measurable with
L(�0g being tight; then

�n
L��! �0 in the sense of (2.3.2) (with S = l1(F)) () dBL(�n; �0) �! 0;(7.1.2)

where dBL(�n; �0) := supfjE�(H(�n))� E(H(�0))j : H 2 BL1(l1(F))g with

BL1(l
1(F)) :=

n
H : l1(F) �! R : sup

x2l1(F)
jH(x)j � 1; sup

x;y2l1(F);x6=y

jH(x)�H(y)j
jjx� yjjF � 1

o
:

Now, the Functional Central Limit Theorem (FCLT) for Random Measure Processes (RMP's) reads

as follows (cf. [Zi97], Theorem 6.1 together with Remark 6.2):
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7.1.3 THEOREM (FCLT for RMP's).

Let X = (X;X ) be an arbitrary measurable space and F be a class of X -measurable functions

f : X �! R with X -measurable envelope F : X �! R (supposed to be countable to avoid mea-

surability considerations). Assume that F has uniformly integrable L2-entropy (cf. 4.3.20) and that

there is some pseudometric d on F such that (F ; d) is totally bounded. Assume further that the

following conditions (7.1.4) { (7.1.6) are ful�lled:

For each � > 0 there exists �n = �n(�) > 0; n 2 N; with �n �! 0 such that

lim sup
n!1

X
j�j(n)

E
�
wnj(F )j�njj � I(wnj(F )j�njj > �n)

�
� �(7.1.4)

lim
�!0

lim sup
n!1

sup
d(f;g)��

X
j�j(n)

E
�
(wnj(f)� wnj(g))

2�2nj � I(wnj(F )j�njj � �n)
�
= 0(7.1.5)

sup
n2N

X
j�j(n)

E
�
wnj(F

2)�2nj � I(wnj(F )j�njj � �n)
�
<1 :(7.1.6)

Assume in addition, that there exists a mean-zero Gaussian process �G = ( �G(f))f2F such that Sn �
E(Sn)

L��!
�di

�G .

Then there exists a mean zero Gaussian process G = (G(f))f2F with sample paths in U b(F ; d) (being

a separable subspace of (l1(F); jj � jjF) such that

Sn � E(Sn) L��!
sep

G in l1(F) and �G
L
=
�di
G :(7.1.7)

PROOF. Concerning (7.1.7) we remark (as already mentioned above) that by (7.1.4) for su�ciently

large n

sup
f2F

E(jSn(f)j) �
X

j�j(n)
E(wnj(F )j�njj) �

X
j�j(n)

E
�
wnj(F )j�njj � I(wnj(F )j�njj > �n)

�
+ j(n)�n <1:

Now, since (F ; d) is assumed to be totally bounded and since Sn � E(Sn) L��!
�di

�G by assumption, it

follows in view of our CTL-C 2.3.9 together with Remark 2.3.19 that it remains to show

(a) lim�!0 lim supn!1 E
�
supd(f;g)��

��Sn(f)� Sn(g)� (E(Sn(f))� E(Sn(g)))
��� = 0 .

For this, according to the Symmetrization Inequality 5.1.2 it su�ces to show

(b) lim�!0 lim supn!1 E
�
supd(f;g)�� j

P
j�j(n) "j�nj � (wnj(f)� wnj(g))j

�
= 0,

where ("j)j2Nis a canonically formed Rademacher sequence being independent of both arrays (wnj)

and (�nj).
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Let � > 0 be arbitrary and �n = �n(�) > 0; n 2 N, with �n �! 0, ful�lling (7.1.4) { (7.1.6). Then

E
�

sup
d(f;g)��

�� X
j�j(n)

"j �nj � (wnj(f)� wnj(g))
���

� E
�

sup
d(f;g)��

�� X
j�j(n)

"j �nj � (wnj(f)� wnj(g)) � I(wnj(F )j�njj � �n)
���

+ 2
X

j�j(n)
E
�
wnj(F )j�njj � I(wnj(F )j�njj > �n)

�
;

and so, because of (7.1.4), it remains to show

(c) lim�!0 lim supn!1 E
�
supd(f;g)��

��P
j�j(n) "j �nj(wnj(f)� wnj(g)) � I(wnj(F )j�njj � �n)

��� = 0.

For this, let, for f; g 2 F ,

�2
n�n

(f; g) :=
X

j�j(n)
E
�
(wnj(f)� wnj(g))

2�2nj � I(wnj(F )j�njj � �n)
�
:

With this de�nition of �n�n condition (7.1.5) reads as follows:

(d) lim�!0 lim supn!1 supd(f;g)�� �
2
n�n

(f; g) = 0.

But (d) allows us to switch in (c) from the pseudo-metric d to �n�n , i.e. in doing so we have to show

(e) lim
�!0

lim supn!1 E
�
sup�n�n (f;g)��

��P
j�j(n) "j �nj(wnj(f)� wnj(g)) � I(wnj(F )j�njj � �n)

��� = 0:

Now

�2n�n(f; g) :=
X

j�j(n)
(wnj(f)� wnj(g))

2�2nj � I(wnj(F )j�njj � �n)

�
X

j�j(n)
wnj((f � g)2) �2nj � I(wnj(F )j�njj � �n) = ~�n�n((f � g)2)

for all f; g 2 F with

~�n�n(f) :=
X

j�j(n)
wnj(f) �

2
nj � I(wnj(F )j�njj � �n);

where

�2
n�n

(f; g) = E(�2n�n (f; g)) for all f; g 2 F :
By this, we arrived at a situation which allows us to apply Ziegler's Maximal Inequality ([Zi97],

Theorem 3.1, applied here with �nj(f) := wnj(f) �
2
nj � I(wnj(F )j�njj � �n) ) according to which there

exist universal constants 0 < Ki <1; i = 1; 2, such that for all � > 0

(f) E
�
sup�n�n (f;g)��

��P
j�j(n) "j �nj � (wnj(f)� wnj(g)) � I(wnj(F )j�njj � �n)

���
� K1 �A(n; �) �B(n) + K2 � C(n; �)
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with

A(n; �) := ��1E�
1
2

�
max
j�j(n)

sup
f;g2F

j�nj(wnj(f)� wnj(g))j � I(wnj(F )j�njj � �n) � [~�n�n(F 2)]1=2 � ln(1)
�

B(n) := E�
1
2

�
~�n�n(F

2) (ln(1))
2
�

and C(n; �) := E�
�
maxf1; [~�n�n(F 2)]1=2g � ln(�)

�
;

where ln(�) is the random integral, de�ned by

ln(�) :=
Z �

0

�
logN

�
� (~�n�n(F

2))1=2;F ; d(2)~�n�n
)
�1=2

d�:

Here, we have according to (7.1.6) that

(g) supn2NE(~�n�n (F
2)) =

P
j�j(n) E

�
wnj(F

2)�2nj � I(wnj(F ) j�njj � �n)
�
<1;

whence ~�n�n 2 M(X;F ) for all n 2 N a.s., and thus a.s.

(h) ln(1) �
R1
0

�
log
�
sup�2M(X;F )N

�
� (�(F 2))1=2;F ; d(2)�

���1=2
d� <1;

since F has uniformly integrable L2-entropy.

The latter also implies that a.s

(i) ln(�) �
R �
0

�
log
�
sup�2M(X;F )N

�
� (�(F 2))1=2;F ; d(2)�

���1=2
d� �! 0 as � �! 0.

Now, concerning A(n; �), note that

max
j�j(n)

sup
f;g2F

j�nj(wnj(f)� wnj(g))j � I(wnj(F )j�njj � �n) � 2 � �n;

which implies by (g) and (h) that for all � > 0

lim sup
n!1

A(n; �) �B(n) = 0:

Finally, by (g) and (i) we get

lim
�!0

lim sup
n!1

C(n; �) = 0;

which completes the proof of (e) according to (f). �

It is easily seen that the conditions (7.1.4) { (7.1.6) become much simpler in case of a uniformly

bounded index set F (with envelope F � 1 w.l.o.g.) In this case we obtain immediately from Theorem

7.1.3:
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7.1.8 Corollary (cf. [Zi97], Corollary 6.3).

Assume that F is uniformly bounded and has uniformly integrable L2-entropy, and that there is some

pseudo-metric d on F such that (F ; d) is totally bounded. Assume further that the following conditions

(7.1.4)0 { (7.1.6)0 are ful�lled:

lim
n!1

X
j�j(n)

E
�
j�njj � I(j�njj > �)

�
= 0 for all � > 0(7.1.4)0

(Noticing that (7.1.4)0 implies the existence of a sequence (�n)n2N of positive real numbers �n such that �n �! 0

and limn!1
P

j�j(n)
E

�
j�njj � I(j�njj > �n)

�
= 0.)

lim
�!0

lim sup
n!1

sup
d(f;g)��

X
j�j(n)

E
�
(wnj(f)� wnj(g))

2�2nj � I(j�njj � �1)
�
= 0 for some �1 > 0(7.1.5)0

sup
n2N

X
j�j(n)

E
�
�2nj � I(j�njj � �2)

�
<1 for some �2 > 0(7.1.6)0

There exists a mean-zero Gaussian process �G = ( �G(f))f2F such that

Sn � E(Sn) L��!
�di

�G .

(7.1.9)

Then there exists a mean-zero Gaussian process G = (G(f))f2F with sample paths in U b(F ; d) (being

a separable subspace of (l1(F); jj � jjF) such that

Sn � E(Sn) L��!
sep

G in l1(F) and �G
L
=
�di
G :(7.1.7)

where again

Sn(f) :=
X

j�j(n)
wnj(f) � �nj; f 2 F :

Let us consider next the special case where wnj = ��nj ; (�nj)1�j�j(n);n2Nbeing a triangular array of

re's in (X;X ) in order to present tractable conditions under which (7.1.9) holds true.

7.1.10 Corollary (cf. [Zi97], Corollary 6.4).

Let F be as in Corollary 7.1.8. Let wnj = ��nj where (�nj)1�j�j(n);n2Nis a triangular array of re's

in (X;X ) with laws �nj := Lf�njg on X , and suppose now, in addition to the basic independence

assumption for the pairs (�n1; �n1); :::; (�nj(n); �nj(n)), that for each n 2 N and 1 � j � j(n) also

�nj and �nj are independent. Assume further that there is some p-measure � on X and constants
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0 < ci <1 such that the following four conditions are ful�lled:

lim
n!1

X
j�j(n)

E
�
j�njj � I(j�njj > �)

�
= 0 for all � > 0(7.1.4)0

lim
�!0

lim sup
n!1

sup
d
(2)
� (f;g)��

X
j�j(n)

�nj((f � g)2) � E(�2nj � I(j�njj � �1)) = 0 for some �1 > 0(7.1.11)

lim
n!1

X
j�j(n)

�nj(f � g) � E(�2nj � I(j�njj � �2)) = c1�(f � g) for all f; g 2 F and some �2 > 0

(7.1.12)

lim
n!1

X
j�j(n)

�nj(f) � �nj(g)
�
E(�nj � I(j�njj � �3))

�2
= c2�(f) � �(g) for all f; g 2 F and some �3 > 0:

(7.1.13)

Then, with Sn(f) :=
P

j�j(n) f(�nj) � �nj ; f 2 F ,

Sn � E(Sn) L��!
sep

G � in l1(F);

where G � = (G�(f))f2F is a mean zero Gaussian process with sample paths in U b(F ; d(2)� ) and

cov(G�(f); G�(g)) = c1�(f � g)� c2�(f) � �(g) for f; g 2 F .

PROOF. Note �rst that (7:1:5)0 coincides with (7.1.11) in the present case since E
�
(wnj(f) �

wnj(g))2�2nj �I(j�njj � �1)
�
= E((wnj(f)�wnj(g))2) �E(�2nj �I(j�njj � �1)) =

(wnj=��nj )
�nj((f�g)2) �E(�2nj �

I(j�njj � �1)) for each n and 1 � j � j(n). Secondly, assuming w.l.o.g. F � 1 2 F , (7.1.12) (with
f = g = F � 1) implies (7:1:6)0. Therefore, the assertion follows from Corollary 7.1.8, since under

the present conditions one can verify (7.1.9) in the same way as it was done (in the set-indexed case)

within the proof of Theorem 2.2 in [Gae94], part (a). �

7.2 FCLT's for partial-sum processes with either �xed or random

locations

Let X = (X;X ) be an arbitrary measurable space, C � X a countable VCC being w.l.o.g. closed

under the formation of symmetric di�erences (cf. 4.2.7). Note that F := f1C : C 2 Cg has uniformly
integrable L2-entropy according to 4.3.21.

Let wnj = ��nj ; (�nj)1�j�j(n);n2Nbeing a triangular array of re's in (X;X ) (with j(n) �! 1 as

n!1) and (�nj)1�j�j(n);n2Na triangular array of rv's such that for each n 2 N the sequence of pairs

(�n1; �n1); :::; (�nj(n); �nj(n)) is independent but not necessarily identically distributed (and where the
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components within each pair need not be independent). Let d := d� for some p-measure � on X (where

d�(C;D) := �(C�D) = d(2)� (1C ; 1D) for C;D 2 C); note that (C; d�) is totally bounded (cf. 4.2.3).

Then, specializing Corollary 7.1.8 to the present case, we obtain the following result for partial-sum

processes Sn = (Sn(C))C2C with random locations as introduced in section 3.2.1, i.e. with

Sn(C) :=
X

j�j(n)
1C(�nj) � �nj ; C 2 C :

7.2.1 THEOREM (cf. [Gae94], Theorem 2.11).

Assume that the following conditions are ful�lled:

lim
n!1

X
j�j(n)

E
�
j�njj � I(j�njj > �)

�
= 0 for all � > 0(7.1.4)0

lim
�!0

lim sup
n!1

sup
C2C:�(C)��

X
j�j(n)

E
�
1C(�nj)�

2
nj � I(j�njj � �1)

�
= 0 for some �1 > 0(7.2.2)

sup
n2N

X
j�j(n)

E
�
�2nj � I(j�njj � �2)

�
<1 for some �2 > 0(7.1.6)0

There exists a mean-zero Gaussian process �G = ( �G(C))C2C such that

Sn � E(Sn) L��!
�di

�G .

(7.1.9)0

Then there exists a mean-zero Gaussian process G = (G(C))C2C with sample paths in U b(C; d�) (being

a separable subspace of (l1(C); jj � jjC)) such that

Sn � E(Sn) L��!
sep

G in l1(C) and �G
L
=
�di
G :

Specializing Corollary 7.1.10 in the same way as just done with Corollary 7.1.8 to the set-indexed case

yields the following result for Sn = (Sn(C))C2C with

Sn(C) :=
X

j�j(n)
1C(�nj) � �nj ; C 2 C;

under the additional assumption that for each n 2 N and 1 � j � j(n) also �nj and �nj are independent.

7.2.3 THEOREM (cf. [Gae94], Theorem 2.2).

Suppose that there is some p-measure � on X and constants 0 < ci < 1 such that the following four
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conditions are ful�lled:

lim
n!1

X
j�j(n)

E
�
j�njj � I(j�njj > �)

�
= 0 for all � > 0(7.1.4)0

lim
�!0

lim sup
n!1

sup
C2C:�(C)��

X
j�j(n)

�nj(C) � E(�2nj � I(j�njj � �1)) = 0 for some �1 > 0(7.2.4)

lim
n!1

X
j�j(n)

�nj(C \D) � E(�2nj � I(j�njj � �2)) = c1�(C \D) for all C;D 2 C and some �2 > 0

(7.2.5)

lim
n!1

X
j�j(n)

�nj(C) � �nj(D)
�
E(�nj � I(j�njj � �3))

�2
= c2�(C) � �(D) for all C;D 2 C and some �3 > 0:

(7.2.6)

Then

Sn � E(Sn) L��!
sep

G � in l1(F);

where G = (G(C))C2C is a mean-zero Gaussian process with sample paths in U b(C; d�) and
cov(G�(C); G�(D)) = c1�(C \D)� c2 �(C) � �(D) for C;D 2 C.

From Theorem 7.2.3 we get the following result which was already mentioned in section 2 (see Theorem

2.2.3) and used at the end of section 2.3.6.

7.2.7 Corollary (cf. [Gae94], Theorem 2.15).

Let �nj = j(n)�1�j for each 1 � j � j(n) and n 2 N (with j(n) �! 1 as n! 1), the �j's being i i d

rv's with E(�1) = 0 and E(�21 ) = 1. Let (�nj)1�j�j(n);n2Nbeing a triangular array of rowwise independent
but not necessarily identically distributed re's in (X;X ) which is independent of the sequence (�j)j2N.
Suppose that there is some p-measure � on X such that the following two conditions are ful�lled (with

�nj := Lf�njg):
(i) limn!1 j(n)�1

P
j�j(n) �nj(C \D) = �(C \D) for all C;D 2 C

(ii) lim�!0 lim supn!1 supC2C:�(C)�� j(n)
�1P

j�j(n) �nj(C) = 0.

Then �
j(n)�1=2

X
j�j(n)

1C(�nj) � �j
�
C2C

L��!
sep

G� ;

where G � = (G�(C))C2C is a mean-zero Gaussian process with sample paths in U b(C; d�) and
cov(G�(C); G�(D)) = �(C \D) for C;D 2 C.

PROOF. According to Theorem 7.2.3 we have to verify the conditions (7:1:4)0, (7.2.4), (7.2.5) with
c1 = 1 and (7.2.6) with c2 = 0 to get the assertion of 7.2.7.
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As to (7:1:4)0: For each � > 0 we have
P

j�j(n) E(j�nj j � I(j�njj > �)) � ��1
P

j�j(n) E(�
2
nj � I(j�njj >

�)) = ��1E(�21 � I(j�1j > �j(n)1=2)) �! 0, since E(�21 ) <1.

As to (7.2.5):
P

j�j(n) �nj(C \D) � E(�2nj � I(j�njj � �2)) = [j(n)�1
P

j�j(n) �nj(C \D)] � E(�21 � I(j�1j �
�2j(n)

1=2)), where by (i) limn!1 j(n)�1
P

j�j(n) �nj(C \ D) = �(C \ D) and limn!1 E(�21 � I(j�1j �
�2j(n)

1=2)) = E(�21 ) = 1. This proves (7.2.5) with c1 = 1.

As to (7.2.6): Since lim supn!1
P

j�j(n) �nj(C)��nj(D)�
�
E(�nj �I(j�njj � �3))

�2
� lim supn!1

P
j�j(n)�

E(�nj � I(j�njj � �3))
�2

= limn!1
�
E(�1 � I(j�1j � �3j(n)

1=2))
�2

=
�
E(�1)

�2
= 0, we get (7.2.6) with

c2 = 0.

As to (7.2.4): Since
P

j�j(n) �nj(C) � E(�2nj � I(j�njj � �1)) = [j(n)�1
P

j�j(n) �nj(C)] � E(�21 � I(j�1j �
�1j(n)

1=2)), it follows that

sup
C2C:�(C)��

X
j�j(n)

�nj(C)�E(�2nj �I(j�njj � �1)) =
h

sup
C2C:�(C)��

j(n)�1
X

j�j(n)
�nj(C)

i
�E(�21 �I(j�1j � �1j(n)

1=2));

whence by (ii) and the fact that limn!1 E(�21 � I(j�1j � �1j(n)
1=2)) = E(�21 ) = 1 condition (7.2.4) is

also ful�lled. �

NOTE: Corollary 7.2.7 can also be proved more directly by application of Corollary 7.1.8.

Considering as in 6.2.8 function-indexed partial-sum processes Sn = (Sn(f))f2F , de�ned by

Sn(f) := j(n)�1
X

j�j(n)
f(�nj) � �j; f 2 F ;

F being countable, uniformly bounded, having uniformly integrable L2-entropy (whence (F ; d) is
totally bounded w.r.t. d = d(2)� for each p-measure � on X according to 4.3.21), Corollary 7.1.10 yields

the following result (cf. [Zi97], 7.2):

7.2.8 THEOREM.

Let (�nj)1�j�j(n);n2Nbeing a triangular array of rowwise independent (but not necessarily identically

distributed) re's in (X;X ), (�j)j2Nbe a sequence of i i d rv's �j with E(�1) = 0 and E(�21 ) = 1, such

that the whole array (�nj) is independent of the sequence (�j). Suppose that there is some p-measure

� on X such that the following conditions are ful�lled (again with �nj := Lf�njg):
lim
n!1 j(n)

�1 X
j�j(n)

�nj(f � g) = �(f � g) for all f; g 2 F(7.2.9)

lim
�!0

lim sup
n!1

sup
d
(2)
� (f;g)��

j(n)�1
X

j�j(n)
�nj((f � g)2) = 0:(7.2.10)

Then �
j(n)�1=2

X
j�j(n)

f(�nj) � �j
�
f2F

L��!
sep

G� in l1(F);
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where G � = (G�(f))f2F is a mean-zero Gaussian process with sample paths in U b(F ; d(2)� ) and

cov(G�(f); G�(g)) = �(f � g) for f; g 2 F .

PROOF. The assertion follows from Corollary 7.1.10 in an analogous way as in the proof of 7.2.7.�

Concerning on the other hand partial-sum processes Sn = (Sn(f))f2F with

Sn(f) :=
X

j�j(n)
f(�j) � �nj; f 2 F ;

where �j; j 2 N, are i i d re's in (X;X ) with Lf�jg = �, and where (�nj)1�j�j(n);n2N(with j(n) �! 1 as

n!1) is a triangular array of rowwise independent (but not necessarily identically distributed) rv's

such that the whole array (�nj) is independent of the sequence (�j), the following result is mentioned

in [Zi97], 4.4:

7.2.11 THEOREM.

Let E(�nj ) = 0 for all 1 � j � j(n) and n 2 N. Assume that F has uniformly integrable L2-entropy

and that �(F 2) < 1, where F denotes the envelope of F . Suppose that the following conditions are

ful�lled:

(i) limn!1
P

j�j(n) E
�
F 2(�j) �

2
nj � I(F (�j)j�njj > �)

�
= 0 for all � > 0

(Lindeberg-type condition)

(ii) limn!1
P

j�j(n) E(�
2
nj) = 1.

Then

Sn
L��!
sep

G� in l1(F);

where G � = (G�(f))f2F is a mean-zero Gaussian process with sample paths in U b(F ; d(2)� ) and

cov(G�(f); G�(g)) = �(f � g) for f; g 2 F .

PROOF. We are going to apply Theorem 7.1.3 with wnj = ��j and d = d(2)� . For thist, one has to

verify that Sn
L��!
�di

G� , but this follows from the classical multivariate CLT for triangular arrays. So

it remains to verify (7.1.4) { (7.1.6):

As to (7.1.4):
P

j�j(n)E
�
wnj(F )j�njj � I(wnj(F )j�njj > �n)

�
=
P

j�j(n) E
�
F (�j) j�njj � I(F (�j)j�njj >

�n)
�
� ��1n

P
j�j(n) E

�
F 2(�j) �

2
nj � I(F (�j)j�njj > �n)

�
�! 0 with an appropriate chosen sequence

(�n)n2N� R+ with �n �! 0, since by (i)

lim
n!1 �

�1 X
j�j(n)

E
�
F 2(�j) �

2
nj � I(F (�j)j�njj > �)

�
= 0 for all � > 0:
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As to (7.1.6): supn2N
P

j�j(n)E
�
wnj(F

2)�2nj �I(wnj(F )j�njj � �n)
�
� supn2N

P
j�j(n) E(F

2(�j)) �E(�2nj)
= �(F 2) � supn2N

P
j�j(n) E(�

2
nj ) <1 by (ii), since �(F 2) <1.

As to (7.1.5) (with d = d(2)� ): sup
d
(2)
� (f;g)��

P
j�j(n) E

�
(wnj(f)� wnj(g))

2�2nj � I(wnj(F )j�njj � �n)
�
�

sup
d
(2)
� (f;g)��

P
j�j(n) E

�
(f(�j) � g(�j))

2
�
� E(�2nj) = sup

d
(2)
� (f;g)�� �((f � g)2) � Pj�j(n) E(�

2
nj)

� �2 P
j�j(n) E(�

2
nj ) which implies (7.1.5). �

Finally, concerning function-indexed partial-sum processes with �xed locations and index set F being

countable, uniformly bounded and having uniformly integrable L2-entropy, we obtain from Theorem

7.2.8:

7.2.12 THEOREM (cf. [Zi97], 7.3).

Let (X;X ) = (Id; Id \ Bd); d � 1; (Id � [0; 1]d) and consider (cf. (1.4.2))

Sn(f) := n�d=2
X
j2Jn

f(j=n)�j ; f 2 F ;

(Jn := f1; :::; ngd), where the �j ; j 2 Nd, are i i d with E(�j ) = 0 and E(�2j ) = 1. Let � be the restriction

of the d-dimensional Lebesgue measure �d on Id \ Bd and suppose that the following two conditions

are ful�lled:

lim
n!1n

�d X
j2Jn

�j=n(f � g) = �d(f � g) for all f; g 2 F(7.2.13)

lim
�!0

lim sup
n!1

sup
�d((f�g)2)��

n�d
X
j2Jn

�j=n((f � g)2) = 0:(7.2.14)

Then

Sn
L��!
sep

G� in l1(F);

where G � = (G�(f))f2F is a mean-zero Gaussian process with sample paths in U b(F ; d(2)�d ) and

cov(G�(f); G�(g)) = �d(f � g) for f; g 2 F .

In the set-indexed case, i.e. for (cf. (1.4.2))

Sn(C) = n�d=2
X
j2Jn

1C(j=n)�j ; C 2 C;

with C � Id \ Bd, attempts to �nd natural conditions under which (7.2.13) and (7.2.14) hold have

been made in [Al87]; cf. also [Gae94], Remark 2.16 and the results contained in [Va96], Section 2.12.2:

Partial-Sum Processes on Lattices.
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7.3 FCLT's for empirical processes

Let X = (X;X ) be again an arbitrary measurable space (sample space) and (�nj)1�j�j(n);n2N(with
j(n) �! 1 as n ! 1) be a triangular array of re's in (X;X ) assumed to be rowwise independent

(but not necessarily identically distributed) with law Lf�njg = �nj). Let F be a class of X -measurable
functions f : X �! R with X -measurable envelope F : X �! R; F being countable for simplicity.

Assume that F has uniformly integrable L2-entropy and that there is some pseudo-metric d on F such

that (F ; d) is totally bounded (e.g. d = d(2)� for some p-measure � on X with �(F 2) <1; cf. 4.3.21).

We are going to apply our FCLT for RMP's 7.1.3 with wnj = ��nj and �nj = j(n)�1=2 to obtain the

following

FCLT for empirical processes in the non-i i d -case,

i.e. for Sn = (Sn(f))f2F with

Sn(f) := j(n)�1=2
X

j�j(n)
(f(�nj)� �nj(f)); f 2 F :

7.3.1 THEOREM (cf. [Zi97], 4.2).

Assume Sn
L��!
�di

�G , where �G = ( �G(f))f2F is a mean-zero Gaussian process. Let

��n := j(n)�1
X

j�j(n)
�nj ; an(�) := sup

d(f;g)��

�
��n((f � g)2)

�1=2
; � > 0;

and suppose that the following conditions are ful�lled:

sup
n2N

��n(F
2) <1 (whence Sn has its sample paths in l1(F))(7.3.2)

lim
�!0

lim sup
n!1

an(�) = 0(7.3.3)

lim
n!1 j(n)

�1 X
j�j(n)

E
�
F 2(�nj) � I(F (�nj) > �j(n)1=2)

�
= 0 for all � > 0:(7.3.4)

Then

Sn
L��!
sep

G in l1(F);

where G = (G(f))f2F is a mean-zero Gaussian process with sample paths in U b(F ; d) and G L
=
�di

�G .

PROOF. The proof runs along the same pattern as the proof of Theorem 7.2.11. According to

Theorem 7.1.3 we have to verify (7.1.4) { (7.1.6) (with wnj = ��nj and �nj = j(n)�1=2):

As to (7.1.4):
P

j�j(n) E
�
wnj(F )j�njj � I(wnj(F )j�njj > �n)

�
=
P

j�j(n) E
�
F (�nj) j(n)

�1=2 � I(F (�nj) >
�nj(n)

1=2)
�
� ��1n j(n)�1

P
j�j(n) E

�
F 2(�nj) � I(F (�nj) > �nj(n)

1=2)
�
�! 0 with an appropriate chosen
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sequence (�n)n2N� R+ with �n �! 0, since by (7.3.4)

��1j(n)�1
X

j�j(n)
E
�
F 2(�nj) � I(F (�nj) > �j(n)1=2)

�
�! 0

as n �! 1 for all � > 0.

As to (7.1.6): supn2N
P

j�j(n) E
�
wnj(F

2)�2nj �I(wnj(F )j�njj � �n)
�
= supn2N

P
j�j(n) E(F

2(�nj)j(n)
�1�

I(F (�nj) � �nj(n)
1=2)

�
� supn2Nj(n)

�1P
j�j(n) E(F

2(�nj)) = supn2Nj(n)
�1P

j�j(n) �nj(F
2) =

supn2N��n(F
2) <1 by (7.3.2).

As to (7.1.5): supd(f;g)��
P

j�j(n) E
�
(wnj(f)�wnj(g))

2�2nj �I(wnj(F )j�njj � �n)
�
= supd(f;g)��

P
j�j(n)

E
�
(f(�nj)�g(�nj))2j(n)�1�I(F (�nj) � �nj(n)

1=2)
�
� supd(f;g)�� j(n)

�1P
j�j(n) E

�
(f(�nj)�g(�nj))2

�
=

supd(f;g)�� j(n)
�1P

j�j(n) �nj((f � g)2) = supd(f;g)�� ��n((f � g)2) = a2n(�),

from which (7.1.5) follows according to (7.3.3). �

Replacing the triangular array (�nj) by a sequence (�j)j2Nof i i d re's in (X;X ) with law Lf�jg = �,

we obtain from Theorem 7.3.1 the following FCLT for empirical F -processes in the i i d -case, i.e. for

�n = (�n(f))f2F with �n(f) := n�1=2
P

j�n(f(�j) � �(f)) = n1=2(�n(f) � �(f)), where �n(f) :=

n�1
P

j�n f(�j) (cf. 2.2.1 in the set-indexed case):

7.3.5 THEOREM.

Suppose that F has uniformly integrable L2-entropy and that �(F 2) < 1 (F being countable for

simplicity). Then

�n
L��!
sep

G� in l1(F);

where G � = (G�(f))f2F is a mean-zero Gaussian process with sample paths in U b(F ; d(2)� ) and

cov(G�(f); G�(g)) = �(f � g)� �(f) � �(g) for f; g 2 F .

PROOF. �n
L��!
�di

G� follows by the classical multivariate CLT. The conditions (7.3.2) and (7.3.3)

are obviously ful�lled. As to (7.3.4) we have in the present case

lim
n!1n

�1X
j�n

E
�
F 2(�j) � I(F (�j) > �n1=2)

�
= lim

n!1E
�
F 2(�1) � I(F (�1) > �n1=2)

�
= 0;

since E(F 2(�1)) = �(F 2) <1. Thus Theorem 7.3.1 yields the assertion. �

7.3.6 REMARK.

Concerning VCGC's F (having uniformly integrable L2-entropy according to 4.3.21) with �(F 2) <1,

the assertion of Thoerem 7.3.5 holds true, especially for F = f1C : C 2 Cg; C � X being a countable

VCC; see Theorem 2.2.1.
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7.4 FCLT's for smoothed empirical processes

Throughout this section X is supposed to be an arbitrary linear metric space endowed with its Borel

�-�eld X . The basic situation is the same as in section 6.4, i.e. given i i d re's �j; j 2 N, in (X;X ) with
law Lf�jg = � on X we consider the smoothed empirical measures

~�n := �n ? �n ; n 2 N;

indexed by classes F of X -measurable functions f : X �! Rwith X -measurable envelope F : X �! R

assuming that �(F 2) :=
R
X F

2 d� <1. Remember from 6.4 that

~�n(f) =

Z
X

Z
X

f(x+ y)�n(dx)�n(dy) = n�1
X
j�n

Z
X

f(�j + y)�n(dy)(7.4.1)

and E(~�n(f)) = � ? �n(f) 8f 2 F (cf. (6.4.3) and (6.4.4)).

Also our decomposition from 6.4 will be again important, i.e.

~�n � � = ~�n � � ? �n + � ? �n � �;(7.4.2)

noticing that ~�n� � ? �n = ~�n� E(~�n) is a mean-zero RMP and where � ? �n� � is the non-stochastic

bias term.

As in 6.4 let ~F be the class of all translates fx of elements f of F (with fx(y) := f(x + y); y 2 X).

Without imposing the condition F = ~F we are going to apply our FCLT for RMP's 7.1.3 with (cf.

(7.4.1))

wnj(f) :=
Z
X

f(�j + y)�n(dy); and �nj := n�1=2 ; 1 � j � j(n) := n; n 2 N;

to obtain su�cient conditions under which�p
n(~�n(f)� �(f))

�
f2F

L��!
sep

G in l1(F);(7.4.3)

where G = (G(f))f2F is a mean-zero Gaussian process with sample paths in U b(F ; d(2)� ).

Remember that U b(F ; d(2)� ) is a separable subspace of (l1(F); jj � jjF) if and only if (F ; d(2)� ) is totally

bounded ([Gae90], Corollary 2) where the latter is true for classes F having uniformly integrable

L2-entropy (cf. 4.3.21).

Now, in view of (7.4.2), Theorem 7.1.3 yields immediately the following FCLT. (Note that the �j's on

which the wnj's are based are i i d .)

7.4.4 THEOREM (cf. [Ro97], Theorem 3.2.2).

Let X be a linear metric space and let F have uniformly integrable L2-entropy. Assume that the

following conditions (7.4.5) { (7.4.8) are ful�lled:
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For each � > 0 there exists �n � �n(�); n 2 N; �n ! 0 such that

lim sup
n!1

p
n � E

�
wn1(F ) I(wn1(F ) > �n

p
n)
�
� �(7.4.5)

lim
�!0

lim sup
n!1

sup
d
(2)
� (f;g)��

E
�
(wn1(f)� wn1(g))

2) � I(wn1(F ) � �n
p
n)
�
= 0(7.4.6)

sup
n2N

E
�
wn1(F

2) � I(wnj(F ) � �n
p
n)
�
<1(7.4.7)

sup
f2F

p
nj� ? �n(f)� �(f)j �! 0 :(7.4.8)

Assume, in addition, that there exists a mean-zero Gaussian process �G = (�G (f))f2F such that
p
n(~�n�

� ? �n)
L��!
�di

�G .

Then there exists a mean-zero Gaussian process G = (G(f))f2F with sample paths in U b(F ; d(2)� ) such

that

p
n(~�n � �) L��!

sep
G in l1(F) and G L

=
�di

�G :

Before going further, let us have a view on a FCLT for smoothed empirical processes under the

condition F = ~F :
From van der Vaart [Va94] one gets the following result. For this, F is called a �-Donsker class if (cf.

Theorem 7.3.5)
�p

n(�n(f)� �(f))
�
f2F

L��!
sep

G� in l1(F):

7.4.9 THEOREM.

Let X = Rd; d � 1, and assume F = ~F. Let F be �-Donsker and �n p-measures on Bd with �n �! �0
weakly. Suppose that the following two conditions are ful�lled:

sup
f2F

Z
X

� Z
X
(f(x+ y)� f(x))�n(dy)

�2
�(dx) �! 0(7.4.10)

sup
f2F

p
n
��� ? �n(f)� �(f)�� �! 0(7.4.11)

Then p
n(~�n � �)

L��!
sep

G in l1(F);

where G = (G(f))f2F is a mean-zero Gaussian process with sample paths in U b(F ; d(2)� ).

NOTE: In [Va94] the �n's are even allowed to be random p-measures on Bd. On the other hand it

should be noted that F being a �-Donsker class does in general not imply that ~F is also a �-Donsker

class (cf. Example 2.2.8 in [Ro97]) as it is imposed in 7.4.9 via the F = ~F - assumption. See also

[Ro99] for a comparison with a result of Yukich [Yu92] obtained in the case X = Rd; d � 1;F = ~F ;F
a �-Donsker class. The method of proof in [Va94] and [Yu92], respectively, is completely di�erent
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from our approach via RMP's (see [Ro99] for a discussion). Their key method consists of showing

asymptotic (stochastic) equivalence of the empirical process
p
n(�n � �) and the unbiased smoothed

empirical processes
p
n(~�n � � ? �n) in order to apply the Cram�er-Slutzky-type result (cf. Theorem

2.3.15).

Now, in view of Theorem 7.4.9 we will present in the following more tractable conditions compared

with those in Theorem 7.4.4, but again without imposing the condition F = ~F :

7.4.12 THEOREM (cf. [Ro97], Theorem 3.2.3).

Let X be a linear metric space and F have uniformly integrable L2-entropy. Assume that the following

conditions (7.4.13) and (7.4.14) are ful�lled:

sup
f2F

Z
X

� Z
X

(f(x+ y)� f(x))�n(dy)
�2
�(dx) �! 0(7.4.13)

sup
f2F[fF3g

p
n
��� ? �n(f)� �(f)�� �! 0:(7.4.14)

Then p
n(~�n � �) L��!

sep
G� in l1(F);

where G � = (G� (f))f2F is a mean-zero Gaussian process with sample paths in U b(F ; d(2)� ) and

cov(G�(f); G�(g)) = �(f � g)� �(f) � �(g) for f; g 2 F .

PROOF. To prove this result, one shows (7.4.5) { (7.4.7), �di-convergence and then one applies
Theorem 7.4.4. This is carried out in [Ro99].

NOTE: Condition (7.4.13) is just (7.4.10), whereas (7.4.14) is apparently a bit stronger than (7.4.11) implying convergence also
for F 3. In (7.4.14) it is tacitly understood that � ? �n(F 3) and �(F 3) exist. (7.4.14) can be replaced by (7.4.11) if, in addition,

� ? �n(F 2+") �! �(F 2+") for some " > 0. On the other hand, as already mentioned in section 6.4, the condition F = ~F implies
that F is uniformly bounded. But for uniformly bounded F (7.4.14) reduces to (7.4.11), and so we get �nally the following result:

7.4.15 THEOREM (cf. [Ro97], Theorem 3.2.4).

Let X be a linear metric space and let F be uniformly bounded having uniformly integrable L2-entropy.

Assume that the conditions (7.4.8) and (7.4.13) are satis�ed. Then

p
n(~�n � �) L��!

sep
G� in l1(F);

where G � = (G� (f))f2F is a mean-zero Gaussian process with sample paths in U b(F ; d(2)� ) and

cov(G�(f); G�(g)) = �(f � g)� �(f) � �(g) for f; g 2 F .

7.5 A uniform FCLT for the unbiased smoothed empirical process

As in section 7.4 X is supposed to be an arbitrary linear metric space endowed with its Borel �-�eld

X and �j; j 2 N, are i i d re's in (X;X ) with law Lf�jg = � on X .
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Let us consider �rst the non-smoothed empirical process G�n :=
p
n(�n��) indexed by a (countable, for

simplicity) class F of X -measurable functions f : X �! R with X -measurable envelope F : X �! R

such that �(F 2) <1.

As we know from (7.1.2) and the general comments preceeding (7.1.2) we have

G�n
L��!
sep

G� in l1(F) () dBL(G
�
n ;G� ) �! 0;

where G � = (G�(g))f2F is a mean-zero Gaussian process with sample paths in U b(F ; d(2)� ) and

cov(G�(f); G�(g)) = �(f � g)� �(f) � �(g) for f; g 2 F ;

calling (as in section 7.4) F to be a �-Donsker class in this case.

Now, concerning the question whether F is also a uniform Donsker class, i.e whether

sup�2M1(X) dBL(G
�
n ;G� ) �! 0 (and (F ; d(2)� ) is totally bounded uniformly in �), whereM1(X) denotes

the class of all p-measures on X , the following result is known (see [Gi97], Theorem 5.3 and [Gi91]):

7.5.1 THEOREM.

Let X be an arbitrary measurable space and F be uniformly bounded having uniformly integrable L2-

entropy. Then (with LfG� g being tight)

sup
�2M1(X)

dBL(G
�
n ;G� ) �! 0:(7.5.2)

Uniform Donsker classes were e.g. studied by Sheehy and Wellner [She92] (who also studied in detail (7.5.2) with the supremum
taken over subclasses ofM1(X)) and by Gin�e and Zinn [Gi91]. They showed that (puttingmeasurablilty questions aside) a so-called
uniformly pregaussian class F (saying F is UPG) is a uniform Donsker class.

F is UPG means that the following two conditions are ful�lled:

sup
�2M1(X)

E(jjZ�jjF) <1(7.5.3)

lim
�!0

sup
�2M1(X)

E
�
supfjZ�(f)� Z�(g)j : f; g 2 F ; d(2)� (f; g) � �g

�
= 0:(7.5.4)

In both conditions Z� can be replaced by G � (see [Gi97], Theorem 5.3).

Here Z� = (Z�(f))f2F stands for a mean-zero Gaussian process with tight law LfZ�g on B(l1(F))
whose covariance structure is given by

cov(Z�(f); Z�(g)) = �(f � g) for f; g 2 F :

From [Va96], Example 1.5.10 it follows that also Z� (as G � ) can be chosen to have its sample paths in

U b(F ; d(2)� ); note that d(2)� coincides with the so-called intrinsic pseudo-metric �Z� (on F) for Z�, i.e.

�Z�(f; g) := E
1=2(jZ�(f)� Z�(g)j2) = d(2)� (f; g) for f; g 2 F :
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Now we are going to establish an analogous result as (7.5.2) for smoothed empirical processes under

conditions similar to (7.5.3) and (7.5.4) replacing G�n by the unbiased smoothed empirical process

~G�n := ( ~G�
n(f))f2F ;

where ~G�
n(f) :=

p
n(~�n(f)� � ? �n(f)); f 2 F :

7.5.5 THEOREM (cf. [Ro97], Theorem 4.4).

Let X be a linear metric space and F be uniformly bounded. Suppose that for every � 2 M1(X) there

is a mean-zero Gaussian process G� = (G�(h))h2F[G with tight law LfG �g on B(l1(F [ G)) where

G := fgf;�n : f 2 F ; n 2 Ng with gf;�n(x) :=

Z
X

f(x+ y)�n(dy); x 2 X:

Assume that the following conditions (7.5.6) { (7.5.8) are ful�lled:

sup
�2M1(X)

E(jjG � jjF) <1(7.5.6)

lim
�!0

sup
�2M1(X)

E
�
sup

�jG�(h1)� G�(h1)j : h1; h2 2 F [ G; d(2)� (h1; h2) � �
	�

= 0(7.5.7)

sup
�2M1(X)

sup
f2F

Z
X

� Z
X
(f(x+ y)� f(x))�n(dy)

�2
�(dx) �! 0:(7.5.8)

Then

sup
�2M1(X)

dBL(~G
�
n ;G� ) �! 0:(7.5.9)

In (7.5.9) not only ~G�n but also G � (restricted to the index set F) is considered as a process with sam-

ple paths in l1(F) whose law LfG � g is tight on B(l1(F)); so dBL in (7.5.9) stands for the bounded

Lipschitz distance based on l1(F) (and not on l1(F [ G)).

PROOF. We follow the lines of proof of (7.5.2) as given in [Gi97], respectively the lines of proof of

Theorem 2.3 in [Gi91] under the conditions (7.5.3) and (7.5.4) using Gaussian comparison methods.

First, we show that for each � > 0

sup
�2M1(X)

N(�;F ; d(2)� ) <1:(7.5.10)

As to (7.5.10), according to Sudakov's Inequality (cf. [Va96], A.2.5) there exists a constant 0 < K <1
such that for every � 2 M1(X)

�
logN(�;F ; �Z�)

�1=2
� K � E(jjZ�jjF)

97



(with �Z�(f; g) := E
1=2(jZ�(f)� Z�(g)j2) = d(2)� (f; g) 8 f; g 2 F)

whence �
logN(�;F ; d(2)� )

�1=2
� K � E(jjZ�jjF):

Now, let g be a standardnormal distributed rv which is independent of G� ; then

LfG� + g � �g = LfZ�g

(as can be seen by computing covariances), so

E(jjZ�jjF) � E(jjG � jjF) + E(jgj) � sup
f2F

j�(f)j;

whence (7.5.6) together with F being uniformly bounded yields (7.5.10).

Next, let k := sup�2M1(X)N(�;F ; d(2)� ), and for each � 2 M1(X) let f1; :::; fk 2 F denote the centers

of the d(2)� -balls with radius � that cover F . (Note that, of course, f1; :::; fk depend on �.) Then for

each f 2 F let �� (f) 2 ff1; :::; fkg be such that

d(2)� (��(f); f) � � ( where w.l.o.g. �� (fi) = fi 8 i = 1; :::; k):

This allows us to de�ne the following processes ~G�n(��) = ( ~G�
n(�� )(f))f2F and G � (�� ) = (G�(��)(f))f2F

with sample paths in l1(F) by
~G�
n(��)(f) := ~G�

n(��(f))

and G�(��)(f) := G�(��(f)) ; f 2 F :

Then, for each H 2 BL1(l
1(F)) we have the decomposition

��E�(H(~G�n))� E(H(G � ))
�� � ��E�(H(~G�n))� E(H(~G �

n(�� )))
��

+
��E(H(~G �

n(��)))� E(H(G � (�� )))
��

+
��E(H(G � (�� )))� E(H(G � ))

��
=: I1n + I2n + I3n:

We will show

lim sup
�!0

lim sup
n!1

sup
�2M1(X)

sup
H2BL1(l1(F))

Iin = 0 for i = 1; 2; 3:(7.5.11)

As to I3n: Since H 2 BL1(l1(F)) we have��E(H(G � (��)))� E(H(G � ))
��

� E(jjG � (�� )� G� jjF) � E(supfjG� (f)� G � (g)j : f; g 2 F ; d(2)� (f; g) � �g);

so (7.5.7) yields (7.5.11) for i = 3.
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As to I2n: Let � 2 M1(X) andH 2 BL1(l
1(F)) be arbitrary. Then there exists a bounded Lipschitz

function L : Rk �! R s.t.

H(x(��)) = L((x(f1); :::; x(fk))) 8 x 2 l1(F)
with x(�� )(f) := x(�� (f)); f 2 F . So we obtain��E(H(~G �

n(��)))� E(H(G � (��)))
��

� dBL
�
(~G �

n(f1); :::;
~G�n(fk))

t; (G� (f1); :::;G� (fk))
t
�
;

where the superscript t denotes the transposed vector and here dBL is the bounded Lipschitz metric

on the space of all p-measures (laws) on Bk in Rk.

Now (~G �
n(f1); :::;

~G�n(fk))
t =

p
nn�1

P
j�n �nj with

�nj =

0
BBBBBBB@

R
X f1(�j + y)�n(dy)� � ? �n(f1)

...

R
X fk(�j + y)�n(dy)� � ? �n(fk)

1
CCCCCCCA

; j = 1; :::; n; n 2 N:

Let Vn1 = (Vn1(i; l))1�i;j�k and �k = (�k(i; l))1�i;j�k denote the covariance matrix of �nj and

(G� (f1); :::;G� (fk))
t, respectively, where

�k(i; l) = �(fi � fl)� �(fi) � �(fl) ; 1 � i; l � k:

According to the triangle inequality

dBL
�
(~G�n(f1); :::;

~G�n(fk))
t; (G� (f1); :::;G� (fk))

t
�

� dBL
�
(~G�n(f1); :::;

~G�n(fk))
t;Nk(0;Vn1)

�
+ dBL

�Nk(0;Vn1);Nk(0;�k)
�
:

Note that Lf(G� (f1); :::;G� (fk))tg = Nk(0;�k).

Now the components
R
X fi(�j + y)�n(dy); i= 1; :::; k, of �nj are rv's which are bounded by 1 (since F

is assumed to be uniformly bounded with envelope F � 1 w.l.o.g.) for any fi 2 F , so this bound does

not depend on �. An application of Lemma 2.1 in [Gi91] now gives

lim
n!1 sup

�2M1(X)
dBL

�
(~G�n(f1); :::;

~G�n(fk))
t;Nk(0;Vn1)

�
= 0:

From Lemma 2.2 in [Gi91] we have

dBL
�Nk(0;Vn1);Nk(0;�k)

� � C � sup
1�i;l�k

jVn1(i; l)� �k(i; l)j

with a constant C depending only on k.

Keeping in mind that the f1; :::; fk (and therefore also Vn1 and �k) depend on � we are going to show

that

sup
�2M1(X)

sup
1�i;l�k

jVn1(i; l)� �k(i; l)j �! 0;(7.5.12)
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whence lim supn!1 sup�2M1(X)dBL
�Nk(0;Vn1);Nk(0;�k)

�
= 0, which completes the proof of (7.5.11)

for i = 2.

As to (7.5.12):

Vn1(i; l) =

Z
X

� Z
X

fi(x+ y)�n(dy)� � ? �n(fi)
� � � Z

X

fl(x+ y)�n(dy)� � ? �n(fl)
�
�(dx)

which is equal to (inserting fi(x) and fl(x), respectively)Z
X

� Z
X

fi(x+ y)�n(dy)� fi(x)
� � � Z

X

fl(x+ y)�n(dy)� fl(x)
�
�(dx)

+

Z
X

�
fi(x)� � ? �n(fi)

� � � Z
X
fl(x+ y)�n(dy)� fl(x)

�
�(dx)

+

Z
X

�
fl(x)� � ? �n(fl)

� � � Z
X

fi(x+ y)�n(dy)� fi(x)
�
�(dx)

+

Z
X

�
fl(x)� � ? �n(fl)

� � �fi(x)� � ? �n(fi)��(dx)
=: In1(fi; fl) + In2(fi; fl) + In3(fi; fl) + In4(fi; fl):

The Cauchy-Schwarz inequality together with (7.5.8) yields

sup
�2M1(X)

sup
1�i;l�k

In1(fi; fl) �! 0:

Next,

jIn4(fi; fl)� �k(i; l)j = jIn4(fi; fl)� (�(fi � fl)� �(fi) � �(fl))j
= j� ? �n(fi)� �(fi)j � j� ? �n(fl)� �(fl)j

� sup
f2F

�� Z
X

Z
X

(f(x+ y)� f(x))�n(dy)�(dx)
��2 � sup

f2F

Z
X

� Z
X

(f(x+ y)� f(x))�n(dy)
�2
�(dx);

whence by (7.5.8)

sup
�2M1(X)

sup
1�i;l�k

jIn4(fi; fl)� �k(i; l)j �! 0:

From this, the Cauchy-Schwarz Inequality and (7.5.8) aggain, we also have

sup
�2M1(X)

sup
1�i;l�k

Inj(fi; fl) �! 0 for j = 2; 3:

This proves (7.5.12).

As to I1n
�
:=
��E�(H(~G�n))� E(H(~G �

n(��)))
���:

Since H 2 BL1(l1(F)) it su�ces to show that

lim
�!0

lim sup
n!1

sup
�2M1(X)

P
�
supfj~G�n(f1)� ~G�n(f2)j : f1; f2 2 F ; d(2)� (f1; f2) � �g > �

�
= 0
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for all � > 0.

Since for each f 2 F

~G�n(f) = G
�
n(gf;�n) (with gf;�n(x) :=

Z
X

f(x+ y)�n(dy) ; x 2 X)

we have

supfj~G�n(f1)� ~G�n(f2)j : f1; f2 2 F ; d(2)� (f1; f2) � �g
= supfjG�n(gf1;�n)� G�n(gf2;�n)j : f1; f2 2 F ; d(2)� (f1; f2) � �g

� supfjG�n(f1)� G �
n(f2)j : f1; f2 2 F ; d(2)� (f1; f2) � �g + 2 � sup

f2F
jG�n(f)� G�n(gf;�n)j:(7.5.13)

We show �rst

(a) lim supn!1 sup�2M1(X)P
�
supf2F jG�n(f)� G�n(gf;�n)j > �

�
= 0 8� > 0:

Let � > 0 be arbitrary but �xed. Then by Markov's inequality and the Symmetrization Inequality

5.1.2 we obtain

P
�
sup
f2F

jG�n(f)� G�n(gf;�n)j > �
�

� ��1
p
n E(sup

f2F
j�n(f � gf;�n)� �(f � gf;�n)j)

� 2 ��1
p
n E(sup

f2F
jn�1

X
j�n

"j(f � gf;�n)(�j)j);

where "1; "2; ::: is a canonically formed Rademacher sequence which is independent of (�j)j2N.

Now, by Lemma 2.9.1 in [Va96] we can replace the "j's by a sequence of i i d rv's gj with Lfgjg =

N (0; 1), to obtain the following upper bound (by taking expectations w.r.t. the gj 's (denoted by Eg )

and the �j's (denoted by E� ) seperately:

P
�
sup
f2F

jG�n(f)� G�n(gf;�n)j > �
�

� C � E� Eg
�
sup
f2F

jn�1=2
X
j�n

gj � (f � gf;�n)(�j)j
�

where the constant C depends on � but not on n.

Now , for �xed realizations �1(!); :::; �n(!) consider the process Z
!
�n
= (Z!

�n
(f))f2Fn with

Z!
�n
(f) := n�1=2

X
j�n

gj � f(�j(!)) ; f 2 Fn;

and Fn := ff; gf;�n : f 2 Fg:

Then Z!
�n
is a mean-zero Gaussian process with

cov(Z!
�n
(f1); Z

!
�n
(f2)) = �n(f1 � f2; !) for f1; f2 2 Fn;
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where �n(f1 � f2; !) := n�1
P

j�n ��j(!)(f1 � f2).

Considering instead the process (indexed also by Fn)

G!
�n

+ g � �n( � ; !) = (G!
�n
(f) + g � �n(f; !))f2Fn ;

where G!
�n

= (G!
�n
(f))f2Fn is a mean-zero Gaussian process with

cov(G!
�n
(f1); G

!
�n
(f2)) = �n(f1 � f2; !)� �n(f1; !) � �n(f2; !)

for f1; f2 2 Fn, and where g with Lfgg = N (0; 1) is independent of G!
�n
, we have (as can be seen by

computing covariances) that 8!

Z!
�n

L
=
�di

G!�n + g � �n( � ; !):(?)

Thus 8!

Eg
�
sup
f2F

jn�1=2
X
j�n

gj � (f � gf;�n)(�j(!))j
�

�
(?)
E
�
sup
f2F

jG!
�n
(f)� G!

�n
(gf;�n)j

�
+ E(jgj) � sup

f2F
j�n(f � gf;�n ; !)j

� sup
�2M1(X)

E(sup
f2F

jG�(f)� G�(gf;�n)j) + E(jgj) � sup
�2M1(X)

sup
f2F

j�(f � gf;�n)j:

Now let " > 0 be arbitrary and (using (7.5.7)) choose � > 0 s.t.

sup
�2M1(X)

E
�
sup

�jG�(h1)� G�(h2)j : h1; h2 2 F [ G; d(2)� (h1; h2) � �
	� � ":

Then by (7.5.8) for large enough n we have for all f 2 F

sup
�2M1(X)

(d(2)� (f; gf;�n))
2

= sup
�2M1(X)

�((f � gf;�n)2) = sup
�2M1(X)

Z
X

� Z
X

(f(x+ y)� f(x))�n(dy)
�2
�(dx) � �2;

and so

lim sup
n!1

sup
�2M1(X)

E� Eg
�
sup
f2F

jn�1=2
X
j�n

gj � (f � gf;�n)(�j)j
�

� lim sup
n!1

sup
�2M1(X)

E(sup
f2F

jG�(f)�G�(gf;�n)j) + E(jgj) lim sup
n!1

sup
�2M1(X)

sup
f2F

j�(f � gf;�n)j

= lim sup
n!1

sup
�2M1(X)

E(supfjG�(f)�G�(gf;�n)j : f 2 F ; d(2)� (f; gf;�n) � �g) + 0

� sup
�2M1(X)

E
�
sup

�jG�(h1)� G�(h2)j : h1; h2 2 F [ G; d(2)� (h1; h2) � �
	� � ";
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where we have used that

lim sup
n!1

sup
�2M1(X)

sup
f2F

j�(f � gf;�n)j

� lim sup
n!1

sup
�2M1(X)

sup
f2F

h Z
X

� Z
X

(f(x+ y)� f(x))�n(dy)
�2
�(dx)

i1=2
= 0

according to (7.5.8). Thus (a) is proved.

To conclude the proof of (7.5.11) for i = 1, we still have to show (see (7.5.13)) that

lim
�!0

lim sup
n!1

sup
�2M1(X)

P
�
supfjG�

n(f1)� G�
n(f2)j : f1; f2 2 F ; d(2)� (f1; f2) � �g > �

�
= 0

for all � > 0.

This is proved by similar techniques. Since this expression, however, does not involve any smoothing

operations we refer to [Gi97] for a proof.

So we have shown (7.5.11) for i = 1, too, and the theorem is proved. �

Finally, from [Va96], Theorem 2.8.3 we have that (7.5.6) and (7.5.7) are ful�lled if F[G has uniformly

integrable L2-entropy, which in turn is implied if F [ G is a VCGC. So, Theorem 7.5.5 yields

7.5.14 THEOREM.

Let X be a linear metric space and let F be uniformly bounded. Suppose that F [ G has uniformly

integrable L2-entropy and that (7.5.8) is ful�lled. Then

sup
�2M1(X)

dBL(~G
�
n ;G� ) �! 0:

7.5.15 REMARK.

The results of section 7.5 are important in the area of bootstrapping empirical processes (see e.g.

[Gi91], [Gi97], [Ro97], [She92] and [Va96], Section 3.6); concerning smoothed bootstrapped empirical

processes we refer to a forthcoming paper by [Ro99a].
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